

Functional
Programming

by John Paul Mueller

Functional Programming For Dummies®

Published by: John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030-5774, www.wiley.com

Copyright © 2019 by John Wiley & Sons, Inc., Hoboken, New Jersey

Published simultaneously in Canada

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by
any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under
Sections 107 or 108 of the 1976 United States Copyright Act, without the prior written permission of the Publisher.
Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons,
Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at http://www.wiley.com/
go/permissions.

Trademarks: Wiley, For Dummies, the Dummies Man logo, Dummies.com, Making Everything Easier, and related
trade dress are trademarks or registered trademarks of John Wiley & Sons, Inc. and may not be used without written
permission. All other trademarks are the property of their respective owners. John Wiley & Sons, Inc. is not associated
with any product or vendor mentioned in this book.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: THE PUBLISHER AND THE AUTHOR MAKE NO
REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE CONTENTS
OF THIS WORK AND SPECIFICALLY DISCLAIM ALL WARRANTIES, INCLUDING WITHOUT LIMITATION WARRANTIES
OF FITNESS FOR A PARTICULAR PURPOSE. NO WARRANTY MAY BE CREATED OR EXTENDED BY SALES OR
PROMOTIONAL MATERIALS. THE ADVICE AND STRATEGIES CONTAINED HEREIN MAY NOT BE SUITABLE FOR
EVERY SITUATION. THIS WORK IS SOLD WITH THE UNDERSTANDING THAT THE PUBLISHER IS NOT ENGAGED
IN RENDERING LEGAL, ACCOUNTING, OR OTHER PROFESSIONAL SERVICES. IF PROFESSIONAL ASSISTANCE IS
REQUIRED, THE SERVICES OF A COMPETENT PROFESSIONAL PERSON SHOULD BE SOUGHT. NEITHER THE
PUBLISHER NOR THE AUTHOR SHALL BE LIABLE FOR DAMAGES ARISING HEREFROM. THE FACT THAT AN
ORGANIZATION OR WEBSITE IS REFERRED TO IN THIS WORK AS A CITATION AND/OR A POTENTIAL SOURCE OF
FURTHER INFORMATION DOES NOT MEAN THAT THE AUTHOR OR THE PUBLISHER ENDORSES THE INFORMATION
THE ORGANIZATION OR WEBSITE MAY PROVIDE OR RECOMMENDATIONS IT MAY MAKE. FURTHER, READERS
SHOULD BE AWARE THAT INTERNET WEBSITES LISTED IN THIS WORK MAY HAVE CHANGED OR DISAPPEARED
BETWEEN WHEN THIS WORK WAS WRITTEN AND WHEN IT IS READ.

For general information on our other products and services, please contact our Customer Care Department within
the U.S. at 877-762-2974, outside the U.S. at 317-572-3993, or fax 317-572-4002. For technical support, please
visit https://hub.wiley.com/community/support/dummies.

Wiley publishes in a variety of print and electronic formats and by print-on-demand. Some material included with
standard print versions of this book may not be included in e-books or in print-on-demand. If this book refers to
media such as a CD or DVD that is not included in the version you purchased, you may download this material at
http://booksupport.wiley.com. For more information about Wiley products, visit www.wiley.com.

Library of Congress Control Number: 2018965285

ISBN: 978-1-119-52750-3

ISBN 978-1-119-52751-0 (ebk); ISBN ePDF 978-1-119-52749-7 (ebk)

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

http://www.wiley.com
http://www.wiley.com/go/permissions
http://www.wiley.com/go/permissions
https://hub.wiley.com/community/support/dummies
http://booksupport.wiley.com
http://www.wiley.com

Table of Contents iii

Table of Contents
INTRODUCTION . . 1

About This Book. . 1
Foolish Assumptions. . 3
Icons Used in This Book. . 3
Beyond the Book. . 4
Where to Go from Here. . 5

PART 1: GETTING STARTED WITH FUNCTIONAL
PROGRAMMING . . 7

CHAPTER 1:	 Introducing Functional Programming. 9
Defining Functional Programming. . 10

Understanding its goals. . 11
Using the pure approach. . 11
Using the impure approach. . 12

Considering Other Programming Paradigms. . 13
Imperative. .13
Procedural . . 13
Object-oriented. . 14
Declarative. . 14

Using Functional Programming to Perform Tasks. 15
Discovering Languages That Support Functional Programming. 16

Considering the pure languages. . 16
Considering the impure languages. . 17

Finding Functional Programming Online. . 17

CHAPTER 2:	 Getting and Using Python. . 19
Working with Python in This Book . . 20

Creating better code. . 20
Debugging functionality. . 20
Defining why notebooks are useful . . 21

Obtaining Your Copy of Anaconda. . 21
Obtaining Analytics Anaconda. . 21
Installing Anaconda on Linux. . 22
Installing Anaconda on MacOS. . 23
Installing Anaconda on Windows . . 24
Understanding the Anaconda package . . 26

Downloading the Datasets and Example Code. 27
Using Jupyter Notebook. . 28
Defining the code repository. . 28
Getting and using datasets . . 33

iv Functional Programming For Dummies

Creating a Python Application. . 34
Understanding cells. .35
Adding documentation cells . . 36
Other cell content. . 38

Running the Python Application. . 38
Understanding the Use of Indentation . . 39
Adding Comments. . 41

Understanding comments. . 41
Using comments to leave yourself reminders 43
Using comments to keep code from executing 43

Closing Jupyter Notebook. .44
Getting Help with the Python Language . . 45

CHAPTER 3:	 Getting and Using Haskell . . 47
Working with Haskell in This Book. . 48
Obtaining and Installing Haskell. . 48

Installing Haskell on a Linux system. . 50
Installing Haskell on a Mac system. . 50
Installing Haskell on a Windows system . . 52

Testing the Haskell Installation. . 54
Compiling a Haskell Application. . 56
Using Haskell Libraries. . 59
Getting Help with the Haskell Language . . 60

PART 2: STARTING FUNCTIONAL
PROGRAMMING TASKS. 63

CHAPTER 4:	 Defining the Functional Difference 65
Comparing Declarations to Procedures. . 66
Understanding How Data Works. .67

Working with immutable data. . 68
Considering the role of state. . 68
Eliminating side effects. . 69

Seeing a Function in Haskell . . 69
Using non-curried functions . . 69
Using curried functions . . 70

Seeing a Function in Python. .73
Creating and using a Python function . . 73
Passing by reference versus by value. . 74

CHAPTER 5:	 Understanding the Role of Lambda Calculus. 77
Considering the Origins of Lambda Calculus . . 78
Understanding the Rules. . 80

Working with variables. . 80
Using application. . 81
Using abstraction. . 82

Table of Contents v

Performing Reduction Operations. . 85
Considering α-conversion. . 85
Considering β-reduction. . 86
Considering η-conversion. . 88

Creating Lambda Functions in Haskell. . 89
Creating Lambda Functions in Python. . 89

CHAPTER 6:	 Working with Lists and Strings. . 91
Defining List Uses . . 92
Creating Lists. . 93

Using Haskell to create Lists . . 94
Using Python to create lists. . 95

Evaluating Lists . . 96
Using Haskell to evaluate Lists . . 97
Using Python to evaluate lists. . 99

Performing Common List Manipulations. . 100
Understanding the list manipulation functions 101
Using Haskell to manipulate lists . . 101
Using Python to manipulate lists . . 102

Understanding the Dictionary and Set Alternatives. 103
Using dictionaries . . 103
Using sets. . 104

Considering the Use of Strings . . 105
Understanding the uses for strings . . 105
Performing string-related tasks in Haskell. 106
Performing string-related tasks in Python. 106

PART 3: MAKING FUNCTIONAL
PROGRAMMING PRACTICAL . . 109

CHAPTER 7:	 Performing Pattern Matching. . 111
Looking for Patterns in Data. . 112
Understanding Regular Expressions . . 113

Defining special characters using escapes 114
Defining wildcard characters. . 115
Working with anchors. . 115
Delineating subexpressions using grouping constructs. 116

Using Pattern Matching in Analysis . . 117
Working with Pattern Matching in Haskell. . 118

Performing simple Posix matches . . 118
Matching a telephone number with Haskell. 120

Working with Pattern Matching in Python. . 121
Performing simple Python matches. . 121
Doing more than matching . . 123
Matching a telephone number with Python. 124

vi Functional Programming For Dummies

CHAPTER 8:	 Using Recursive Functions. . 125
Performing Tasks More than Once. . 126

Defining the need for repetition. . 126
Using recursion instead of looping. . 127

Understanding Recursion. .128
Considering basic recursion. . 129
Performing tasks using lists. . 131
Upgrading to set and dictionary. . 132
Considering the use of collections . . 134

Using Recursion on Lists . . 135
Working with Haskell . . 135
Working with Python. . 136

Passing Functions Instead of Variables . . 137
Understanding when you need a function 138
Passing functions in Haskell. . 138
Passing functions in Python. . 139

Defining Common Recursion Errors. . 140
Forgetting an ending. . 140
Passing data incorrectly. . 141
Defining a correct base instruction. . 141

CHAPTER 9:	 Advancing with Higher-Order Functions. 143
Considering Types of Data Manipulation. . 144
Performing Slicing and Dicing. . 146

Keeping datasets controlled . . 146
Focusing on specific data. . 147
Slicing and dicing with Haskell. . 147
Slicing and dicing with Python. . 150

Mapping Your Data. . 151
Understanding the purpose of mapping. . 151
Performing mapping tasks with Haskell . . 152
Performing mapping tasks with Python. . 153

Filtering Data. . 154
Understanding the purpose of filtering. . 154
Using Haskell to filter data. . 155
Using Python to filter data. . 156

Organizing Data. . 157
Considering the types of organization. . 157
Sorting data with Haskell. . 158
Sorting data with Python. . 159

CHAPTER 10:	Dealing with Types. . 161
Developing Basic Types . . 162

Understanding the functional perception of type 162
Considering the type signature. . 162
Creating types . . 164

Table of Contents vii

Composing Types . . 170
Understanding monoids. . 170
Considering the use of Nothing, Maybe, and Just.174
Understanding semigroups. . 176

Parameterizing Types. . 176
Dealing with Missing Data. . 178

Handling nulls . . 178
Performing data replacement. . 180
Considering statistical measures . . 180

Creating and Using Type Classes . . 181

PART 4: INTERACTING IN VARIOUS WAYS. 183

CHAPTER 11:	Performing Basic I/O. . 185
Understanding the Essentials of I/O. . 186

Understanding I/O side effects. . 186
Using monads for I/O. . 188
Interacting with the user . . 188
Working with devices . . 189

Manipulating I/O Data . . 191
Using the Jupyter Notebook Magic Functions. 192
Receiving and Sending I/O with Haskell. . 195

Using monad sequencing. . 195
Employing monad functions. . 195

CHAPTER 12:	Handling the Command Line. . 197
Getting Input from the Command Line. . 198

Automating the command line. . 198
Considering the use of prompts. . 198
Using the command line effectively. . 199

Accessing the Command Line in Haskell. . 200
Using the Haskell environment directly. . 200
Making sense of the variety of packages. . 201
Obtaining CmdArgs. . 202
Getting a simple command line in Haskell 204

Accessing the Command Line in Python. . 205
Using the Python environment directly. . 205
Interacting with Argparse. . 206

CHAPTER 13:	Dealing with Files. . 207
Understanding How Local Files are Stored. . 208
Ensuring Access to Files. . 209
Interacting with Files. . 209

Creating new files . . 210
Opening existing files. . 211

viii Functional Programming For Dummies

Manipulating File Content . . 212
Considering CRUD. . 213
Reading data . . 214
Updating data . . 215

Completing File-related Tasks. . 217

CHAPTER 14:	Working with Binary Data . . 219
Comparing Binary to Textual Data. . 220
Using Binary Data in Data Analysis. . 221
Understanding the Binary Data Format. . 222
Working with Binary Data. .225
Interacting with Binary Data in Haskell . . 225

Writing binary data using Haskell. . 226
Reading binary data using Haskell . . 227

Interacting with Binary Data in Python . . 228
Writing binary data using Python. . 228
Reading binary data using Python . . 229

CHAPTER 15:	Dealing with Common Datasets. . 231
Understanding the Need for Standard Datasets 232
Finding the Right Dataset. . 233

Locating general dataset information . . 233
Using library-specific datasets. . 234

Loading a Dataset. . 236
Working with toy datasets. . 237
Creating custom data. . 238
Fetching common datasets. . 239

Manipulating Dataset Entries . . 241
Determining the dataset content. . 241
Creating a DataFrame. . 243
Accessing specific records. . 244

PART 5: PERFORMING SIMPLE ERROR TRAPPING. 247

CHAPTER 16:	Handling Errors in Haskell . . 249
Defining a Bug in Haskell. . 250

Considering recursion. . 250
Understanding laziness . . 251
Using unsafe functions. . 252
Considering implementation-specific issues. 253

Understanding the Haskell-Related Errors . . 253
Fixing Haskell Errors Quickly. . 256

Relying on standard debugging. . 256
Understanding errors versus exceptions. . 258

Table of Contents ix

CHAPTER 17:	Handling Errors in Python. . 259
Defining a Bug in Python. . 260

Considering the sources of errors . . 260
Considering version differences. . 262

Understanding the Python-Related Errors . . 263
Dealing with late binding closures . . 263
Using a variable. . 264
Working with third-party libraries. . 264

Fixing Python Errors Quickly. . 265
Understanding the built-in exceptions. . 265
Obtaining a list of exception arguments. . 266
Considering functional style exception handling. 267

PART 6: THE PART OF TENS. . 269

CHAPTER 18:	Ten Must-Have Haskell Libraries 271
binary . . 271
Hascore. . 273
vect . . 273
vector . . 274
aeson. . 274
attoparsec. . 275
bytestring. . 275
stringsearch. . 276
text. . 276
moo. . 277

CHAPTER 19:	Ten (Plus) Must-Have Python Packages 279
Gensim. . 280
PyAudio. . 281
PyQtGraph. . 282
TkInter. . 283
PrettyTable. . 283
SQLAlchemy. . 284
Toolz . . 284
Cloudera Oryx . . 285
funcy. . 285
SciPy . . 286
XGBoost . . 287

x Functional Programming For Dummies

CHAPTER 20:	Ten Occupation Areas that Use
Functional Programming. . 289
Starting with Traditional Development . . 289
Going with New Development. . 290
Creating Your Own Development. . 291
Finding a Forward-Thinking Business. . 292
Doing Something Really Interesting. . 292
Developing Deep Learning Applications . . 293
Writing Low-Level Code . . 293
Helping Others in the Health Care Arena . . 294
Working as a Data Scientist. . 294
Researching the Next Big Thing . . 295

INDEX . . 297

Introduction 1

Introduction

The functional programming paradigm is a framework that expresses a partic-
ular set of assumptions, relies on particular ways of thinking through prob-
lems, and uses particular methodologies to solve those problems. Some

people view this paradigm as being akin to performing mental gymnastics. Other
people see functional programming as the most logical and easiest method for
coding any particular problem ever invented. Where you appear in this rather
broad range of perspectives depends partly on your programming background,
partly on the manner in which you think through problems, and partly on the
problem you’re trying to solve.

Functional Programming For Dummies doesn’t try to tell you that the functional
programming paradigm will solve every problem, but it does help you understand
that functional programming can solve a great many problems with fewer errors,
less code, and a reduction in development time. Most important, it helps you
understand the difference in the thought process that using the functional pro-
gramming paradigm involves. Of course, the key is knowing when functional pro-
gramming is the best option, and that’s what you take away from this book. Not
only do you see how to perform functional programming with both pure (Haskell)
and impure (Python) languages, but you also gain insights into when functional
programming is the best solution.

About This Book
Functional Programming For Dummies begins by describing what a paradigm is and
how the functional programming paradigm differs. Many developers today don’t
really understand that different paradigms can truly change the manner in which
you view a problem domain, thereby making some problem domains consider-
ably easier to deal with. As part of considering the functional programming par-
adigm, you install two languages: Haskell (a pure functional language) and
Python (an impure functional language). Of course, part of this process is to see
how pure and impure languages differ and determine the advantages and disad-
vantages of each.

hfyang
Insert Text
類似的

hfyang
Insert Text
體操

hfyang
Highlight

2 Functional Programming For Dummies

Part of working in the functional programming environment is to understand and
use lambda calculus, which is part of the basis on which functional programming
it built. Imagine that you’re in a room with some of the luminaries of computer
science and they’re trying to decide how best to solve problems in computer
science at a time when the term computer science doesn’t even exist. For that mat-
ter, no one has even defined what it means to compute. Even though functional
programming might seem new to many people, it’s based on real science created
by the best minds the world has ever seen to address particularly difficult prob-
lems. This science uses lambda calculus as a basis, so an explanation of this par-
ticularly difficult topic is essential.

After you understand the basis of the functional programming paradigm and have
installed tools that you can use to see it work, it’s time to create some example
code. This book starts with some relatively simple examples that you might find
in other books that use other programming paradigms so that you compare them
and see how functional programming actually differs. You then move on to other
sorts of programming problems that begin to emphasize the benefits of functional
programming in a stronger way. To make absorbing the concepts of functional
programming even easier, this book uses the following conventions:

»» Text that you’re meant to type just as it appears in the book is bold. The
exception is when you’re working through a step list: Because each step is
bold, the text to type is not bold.

»» Because functional programming will likely seem strange to many of you, I’ve
made a special effort to define terms, even some of those that you might
already know, because they may have a different meaning in the functional
realm. You see the terms in italics, followed by their definition.

»» When you see words in italics as part of a typing sequence, you need to
replace that value with something that works for you. For example, if you
see “Type Your Name and press Enter,” you need to replace Your Name with
your actual name.

»» Web addresses and programming code appear in monofont. If you’re
reading a digital version of this book on a device connected to the Internet,
note that you can click the web address to visit that website, like this:
www.dummies.com.

»» When you need to type command sequences, you see them separated by
a special arrow, like this: File ➪ New File. In this case, you go to the File menu
first and then select the New File entry on that menu. The result is that you
see a new file created.

http://www.dummies.com
hfyang
Insert Text
燈具

Introduction 3

Foolish Assumptions
You might find it difficult to believe that I’ve assumed anything about you — after
all, I haven’t even met you yet! Although most assumptions are indeed foolish,
I made these assumptions to provide a starting point for the book.

You need to be familiar with the platform that you want to use because the book
doesn’t provide any guidance in this regard. To give you maximum information
about the functional programming paradigm, this book doesn’t discuss any
platform-specific issues. You need to know how to install applications, use
applications, and generally work with your chosen platform before you begin
working with this book. Chapter 2 does show how to install Python, and Chapter 3
shows how to install Haskell. Part 2 of the book gives you the essential introduc-
tion to functional programming, and you really need to read it thoroughly to
obtain the maximum benefit from this book.

This book also assumes that you can find things on the Internet. Sprinkled
throughout are numerous references to online material that will enhance your
learning experience. However, these added sources are useful only if you actually
find and use them.

Icons Used in This Book
As you read this book, you see icons in the margins that indicate material of inter-
est (or not, as the case may be). This section briefly describes each icon in this
book.

Tips are nice because they help you save time or perform some task without a lot
of extra work. The tips in this book are time-saving techniques or pointers to
resources that you should try in order to get the maximum benefit from Python,
Haskell, or the functional programming paradigm.

I don’t want to sound like an angry parent or some kind of maniac, but you should
avoid doing anything marked with a Warning icon. Otherwise, you could find that
your program serves only to confuse users, who will then refuse to work with it.

Whenever you see this icon, think advanced tip or technique. You might find these
tidbits of useful information just too boring for words, or they could contain the
solution that you need to get a program running. Skip these bits of information
whenever you like.

4 Functional Programming For Dummies

If you don’t get anything else out of a particular chapter or section, remember the
material marked by this icon. This text usually contains an essential process or a
bit of information that you must know to write Python, Haskell, or functional
programming applications successfully.

Beyond the Book
This book isn’t the end of your functional programming experience — it’s really
just the beginning. I provide online content to make this book more flexible and
better able to meet your needs. That way, as I receive email from you, I can do
things like address questions and tell you how updates to Python, its associated
packages, Haskell, it’s associated libraries, or changes to functional programming
techniques that affect book content. In fact, you gain access to all these cool
additions:

»» Cheat sheet: You remember using crib notes in school to make a better mark
on a test, don’t you? You do? Well, a cheat sheet is sort of like that. It provides
you with some special notes about tasks that you can do with Python or Haskell
that not every other developer knows. In addition, you find some quick notes
about functional programming paradigm differences. You can find the cheat
sheet for this book by going to www.dummies.com and searching this book’s
title. Scroll down the page until you find a link to the Cheat Sheet.

»» Updates: Sometimes changes happen. For example, I might not have seen an
upcoming change when I looked into my crystal ball during the writing of this
book. In the past, that simply meant the book would become outdated and
less useful, but you can now find updates to the book by searching this book’s
title at www.dummies.com.

In addition to these updates, check out the blog posts with answers to
reader questions and demonstrations of useful book-related techniques at
http://blog.johnmuellerbooks.com/.

»» Companion files: Hey! Who really wants to type all the code in the book?
Most readers would prefer to spend their time actually working through coding
examples, rather than typing. Fortunately for you, the source code is available
for download, so all you need to do is read the book to learn functional program-
ming techniques. Each of the book examples even tells you precisely which
example project to use. You can find these files at www.dummies.com. Click More
about This Book and, on the page that appears, scroll down the page to the set
of tabs. Click the Downloads tab to find the downloadable example files.

http://www.dummies.com
http://www.dummies.com/
http://blog.johnmuellerbooks.com/
http://www.dummies.com

Introduction 5

Where to Go from Here
It’s time to start your functional programming paradigm adventure! If you’re a
complete functional programming novice, you should start with Chapter 1 and
progress through the book at a pace that allows you to absorb as much of the
material as possible.

If you’re a novice who’s in an absolute rush to get going with functional program-
ming techniques as quickly as possible, you can skip to Chapter 2, followed by
Chapter 3, with the understanding that you may find some topics a bit confusing
later. You must install both Python and Haskell to have any hope of getting some-
thing useful out of this book, so unless you have both languages installed, skip-
ping these two chapters will likely mean considerable problems later.

Readers who have some exposure to functional programming and already have
both Python and Haskell installed can skip to Part 2 of the book. Even with some
functional programming experience, Chapter 5 is a must-read chapter because it
provides the basis for all other discussions in the book. The best idea is to at least
skim all of Part 2.

If you’re absolutely certain that you understand both functional programming
paradigm basics and how lambda calculus fits into the picture, you can skip to
Part 3 with the understanding that you may not see the relevance of some exam-
ples. The examples build on each other so that you gain a full appreciation of what
makes the functional programming paradigm different, so try not to skip any of
the examples, even if they seem somewhat simplistic.

hfyang
Highlight

1Getting Started
with Functional
Programming

IN THIS PART . . .

Discover the functional programming paradigm.

Understand how functional programming differs.

Obtain and install Python.

Obtain and install Haskell.

CHAPTER 1 Introducing Functional Programming 9

Chapter 1
Introducing Functional
Programming

This book isn’t about a specific programming language; it’s about a pro-
gramming paradigm. A paradigm is a framework that expresses a particular
set of assumptions, relies on particular ways of thinking through problems,

and uses particular methodologies to solve those problems. Consequently, this
programming book is different because it doesn’t tell you which language to use;
instead, it focuses on the problems you need to solve. The first part of this chapter
discusses how the functional programming paradigm accomplishes this task, and
the second part points out how functional programming differs from other para-
digms you may have used.

The math orientation of functional programming means that you might not create
an application using it; you might instead solve straightforward math problems or
devise what if scenarios to test. Because functional programming is unique in its
approach to solving problems, you might wonder how it actually accomplishes its
goals. The third section of this chapter provides a brief overview of how you use
the functional programming paradigm to perform various kinds of tasks (includ-
ing traditional development), and the fourth section tells how some languages
follow a pure path to this goal and others follow an impure path. That’s not to say
that those following the pure path are any more perfect than those following the
impure path; they’re simply different.

IN THIS CHAPTER

»» Exploring functional programming

»» Programming in the functional way

»» Finding a language that suits
your needs

»» Locating functional programming
resources

10 PART 1 Getting Started with Functional Programming

Finally, this chapter also discusses a few online resources that you see mentioned
in other areas of the book. The functional programming paradigm is popular for
solving certain kinds of problems. These resources help you discover the specifics
of how people are using functional programming and why they feel that it’s such
an important method of working through problems. More important, you’ll dis-
cover that many of the people who rely on the functional programming paradigm
aren’t actually developers. So, if you aren’t a developer, you may find that you’re
already in good company by choosing this paradigm to meet your needs.

Defining Functional Programming
Functional programming has somewhat different goals and approaches than
other paradigms use. Goals define what the functional programming paradigm is
trying to do in forging the approaches used by languages that support it. However,
the goals don’t specify a particular implementation; doing that is within the pur-
view of the individual languages.

The main difference between the functional programming paradigm and other
paradigms is that functional programs use math functions rather than statements
to express ideas. This difference means that rather than write a precise set of
steps to solve a problem, you use math functions, and you don’t worry about how
the language performs the task. In some respects, this makes languages that
support the functional programming paradigm similar to applications such as
MATLAB. Of course, with MATLAB, you get a user interface, which reduces the
learning curve. However, you pay for the convenience of the user interface with a
loss of power and flexibility, which functional languages do offer. Using this
approach to defining a problem relies on the declarative programming style, which
you see used with other paradigms and languages, such as Structured Query
Language (SQL) for database management.

In contrast to other paradigms, the functional programming paradigm doesn’t
maintain state. The use of state enables you to track values between function calls.
Other paradigms use state to produce variant results based on environment, such
as determining the number of existing objects and doing something different
when the number of objects is zero. As a result, calling a functional program func-
tion always produces the same result given a particular set of inputs, thereby
making functional programs more predictable than those that support state.

Because functional programs don’t maintain state, the data they work with is also
immutable, which means that you can’t change it. To change a variable’s value,
you must create a new variable. Again, this makes functional programs more

CHAPTER 1 Introducing Functional Programming 11

predictable than other approaches and could make functional programs easier to
run on multiple processors. The following sections provide additional information
on how the functional programming paradigm differs.

Understanding its goals
Imperative programming, the kind of programming that most developers have done
until now, is akin to an assembly line, where data moves through a series of steps
in a specific order to produce a particular result. The process is fixed and rigid, and
the person implementing the process must build a new assembly line every time
an application requires a new result. Object-oriented programming (OOP) simply
modularizes and hides the steps, but the underlying paradigm is the same. Even
with modularization, OOP often doesn’t allow rearrangement of the object code in
unanticipated ways because of the underlying interdependencies of the code.

Functional programming gets rid of the interdependencies by replacing proce-
dures with pure functions, which requires the use of immutable state. Conse-
quently, the assembly line no longer exists; an application can manipulate data
using the same methodologies used in pure math. The seeming restriction of
immutable state provides the means to allow anyone who understands the math
of a situation to also create an application to perform the math.

Using pure functions creates a flexible environment in which code order depends
on the underlying math. That math models a real-world environment, and as our
understanding of that environment changes and evolves, the math model and
functional code can change with it — without the usual problems of brittleness
that cause imperative code to fail. Modifying functional code is faster and less
error prone because the person implementing the change must understand only
the math and doesn’t need to know how the underlying code works. In addition,
learning how to create functional code can be faster as long as the person under-
stands the math model and its relationship to the real world.

Functional programming also embraces a number of unique coding approaches,
such as the capability to pass a function to another function as input. This capa-
bility enables you to change application behavior in a predictable manner that
isn’t possible using other programming paradigms. As the book progresses, you
encounter other such benefits of using functional programming.

Using the pure approach
Programming languages that use the pure approach to the functional program-
ming paradigm rely on lambda calculus principles, for the most part. In addition,
a pure-approach language allows the use of functional programming techniques

hfyang
Insert Text
一成不變的

hfyang
Insert Text
脆性

12 PART 1 Getting Started with Functional Programming

only, so that the result is always a functional program. The pure-approach
language used in this book is Haskell because it provides the purest implementation,
according to articles such as the one found on Quora at https://www.quora.com/
What-are-the-most-popular-and-powerful-functional-programming-
languages. Haskell is also a relatively popular language, according to the TIOBE
index (https://www.tiobe.com/tiobe-index/). Other pure-approach languages
include Lisp, Racket, Erlang, and OCaml.

As with many elements of programming, opinions run strongly regarding whether
a particular programming language qualifies for pure status. For example, many
people would consider JavaScript a pure language, even though it’s untyped. Oth-
ers feel that domain-specific declarative languages such as SQL and Lex/Yacc
qualify for pure status even though they aren’t general programming languages.
Simply having functional programming elements doesn’t qualify a language as
adhering to the pure approach.

Using the impure approach
Many developers have come to see the benefits of functional programming. How-
ever, they also don’t want to give up the benefits of their existing language, so
they use a language that mixes functional features with one of the other program-
ming paradigms (as described in the “Considering Other Programming Para-
digms” section that follows). For example, you can find functional programming
features in languages such as C++, C#, and Java. When working with an impure
language, you need to exercise care because your code won’t work in a purely
functional manner, and the features that you might think will work in one way
actually work in another. For example, you can’t pass a function to another func-
tion in some languages.

At least one language, Python, is designed from the outset to support multiple
programming paradigms (see https://blog.newrelic.com/2015/04/01/
python-programming-styles/ for details). In fact, some online courses make a
point of teaching this particular aspect of Python as a special benefit (see https://
www.coursehero.com/file/p1hkiub/Python-supports-multiple-programming-
paradigms-including-object-oriented/). The use of multiple programming
paradigms makes Python quite flexible but also leads to complaints and apologists
(see http://archive.oreilly.com/pub/post/pythons_weak_functional_progra.
html as an example). The reasons that this book relies on Python to demonstrate
the impure approach to functional programming is that it’s both popular and
flexible, plus it’s easy to learn.

https://www.quora.com/What-are-the-most-popular-and-powerful-functional-programming-languages
https://www.quora.com/What-are-the-most-popular-and-powerful-functional-programming-languages
https://www.quora.com/What-are-the-most-popular-and-powerful-functional-programming-languages
https://www.tiobe.com/tiobe-index/
https://blog.newrelic.com/2015/04/01/python-programming-styles/
https://blog.newrelic.com/2015/04/01/python-programming-styles/
https://www.coursehero.com/file/p1hkiub/Python-supports-multiple-programming-paradigms-including-object-oriented/
https://www.coursehero.com/file/p1hkiub/Python-supports-multiple-programming-paradigms-including-object-oriented/
https://www.coursehero.com/file/p1hkiub/Python-supports-multiple-programming-paradigms-including-object-oriented/
http://archive.oreilly.com/pub/post/pythons_weak_functional_progra.html
http://archive.oreilly.com/pub/post/pythons_weak_functional_progra.html

CHAPTER 1 Introducing Functional Programming 13

Considering Other
Programming Paradigms

You might think that only a few programming paradigms exist besides the func-
tional programming paradigm explored in this book, but the world of develop-
ment is literally packed with them. That’s because no two people truly think
completely alike. Each paradigm represents a different approach to the puzzle of
conveying a solution to problems by using a particular methodology while making
assumptions about things like developer expertise and execution environment. In
fact, you can find entire sites that discuss the issue, such as the one at http://
cs.lmu.edu/~ray/notes/paradigms/. Oddly enough, some languages (such as
Python) mix and match compatible paradigms to create an entirely new way to
perform tasks based on what has happened in the past.

The following sections discuss just four of these other paradigms. These para-
digms are neither better nor worse than any other paradigm, but they represent
common schools of thought. Many languages in the world today use just these
four paradigms, so your chances of encountering them are quite high.

Imperative
Imperative programming takes a step-by-step approach to performing a task.
The developer provides commands that describe precisely how to perform the task
from beginning to end. During the process of executing the commands, the code
also modifies application state, which includes the application data. The code runs
from beginning to end. An imperative application closely mimics the computer
hardware, which executes machine code. Machine code is the lowest set of instruc-
tions that you can create and is mimicked in early languages, such as assembler.

Procedural
Procedural programming implements imperative programming, but adds func-
tionality such as code blocks and procedures for breaking up the code. The com-
piler or interpreter still ends up producing machine code that runs step by step,
but the use of procedures makes it easier for a developer to follow the code and
understand how it works. Many procedural languages provide a disassembly mode
in which you can see the correspondence between the higher-level language and
the underlying assembler. Examples of languages that implement the procedural
paradigm are C and Pascal.

http://cs.lmu.edu/~ray/notes/paradigms/
http://cs.lmu.edu/~ray/notes/paradigms/
hfyang
Insert Text
命令式編程

14 PART 1 Getting Started with Functional Programming

Early languages, such as Basic, used the imperative model because developers
creating the languages worked closely with the computer hardware. However,
Basic users often faced a problem called spaghetti code, which made large applica-
tions appear to be one monolithic piece. Unless you were the application’s devel-
oper, following the application’s logic was often hard. Consequently, languages
that follow the procedural paradigm are a step up from languages that follow the
imperative paradigm alone.

Object-oriented
The procedural paradigm does make reading code easier. However, the relation-
ship between the code and the underlying hardware still makes it hard to relate
what the code is doing to the real world. The object-oriented paradigm uses the
concept of objects to hide the code, but more important, to make modeling the real
world easier. A developer creates code objects that mimic the real-world objects
they emulate. These objects include properties, methods, and events to allow the
object to behave in a particular manner. Examples of languages that implement
the object-oriented paradigm are C++ and Java.

Languages that implement the object-oriented paradigms also implement both
the procedural and imperative paradigms. The fact that objects hide the use
of these other paradigms doesn’t mean that a developer hasn’t written code to
create the object using these older paradigms. Consequently, the object-oriented
paradigm still relies on code that modifies application state, but could also allow
for modifying variable data.

Declarative
Functional programming actually implements the declarative programming par-
adigm, but the two paradigms are separate. Other paradigms, such as logic pro-
gramming, implemented by the Prolog language, also support the declarative
programming paradigm. The short view of declarative programming is that it
does the following:

»» Describes what the code should do, rather than how to do it

»» Defines functions that are referentially transparent (without side effects)

»» Provides a clear correspondence to mathematical logic

CHAPTER 1 Introducing Functional Programming 15

Using Functional Programming
to Perform Tasks

It’s essential to remember that functional programming is a paradigm, which
means that it doesn’t have an implementation. The basis of functional program-
ming is lambda calculus (https://brilliant.org/wiki/lambda-calculus/),
which is actually a math abstraction. Consequently, when you want to perform
tasks by using the functional programming paradigm, you’re really looking for a
programming language that implements functional programming in a manner that
meets your needs. (The next section, “Discovering Languages that Support Func-
tional Programming,” describes the available languages in more detail.) In fact, you
may even be performing functional programming tasks in your current language
without realizing it. Every time you create and use a lambda function, you’re likely
using functional programming techniques (in an impure way, at least).

In addition to using lambda functions, languages that implement the functional
programming paradigm have some other features in common. Here is a quick
overview of these features:

»» First-class and higher-order functions: First-class and higher-order func-
tions both allow you to provide a function as an input, as you would when
using a higher-order function in calculus.

»» Pure functions: A pure function has no side effects. When working with a
pure function, you can

•	 Remove the function if no other functions rely on its output

•	 Obtain the same results every time you call the function with a given set
of inputs

•	 Reverse the order of calls to different functions without any change to
application functionality

•	 Process the function calls in parallel without any consequence

•	 Evaluate the function calls in any order, assuming that the entire language
doesn’t allow side effects

»» Recursion: Functional language implementations rely on recursion to
implement looping. In general, recursion works differently in functional
languages because no change in application state occurs.

»» Referential transparency: The value of a variable (a bit of a misnomer
because you can’t change the value) never changes in a functional language
implementation because functional languages lack an assignment operator.

https://brilliant.org/wiki/lambda-calculus/

16 PART 1 Getting Started with Functional Programming

You often find a number of other considerations for performing tasks in functional
programming language implementations, but these issues aren’t consistent across
languages. For example, some languages use strict (eager) evaluation, while other
languages use non-strict (lazy) evaluation. Under strict evaluation, the language
fully checks the function before evaluating it. Even when a term within the function
isn’t used, a failing term will cause the function as a whole to fail. However, under
non-strict evaluation, the function fails only if the failing term is used to create an
output. The Miranda, Clean, and Haskell languages all implement non-strict
evaluation.

Various functional language implementations also use different type systems, so
the manner in which the underlying computer detects the type of a value changes
from language to language. In addition, each language supports its own set of data
structures. These kinds of issues aren’t well defined as part of the functional pro-
gramming paradigm, yet they’re important to creating an application, so you
must rely on the language you use to define them for you. Assuming a particular
implementation in any given language is a bad idea because it isn’t well defined
as part of the paradigm.

Discovering Languages That Support
Functional Programming

To actually use the functional programming paradigm, you need a language that
implements it. As with every other paradigm discussed in this chapter, languages
often fall short of implementing every idea that the paradigm provides, or they
implement these ideas in unusual ways. Consequently, knowing the paradigm’s
rules and seeing how the language you select implements them helps you to
understand the pros and cons of a particular language better. Also, understanding
the paradigm makes comparing one language to another easier. The functional
programming paradigm supports two kinds of language implementation, pure
and impure, as described in the following sections.

Considering the pure languages
A pure functional programming language is one that implements only the func-
tional programming paradigm. This might seem a bit limited, but when you read
through the requirements in the “Using Functional Programming to Perform
Tasks” section, earlier in the chapter, you discover that functional programming
is mutually exclusive to programming paradigms that have anything to do with
the imperative paradigm (which applies to most languages available today).

CHAPTER 1 Introducing Functional Programming 17

Trying to discover which language best implements the functional programming
paradigm is nearly impossible because everyone has an opinion on the topic. You
can find a list of 21 functional programming language implementations with their
pros and cons at https://www.slant.co/topics/485/~best-languages-for-
learning-functional-programming.

Considering the impure languages
Python is likely the epitome of the impure language because it supports so many
coding styles. That said, the flexibility that Python provides is one reason that
people like using it so much: You can code in whatever style you need at the
moment. The definition of an impure language is one that doesn’t follow the rules
for the functional programming paradigm fully (or at least not fully enough to call
it pure). For example, allowing any modification of application state would
instantly disqualify a language from consideration.

One of the more common and less understood reasons for disqualifying a lan-
guage as being a pure implementation of the functional programming paradigm is
the lack of pure-function support. A pure function defines a specific relationship
between inputs and outputs that has no side effects. Every call to a pure function
with specific inputs always garners precisely the same output, making pure func-
tions extremely reliable. However, some applications actually rely on side effects
to work properly, which makes the pure approach somewhat rigid in some cases.
Chapters 4 and 5 provide specifics on the question of pure functions. You can
also discover more in the article at http://www.onlamp.com/2007/07/12/
introduction-to-haskell-pure-functions.html.

Finding Functional Programming Online
Functional programming has become extremely popular because it solves so many
problems. As covered in this chapter, it also comes with a few limitations, such as
an inability to use mutable data; however, for most people, the pros outweigh the
cons in situations that allow you to define a problem using pure math. (The lack
of mutable data support also has pros, as you discover later, such as an ability to
perform multiprocessing with greater ease.) With all this said, it’s great to have
resources when discovering a programming paradigm. This book is your first
resource, but a single book can’t discuss everything.

https://www.slant.co/topics/485/~best-languages-for-learning-functional-programming
https://www.slant.co/topics/485/~best-languages-for-learning-functional-programming
http://www.onlamp.com/2007/07/12/introduction-to-haskell-pure-functions.html
http://www.onlamp.com/2007/07/12/introduction-to-haskell-pure-functions.html
hfyang
Insert Text
縮影

hfyang
Insert Text
易變的

18 PART 1 Getting Started with Functional Programming

Online sites, such as Kevin Sookochef (https://sookocheff.com/post/fp/a-
functional-learning-plan/) and Wildly Inaccurate (https://wildlyinaccurate.
com/functional-programming-resources/), offer a great many helpful resources.
Hacker News (https://news.ycombinator.com/item?id=16670572) and Quora
(https://www.quora.com/What-are-good-resources-for-teaching-children-
functional-programming) can also be great resources. The referenced Quora site
is especially important because it provides information that’s useful in getting
children started with functional programming. One essential aspect of using online
sites is to ensure that they’re timely. The resource shouldn’t be more than two
years old; otherwise, you’ll be getting old news.

Sometimes you can find useful videos online. Of course, you can find a plethora
of videos of varying quality on YouTube (https://www.youtube.com/
results?search_query=Functional+Programming), but don’t discount sites,
such as tinymce (https://go.tinymce.com/blog/talks-love-functional-
programming/). Because functional programming is a paradigm and most of these
videos focus on a specific language, you need to choose the videos you watch with
care or you’ll get a skewed view of what the paradigm can provide (as contrasted
with the language).

One resource that you can count on being biased are tutorials. For example, the
tutorial at https://www.hackerearth.com/practice/python/functional-
programming/functional-programming-1/tutorial/ is all about Python, which,
as noted in previous sections of this chapter, is an impure implementation. Likewise,
even solid tutorial makers, such as Tutorials Point (https://www.tutorialspoint.
com/functional_programming/functional_programming_introduction.htm),
have a hard time with this topic because you can’t demonstrate a principle without a
language. A tutorial can’t teach you about a paradigm — at least, not easily, and not
much beyond an abstraction. Consequently, when viewing a tutorial, even a tutorial
that purports to provide an unbiased view of functional programming (such as
the one at https://codeburst.io/a-beginner-friendly-intro-to-functional-
programming-4f69aa109569), count on some level of bias because the examples will
likely appear using a subset of the available languages.

https://sookocheff.com/post/fp/a-functional-learning-plan/
https://sookocheff.com/post/fp/a-functional-learning-plan/
https://wildlyinaccurate.com/functional-programming-resources/
https://wildlyinaccurate.com/functional-programming-resources/
https://news.ycombinator.com/item?id=16670572
https://www.quora.com/What-are-good-resources-for-teaching-children-functional-programming
https://www.quora.com/What-are-good-resources-for-teaching-children-functional-programming
https://www.youtube.com/results?search_query=Functional+Programming
https://www.youtube.com/results?search_query=Functional+Programming
https://go.tinymce.com/blog/talks-love-functional-programming/
https://go.tinymce.com/blog/talks-love-functional-programming/
https://www.hackerearth.com/practice/python/functional-programming/functional-programming-1/tutorial/
https://www.hackerearth.com/practice/python/functional-programming/functional-programming-1/tutorial/
https://www.tutorialspoint.com/functional_programming/functional_programming_introduction.htm
https://www.tutorialspoint.com/functional_programming/functional_programming_introduction.htm
https://codeburst.io/a-beginner-friendly-intro-to-functional-programming-4f69aa109569
https://codeburst.io/a-beginner-friendly-intro-to-functional-programming-4f69aa109569

CHAPTER 2 Getting and Using Python 19

Chapter 2
Getting and Using
Python

As mentioned in Chapter 1, Python is a flexible language that supports mul-
tiple coding styles, including an implementation of the functional pro-
gramming paradigm. However, Python’s implementation is impure

because it does support the other coding styles. Consequently, you choose between
flexibility and the features that functional programming can provide when you
choose Python. Many developers choose flexibility (and therefore Python), but
there is no right or wrong choice — just the choice that works best for you. This
chapter helps you set up, configure, and become familiar with Python so that you
can use it in the book chapters that follow.

This book uses Anaconda 5.1, which supports Python 3.6.4. If you use a different
distribution, some of the procedural steps in the book will likely fail to work as
expected, the screenshots will likely differ, and some of the example code may not
run. To get the maximum benefit from this book, you need to use Anaconda 5.1,
configured as described in the remainder of this chapter. The example application
and other chapter features help you test your installation to ensure that it works
as needed, so following the chapter from beginning to end is the best idea for a
good programming experience.

IN THIS CHAPTER

»» Obtaining and using Python

»» Downloading and installing the
datasets and example code

»» Running an application

»» Writing Python code

20 PART 1 Getting Started with Functional Programming

Working with Python in This Book
You could download and install Python 3.6.4 to work with the examples in this
book. Doing so would still allow you to gain an understanding of how functional
programming works in the Python environment. However, using the pure Python
installation will also increase the amount of work you must perform to have a
good coding experience and even potentially reduce the amount you learn because
your focus will be on making the environment work, rather than seeing how
Python implements the functional programming paradigm. Consequently, this
book relies on the Jupyter Notebook Integrated Development Environment (IDE)
(or user interface or editor, as you might prefer) of the Anaconda tool collection to
perform tasks for the reasons described in the following sections.

Creating better code
A good IDE contains a certain amount of intelligence. For example, the IDE can sug-
gest alternatives when you type the incorrect keyword, or it can tell you that a cer-
tain line of code simply won’t work as written. The more intelligence that an IDE
contains, the less hard you have to work to write better code. Writing better code is
essential because no one wants to spend hours looking for errors, called bugs.

IDEs vary greatly in the level and kind of intelligence they provide, which is why so
many IDEs exist. You may find the level of help obtained from one IDE to be insuf-
ficient to your needs, but another IDE hovers over you like a mother hen. Every
developer has different needs and, therefore, different IDE requirements. The point
is to obtain an IDE that helps you write clean, efficient code quickly and easily.

Debugging functionality
Finding bugs (errors) in your code involves a process called debugging. Even the
most expert developer in the world spends time debugging. Writing perfect code
on the first pass is nearly impossible. When you do, it’s cause for celebration
because it won’t happen often. Consequently, the debugging capabilities of your
IDE are critical. Unfortunately, the debugging capabilities of the native Python
tools are almost nonexistent. If you spend any time at all debugging, you quickly
find the native tools annoying because of what they don’t tell you about your code.

The best IDEs double as training tools. Given enough features, an IDE can help you
explore code written by true experts. Tracing through applications is a time-
honored method of learning new skills and honing the skills you already possess.
A seemingly small advance in knowledge can often become a huge savings in time
later. When looking for an IDE, don’t just look at debugging features as a means
to remove errors — see them also as a means to learn new things about Python.

CHAPTER 2 Getting and Using Python 21

Defining why notebooks are useful
Most IDEs look like fancy text editors, and that’s precisely what they are. Yes, you
get all sorts of intelligent features, hints, tips, code coloring, and so on, but at the
end of the day, they’re all text editors. Nothing is wrong with text editors, and this
chapter isn’t telling you anything of the sort. However, given that Python devel-
opers often focus on scientific applications that require something better than
pure text presentation, using notebooks instead can be helpful.

A notebook differs from a text editor in that it focuses on a technique advanced by
Stanford computer scientist Donald Knuth called literate programming. You use
literate programming to create a kind of presentation of code, notes, math equa-
tions, and graphics. In short, you wind up with a scientist’s notebook full of
everything needed to understand the code completely. You commonly see literate
programming techniques used in high-priced packages such as Mathematica and
MATLAB. Notebook development excels at

»» Demonstration

»» Collaboration

»» Research

»» Teaching objectives

»» Presentation

This book uses the Anaconda tool collection because it provides you with a great
Python coding experience, but also because it helps you discover the enormous
potential of literate programming techniques. If you spend a lot of time perform-
ing scientific tasks, Anaconda and products like it are essential. In addition,
Anaconda is free, so you get the benefits of the literate programming style without
the cost of other packages.

Obtaining Your Copy of Anaconda
As mentioned in the previous section, Anaconda doesn’t come with your Python
installation. With this in mind, the following sections help you obtain and install
Anaconda on the three major platforms supported by this book.

Obtaining Analytics Anaconda
The basic Anaconda package comes as a free download that you obtain at https://
www.anaconda.com/download/. Simply click the symbol for your operating

https://www.anaconda.com/download/
https://www.anaconda.com/download/

22 PART 1 Getting Started with Functional Programming

system, such as the window icon for Windows, and then click Download in the
platform’s section of the page to obtain access to the free product. (Depending on
the Anaconda server load, the download can require a while to complete, so you
may want to get a cup of coffee while waiting.) Anaconda supports the following
platforms:

»» Windows 32-bit and 64-bit (the installer might offer you only the 64-bit or
32-bit version, depending on which version of Windows it detects)

»» Linux 32-bit and 64-bit

»» Mac OS X 64-bit (both graphical and command-line installer)

You can obtain Anaconda with older versions of Python. If you want to use an
older version of Python, click the How to Get Python 3.5 or Other Python Versions
link near the middle of the page. You should use an older version of Python only
when you have a pressing need to do so, however.

The free product is all you need for this book. However, when you look on the
site, you see that many other add-on products are available. These products can
help you create robust applications. For example, when you add Accelerate to the
mix, you obtain the capability to perform multicore and GPU-enabled operations.
The use of these add-on products is outside the scope of this book, but the
Anaconda site gives you details on using them.

Installing Anaconda on Linux
You have to use the command line to install Anaconda on Linux; you’re given no
graphical installation option. Before you can perform the installation, you must
download a copy of the Linux software from the Continuum Analytics site. You can
find the required download information in the “Obtaining Analytics Anaconda”
section, earlier in this chapter. The following procedure should work fine on any
Linux system, whether you use the 32-bit or 64-bit version of Anaconda:

1.	 Open a copy of Terminal.

The Terminal window appears.

2.	 Change directories to the downloaded copy of Anaconda on your system.

The name of this file varies, but normally it appears as Anaconda3-5.1.0-
Linux-x86.sh for 32-bit systems and Anaconda3-5.1.0-Linux-x86_64.sh
for 64-bit systems. The version number is embedded as part of the filename.
In this case, the filename refers to version 5.1.0, which is the version used for
this book. If you use some other version, you may experience problems with
the source code and need to make adjustments when working with it.

CHAPTER 2 Getting and Using Python 23

3.	 Type bash Anaconda3-5.1.0-Linux-x86.sh (for the 32-bit version) or bash
Anaconda3-5.1.0-Linux-x86_64.sh (for the 64-bit version) and press Enter.

An installation wizard starts that asks you to accept the licensing terms for
using Anaconda.

4.	 Read the licensing agreement and accept the terms using the method
required for your version of Linux.

The wizard asks you to provide an installation location for Anaconda. The book
assumes that you use the default location of ~/anaconda. If you choose some
other location, you may have to modify some procedures later in the book to
work with your setup.

5.	 Provide an installation location (if necessary) and press Enter
(or click Next).

The application extraction process begins. After the extraction is complete, you
see a completion message.

6.	 Add the installation path to your PATH statement using the method
required for your version of Linux.

You’re ready to begin using Anaconda.

Installing Anaconda on MacOS
The Mac OS X installation comes in only one form: 64-bit. Before you can perform
the install, you must download a copy of the Mac software from the Continuum
Analytics site. You can find the required download information in the “Obtaining
Analytics Anaconda” section, earlier in this chapter.

The installation files come in two forms. The first depends on a graphical installer;
the second relies on the command line. The command-line version works much
like the Linux version described in the preceding section of this chapter, “Installing
Anaconda on Linux.”. The following steps help you install Anaconda 64-bit on a
Mac system using the graphical installer:

1.	 Locate the downloaded copy of Anaconda on your system.

The name of this file varies, but normally it appears as Anaconda3-5.1.0-
MacOSX-x86_64.pkg. The version number is embedded as part of the file-
name. In this case, the filename refers to version 5.1.0, which is the version
used for this book. If you use some other version, you may experience prob-
lems with the source code and need to make adjustments when working
with it.

2.	 Double-click the installation file.

An introduction dialog box appears.

24 PART 1 Getting Started with Functional Programming

3.	 Click Continue.

The wizard asks whether you want to review the Read Me materials. You can
read these materials later. For now, you can safely skip the information.

4.	 Click Continue.

The wizard displays a licensing agreement. Be sure to read through the
licensing agreement so that you know the terms of usage.

5.	 Click I Agree if you agree to the licensing agreement.

You see a Standard Install dialog box where you can choose to perform a
standard installation, change the installation location, or customize your
setup. The standard installation is the one you should use for this book.
Making changes could cause some steps within the book to fail unless you
know how to modify the instructions to suit your setup.

6.	 Click Install.

The installation begins. A progress bar tells you how the installation process
is progressing. When the installation is complete, you see a completion
dialog box.

7.	 Click Continue.

You’re ready to begin using Anaconda.

Installing Anaconda on Windows
Anaconda comes with a graphical installation application for Windows, so getting
a good installation means using a wizard, as you would for any other installation.
Of course, you need a copy of the installation file before you begin, and you can
find the required download information in the “Obtaining Analytics Anaconda”
section, earlier in this chapter. The following procedure (which can require a while
to complete) should work fine on any Windows system, whether you use the
32-bit or 64-bit version of Anaconda:

1.	 Locate the downloaded copy of Anaconda on your system.

The name of this file varies, but normally it appears as Anaconda3-5.1.0-
Windows-x86.exe for 32-bit systems and Anaconda3-5.1.0-Windows-x86_64.
exe for 64-bit systems. The version number is embedded as part of the filename.
In this case, the filename refers to version 5.1.0, which is the version used for this
book. If you use some other version, you may experience problems with the
source code and need to make adjustments when working with it.

CHAPTER 2 Getting and Using Python 25

2.	 Double-click the installation file.

(You may see an Open File – Security Warning dialog box that asks whether
you want to run this file. Click Run if you see this dialog box pop up.) You see
an Anaconda3 5.1.0 Setup dialog box.

3.	 Click Next.

The wizard displays a licensing agreement. Be sure to read through the
licensing agreement so that you know the terms of usage.

4.	 Click I Agree if you agree to the licensing agreement.

You’re asked what sort of installation type to perform (personal or for
everyone). In most cases, you want to install the product just for yourself.
The exception is if you have multiple people using your system and they all
need access to Anaconda.

5.	 Choose one of the installation types and then click Next.

The wizard asks where to install Anaconda on disk, as shown in Figure 2-1.
The book assumes that you use the default location. If you choose some other
location, you may have to modify some procedures later in the book to work
with your setup.

6.	 Choose an installation location (if necessary) and then click Next.

You see the Advanced Installation Options, shown in Figure 2-2. These options
are selected by default, and no good reason exists to change them in most
cases. You might need to change them if Anaconda won’t provide your default
Python 3.6.4 setup. However, the book assumes that you’ve set up Anaconda
using the default options.

FIGURE 2-1:
Specify an

installation
location.

26 PART 1 Getting Started with Functional Programming

7.	Change the advanced installation options (if necessary) and then click
Install.

You see an Installing dialog box with a progress bar. The installation process
can take a few minutes, so get yourself a cup of coffee and read the comics for
a while. When the installation process is over, you see a Next button enabled.

8.	Click Next.

The wizard presents you with an option to install Microsoft VSCode. Installing
this feature can cause problems with the book examples, so the best idea is
not to install it. The book doesn’t make use of this feature.

9.	Click Skip.

The wizard tells you that the installation is complete. You see options for
learning more about Anaconda Cloud and getting started with Anaconda.

10.	Choose the desired learning options and then click Finish.

You’re ready to begin using Anaconda.

Understanding the Anaconda package
The Anaconda package contains a number of applications, only one of which you
use with this book. Here is a quick rundown on the tools you receive:

»» Anaconda Navigator: Displays a listing of Anaconda tools and utilities
(installed or not). You can use this utility to install, configure, and launch the
various tools and utilities. In addition, Anaconda Navigator provides options to
configure the overall Anaconda environment, select a project, obtain help, and
interact with the Anaconda community. The “Getting Help with the Python
Language” section, at the end of the chapter, tells you more about this tool.

FIGURE 2-2:
Configure the

advanced
installation

options.

CHAPTER 2 Getting and Using Python 27

»» Anaconda Prompt: Opens a window into which you can type various
commands to perform tasks such as starting a tool or utility from the com-
mand line, performing installations of sub-features using pip, and doing other
command line-related tasks.

»» Jupyter Notebook: Starts the IDE used for this book. The upcoming “Using
Jupyter Notebook” section of the chapter gets you started using the IDE.

»» Reset Spyder Settings: Changes the Spyder IDE settings to their original
state. Use this option to correct Spyder settings when Spyder becomes
unusable or otherwise fails to work as needed.

»» Spyder: Starts a traditional IDE that allows you to type source code into an
editor window and test it in various ways.

Downloading the Datasets
and Example Code

This book is about using Python to perform functional programming tasks. Of
course, you can spend all your time creating the example code from scratch,
debugging it, and only then discovering how it relates to learning about the won-
ders of Python, or you can take the easy way and download the prewritten code
from the Dummies site as described in the book’s Introduction so that you can get
right to work.

To use the downloadable source, you must install Jupyter Notebook. The “Obtaining
Your Copy of Anaconda” section, earlier in this chapter, describes how to install
Jupyter Notebook as part of Anaconda. You can also download Jupyter Notebook
separately from http://jupyter.org/. Most of the code in this book will also
work with Google Colaboratory, also called Colab (https://colab.research.
google.com/notebooks/welcome.ipynb), but there is no guarantee all of the
examples will work because Colab may not support all the required features and
packages. Colab can be handy if you want to work through the examples on your
tablet or other Android device. Python For Data Science For Dummies, 2nd
Edition, by John Paul Mueller and Luca Massaron (Wiley) contains an entire
chapter about using Colab with Python and can give you additional help.

The following sections show how to work with Jupyter Notebook, one of the tools
found in the Anaconda package. These sections emphasize the capability to man-
age application code, including importing the downloadable source and exporting
your amazing applications to show friends.

http://jupyter.org/
https://colab.research.google.com/notebooks/welcome.ipynb
https://colab.research.google.com/notebooks/welcome.ipynb

28 PART 1 Getting Started with Functional Programming

Using Jupyter Notebook
To make working with the code in this book easier, you use Jupyter Notebook. This
IDE lets you easily create Python notebook files that can contain any number of
examples, each of which can run individually. The program runs in your browser,
so which platform you use for development doesn’t matter; as long as it has a
browser, you should be okay.

Starting Jupyter Notebook
Most platforms provide an icon to access Jupyter Notebook. Just click this icon to
access Jupyter Notebook. For example, on a Windows system, you choose Start ➪ All
Programs ➪ Anaconda 3 ➪ Jupyter Notebook. Figure 2-3 shows how the interface
looks when viewed in a Firefox browser. The precise appearance on your system
depends on the browser you use and the kind of platform you have installed.

Stopping the Jupyter Notebook server
No matter how you start Jupyter Notebook (or just Notebook, as it appears in the
remainder of the book), the system generally opens a command prompt or termi-
nal window to host Jupyter Notebook. This window contains a server that makes
the application work. After you close the browser window when a session is com-
plete, select the server window and press Ctrl+C or Ctrl+Break to stop the server.

Defining the code repository
The code you create and use in this book will reside in a repository on your hard
drive. Think of a repository as a kind of filing cabinet where you put your code.
Notebook opens a drawer, takes out the folder, and shows the code to you. You can

FIGURE 2-3:
Jupyter Notebook
provides an easy
method to create
machine learning

examples.

CHAPTER 2 Getting and Using Python 29

modify it, run individual examples within the folder, add new examples, and sim-
ply interact with your code in a natural manner. The following sections get you
started with Notebook so that you can see how this whole repository concept
works.

Defining the book’s folder
It pays to organize your files so that you can access them more easily later. This
book keeps its files in the FPD (Functional Programming For Dummies) folder. Use
these steps within Notebook to create a new folder:

1.	 Choose New ➪ Folder.

Notebook creates a new folder named Untitled Folder. The file appears in
alphanumeric order, so you may not initially see it. You must scroll down to the
correct location.

2.	 Select the box next to the Untitled Folder entry.

3.	 Click Rename at the top of the page.

You see a Rename Directory dialog box like the one shown in Figure 2-4.

4.	 Type FPD and click Rename.

Notebook changes the name of the folder for you.

5.	 Click the new FPD entry in the list.

Notebook changes the location to the FPD folder in which you perform tasks
related to the exercises in this book.

FIGURE 2-4:
Rename the

folder so that you
remember the

kinds of entries it
contains.

30 PART 1 Getting Started with Functional Programming

Creating a new notebook
Every new notebook is like a file folder. You can place individual examples within
the file folder, just as you would sheets of paper into a physical file folder. Each
example appears in a cell. You can put other sorts of things in the file folder, too,
but you see how these things work as the book progresses. Use these steps to
create a new notebook:

1.	 Click New ➪ Python 3.

A new tab opens in the browser with the new notebook, as shown in Figure 2-5.
Notice that the notebook contains a cell and that Notebook has highlighted the
cell so that you can begin typing code in it. The title of the notebook is Untitled
right now. That’s not a particularly helpful title, so you need to change it.

2.	 Click Untitled on the page.

Notebook asks what you want to use as a new name, as shown in Figure 2-6.

3.	 Type FPD_02_Sample and press Enter.

The new name tells you that this is a file for Functional Programming For
Dummies, Chapter 2, Sample.ipynb. Using this naming convention lets you
easily differentiate these files from other files in your repository.

Of course, the Sample notebook doesn’t contain anything just yet. Place the cursor
in the cell, type print(‘Python is really cool!’), and then click the Run button. You
see the output shown in Figure 2-7. The output is part of the same cell as the code
(the code resides in a square box and the output resides outside that square box,
but both are within the cell). However, Notebook visually separates the output
from the code so that you can tell them apart. Notebook creates a new cell for you.

FIGURE 2-5:
A notebook

contains cells
that you use to

hold code.

CHAPTER 2 Getting and Using Python 31

When you finish working with a notebook, shutting it down is important. To close
a notebook, choose File ➪ Close and Halt. You return to Notebook’s Home page,
where you can see that the notebook you just created is added to the list.

Exporting a notebook
Creating notebooks and keeping them all to yourself isn’t much fun. At some
point, you want to share them with other people. To perform this task, you must
export your notebook from the repository to a file. You can then send the file to
someone else, who will import it into a different repository.

The previous section shows how to create a notebook named FPD_02_Sample.
ipynb in Notebook. You can open this notebook by clicking its entry in the repos-
itory list. The file reopens so that you can see your code again. To export this code,
choose File ➪ Download As ➪ Notebook (.ipynb). What you see next depends on

FIGURE 2-6:
Provide a new
name for your

notebook.

FIGURE 2-7:
Notebook

uses cells to
store your code.

32 PART 1 Getting Started with Functional Programming

your browser, but you generally see some sort of dialog box for saving the
notebook as a file. Use the same method for saving the Notebook file as you use for
any other file you save by using your browser. Remember to choose File ➪ Close
and Halt when you finish so that the application shuts down.

Removing a notebook
Sometimes notebooks get outdated or you simply don’t need to work with them
any longer. Rather than allow your repository to get clogged with files that you
don’t need, you can remove these unwanted notebooks from the list. Use these
steps to remove the file:

1.	 Select the box next to the FPD_02_Sample.ipynb entry.

2.	 Click the trash can icon (Delete) at the top of the page.

You see a Delete notebook warning message like the one shown in Figure 2-8.

3.	 Click Delete.

The file gets removed from the list.

Importing a notebook
To use the source code from this book, you must import the downloaded files into
your repository. The source code comes in an archive file that you extract to a
location on your hard drive. The archive contains a list of .ipynb (IPython
Notebook) files containing the source code for this book (see the Introduction for
details on downloading the source code). The following steps tell how to import
these files into your repository:

FIGURE 2-8:
Notebook warns

you before
removing any
files from the

repository.

CHAPTER 2 Getting and Using Python 33

1.	 Click Upload at the top of the page.

What you see depends on your browser. In most cases, you see some type of
File Upload dialog box that provides access to the files on your hard drive.

2.	 Navigate to the directory containing the files that you want to import
into Notebook.

3.	 Highlight one or more files to import and click the Open (or other,
similar) button to begin the upload process.

You see the file added to an upload list, as shown in Figure 2-9. The file isn’t
part of the repository yet — you’ve simply selected it for upload.

4.	 Click Upload.

Notebook places the file in the repository so that you can begin using it.

Getting and using datasets
This book uses a number of datasets, all of which appear in the Scikit-learn library.
These datasets demonstrate various ways in which you can interact with data, and
you use them in the examples to perform a variety of tasks. The following list
provides a quick overview of the function used to import each of the datasets into
your Python code:

»» load_boston(): Regression analysis with the Boston house-prices dataset

»» fetch_olivetti_faces(): Olivetti faces dataset from AT&T

»» make_blobs(): Generates isotropic Gaussian blobs used for clustering

FIGURE 2-9:
The files that you

want to add to
the repository

appear as part of
an upload list

consisting of one
or more

filenames.

http://scikit-learn.org/stable/modules/generated/sklearn.datasets.fetch_olivetti_faces.html#sklearn.datasets.fetch_olivetti_faces#sklearn.datasets.fetch_olivetti_faces

34 PART 1 Getting Started with Functional Programming

The technique for loading each of these datasets is the same across examples. The
following example shows how to load the Boston house-prices dataset. You can
find the code in the FPD_02_Dataset_Load.ipynb notebook.

from sklearn.datasets import load_boston
Boston = load_boston()
print(Boston.data.shape)

To see how the code works, click Run. The output from the print call is
(506, 13). You can see the output shown in Figure 2-10.

The line from sklearn.datasets import load_boston is special because it tells
Python to use an external module. In this case, the external module is called
sklearn.datasets, and Python loads the load_boston function from it. After the
function is loaded, you can call it from your code, as shown in the next line. You
see external modules used quite often in the book, so for now you just need to
know that they exist and that you can load them as needed.

Creating a Python Application
Actually, you’ve already created your first Anaconda application by using the steps
in the “Creating a new notebook” section, earlier in this chapter. The print()
method may not seem like much, but you use it quite often. However, the literate
programming approach provided by Anaconda requires a little more knowledge

FIGURE 2-10:
The Boston object

contains the
loaded dataset.

CHAPTER 2 Getting and Using Python 35

than you currently have. The following sections don’t tell you everything about
this approach, but they do help you gain an understanding of what literate pro-
gramming can provide in the way of functionality. However, before you begin,
make sure you have the FPD_02_Sample.ipynb file open for use because you need
it to explore Notebook.

Understanding cells
If Notebook were a standard IDE, you wouldn’t have cells. What you’d have is a doc-
ument containing a single, contiguous series of statements. To separate various
coding elements, you need separate files. Cells are different because each cell is
separate. Yes, the results of things you do in previous cells matter, but if a cell is
meant to work alone, you can simply go to that cell and run it. To see how this works
for yourself, type the following code into the next cell of the FPD_02_Sample file:

myVar = 3 + 4
print(myVar)

Now click Run (the right-pointing arrow). The code executes, and you see the
output, as shown in Figure 2-11. The output is 7, as expected. However, notice the
In [1]: entry. This entry tells you that this is the first cell executed during this ses-
sion. If you want to start a new session (and therefore restart the numbers
at 1), you choose Kernel ➪ Restart (or one of the other restart options).

FIGURE 2-11:
Cells execute

individually in
Notebook.

36 PART 1 Getting Started with Functional Programming

Note that the first cell also has an In [1]: entry. This entry is still from the previous
session. Place your cursor in that cell and click Run. Now the cell contains In [2]:,
as shown in Figure 2-12. However, note that the next cell hasn’t been selected and
still contains the In [1]: entry.

Now place the cursor in the third cell — the one that is currently blank — and type
print("This is myVar: ", myVar). Click Run. The output in Figure 2-13 shows
that the cells have executed in anything but a rigid order, but that myVar is global
to the notebook. What you do in other cells with data affects every other cell, no
matter in what order the execution takes place.

Adding documentation cells
Cells come in a number of different forms. This book doesn’t use them all. How-
ever, knowing how to use the documentation cells can come in handy. Select the
first cell (the one currently marked with a 2). Choose Insert ➪ Insert Cell Above.
You see a new cell added to the notebook. Note the drop-down list that currently
shows the word Code. This list allows you to choose the kind of cell to create. Select
Markdown from the list and type # This is a level 1 heading. Click Run (which may
seem like an extremely odd thing to do, but give it a try). You see the text change
into a heading, as shown in Figure 2-14. However, notice also that the cell lacks
the In [x] entry beside it, as the code cells have.

FIGURE 2-12:
Cells can execute

in any order in
Notebook.

CHAPTER 2 Getting and Using Python 37

FIGURE 2-13:
Data changes do

affect every cell
that uses the

modified variable.

FIGURE 2-14:
Adding

headings helps
you separate

and document
your code.

38 PART 1 Getting Started with Functional Programming

About now, you might be thinking that these special cells act just like HTML
pages, and you’d be right. Choose Insert ➪ Insert Cell Below, select Markdown in
the drop-down list, and then type ## This is a level 2 heading. Click Run. As you
can see, the number of hashes (#) you add to the text affects the heading level, but
the hashes don’t show up in the actual heading.

Other cell content
This chapter (and book) doesn’t demonstrate all the kinds of cell content that you
can see by using Notebook. However, you can add things like graphics to your
notebooks, too. When the time comes, you can output (print) your notebook as a
report and use it in presentations of all sorts. The literate programming technique
is different from what you may have used in the past, but it has definite advan-
tages, as you see in upcoming chapters.

Running the Python Application
The code you create using Notebook is still code and not some mystical unique file
that only Notebook can understand. When working with any file, such as the
FPD_02_Sample, you can choose File ➪ Download As ➪ Python (.py) to output the
Notebook as a Python file. Try it and you end up with FPD_02_Sample.py.

To see the code run as it would using Python directly, open an Anaconda Prompt,
which, on a Windows machine, you do by choosing Start ➪ All Programs ➪ Ana-
conda3 ➪ Anaconda Prompt. The Anaconda Prompt has special features that make
accessing the Python interpreter easy. Use the Change Directory (CD) command
for your system to change directories to the one that holds the source code file.
Type Python FPD_02_Sample.py and press Enter. Your code will execute as
shown in Figure 2-15.

FIGURE 2-15:
You can use
the Python
interpreter
directly to

execute
your code.

CHAPTER 2 Getting and Using Python 39

This book doesn’t spend much time using this approach because, as you can see,
it’s harder to use and understand than working with Notebook. However, it’s still
a perfectly acceptable way to execute your own code.

Understanding the Use of Indentation
As you work through the examples in this book, you see that certain lines are
indented. In fact, the examples also provide a fair amount of white space (such as
extra lines between lines of code). Python ignores extra lines for the most part,
but relies on indentation to show certain coding elements (so the use of indenta-
tion is essential). For example, the code associated with a function is indented
under that function so that you can easily see where the function begins and ends.
The main reason to add extra lines is to provide visual cues about your code, such
as the end of a function or the beginning of a new coding element.

The various uses of indentation will become more familiar as go through the
examples in the book. However, you should know at the outset why indentation is
used and how it gets put in place. To that end, it’s time for another example. The
following steps help you create a new example that uses indentation to make the
relationship between application elements a lot more apparent and easier to
figure out later:

1.	 Choose New ➪ Python3.

Jupyter Notebook creates a new notebook for you. The downloadable source
uses the filename FPD_02_Indentation.ipynb, but you can use any name
you want.

2.	 Type print(“This is a really long line of text that will ” +.

You see the text displayed normally onscreen, just as you expect. The plus sign
(+) tells Python that there is additional text to display. Adding text from multiple
lines together into a single long piece of text is called concatenation. You learn
more about using this feature later in the book, so you don’t need to worry
about it now.

3.	 Press Enter.

The insertion point doesn’t go back to the beginning of the line, as you
might expect. Instead, it ends up directly under the first double quote, as
shown in Figure 2-16. This feature is called automatic indention and is one
of the features that differentiates a regular text editor from one designed
to write code.

40 PART 1 Getting Started with Functional Programming

4.	 Type “appear on multiple lines in the source code file.”) and press Enter.

Notice that the insertion point goes back to the beginning of the line. When
Notebook senses that you have reached the end of the code, it automatically
outdents the text to its original position.

5.	 Click Run.

You see the output shown in Figure 2-17. Even though the text appears on
multiple lines in the source code file, it appears on just one line in the output.
The line does break because of the size of the window, but it’s actually just
one line.

FIGURE 2-16:
The Edit window

automatically
indents some
types of text.

FIGURE 2-17:
Use

concatenation to
make multiple

lines of text
appear on a

single line in the
output.

CHAPTER 2 Getting and Using Python 41

Adding Comments
People create notes for themselves all the time. When you need to buy groceries,
you look through your cabinets, determine what you need, and write it down on a
list. When you get to the store, you review your list to remember what you need.
Using notes comes in handy for all sorts of needs, such as tracking the course of a
conversation between business partners or remembering the essential points of a
lecture. Humans need notes to jog their memories. Comments in source code are
just another form of note. You add comments to the code so that you can remem-
ber what task the code performs later. The following sections describe comments
in more detail. You can find these examples in the FPD_02_Comments.ipynb file in
the downloadable source.

Understanding comments
Computers need some special way to determine that the text you’re writing is a
comment, not code to execute. Python provides two methods of defining text as a
comment and not as code. The first method is the single-line comment. It uses
the hash, also called the number sign (#), like this:

This is a comment.
print("Hello from Python!") #This is also a comment.

A single-line comment can appear on a line by itself or after executable code. It
appears on only one line. You typically use a single-line comment for short
descriptive text, such as an explanation of a particular bit of code. Notebook shows
comments in a distinctive color (usually blue) and in italics.

HEADINGS VERSUS COMMENTS
You may find headings and comments a bit confusing at first. Headings appear in sepa-
rate cells; comments appear with the source code. They serve different purposes.
Headings serve to tell you about an entire code grouping, and individual comments tell
you about individual code steps or even lines of code. Even though you use both of
them for documentation, each serves a unique purpose. Comments are generally more
detailed than headings.

42 PART 1 Getting Started with Functional Programming

Python doesn’t actually support a multiline comment directly, but you can create
one using a triple-quoted string. A multiline comment both starts and ends with
three double quotes (""") or three single quotes (’’’) like this:

"""
 Application: Comments.py
 Written by: John
 Purpose: Shows how to use comments.
"""

These lines aren’t executed. Python won’t display an error message when they
appear in your code. However, Notebook treats them differently, as shown in
Figure 2-18. Note that the actual Python comments, those preceded by a hash (#)
in cell 1, don’t generate any output. The triple-quote strings, however, do gener-
ate output. If you plan to output your notebook as a report, you need to avoid using
triple-quoted strings. (Some IDEs, such as IDLE, ignore the triple-quoted strings
completely.)

You typically use multiline comments for longer explanations of who created an
application, why it was created, and what tasks it performs. Of course, no hard

FIGURE 2-18:
Multiline

comments do
work, but they

also provide
output.

CHAPTER 2 Getting and Using Python 43

rules exist for precisely how to use comments. The main goal is to tell the com-
puter precisely what is and isn’t a comment so that it doesn’t become
confused.

Using comments to leave yourself
reminders
A lot of people don’t really understand comments—they don’t quite know what to
do with notes in code. Keep in mind that you might write a piece of code today and
then not look at it for years. You need notes to jog your memory so that you
remember what task the code performs and why you wrote it. Here are some com-
mon reasons to use comments in your code:

»» Reminding yourself about what the code does and why you wrote it

»» Telling others how to maintain your code

»» Making your code accessible to other developers

»» Listing ideas for future updates

»» Providing a list of documentation sources you used to write the code

»» Maintaining a list of improvements you’ve made

You can use comments in a lot of other ways, too, but these are the most common
ways. Look at how comments are used in the examples in the book, especially as
you get to later chapters where the code becomes more complex. As your code
becomes more complex, you need to add more comments and make the comments
pertinent to what you need to remember about it.

Using comments to keep code
from executing
Developers also sometimes use the commenting feature to keep lines of code from
executing (referred to as commenting out). You might need to do this to determine
whether a line of code is causing your application to fail. As with any other com-
ment, you can use either single-line commenting or multiline commenting. How-
ever, when using multiline commenting, you do see the code that isn’t executing

44 PART 1 Getting Started with Functional Programming

as part of the output (and it can actually be helpful to see where the code affects
the output). Here is an example of both forms of commenting out:

print("This print statement won't print")

"""
 print("This print statement appears as output")
"""

Closing Jupyter Notebook
After you have used the File ➪ Close and Halt command to close each of the note-
books you have open (the individual browser windows), you can simply close the
browser window showing the Notebook Home page to end your session. However,
the Notebook server (a separate part of Notebook) continues to run in the back-
ground. Normally, a Jupyter Notebook window opens when you start Notebook,
like the one shown in Figure 2-19. This window remains open until you stop the
server. Simply press Ctrl+C to end the server session, and the window will close.

Look again at Figure 2-19 to note a number of commands. These commands tell
you what the user interface is doing. By monitoring this window, you can deter-
mine what might go wrong during a session. Even though you won’t use this
feature very often, it’s a handy trick to know.

FIGURE 2-19:
Make sure to

close the server
window.

CHAPTER 2 Getting and Using Python 45

Getting Help with the Python Language
You have access to a wealth of Python resources online, and many of them appear
in this book in the various chapters. However, the one resource you need to know
about immediately is Anaconda Navigator. You start this application by choosing
the Anaconda Navigator entry in the Anaconda3 folder. The application requires a
few moments to start, so be patient.

The Home, Environments, and Projects tabs are all about working with the
Anaconda tools and utilities. The Learning tab, shown in Figure 2-20, is different
because it gives you standardized access to Python-related documentation,
training, videos, and webinars. To use any of these resources, simply click the one
you want to see or access.

Note that the page contains more than just Python-specific or Anaconda-specific
resources. You also gain access to information about common Python resources,
such as the SciPy library.

The Community tab, shown in Figure 2-21, provides access to events, forums, and
social entities. Some of this content changes over time, especially the events. To
get a quick overview of an entry, hover the mouse over it. Reading an overview is
especially helpful when deciding whether you want to learn more about events.

FIGURE 2-20:
Use the Learning

tab to get
standardized
information.

46 PART 1 Getting Started with Functional Programming

Forums differ from social media by the level of formality and the mode of access.
For example, the Stack Overflow allows you to ask Python-related questions, and
Twitter allows you to rave about your latest programming feat.

FIGURE 2-21:
Use the

Community tab
to discover
interactive

information
resources.

CHAPTER 3 Getting and Using Haskell 47

Chapter 3
Getting and Using
Haskell

The first sections of this chapter discuss the goals behind the Haskell instal-
lation for this book, help you obtain a copy of Haskell, and then show you
how to install Haskell on any one of the three supported book platforms:

Linux, Mac, and Windows. Overall, this chapter focuses on providing you with the
simplest possible installation so that you can clearly see how the functional pro-
gramming paradigm works. You may eventually find that you need a different
installation to meet specific needs or tool requirements.

After you have Haskell installed, you perform some simple coding tasks using it.
The main purpose of writing this code is to verify that your copy of Haskell is
working properly, but it also helps familiarize you with Haskell just a little. A sec-
ond example helps you become familiar with using Haskell libraries, which is
important when viewing the examples in this book.

The final section of the chapter helps you locate some Haskell resources. This
book doesn’t provide you with a solid basis for learning how to program in Haskell.
Rather, it focuses on the functional programming paradigm, which can rely on
Haskell for a pure implementation approach. Consequently, even though the text
gives some basic examples, it doesn’t provide a complete treatment of the lan-
guage, and the aforementioned other resources will help you fill in the gaps if
you’re new to Haskell.

IN THIS CHAPTER

»» Obtaining and using Haskell

»» Using GHCi and WinGHCi

»» Writing Haskell code

»» Finding additional information

48 PART 1 Getting Started with Functional Programming

Working with Haskell in This Book
You can encounter many different, and extremely confusing, ways to work with
Haskell. All you need to do is perform a Google search and, even if you limit the
results to the past year, you find that everyone has a differing opinion as to how
to obtain, install, and configure Haskell. In addition, various tools work with
Haskell configured in different ways. You also find that different platforms sup-
port different options. Haskell is both highly flexible and relatively new, so you
have stability issues to consider. This chapter helps you create a Haskell configu-
ration that’s easy to work with and allows you to focus on the task at hand, which
is to discover the wonders of the functional programming paradigm.

To ensure that the code that you find in this book works well, make sure to use the
8.2.2 version of Haskell. Older versions may lack features or require bug fixes to
make the examples work. You also need to verify that you have a compatible
installation by using the instructions found in the upcoming “Obtaining and
Installing Haskell” section. Haskell provides a number of very flexible installation
options that may not be compatible with the example code.

Obtaining and Installing Haskell
You can obtain Haskell for each of the three platforms supported by this book at
https://www.haskell.org/platform/prior.html. Simply click the icon corre-
sponding to the platform of your choice. The page takes you to the section that
corresponds with the platform.

In all three cases, you want to perform a full installation, rather than a core instal-
lation, because the core installation doesn’t provide support for some of the pack-
ages used in the book. Both Mac and Windows users can use only a 64-bit
installation. In addition, unless you have a good reason to do otherwise, Mac users
should rely on the installer, rather than use Homebrew Cask. Linux users should
rely on the 64-bit installation as well because you obtain better results. Make sure
that you have plenty of drive space for your installation. For example, even though
the Windows download file is only 269MB, the Haskell Platform folder will con-
sume 2.6GB of drive space after the installation is complete.

You can encounter a problem when clicking the links on the initial page. If you
find that the download won’t start, go to https://downloads.haskell.
org/~platform/8.2.2/ instead and choose the particular link for your platform:

https://www.haskell.org/platform/prior.html
https://downloads.haskell.org/~platform/8.2.2/
https://downloads.haskell.org/~platform/8.2.2/

CHAPTER 3 Getting and Using Haskell 49

»» Generic Linux: haskell-platform-8.2.2-unknown-posix--full-i386.tar.gz

»» Specific Linux: See the installation instructions in the “Installing Haskell on a
Linux system” section that follows

»» Mac: Haskell Platform 8.2.2 Full 64bit-signed.pkg

»» Windows: HaskellPlatform-8.2.2-full-x86_64-setup.exe

Haskell supports some Linux distributions directly. If this is the case, you don’t
need to download a copy of the product. The following sections get you started
with the various installations.

USING HASKELL IDEs AND ENVIRONMENTS
You can find a number of IDEs and environments online for Haskell. Many of these
options, such as Vim (https://www.vim.org/download.php), neoVim (https://
neovim.io/), and Emacs (https://www.gnu.org/software/emacs/download.
html), are enhanced text editors. The problem is that the editors provide uneven fea-
ture sets for the platforms that they support. In addition, in each case you must per-
form additional installations to obtain Haskell support. For example, emacs requires the
use of haskell-mode (https://github.com/haskell/haskell-mode/wiki).
Consequently, you won’t find them used in this book.

Likewise, you can find a Jupyter Notebook add-on for Haskell at https://github.
com/gibiansky/IHaskell. The add-on works well as long as you have either Mac or
supported Linux as your platform. No Windows support exists for this add-on unless
you want to create a Linux virtual machine in which to run it. You can read a discussion
of the issues surrounding this add-on at https://news.ycombinator.com/
item?id=12783913.

Yet another option is a full-blown Integrated Development Environment (IDE), such as
Leksah (http://leksah.org/), which is Haskell spelled backward with just one L, or
HyperHaskell (https://github.com/HeinrichApfelmus/hyper-haskell). Most of
these IDEs require that you perform a build, and the setups can become horribly com-
plex for the novice developer. Even so, an IDE can give you advanced functionality, such
as a debugger. There really isn’t a correct option, but the focus of this book is to make
things simple.

https://www.vim.org/download.php
https://neovim.io/
https://neovim.io/
https://www.gnu.org/software/emacs/download.html
https://www.gnu.org/software/emacs/download.html
https://github.com/haskell/haskell-mode/wiki
https://github.com/gibiansky/IHaskell
https://github.com/gibiansky/IHaskell
https://news.ycombinator.com/item?id=12783913
https://news.ycombinator.com/item?id=12783913
http://leksah.org/
https://github.com/HeinrichApfelmus/hyper-haskell

50 PART 1 Getting Started with Functional Programming

Installing Haskell on a Linux system
Linux users numerous options from which to choose. If you see instructions for
your particular Linux distribution, you may not even need to download Haskell
directly. The $ sudo apt-get command may do everything needed. Use this
option if possible. Otherwise, rely on the installation tarball for generic Linux. The
specific Linux installations are:

»» Ubuntu

»» Debian

»» Linux Mint

»» Redhat

»» Fedora

»» Gentoo

A generic Linux installation assumes that you don’t own one of the distributions
in the previous list. In this case, make sure that you download the tarball found in
the introduction to this section and follow these instructions to install it:

1.	 Type tar xf haskell-platform-8.2.2-unknown-posix--full-i386.tar.gz and press
Enter.

The system extracts the required files for you.

2.	 Type sudo ./install-haskell-platform.sh and press Enter.

The system performs the required installation for you. You’ll likely see prompts
during the installation process, but these prompts vary by system. Simply
answer the questions as you proceed to complete the installation.

This book won’t help you build Haskell from source, and the results are unreliable
enough that this approach isn’t recommended for the novice developer. If you find
that you absolutely must build Haskell from source files, make sure that you rely
on the instructions found in the README file provided with the source code,
rather than online instructions that may reflect the needs of an older version of
Linux.

Installing Haskell on a Mac system
When working with a Mac platform, you need to access a Haskell installer specifi-
cally designed for a Mac. This chapter assumes that you don’t want to take time or

CHAPTER 3 Getting and Using Haskell 51

effort to create a custom configuration using source code. The following steps
describe how to perform the installation using the graphical installer.

1.	Locate the downloaded copy of Haskell Platform 8.2.2 Full 64bit-signed.
pkg on your system.

If you use some other version, you may experience problems with the source
code and need to make adjustments when working with it.

2.	Double-click the installation file.

You see a Haskell Platform 8.2.2 64-bit Setup dialog box.

3.	Click Next.

The wizard displays a licensing agreement. Be sure to read the licensing
agreement so that you know the terms of usage.

4.	Click I Agree if you agree to the licensing agreement.

The setup wizard asks where you want to install your copy of Haskell. This
book assumes that you use the default installation location.

5.	Click Next.

You see a dialog box asking which features to install. This book assumes that
you install all the default features.

6.	Click Next.

You see a new dialog box appear that asks where to install the Haskell Stack.
Use the default installation location to ensure that your setup works correctly.

7.	Click Next.

The setup wizard asks you which features to install. You must install all of
them.

8.	Click Install.

You see the Haskell Stack Setup wizard complete.

9.	Click Close.

You see the Haskell Platform wizard progress indicator move. At some point,
the installation completes.

10.	Click Next.

You see a completion dialog box.

11.	Click Finish.

Haskell is now ready for use on your system.

52 PART 1 Getting Started with Functional Programming

Installing Haskell on a Windows system
When working with a Windows platform, you need access to a Haskell installer
specifically designed for Windows. The following steps assume that you’ve down-
loaded the required file, as described in the introduction to this section.

1.	 Locate the downloaded copy of HaskellPlatform-8.2.2-full-x86_64-setup.
exe on your system.

If you use some other version, you may experience problems with the source
code and need to make adjustments when working with it.

2.	 Double-click the installation file.

(You may see an Open File – Security Warning dialog box that asks whether
you want to run this file. Click Run if you see this dialog box pop up.) You see
an Haskell Platform 8.2.2 64-bit Setup dialog box.

3.	 Click Next.

The wizard displays a licensing agreement. Be sure to read through the
licensing agreement so that you know the terms of usage.

4.	 Click I Agree if you agree to the licensing agreement.

The setup wizard asks where you want to install your copy of Haskell, as shown
in Figure 3-1. This book assumes that you use the default installation location,
but you can enter a different one.

FIGURE 3-1:
Specify a Haskell

installation
location.

CHAPTER 3 Getting and Using Haskell 53

5.	 Optionally provide an installation location and then click Next.

You see a dialog box asking which features to install. This book assumes that
you install all the default features, as shown in Figure 3-2. Note especially the
Update System Settings option. You must ensure that this option is selected to
obtain proper functioning of the Haskell features.

6.	 Choose the features you want to use and click Next.

The setup wizard asks you which Start menu folder to use, as shown in
Figure 3-3. The book assumes that you use the default Start menu folder, but
you can enter a name that you choose.

FIGURE 3-2:
Choose which

Haskell features
to install.

FIGURE 3-3:
Type a Start
menu folder

name, if desired.

54 PART 1 Getting Started with Functional Programming

7.	Optionally type a new Start menu folder name and click Install.

You see a new dialog box appear that asks where to install the Haskell Stack.
Use the default installation location unless you need to change it for a specific
reason, such as using a local folder rather than a roaming folder.

8.	Optionally type a new location and click Next.

The setup wizard asks you which features to install. You must install all of
them.

9.	Click Install.

You see the Haskell Stack Setup wizard complete.

10.	Click Close.

You see the Haskell Platform wizard progress indicator move. At some point,
the installation completes.

11.	Click Next.

You see a completion dialog box.

12.	Click Finish.

Haskell is now ready for use on your system.

Testing the Haskell Installation
As explained in the “Using Haskell IDEs and Environments” sidebar, you have
access to a considerable number of environments for working with Haskell. In
fact, if you’re using Linux or Mac platforms, you can rely on an add-in for the
Jupyter Notebook environment used for Python in this book. However, to make
things simple, you can use the Glasgow Haskell Compiler interpreter (GHCi) that
comes with the Haskell installation you created earlier. Windows users have a
graphical interface they can use called WinGHCi that works precisely the same as
GHCi, but with a nicer appearance, as shown in Figure 3-4.

You can find either GHCi or WinGHCi in the folder used to store the Haskell appli-
cation icons on your system. When working with Windows, you find this file at
Start ➪ All Programs ➪ Haskell Platform 8.2.2. No matter how you open the inter-
preter, you see the version number of your installation, as shown in Figure 3-4.

CHAPTER 3 Getting and Using Haskell 55

The interpreter can provide you with a great deal of information about Haskell,
and simply looking at what’s available can be fun. The commands all start with a
colon, including the help commands. So to start the process, you type :? and press
Enter. Figure 3-5 shows typical results.

As you look through the list, you see that all commands begin with a colon. For
example, to exit the Haskell interpreter, you type :quit and press Enter.

Playing with Haskell is the best way to learn it. Type "Haskell is fun!" and press
Enter. You see the string repeated onscreen, as shown in Figure 3-6. All Haskell
has done is evaluate the string you provided.

As a next step, try creating a variable by typing x = "Haskell is really fun!" and
pressing Enter. This time, Haskell doesn’t interpret the information but simply
places the string in x. To see the string, you can use the putStrLn function. Type
putStrLn x and press Enter. Figure 3-7 shows what you should see. At this point,
you know that the Haskell installation works.

FIGURE 3-4:
The WinGHCi

interface offers a
nice appearance

and is easy
to use.

FIGURE 3-5:
Make sure to

precede all help
commands with a

colon (:) in the
interpreter.

56 PART 1 Getting Started with Functional Programming

Compiling a Haskell Application
Even though you’ll perform most tasks in this book using the interpreter, you can
also load modules and interpret them. In fact, this is how you use the download-
able source: You load it into the interpreter and then execute it. To see how this
works, create a text file on your system called Simple.hs. You must use a pure text
editor (one that doesn’t include any formatting in the output file), such as
Notepad or TextEdit. Type the following code into the file and save it on disk:

main = putStrLn out
 where
 out = "5! = " ++ show result
 result = fac 5

fac 0 = 1
fac n = n * fac (n - 1)

FIGURE 3-6:
Typing a string

and pressing
Enter displays

it onscreen.

FIGURE 3-7:
Haskell uses

variables and
functions to

interact with
the user.

CHAPTER 3 Getting and Using Haskell 57

This code actually demonstrates a number of Haskell features, but you don’t need
to fully understand all of them now. To compile a Haskell application, you must
have a main function, which consists of a single statement, which in this case is
putStrLn out. The variable out is defined as part of the where clause as the con-
catenation of a string, "5! = ", and an integer, result, that you output using the
show function. Notice the use of indentation. You must indent the code for it to
compile correctly, which is actually the same use of indentation as found in
Python.

The code calculates the result by using the fac (factorial) function that appears
below the main function. As you can see, Haskell makes it easy to use recursion.
The first line defines the stopping point. When the input is equal to 0, the function
outputs a value of 1. Otherwise, the second line is used to call fac recursively, with
each succeeding call reducing the value of n by 1 until n reaches 0.

After you save the file, you can open GHCi or WinGHCi to experiment with the
application. The following steps provide the means to load, test, and compile the
application:

1.	 Type :cd <Source Code Directory> and press Enter.

Supply the location of the source code on your system. The location of your
source code will likely differ from mine.

2.	 Type :load Simple.hs and press Enter.

Notice that the prompt changes to *Main>, as shown in Figure 3-8. If you’re
using WinGHCi, you can also use the File ➪   Load menu command to accom-
plish this task.

FIGURE 3-8:
The prompt

changes when
you load a
source file.

58 PART 1 Getting Started with Functional Programming

3.	 Type :main and press Enter.

You see the output of the application as shown in Figure 3-9. When working
with WinGHCi, you can also use the Actions ➪ Run “main” command or you can
click the red button with the right-pointing arrow on the toolbar.

4.	 Type :! ghc --make ″Simple.hs″ and press Enter.

The interpreter now compiles the application, as shown in Figure 3-10. You see
a new executable created in the source code directory. When working with
WinGHCi, you can also use the Tools ➪ GHC Compiler menu command to
perform this task. You can now execute the application at the command
prompt and get the same results as you did in the interpreter.

5.	 Type :module and press Enter.

This act unloads all the existing modules. Notice that the prompt changes back
to Prelude>. You can also perform this task using the Actions ➪ Clear Modules
menu command.

FIGURE 3-9:
Executing the
main function

shows what
the application

file can do.

FIGURE 3-10:
Compiling

the loaded
module creates

an executable
on disk.

CHAPTER 3 Getting and Using Haskell 59

6.	 Type :quit and press Enter.

The interpreter closes. You’re done working with Haskell for now.

These steps show just a small sample of the kinds of tasks you can perform using
GHCi. As the book progresses, you see how to perform more tasks, but this is a
good start on discovering what Haskell can do for you.

Using Haskell Libraries
Haskell has a huge library support base in which you can find all sorts of useful
functions. Using library code is a time saver because libraries usually contain
well-constructed and debugged code. The import function allows you to use
external code. The following steps take you through a simple library usage
example:

1.	 Open GHCi, if necessary.

2.	 Type import Data.Char and press Enter.

Note that the prompt changes to Prelude Data.Char> to show that the import
is successful. The Data.Char library contains functions for working with the
Char data type. You can see a listing of these functions at http://hackage.
haskell.org/package/base-4.11.1.0/docs/Data-Char.html. In this case,
the example uses the ord function to convert a character to its ASCII numeric
representation.

3.	 Type ord(′a′) and press Enter.

You see the output value of 97.

The “Getting and using datasets” section of Chapter 2 discusses how to obtain a
dataset for use with Python. You can obtain these same datasets for Haskell, but
first you need to perform a few tasks. The following steps will work for any plat-
form if you have installed Haskell using the procedure in the earlier part of this
chapter.

1.	 Open a command prompt or Terminal window with administrator
privileges.

2.	 Type cabal update and press Enter.

You see the update process start. The cabal utility provides the means to
perform updates in Haskell. The first thing you want to do is ensure that your
copy of cabal is up to date.

http://hackage.haskell.org/package/base-4.11.1.0/docs/Data-Char.html
http://hackage.haskell.org/package/base-4.11.1.0/docs/Data-Char.html

60 PART 1 Getting Started with Functional Programming

3.	 Type cabal install Datasets and press Enter.

You see a rather long list of download, install, and configure sequences. All
these steps install the Datasets module documented at https://hackage.
haskell.org/package/datasets-0.2.5/docs/Numeric-Datasets.html
onto your system.

4.	 Type cabal list Datasets and press Enter.

The cabal utility outputs the installed status of Datasets, along with other
information. If you see that Datasets isn’t installed, try the installation again by
typing cabal install Datasets --force-reinstalls and pressing Enter instead.

Chapter 2 uses the Boston Housing dataset as a test, so this chapter will do the
same. The following steps show how to load a copy of the Boston Housing dataset
in Haskell.

1.	 Open GHCi or WinGHCi.

2.	 Type import Numeric.Datasets (getDataset) and press Enter.

Notice that the prompt changes. In fact, it will change each time you load a new
package. The step loads the getDataset function, which you need to load the
Boston Housing dataset into memory.

3.	 Type import Numeric.Datasets.BostonHousing (bostonHousing) and press
Enter.

The BostonHousing package loads as bostonHousing. Loading the package
doesn’t load the dataset. It provides support for the dataset, but you still need
to load the data.

4.	 Type bh <- getDataset bostonHousing and press Enter.

This step loads the Boston Housing dataset into memory as the object bh. You
can now access the data.

5.	 Type print (length bh) and press Enter.

You see an output of 506, which matches the length of the dataset in
Chapter 2.

Getting Help with the Haskell Language
The documentation that the wizard installs as part of your Haskell setup is the
first place you should look when you have questions. There are three separate files
for answering questions about: GHC, GHC flags, and the Haskell libraries.

https://hackage.haskell.org/package/datasets-0.2.5/docs/Numeric-Datasets.html
https://hackage.haskell.org/package/datasets-0.2.5/docs/Numeric-Datasets.html

CHAPTER 3 Getting and Using Haskell 61

In addition, you see a link for HackageDB, which is the Haskell Software Reposi-
tory where you get packages such as Datasets used in the “Using Haskell Librar-
ies” section of this chapter. All these resources help you see the wealth of
functionality that Haskell provides.

Tutorials make learning any language a lot easier. Fortunately, the Haskell com-
munity has created many tutorials that take different approaches to learning the
language. You can see a listing of these tutorials at https://wiki.haskell.org/
Tutorials.

No matter how adept you might be, documentation and tutorials won’t be enough
to solve every problem. With this in mind, you need access to the Haskell com-
munity. You can find many different groups online, each with people who are
willing to answer questions. However, one of the better places to look for help is
StackOverflow at https://stackoverflow.com/search?q=haskell.

https://wiki.haskell.org/Tutorials
https://wiki.haskell.org/Tutorials
https://stackoverflow.com/search?q=haskell

2Starting
Functional
Programming
Tasks

IN THIS PART . . .

Understand how functional programming differs from
other paradigms.

Discover uses for lambda calculus.

Use lambda calculus to perform practical work.

Perform basic tasks using lists and strings.

CHAPTER 4 Defining the Functional Difference 65

Chapter 4
Defining the Functional
Difference

As described in Chapter 1 and explored in Chapters 2 and 3, using the func-
tional programming paradigm entails an approach to problems that
differs from the paradigms that languages have relied on in the past. For

one thing, the functional programming paradigm doesn’t tie you to thinking
about a problem as a machine would; instead, you use a mathematical approach
that doesn’t really care about how the machine solves the problem. As a result,
you focus on the problem description rather than the solution. The difference
means that you use declarations —formal or explicit statements describing the
problem — instead of procedures — step-by-step problem solutions.

To make the functional paradigm work, the code must manage data differently
than when using other paradigms. The fact that functions can occur in any order
and at any time (allowing for parallel execution, among other things) means that
functional languages can’t allow mutable variables that maintain any sort of state
or provide side effects. These limitations force developers to use better coding
practices. After all, the use of side effects in coding is really a type of shortcut that
can make the code harder to understand and manage, besides being far more
prone to bugs and other reliability issues.

IN THIS CHAPTER

»» Examining declarations

»» Working with functional data

»» Creating and using functions

66 PART 2 Starting Functional Programming Tasks

This chapter provides examples in both Haskell and Python to demonstrate the
use of functions. You see extremely simple uses of functions in Chapters 2 and 3,
but this chapter helps move you to the next level.

Comparing Declarations to Procedures
The term declaration has a number of meanings in computer science, and different
people use the term in different ways at different times. For example, in the con-
text of a language such as C, a declaration is a language construct that defines the
properties associated with an identifier. You see declarations used for defining all
sorts of language constructs, such as types and enumerations. However, that’s not
how this book uses the term declaration. When making a declaration in this book,
you’re telling the underlying language to do something. For example, consider the
following statement:

1.	 Make me a cup of tea!

The statement tells simply what to do, not how to do it. The declaration leaves the
execution of the task to the party receiving it and infers that the party knows how
to complete the task without additional aid. Most important, a declaration enables
someone to perform the required task in multiple ways without ever changing the
declaration. However, when using a procedure named MakeMeTea (the identifier
associated with the procedure), you might use the following sequence instead:

1.	 Go to the kitchen.

2.	 Get out the teapot.

3.	 Add water to the teapot.

4.	 Bring the pot to a boil.

5.	 Get out a teacup.

6.	 Place a teabag in the teacup.

7.	 Pour hot water over the teabag and let steep for five minutes.

8.	 Remove the teabag from the cup.

9.	 Bring me the tea.

A procedure details what to do, when to do it, and how to do it. Nothing is left to
chance and no knowledge is assumed on the part of the recipient. The steps appear
in a specific order, and performing a step out of order will cause problems. For
example, imagine pouring the hot water over the teabag before placing the teabag

CHAPTER 4 Defining the Functional Difference 67

in the cup. Procedures are often error prone and inflexible, but they do allow for
precise control over the execution of a task. Even though making a declaration
might seem to be superior to a procedure, using procedures does have advantages
that you must consider when designing an application.

Declarations do suffer from another sort of inflexibility, however, in that they
don’t allow for interpretation. When making a declarative statement (“Make me a
cup of tea!”), you can be sure that the recipient will bring a cup of tea and not a
cup of coffee instead. However, when creating a procedure, you can add conditions
that rely on state to affect output. For example, you might add a step to the pro-
cedure that checks the time of day. If it’s evening, the recipient might return cof-
fee instead of tea, knowing that the requestor always drinks coffee in the evening
based on the steps in the procedure. A procedure therefore offers flexibility in its
capability to interpret conditions based on state and provide an alternative output.

Declarations are quite strict with regard to input. The example declaration says
that a cup of tea is needed, not a pot or a mug of tea. The MakeMeTea procedure,
however, can adapt to allow variable inputs, which further changes its behavior.
You can allow two inputs, one called size and the other beverage. The size input
can default to cup and the beverage input can default to tea, but you can still
change the procedure’s behavior by providing either or both inputs. The identifier,
MakeMeTea, doesn’t indicate anything other than the procedure’s name. You can
just as easily call it MyBeverageMaker.

One of the hardest issues in moving from imperative languages to functional lan-
guages is the concept of declaration. For a given input, a functional language will
produce the same output and won’t modify or use application state in any way. A
declaration always serves a specific purpose and only that purpose.

The second hardest issue is the loss of control. The language decides how to per-
form tasks, not the developer. Yet, you sometimes see functional code where the
developer tries to write it as a procedure, usually producing a less-than-desirable
result (when the code runs at all).

Understanding How Data Works
Data is a representation of something — perhaps a value. However, it can just as
easily represent a real-world object. The data itself is always abstract, and existing
computer technology represents it as a number. Even a character is a number: The
letter A is actually represented as the number 65. The letter is a value, and the num-
ber is the representation of that value: the data. The following sections discuss data
with regard to how it functions within the functional programming paradigm.

68 PART 2 Starting Functional Programming Tasks

Working with immutable data
Being able to change the content of a variable is problematic in many languages.
The memory location used by the variable is important. If the data in a particular
memory location changes, the value of the variable pointing to that memory loca-
tion changes as well. The concept of immutable data requires that specific mem-
ory locations remain untainted. All Haskell data is immutable.

Python data, on the other hand, isn’t immutable in all cases. The “Passing by
reference versus by value” section that appears later in the chapter gives you an
example of this issue. When working with Python code, you can rely on the id
function to help you determine when changes have occurred to variables. For
example, in the following code, the output of the comparison between id(x) and
oldID will be false.

x = 1
oldID = id(x)
x = x + 1
id(x) == oldID

Every scenario has some caveats, and doing this with Python does as well. The id
of a variable is always guaranteed unique except in certain circumstances:

»» One variable goes out of scope and another is created in the same location.

»» The application is using multiprocessing and the two variables exist on
different processors.

»» The interpreter in use doesn’t follow the CPython approach to handling
variables.

When working with other languages, you need to consider whether the data sup-
ported by that language is actually immutable and what set of events occurs when
code tries to modify that data. In Haskell, modifications aren’t possible, and in
Python, you can detect changes, but not all languages support the functionality
required to ensure that immutability is maintained.

Considering the role of state
Application state is a condition that occurs when the application performs tasks
that modify global data. An application doesn’t have state when using functional
programming. The lack of state has the positive effect of ensuring that any call to
a function will produce the same results for a given input every time, regardless
of when the application calls the function. However, the lack of state has a

CHAPTER 4 Defining the Functional Difference 69

negative effect as well: The application now has no memory. When you think
about state, think about the capability to remember what occurred in the past,
which, in the case of an application, is stored as global data.

Eliminating side effects
Previous discussions of procedures and declarations (as represented by functions)
have left out an important fact. Procedures can’t return a value. The first section
of the chapter, “Comparing Declarations to Procedures,” presents a procedure
that seems to provide the same result as the associated declaration, but the two
aren’t the same. The declaration “Make me a cup of tea!” has only one output: the
cup of tea. The procedure has a side effect instead of a value. After making a cup of
tea, the procedure indicates that the recipient of the request should take the cup of
tea to the requestor. However, the procedure must successfully conclude for this
event to occur. The procedure isn’t returning the tea; the recipient of the request
is performing that task. Consequently, the procedure isn’t returning a value.

Side effects also occur in data. When you pass a variable to a function, the expec-
tation in functional programming is that the variable’s data will remain
untouched — immutable. A side effect occurs when the function modifies the
variable data so that upon return from the function call, the variable changes in
some manner.

Seeing a Function in Haskell
Haskell is all about functions, so, unsurprisingly, it supports a lot of function
types. This chapter doesn’t overwhelm you with a complete listing of all the func-
tion types (see Chapter 5, for example, to discover lambda functions), but it does
demonstrate two of the more important function types (non-curried and curried)
in the following sections.

Using non-curried functions
You can look at non-curried functions as Haskell’s form of the standard function
found in other languages. The next section explains the issue of currying, but for
now, think of standard functions as a stepping-stone to them. To create a stan-
dard function, you provide a function description like this one:

add (x, y) = x + y

hfyang
Sign Here

70 PART 2 Starting Functional Programming Tasks

This function likely looks similar to functions you create in other languages. To
use this function, you simply type something like add (1, 2) and press Enter.
Figure 4-1 shows the result.

Functions can act as the basis for other functions. Incrementing a number is really
just a special form of addition. Consequently, you can create the inc function
shown here:

inc (x) = add (x, 1)

As you can see, add is the basis for inc. Using inc is as simple as typing something
like inc 5 and pressing Enter. Note that the parentheses are optional, but you
could also type inc (5) and press Enter. Figure 4-2 shows the result.

Using curried functions
Currying in Haskell is the process of transforming a function that takes multiple
arguments into a function that takes just one argument and returns another func-
tion when additional arguments are required. The examples in the previous

FIGURE 4-1:
Create and use a

new function
named add.

FIGURE 4-2:
Use add as the

basis for inc.

CHAPTER 4 Defining the Functional Difference 71

section act as a good basis for seeing how currying works in contrast to non-
curried functions. Begin by opening a new window and creating a new version of
add, as shown here:

add x y = x + y

The difference is subtle, but important. Notice that the arguments don’t appear in
parentheses and have no comma between them. The function content still appears
the same, however. To use this function, you simply type something like add 1 2
and press Enter. Figure 4-3 shows the result.

You don’t actually see the true effect of currying, though, until you create the inc
function. The inc function really does look different, and the effects are even
more significant when function complexity increases:

inc = add 1

This form of the inc function is shorter and actually a bit easier to read. It works
the same way as the non-curried version. Simply type something like inc 5 and
press Enter to see the result shown in Figure 4-4.

FIGURE 4-3:
The curried form

of add uses no
parentheses.

FIGURE 4-4:
Currying makes

creating new
functions easier.

72 PART 2 Starting Functional Programming Tasks

Interestingly enough, you can convert between curried and non-curried versions
of a function as needed using the built-in curry and uncurry functions. Try it
with add by typing uadd = uncurry add and pressing Enter. To prove to yourself
that uadd is indeed the non-curried form of add, type uadd 1 2 and press Enter.
You see the error shown in Figure 4-5.

You can use curried functions in some places where non-curried functions won’t
work. The map function is one of these situations. (Don’t worry about the precise
usage of the map function for now; you see it demonstrated in Chapter 6.) The
following code adds a value of 1 to each of the members of the list.

map (add 1) [1, 2, 3]

The output is [2,3,4] as expected. Trying to perform the same task using uadd
results in an error, as shown in Figure 4-6.

FIGURE 4-5:
The uadd

function really is
the non-curried

form of add.

FIGURE 4-6:
Curried functions

add essential
flexibility to

Haskell.

CHAPTER 4 Defining the Functional Difference 73

Seeing a Function in Python
Functions in Python look much like functions in other languages. The following
sections show how to create and use Python functions, as well as provide a warn-
ing about using them in the wrong way. You can compare this section with the
previous section to see the differences between pure and impure function use.
(The “Defining Functional Programming” section of Chapter 1 describes the dif-
ference between pure and impure approaches to functional programming.)

Creating and using a Python function
Python relies on the def keyword to define a function. For example, to create a
function that adds two numbers together, you can use the following code:

def add(x, y):
 return x + y

To use this function, you can type something like add(1, 2). Figure 4-7 shows the
output of this code when you run it in Notebook.

FIGURE 4-7:
The add

function adds
two numbers

together.

74 PART 2 Starting Functional Programming Tasks

As with Haskell, you can use Python functions as the basis for defining other
functions. For example, here is the Python version of inc:

def inc(x):
 return add(x, 1)

The inc function simply adds 1 to the value of any number. To use it, you might
type something like inc(5) and then run the code, as shown in Figure 4-8, using
Notebook.

Passing by reference versus by value
The point at which Python shows itself to be an impure language is the use of
passing by reference. When you pass a variable by reference, it means that any
change to the variable within the function results in a global change to the vari-
able’s value. In short, using pass by reference produces a side effect, which isn’t
allowed when using the functional programming paradigm.

FIGURE 4-8:
You can build

functions using
other functions

as needed.

CHAPTER 4 Defining the Functional Difference 75

Normally, you can write functions in Python that don’t cause the passing by ref-
erence problem. For example, the following code doesn’t modify x, even though
you might expect it to:

def DoChange(x, y):
 x = x.__add__(y)
 return x
x = 1
print(x)
print(DoChange(x, 2))
print(x)

The value of x outside the function remains unchanged. However, you need to
exercise care when creating functions using some objects and built-in methods.
For example, the following code will modify the output:

def DoChange(aList):
 aList.append(4)
 return aList
aList = [1, 2, 3]
print(aList)
print(DoChange(aList))
print(aList)

The appended version will become permanent in this case because the built-in
function, append, performs the modification. To avoid this problem, you must
create a new variable within the function, change its value, and then return the
new variable, as shown in the following code:

def DoChange(aList):
 newList = aList.copy()
 newList.append(4)
 return newList
aList = [1, 2, 3]
print(aList)
print(DoChange(aList))
print(aList)

Figure 4-9 shows the results. In the first case, you see the changed list, but the
second case keeps the list intact.

76 PART 2 Starting Functional Programming Tasks

Whether you encounter a problem with particular Python objects or not depends
on their mutability. An int isn’t mutable, so you don’t need to worry about
having problems with functions changing its value. On the other hand, a list is
mutable, which is the source of the problems with the examples that use a list in
this section. The article at https://medium.com/@meghamohan/mutable-and-
immutable-side-of-python-c2145cf72747 offers insights into the mutability of
various Python objects.

FIGURE 4-9:
Use objects and

built-in functions
with care to avoid

side effects.

https://medium.com/@meghamohan/mutable-and-immutable-side-of-python-c2145cf72747
https://medium.com/@meghamohan/mutable-and-immutable-side-of-python-c2145cf72747

CHAPTER 5 Understanding the Role of Lambda Calculus 77

Chapter 5
Understanding the Role
of Lambda Calculus

Mention the word calculus and some people automatically assume that the
topic is hard or difficult to understand. Add a Greek letter, such as
λ (lambda), in front of it and it must be so terribly hard that only geniuses

need apply. Of course, using correct terminology is important when discussing a
topic for which confusion reigns. The truth is, though, that you’ve probably used
lambda calculus at some point if you’ve worked with other languages that support
first-class functions such as C or JavaScript. Often, the creators of these languages
make things simple by using more approachable terms. This chapter helps you
through some of the terms involved in lambda calculus while also helping you
understand the use of it. The big takeaway from this chapter should be that lambda
calculus really isn’t hard; you’ve likely seen it in a number of places before.

The focus of this chapter is to demonstrate how you can use lambda calculus to
solve math problems within an application that relies on the functional program-
ming paradigm. In many cases, the examples look astonishingly simple, and they
truly are. When you understand the rules for using lambda calculus, you begin to
use it to perform one of three operations — also represented by Greek letters:
α (alpha), β (beta), and η (eta). Yes, that’s right; you need only to think about three
operations, so the task should already be looking easier.

IN THIS CHAPTER

»» Understanding the need for lambda
calculus

»» Using lambda calculus to perform
useful work

»» Developing lambda calculus functions

78 PART 2 Starting Functional Programming Tasks

The final section of this chapter shows you how to create and use functions that
rely on lambda calculus in the target languages for this book. However, no matter
what programming language you use, you can find examples on how to create and
use lambda functions (as long as the language supports first-class functions).
That’s because lambda calculus is so incredibly useful and makes performing pro-
gramming tasks significantly easier rather than harder, as you might initially
expect.

Considering the Origins
of Lambda Calculus

Alonzo Church originally created lambda calculus in the 1930s, which is before the
time that computers were available. Lambda calculus explores the theoretical
basis for what it means to compute. Alonzo Church worked with people like
Haskell Curry, Kurt Gödel, Emil Post, and Alan Turing to create a definition for
algorithms. The topic is far more familiar today, but imagine that you’re one of
the pioneers who are trying to understand the very concepts used to make math
doable in an automated way. Each person involved in defining what it means to
compute approached it in a different manner:

»» Alonzo Church: λ-calculus (the topic of this book)

»» Haskell Curry: Combinatory logic (see https://wiki.haskell.org/
Combinatory_logic for details)

»» Kurt Gödel: μ-recursive functions (see http://www.cs.swan.ac.uk/cie06/
files/d129/cie-beam.pdf and http://ebooks.bharathuniv.ac.in/
gdlc1/gdlc1/Engineering Merged Library v3.0/GDLC/m-Recursive_
Functions (5679)/m-Recursive_Functions - GDLC.pdf for details)

»» Emil Post: Post-canonical system, also called a rewrite system (see https://
www.revolvy.com/main/index.php?s=Post canonical system&nojs=1
and https://esolangs.org/wiki/Post_canonical_system for details)

»» Alan Turing: Turing machines (see http://www.alanturing.net/turing_
archive/pages/reference articles/what is a turing machine.html
for details)

Even through each approach is different, Church and others noted certain
equivalences between each of the systems, which isn’t a coincidence. In addition,
each system helped further define the others and overcome certain obstacles that
each system presents. Precisely who invented what is often a matter for debate
because these people also worked with other scientists, such as John von Neumann.

https://wiki.haskell.org/Combinatory_logic
https://wiki.haskell.org/Combinatory_logic
http://www.cs.swan.ac.uk/cie06/files/d129/cie-beam.pdf
http://www.cs.swan.ac.uk/cie06/files/d129/cie-beam.pdf
http://ebooks.bharathuniv.ac.in/gdlc1/gdlc1/Engineering Merged Library v3.0/GDLC/m-Recursive_Functions (5679)/m-Recursive_Functions - GDLC.pdf
http://ebooks.bharathuniv.ac.in/gdlc1/gdlc1/Engineering Merged Library v3.0/GDLC/m-Recursive_Functions (5679)/m-Recursive_Functions - GDLC.pdf
http://ebooks.bharathuniv.ac.in/gdlc1/gdlc1/Engineering Merged Library v3.0/GDLC/m-Recursive_Functions (5679)/m-Recursive_Functions - GDLC.pdf
https://www.revolvy.com/main/index.php?s=Post canonical system&nojs=1
https://www.revolvy.com/main/index.php?s=Post canonical system&nojs=1
https://esolangs.org/wiki/Post_canonical_system
http://www.alanturing.net/turing_archive/pages/reference articles/what is a turing machine.html
http://www.alanturing.net/turing_archive/pages/reference articles/what is a turing machine.html

CHAPTER 5 Understanding the Role of Lambda Calculus 79

It shouldn’t surprise you to know that some of these people actually attended
school together at Princeton (along with Albert Einstein). The history of the early
years of computing (when modern computers weren’t even theories yet) is fasci-
nating, and you can read more at https://www.princeton.edu/turing/alan/
history-of-computing-at-p/.

Church’s motivation in creating lambda calculus was to prove that Hilbert’s
Entscheidungsproblem, or decision problem (see https://www.quora.com/How-
can-I-explain-Entscheidungs-problem-in-a-few-sentences-to-people-
without-confusing-people for details) wasn’t solvable Peano arithmetic (see
http://mathworld.wolfram.com/PeanoArithmetic.html for details). However,
in trying to prove something quite specific, Church created a way of looking at
math generally that is still in use today.

The goals of lambda calculus, as Church saw it, are to study the interaction of
functional abstraction and function application from an abstract, purely mathe-
matical perspective. Functional abstraction begins by breaking a particular problem
into a series of steps. Of course, these breaks aren’t arbitrary; you must create
breaks that make sense. The abstraction continues by mapping each of these steps
to a function. If a step can’t be mapped to a function, then it isn’t a useful step —
perhaps the break has come in the wrong place. Function application is the act of
applying the function to an argument and obtaining a value as output. It’s essen-
tial to understand the tenets of lambda calculus as set out initially by Church to
understand where programming languages stand on the topic today:

»» Lambda calculus uses only functions — no other data or other types (no
strings, integers, Booleans, or other types found in programming
languages today). Any other type is encoded as part of a function and
therefore, the function is the basis of everything.

»» Lambda calculus has no state or side effects. Consequently, you can view
lambda calculus in terms of the substitutional model, which is used for biology
to describe how a sequence of symbols changes into another set of traits
using a particular process.

»» The order of evaluation is irrelevant. However, most programming
languages do use a particular order to make the process of evaluating
functions easier (not to mention reducing the work required to create a
compiler or interpreter).

»» All functions are unary, taking just one argument. Functions that require
multiple arguments require the use of currying. You can read about the use of
currying in Haskell in the “Using curried functions” section of Chapter 4.

https://www.princeton.edu/turing/alan/history-of-computing-at-p/
https://www.princeton.edu/turing/alan/history-of-computing-at-p/
https://www.quora.com/How-can-I-explain-Entscheidungs-problem-in-a-few-sentences-to-people-without-confusing-people
https://www.quora.com/How-can-I-explain-Entscheidungs-problem-in-a-few-sentences-to-people-without-confusing-people
https://www.quora.com/How-can-I-explain-Entscheidungs-problem-in-a-few-sentences-to-people-without-confusing-people
http://mathworld.wolfram.com/PeanoArithmetic.html

80 PART 2 Starting Functional Programming Tasks

Understanding the Rules
As mentioned in the introduction to this chapter, you use three different opera-
tions to perform tasks using lambda calculus: creating functions to pass as vari-
ables; binding a variable to the expression (abstraction); and applying a function
to an argument. The following sections describe all three operations that you can
view as rules that govern all aspects of working with lambda calculus.

Working with variables
When considering variables in lambda calculus, the variable is a placeholder (in
the mathematical sense) and not a container for values (in the programming
sense). Any variable, x, y, or z, (or whatever identifier you choose to use) is a
lambda term. Variables provide the basis of the inductive (the inference of general
laws from specific instances) definition of lambda terms. To put this in easier-to-
understand terms, if you always leave for work at 7:00 a.m. and are always on
time, inductive reasoning says that you will always be on time as long as you leave
by 7:00 a.m.

Induction in math relies on two cases to prove a property. For example, a common
proof is a property that holds for all natural numbers. The base (or basis) case
makes an assumption using a particular number, usually 0. The inductive case,
also called the inductive step, proves that if the property holds for the first natural
number (n), it must also hold for the next natural number (n + 1).

Variables may be untyped or typed. Typing isn’t quite the same in this case because
types are for other programming paradigms; the use of typing doesn’t actually
indicate a kind of data. Rather, it defines how to interpret the lambda calculus.
The following sections describe how untyped and typed variables work.

Untyped
The original version of Church’s lambda calculus has gone through a number of
revisions as the result of input by other mathematicians. The first such revision
came as the result of input from Stephen Kleene and J. B. Rosser in 1935 in the
form of the Kleene–Rosser paradox. (The article at https://www.quora.com/
What-is-the-Kleene–Rosser-paradox-in-simple-terms provides a basic
description of this issue.) A problem exists in the way that logic worked in the
original version of lambda calculus, and Church fixed this problem in a succeeding
version by removing restrictions on the kind of input that a function can receive.
In other words, a function has no type requirement.

https://www.quora.com/What-is-the-Kleene-Rosser-paradox-in-simple-terms
https://www.quora.com/What-is-the-Kleene-Rosser-paradox-in-simple-terms

CHAPTER 5 Understanding the Role of Lambda Calculus 81

The advantage of untyped lambda calculus is its greater flexibility; you can do
more with it. However, the lack of type also means that untyped lambda calculus
is nonterminating, an issue discussed in the “Considering the need for typing”
section of the chapter. In some cases, you must use typed lambda calculus to
obtain a definitive answer to a problem.

Simply-typed
Church created simply-typed lambda calculus in 1940 to address a number of
issues in untyped lambda calculus, the most important of which is an issue of
paradoxes where β-reduction can’t terminate. In addition, the use of simple typ-
ing provides a means for strongly proving the calculus. The “Abstracting simply-
typed calculus” section of the chapter discusses the methodology used to apply
type to lambda calculus and makes it easier to understand the differences between
untyped and simply-typed versions.

Using application
The act of applying one thing to another seems simple enough. When you apply
peanut butter to toast, you get a peanut butter sandwich. Application in lambda
calculus is almost the same thing. If M and N are lambda terms, the combination
MN is also a lambda term. In this case, M generally refers to a function and N gen-
erally refers to an input to that function, so you often see these terms written as
(M)N. The input, N, is applied to the function, M. Because the purpose of the
parentheses is to define how to apply terms, it’s correct to refer to the pair of
parentheses as the apply operator.

Understanding that application infers nesting is essential. In addition, because
lambda calculus uses only functions, inputs are functions. Consequently, saying
M2(M1N) would be the same as saying that the function M1 is applied as input to
M2 and that N is applied as input to M1.

In some cases, you see lambda calculus written without the parentheses. For
example, you might see EFG as three lambda terms. However, lambda calculus is
left associated by default, which means that when you see EFG, what the state-
ment is really telling you is that E is applied to F and F is applied to G, or ((E)F)
G. Using the parentheses tends to avoid confusion. Also, be aware that the associ-
ative math rule doesn’t apply in this case: ((E)F)G is not equivalent to E(F(G)).

To understand the idea of application better, consider the following pseudocode:

inc(x) = x + 1

82 PART 2 Starting Functional Programming Tasks

All this code means is that to increment x, you add 1 to its value. The lambda cal-
culus form of the same pseudocode written as an anonymous function looks like
this:

 (x) -> x + 1

You read this statement as saying that the variable x is mapped to x + 1. However,
say that you have a function that requires two inputs, like this:

square_sum(x, y) = (x2 + y2)

The lambda calculus form of the same function written in anonymous form looks
like this:

(x, y) -> x2 + y2

This statement is read as saying that the tuple (x, y) is mapped to x2 + y2. How-
ever, as previously mentioned, lambda calculus allows functions to have just one
input, and this one has two. To properly apply the functions and inputs, the code
would actually need to look like this:

x -> (y -> x2 + y2)

At this point, x and y are mapped separately. The transitioning of the code so that
each function has only one argument is called currying. This transition isn’t pre-
cisely how you see lambda calculus written, but it does help explain the underly-
ing mechanisms that you see explained later in the chapter.

Using abstraction
The term abstraction derives from the creation of general rules and concepts based
on the use and classification of specific examples. The creation of general rules
tends to simplify a problem. For example, you know that a computer stores data
in memory, but you don’t necessarily understand the underlying hardware pro-
cesses that allow the management of data to take place. The abstraction provided
by data storage rules hides the complexity of viewing this process each time it
occurs. The following sections describe how abstraction works for both untyped
and typed lambda calculus.

Abstracting untyped lambda calculus
In lambda calculus, when E is a lambda term and x is a variable, λx.E is a lambda
term. An abstraction is a definition of a function, but doesn’t invoke the function.

CHAPTER 5 Understanding the Role of Lambda Calculus 83

To invoke the function, you must apply it as described in the “Using application”
section of the chapter. Consider the following function definition:

f(x) = x + 1

The lambda abstraction for this function is

λx.x + 1

Remember that lambda calculus has no concept of a variable declaration. Conse-
quently, when abstracting a function such as

f(x) = x2 + y2

to read

λx.x2 + y2

the variable y is considered a function that isn’t yet defined, not a variable decla-
ration. To complete the abstraction, you would create the following:

λx.(λy.x2 + y2)

Abstracting simply-typed calculus
The abstraction process for simply-typed lambda calculus follows the same pat-
tern as described for untyped lambda calculus in the previous section, except that
you now need to add type. In this case, the term type doesn’t refer to string, inte-
ger, or Boolean — the types used by other programming paradigms. Rather, type
refers to the mathematical definition of the function’s domain (the set of outputs
that the function will provide based on its defined argument values) and range
(the codomain or image of the function), which is represented by A -> B. All that
this talk about type really means is that the function can now accept only inputs
that provide the correct arguments, and it can provide outputs of only certain
arguments as well.

Alonzo Church originally introduced the concept of simply-typed calculus as a
simplification of typed calculus to avoid the paradoxical uses of untyped lambda
calculus (the “Considering the need for typing” section, later in this chapter, pro-
vides details on how this whole process works). A number of lambda calculus
extensions (not discussed in this book) also rely on simple typing including: prod-
ucts, coproducts, natural numbers (System T), and some types of recursion (such
as Programming Computable Functions, or PCF).

84 PART 2 Starting Functional Programming Tasks

The important issue for this chapter is how to represent a typed form of lambda
calculus statement. For this task, you use the colon (:) to display the expression or
variable on the left and the type on the right. For example, referring to the incre-
ment abstraction shown in the previous section, you include the type, as shown
here:

λx:ν.x + 1

In this case, the parameter x has a type of ν (nu), which represents natural num-
bers. This representation doesn’t tell the output type of the function, but because
+ 1 would result in a natural number output as well, it’s easy to make the required
assumption. This is the Church style of notation. However, in many cases you
need to define the type of the function as a whole, which requires the Curry-style
notation. Here is the alternative method:

(λx.x + 1):ν -> ν

Moving the type definition outside means that the example now defines type for
the function as a whole, rather than for x. You infer that x is of type ν because the
function parameters require it. When working with multiparameter inputs, you
must curry the function as shown before. In this case, to assign natural numbers
as the type for the sum square function, you might show it like this:

λx:ν.(λy:ν.x2 + y2)

Note the placement of the type information after each parameter. You can also
define the function as a whole, like this:

(λx.(λy.x2 + y2)):ν -> ν -> ν

Each parameter appears separately, followed by the output type. A great deal more
exists to discover about typing, but this discussion gives you what you need to get
started without adding complexity. The article at http://www.goodmath.org/
blog/2014/08/21/types-and-lambda-calculus/ provides additional insights
that you may find helpful.

When working with particular languages, you may see the type indicated directly,
rather than indirectly using Greek letters. For example, when working with a lan-
guage that supports the int data type, you may see int used directly, rather than
the less direct form of ν that’s shown in the previous examples. For example, the
following code shows an int alternative to the λx:ν.x + 1 code shown earlier in
this section:

λx:int.x + 1

http://www.goodmath.org/blog/2014/08/21/types-and-lambda-calculus/
http://www.goodmath.org/blog/2014/08/21/types-and-lambda-calculus/

CHAPTER 5 Understanding the Role of Lambda Calculus 85

Performing Reduction Operations
Reduction is the act of expressing a lambda function in its purest, simplest form
and ensuring that no ambiguity exists in its meaning. You use one of three kinds
of reduction (also called conversion in some cases for the sake of clarity) to per-
form various tasks in lambda calculus:

»» α (alpha)

»» β (beta)

»» η (eta)

How an application employs these three kinds of reduction is what defines
the lambda expression. For example, if you can convert two lambda functions into
the same expression, you can consider them β-equivalent. Many texts refer to the
process of performing these three kinds of reduction as a whole as λ-reduction.
The following sections discuss the reduction operations in detail.

Considering α-conversion
When performing tasks in lambda calculus, you often need to rename variables so
that the meaning of the various functions is clear, especially when combining
functions. The act of renaming variables is called α-conversion. Two functions are
α-equivalent when they have the same result. For example, the following two
functions are alpha-equivalent:

λx.x + 1
λa.a + 1

Clearly, both functions produce the same output, even though one function relies
on the letter x, while the second relies on the letter a. However, the alpha-conversion
process isn’t always straightforward. For example, the following two functions
aren’t α-equivalent; rather, they’re two distinct functions:

λx.(λy.x2 + y2)
λx.(λx.x2 + x2)

Renaming y to x won’t work because x is already a captured variable. However,
you can rename y to any other variable name desired. In fact, functional language
compilers often perform alpha-conversion even when it’s not strictly necessary to
ensure variable uniqueness throughout an application. Consequently, when view-
ing your code, you need to consider the effects of alpha-conversion performed
solely to ensure variable uniqueness.

86 PART 2 Starting Functional Programming Tasks

Considering β-reduction
The concept of β-reduction is important because it helps simplify lambda func-
tions, sometimes with the help of α-conversion or η-conversion (sometimes
called reductions in some texts, but the use of the term conversion is clearer). The
essential idea is easy—to replace the variables in the body of a function with a
particular argument. Making the replacement enables you to solve the lambda
function for a particular argument, rather than make a general statement that
could apply to any set of arguments.

The following sections help you understand how beta-reduction works. The tuto-
rial at http://www.nyu.edu/projects/barker/Lambda/ provides JavaScript aids
that can help you to better understand the discussion if you want to feed the
examples into the appropriate fields.

Defining bound and unbound variables
When viewing the function, λx.x + 1, the λ part of that function binds the vari-
able x to the succeeding expression, x + 1. You may also see two other binding
operators used in some function declarations: backwards E (∃), also called the
existential quantifier used in set theory, or upside-down A (∀), which means
for all. The examples in this book don’t use any of the alternatives, and you don’t
need to worry about them for now, but you can find a relatively complete set of
math symbols, with their explanations, at https://en.wikipedia.org/wiki/
List_of_mathematical_symbols.

You sometimes find expressions containing unbound or free variables. A free vari-
able is one that appears without the λ part of the function. For example, in this
expression, x is bound, while y remains free.

λx.x2 + y2

Unbound variables always remain after any sort of reduction as an unsolved part
of the function. It doesn’t mean that you won’t solve that part of the function —
simply that you won’t solve it now.

Understanding the basic principle
The previous section discusses bound and unbound variables. This section moves
on to the next step: replacing the bound variables with arguments. By performing
this step, you move the lambda function from general to specific use. The argu-
ment always appears on the right of the function statement. Consequently, the
following lambda expression says to apply every argument z to every occurrence
of the variable x.

http://www.nyu.edu/projects/barker/Lambda/
https://en.wikipedia.org/wiki/List_of_mathematical_symbols
https://en.wikipedia.org/wiki/List_of_mathematical_symbols

CHAPTER 5 Understanding the Role of Lambda Calculus 87

((λx.x + 1)z)

Notice how the entire function appears in parentheses to separate it from the
argument that you want to apply to the function. The result of this reduction
appears like this:

(z + 1)[x := z]

The reduction now shows that the argument z has a value of 1 added to it. The
reduction appears in square brackets after the reduced expression. However,
the reduction isn’t part of the expression; it’s merely there for documentation.
The whole expression is simply (z + 1).

When performing this task, you need not always use a letter to designate a value.
You can use a number or other value instead. In addition, the reduction process
can occur in steps. For example, the following reductions require three steps:

(((λx.(λy.x2 + y2))2)4)
(((λx.(λy1.x2 + y12))2)4)
((λy1.22 + y12)4)[x := 2]
(22 + 42)[y1 := 4]
22 + 42

20

This process follows these steps:

1.	 Use alpha-conversion to rename the y variable to y1 to avoid potential
confusion.

2.	 Replace all occurrences of the x variable with the value 2.

3.	 Replace all occurrences of the y1 variable with the value 4.

4.	 Remove the unneeded parentheses.

5.	 Solve the problem.

Considering the need for typing
The previous section makes beta-reduction look relatively straightforward, even
for complex lambda functions. In addition, the previous sections rely on untyped
variables. However, untyped variables can cause problems. For example, consider
the following beta-reduction:

(λx.xx)(λx.xx)

88 PART 2 Starting Functional Programming Tasks

Previous examples don’t consider two features of this example. First, they didn’t
consider the potential for using two of the same variable in the expression, xx in
this case. Second, they didn’t use a function as the argument for the sake of sim-
plicity. To perform the beta-reduction, you must replace each x in the first func-
tion with the function that appears as an argument, which results in producing
the same code as output. The beta-reduction gets stuck in an endless loop. Now
consider this example:

L = (λx.xxy)(λx.xxy)

The output of this example is (λx.xxy)(λx.xxy)y, or Ly, which is actually big-
ger than before, not reduced. Applying beta-reduction again makes the problem
larger still: Lyy. The problem is the fact that the variables have no type, so they
accept any input. Adding typing solves this problem by disallowing certain kinds
of input. For example, you can’t apply a function to this form of the first
example:

(λx:ν.xx)

The only argument that will work is a number in this case. Consequently, the
function will beta-reduce.

Considering η-conversion
The full implementation of lambda calculus provides a guarantee that the
reduction of (λx.Px), in which no argument is applied to x and P doesn’t con-
tain x as an unbound (free) variable, results in P. This is the definition of the
η-conversion. It anticipates the need for a beta-reduction in the future
and makes the overall lambda function simpler before the beta-reduction is
needed. The discussion at https://math.stackexchange.com/questions/
65622/whats-the-point-of-eta-conversion-in-lambda-calculus provides
a fuller look at eta-conversion.

The problem with eta-conversion is that few languages actually implement it.
Even though eta-conversion should be available, you shouldn’t count on its being
part of any particular language until you actually test it. For example, the tutorial
at http://www.nyu.edu/projects/barker/Lambda/#etareduction shows that
eta-conversion isn’t available in JavaScript. Consequently, this book doesn’t
spend a lot of time talking about eta-conversion.

https://math.stackexchange.com/questions/65622/whats-the-point-of-eta-conversion-in-lambda-calculus
https://math.stackexchange.com/questions/65622/whats-the-point-of-eta-conversion-in-lambda-calculus
http://www.nyu.edu/projects/barker/Lambda/#etareduction

CHAPTER 5 Understanding the Role of Lambda Calculus 89

Creating Lambda Functions in Haskell
The “Seeing a Function in Haskell” section of Chapter 4 shows how to create
functions in Haskell. For example, if you want to create a curried function to add
two numbers together, you might use add x y = x + y. This form of code creates
a definite function. However, you can also create anonymous functions in Haskell
that rely on lambda calculus to perform a task. The difference is that the function
actually is anonymous — has no name — and you assign it to a variable. To see
how this process works, open a copy of the Haskell interpreter and type the fol-
lowing code:

add = \x -> \y -> x + y

Notice how lambda functions rely on the backslash for each variable declaration
and the map (->) symbol to show how the variables are mapped to an expression.
The form of this code should remind you of what you see in the “Abstracting
untyped lambda calculus” section, earlier in this chapter. You now have a lambda
function to use in Haskell. To test it, type add 1 2 and press Enter. The output is 3
as expected.

Obviously, this use of lambda functions isn’t all that impressive. You could use the
function form without problem. However, lambda functions do come in handy for
other uses. For example, you can create specially defined operators. The following
code creates a new operator, +=:

(+=) = \x -> \y -> x + y

To test this code, you type 1+=2 and press Enter. Again, the output is 3, as you
might expect. Haskell does allow a shortcut method for defining lambda func-
tions. You can create this same operator using the following code:

(+=) = \x y -> x + y

Creating Lambda Functions in Python
The “Seeing a Function in Python” section of Chapter 4 shows how to create
functions in Python. As with the Haskell function in the previous section of
this chapter, you can also create a lambda function version of the add function

90 PART 2 Starting Functional Programming Tasks

in Chapter 4. When creating a lambda function in Python, you define the function
anonymously and rely on the lambda keyword, as shown here:

add = lambda x, y: x + y

Notice that this particular example assigns the function to a variable. However,
you can use a lambda function anywhere that Python expects to see an expression
or a function reference. You use this function much as you would any other func-
tion. Type add(1, 2), execute the code, and you see 3 as output.

If you want to follow a more precise lambda function formulation, you can create
the function like this:

add = lambda x: lambda y: x + y

In this case, you see how the lambda sequence should work more clearly, but it’s
extra work. To use this function, you type add(1)(2) and execute the code. Python
applies the values as you might think, and the code outputs a value of 3.

Python doesn’t allow you to create new operators, but you can override existing
operators; the article at http://blog.teamtreehouse.com/operator-overloading-
python tells you how. However, for this chapter, create a new use for the letter X
using a lambda function. To begin this process, you must install the Infix module by
opening the Anaconda Prompt, typing pip install infix at the command prompt, and
pressing Enter. After a few moments, pip will tell you that it has installed Infix for
you. The following code will let you use the letter X to multiply two values:

from infix import mul_infix as Infix
X = Infix(lambda x, y: x * y)
5 *X* 6
X(5, 6)

The first statement imports mul_infix as Infix. You have access to a number of
infix methods, but this example uses this particular one. The site at https://
pypi.org/project/infix/ discusses the other forms of infix at your disposal.

The second statement sets X as the infix function using a lambda expression. The
manner in which Infix works allows you to use X as either an operator, as shown
by 5 *X* 6 or a regular function, as shown by X(5, 6). When used as an operator,
you must surround X with the multiplication operator, *. If you were to use
shif_infix instead, you would use the shift operators (<< and >>) around the
lambda function that you define as the operator.

http://blog.teamtreehouse.com/operator-overloading-python
http://blog.teamtreehouse.com/operator-overloading-python
https://pypi.org/project/infix/
https://pypi.org/project/infix/

CHAPTER 6 Working with Lists and Strings 91

Chapter 6
Working with Lists
and Strings

Chapter 5 may have given you the idea that the use of lambda calculus in the
functional programming paradigm precludes the use of standard program-
ming structures in application design. That’s not the case, however, and

this chapter is here to dispel that myth. In this chapter, you begin with one of the
most common and simplest data structures in use today: lists. A list is a program-
matic representation of the real-world object. Everyone creates lists in real life
and for all sorts of reasons. (Just imagine shopping for groceries without a list.)
You do the same thing in your applications, even when you’re writing code using
the functional style. Of course, the functional programming paradigm offers a few
surprises, and the chapter discusses them, too.

Sometimes you need to create data structures with greater complexity, which is
where the Dict and Set structures come in. Different languages use different
terms for these two data structures, but the operation is essentially the same. A
Dict offers an ordered list containing name and value pairs. You access the values
using the associated name, and the name is what provides the order. A Set offers
an unordered collection of elements of the same type with no duplicates. You often
use a Set to eliminate duplicate entries from a dataset or to perform mathematical
operations such as union and intersection.

IN THIS CHAPTER

»» Understanding and using lists

»» Manipulating lists

»» Working with Dict and Set

»» Using strings

92 PART 2 Starting Functional Programming Tasks

The final topic in this chapter involves the use of strings. From a human perspec-
tive, strings are an essential means of communicating information. Remember,
though, that a computer sees them solely as a string of numbers. Computers work
only with numbers, never text, so the representation of a string really is a combi-
nation of things that you might not normally think of going together. As with all
the other examples in this book, the Haskell and Python string examples use the
functional coding paradigm, rather than other paradigms you may have used in
the past.

Defining List Uses
After you have used lists, you might be tempted to ask what a list can’t do. The list
data structure is the most versatile offering for most languages. In most cases,
lists are simply a sequence of values that need not be of the same type. You access
the elements in a list using an index that begins at 0 for most languages, but could
start at 1 for some. The indexing method varies among languages, but accessing
specific values using an index is common. Besides storing a sequence of values,
you sometimes see lists used in these coding contexts:

»» Stack

»» Queue

»» Deque

»» Sets

Generally, lists offer more manipulation methods than other kinds of data struc-
tures simply because the rules for using them are so relaxed. Many of these
manipulation methods give lists a bit more structure for use in meeting special-
ized needs. The “Performing Common List Manipulations” section, later in this
chapter, describes these manipulations in detail. Lists are also easy to search and
to perform various kinds of analysis. The point is that lists often offer significant
flexibility at the cost of absolute reliability and dependability. (You can easily use
lists incorrectly, or create scenarios in which lists can actually cause an applica-
tion to crash, such as when you add an element of the wrong type.)

Depending on the language you use, lists can provide an impressive array of fea-
tures and make conversions between types easier. For example, using an iterator
in Python lets you perform tasks such as outputting the list as a tuple, processing
the content one element at a time, and unpacking the list into separate variables.
When working in Haskell, you can create list comprehensions, which are similar

CHAPTER 6 Working with Lists and Strings 93

in nature to the set comprehensions you work with in math class. The list features
you obtain with a particular language depend on the functions the language pro-
vides and your own creativity in applying them.

Creating Lists
Before you can use a list, you must create one. Fortunately, most languages make
creating lists extremely easy. In some cases, it’s a matter of placing a list of values
or objects within the correct set of symbols, such as square brackets (which appear
to be the most commonly used symbols).

The most important thing about creating lists is to ensure that you understand
how you plan to use the list within the application. Sometimes developers create a
freeform list and find out later that controlling the acceptable data types would
have been a better idea. Some languages provide methods for ensuring that lists
remain pure, but often the ability to control list content is something to add
programmatically. The following sections describe how to create lists, first in
Haskell and then in Python.

LIST AND ARRAY DIFFERENCE
At first, lists may simply seem to be another kind of array. Many people wonder how
lists and arrays differ. After all, from a programming perspective, the two can sound like
the same thing. It’s true that lists and arrays both store data sequentially, and you can
often store any sort of data you want in either structure (although arrays tend to be
more restrictive).

The main difference comes in how arrays and lists store the data. An array always
stores data in sequential memory locations, which gives an array faster access times in
some situations but also slows the creation of arrays. In addition, because an array
must appear in sequential memory, updating arrays is often hard, and some languages
don’t allow you to modify arrays in the same ways that you can lists.

A list stores data using a linked data structure in which a list element consists of the
data value and one or two pointers. Lists take more memory because you must now
allocate memory for pointers to the next data location (and to the previous location as
well in doubly-linked lists, which is the kind used by most languages today). Lists are
often faster to create and add data to because of the linking mechanism, but they pro-
vide slower read access than arrays.

94 PART 2 Starting Functional Programming Tasks

Using Haskell to create Lists
In Haskell, you can create lists in a number of ways. The easiest method is to
define a variable to hold the list and provide the list item within square brackets,
as shown here:

let a = [1, 2, 3, 4]

Notice that the declaration begins with the keyword let, followed by a lowercase
variable name, which is a in this case. You could also use something more descrip-
tive, such as myList. However, if you were to try to use an uppercase beginning
letter, you receive an error message like the one shown in Figure 6-1.

Haskell provides some unique list creation features. For example, you can specify
a range of values to put in a list without using any special functions. All you need
to do is provide the beginning value, two dots (..), and the ending value, like this:

let b = [1..12]

You can even use a list comprehension to create a list in Haskell. For example, the
following list comprehension builds a list called c based on the doubled content of
list a:

let c = [x * 2 | x <- a]

In this case, Haskell sends the individual values in a to x, doubles the value of x by
multiplying by 2, and then places the result in c. List comprehensions give you

FIGURE 6-1:
Variable names

must begin with a
lowercase letter.

CHAPTER 6 Working with Lists and Strings 95

significant flexibility in creating customized lists. Figure 6-2 shows the output
from these two specialized list-creation methods (and many others exist).

Using Python to create lists
Creating a list in Python is amazingly similar to creating a list in Haskell. The
examples in this chapter are relatively simple, so you can perform them by open-
ing an Anaconda Prompt (a command or terminal window), typing python at the
command line, and pressing Enter. You use the following code to create a list
similar to the one used for the Haskell examples in the previous section:

a = [1, 2, 3, 4]

In contrast to Haskell variable names, Python variable names can begin with a
capital letter. Consequently, the AList example that generates an exception in
Haskell, works just fine in Python, as shown in Figure 6-3.

FIGURE 6-2:
Haskell provides

specialized
list-creation

methods.

FIGURE 6-3:
Python variable

names can
begin with an

uppercase letter.

96 PART 2 Starting Functional Programming Tasks

You can also create a list in Python based on a range, but the code for doing so is
different from that in Haskell. Here is one method for creating a list in Python
based on a range:

b = list(range(1, 13))

This example combines the list function with the range function to create the
list. Notice that the range function accepts a starting value, 1, and a stop value, 13.
The resulting list will contain the values 1 through 12 because the stop value is
always one more than the actual output value. You can verify this output for your-
self by typing b and pressing Enter.

As does Haskell, Python supports list comprehensions, but again, the code for
creating a list in this manner is different. Here’s an example of how you could
create the list, c, found in the previous example:

c = [a * 2 for a in range(1,5)]

This example shows the impure nature of Python because, in contrast to the
Haskell example, you rely on a statement rather than lambda calculus to get the
job done. As an alternative, you can define the range function stop value by speci-
fying len(a)+1. (The alternative approach makes it easier to create a list based on
comprehensions because you don’t have to remember the source list length.)
When you type c and press Enter, the result is the same as before, as shown in
Figure 6-4.

Evaluating Lists
At some point, you have a list that contains data. The list could be useful at this
point, but it isn’t actually useful until you evaluate it. Evaluating your list means
more than simply reading it; it also means ascertaining the value of the list. A list
becomes valuable only when the data it contains also become valuable. You can

FIGURE 6-4:
Python also

allows the use of
comprehensions
for creating lists.

CHAPTER 6 Working with Lists and Strings 97

perform this task mathematically, such as determining the minimum, maximum,
or mean value of the list, or you can use various forms of analysis to determine
how the list affects you or your organization (or possibly a client). Of course, the
first step in evaluating a list is to read it.

This chapter doesn’t discuss the process of evaluation fully. In fact, no book can
discuss evaluation fully because evaluation means different things to different
people. However, the following sections offer enough information to at least start
the process, and then you can go on to discover other means of evaluation, includ-
ing performing analysis (another step in the process) using the techniques
described in Part 3 and those provided by other books. The point is that evaluation
means to use the data, not to change it in some way. Changes come as part of
manipulation later in the chapter.

Using Haskell to evaluate Lists
The previous sections of the chapter showed that you can read a list simply by
typing its identifier and pressing Enter. Of course, then you get the entire list. You
may decide that you want only part of the list. One way to get just part of the list
is to specify an index value, which means using the !! operator in Haskell. To see
the first value in a list defined as let a = [1, 2, 3, 4, 5, 6], you type a !! 0
and press Enter. Indexes begin at 0, so the first value in list a is at index 0, not 1
as you might expect. Haskell actually provides a long list of ways to obtain just
parts of lists so that you can see specific elements:

»» head a: Shows the value at index 0, which is 1 in this case.

»» tail a: Shows the remainder of the list after index 0, which is [2,3,4,5,6]
in this case.

»» init a: Shows everything except the last element of the list, which is
[1,2,3,4,5] in this case.

»» last a: Shows just the last element in the list, which is 6 in this case.

»» take 3 a: Requires the number of elements you want to see as input and
then shows that number from the beginning of the list, which is [1,2,3] in
this case.

»» drop 3 a: Requires the number of elements you don’t want to see as input
and then shows the remainder of the list after dropping the required ele-
ments, which is [4,5,6] in this case.

98 PART 2 Starting Functional Programming Tasks

Haskell provides you with a wealth of other ways to slice and dice lists, but it
really all comes down to reading the list. The next step is to perform some sort of
analysis, which can come in a multitude of ways, but here are some of the simplest
functions to consider:

»» length a: Returns the number of elements in the list, which is 6 in this case.

»» null a: Determines whether the list is empty and returns a Boolean result,
which is False in this case.

»» minimum a: Determines the smallest element of a list and returns it, which is 1
in this case.

»» maximum a: Determines the largest element of a list and returns it, which is
6 in this case.

»» sum a: Adds the numbers of the list together, which is 21 in this case.

»» product a: Multiplies the numbers of the list together, which is 720 in this
case.

Haskell does come with an amazing array of statistical functions at https://
hackage.haskell.org/package/statistics, and you can likely find third-
party libraries that offer even more. The “Using Haskell Libraries” section of
Chapter 3 tells you how to install and import libraries as needed. However, for
something simple, you can also create your own functions. For example, you can
use the sum and length functions to determine the average value in a list, as
shown here:

avg = \x -> sum(x) `div` length(x)
avg a

The output is an integer value of 3 in this case (a sum of 21/6 elements). The
lambda function follows the same pattern as that used in Chapter 5. Note that no

USE OF THE GRAVE (BACK QUOTATION
MARK OR PRIME) IN HASKELL
Many people will find themselves confused by the use of the accent grave (`) or back
quotation mark (sometimes called a prime) in Haskell. If you were to type 'div' (using
a single quotation mark instead of the back quotation mark), Haskell would display an
error message.

https://hackage.haskell.org/package/statistics
https://hackage.haskell.org/package/statistics

CHAPTER 6 Working with Lists and Strings 99

actual division operator is defined for many operations in Haskell; you use `div`
instead. Trying to use something like avg = \x -> sum(x) / length(x) will
produce an error. In fact, a number of specialized division-oriented keywords are
summarized in the article at https://ebzzry.io/en/division/.

Using Python to evaluate lists
Python provides a lot of different ways to evaluate lists. To start with, you can
obtain a particular element using an index enclosed in square brackets. For exam-
ple, assuming that you have a list defined as a = [1, 2, 3, 4, 5, 6], typing a[0]
and pressing Enter will produce an output of 1. Unlike in Haskell, you don’t have
to use odd keywords to obtain various array elements; instead, you use modifica-
tions of an index, as shown here:

»» a[0]: Obtains the head of the list, which is 1 in this case

»» a[1:]: Obtains the tail of the list, which is [2,3,4,5,6] in this case

»» a[:-1]: Obtains all but the last element, which is [1,2,3,4,5] in this case

»» a[:-1]: Obtains just the last element, which is 6 in this case

»» a[:-3]: Performs the same as take 3 a in Haskell

»» a[-3:]: Performs the same as drop 3 a in Haskell

As with Haskell, Python probably provides more ways to slice and dice lists than
you’ll ever need or want. You can also perform similar levels of basic analysis
using Python, as shown here:

»» len(a): Returns the number of elements in a list.

»» not a: Checks for an empty list. This check is different from a is None, which
checks for an actual null value — a not being defined.

»» min(a): Returns the smallest list element.

»» max(a): Returns the largest list element.

»» sum(a): Adds the number of the list together.

Interestingly enough, Python has no single method call to obtain the product of a
list — that is, all the numbers multiplied together. Python relies heavily on third-
party libraries such as NumPy (http://www.numpy.org/) to perform this task.

https://ebzzry.io/en/division/
http://www.numpy.org/

100 PART 2 Starting Functional Programming Tasks

One of the easiest ways to obtain a product without resorting to a third-party
library is shown here:

from functools import reduce
reduce(lambda x, y: x * y, a)

The reduce method found in the functools library (see https://docs.python.
org/3/library/functools.html for details) is incredibly flexible in that you can
define almost any operation that works on every element in a list. In this case, the
lambda function multiplies the current list element, y, by the accumulated value, x.
If you wanted to encapsulate this technique into a function, you could do so using
the following code:

prod = lambda z: reduce(lambda x, y: x * y, z)

To use prod to find the product of list a, you would type prod(a) and press Enter.
No matter how you call it, you get the same output as in Haskell: 720.

Python does provide you with a number of statistical calculations in the
statistics library (see https://pythonprogramming.net/statistics-
python-3-module-mean-standard-deviation/ for details). However, as in
Haskell, you may find that you want to create your own functions to determine
things like the average value of the entries in a list. The following code shows the
Python version:

avg = lambda x: sum(x) // len(x)
avg(a)

As before, the output is 3. Note the use of the // operator to perform integer divi-
sion. If you were to use the standard division operator, you would receive a
floating-point value as output.

Performing Common List Manipulations
Manipulating a list means modifying it in some way to produce a desired result. A
list may contain the data you need, but not the form in which you need it. You may
need just part of the list, or perhaps the list is just one component in a larger cal-
culation. Perhaps you don’t need a list at all; maybe the calculation requires a
tuple instead. The need to manipulate shows that the original list contains some-
thing you need, but it’s somehow incomplete, inaccurate, or flawed in some other

https://docs.python.org/3/library/functools.html
https://docs.python.org/3/library/functools.html
https://pythonprogramming.net/statistics-python-3-module-mean-standard-deviation/
https://pythonprogramming.net/statistics-python-3-module-mean-standard-deviation/

CHAPTER 6 Working with Lists and Strings 101

way. The following sections provide an overview of list manipulations that you see
enhanced as the book progresses.

Understanding the list manipulation
functions
List manipulation means changing the list. However, in the functional program-
ming paradigm, you can’t change anything. For all intents and purposes, every
variable points to a list that is a constant — one that can’t change for any reason
whatsoever. So when you work with lists in functional code, you need to consider
the performance aspects of such a requirement. Every change you make to any list
will require the creation of an entirely new list, and you have to point the variable
to the new structure. To the developer, the list may appear to have changed, but
underneath, it hasn’t — in fact, it can’t, or the underlying reason to use the func-
tional programming paradigm fails. With this caveat in mind, here are the com-
mon list manipulations you want to consider (these manipulations are in addition
to the evaluations described earlier):

»» Concatenation: Adding two lists together to create a new list with all the
elements of both.

»» Repetition: Creating a specific number of duplicates of a source list.

»» Membership: Determining whether an element exists within a list and
potentially extracting it.

»» Iteration: Interacting with each element of a list individually.

»» Editing: Removing specific elements, reversing the list in whole or in part,
inserting new elements in a particular location, sorting, or in any other way
modifying a part of the list while retaining the remainder.

Using Haskell to manipulate lists
Some of the Haskell list manipulation functionality comes as part of the evalua-
tion process. You simply set the list equal to the result of the evaluation. For
example, the following code places a new version of a into b:

let a = [1, 2, 3, 4, 5, 6]
let b = take 3 a

102 PART 2 Starting Functional Programming Tasks

You must always place the result of an evaluation into a new variable. For exam-
ple, if you were to try using let a = take 3 a, as you can with other languages,
Haskell would either emit an exception or it would freeze. However, you could
later use a = b to move the result of the evaluation from b to a.

Haskell does provide a good supply of standard manipulation functions. For
example, reverse a would produce [6,5,4,3,2,1] as output. You can also split
lists using calls such as splitAt 3 a, which produces a tuple containing two lists
as output: ([1,2,3],[4,5,6]). To concatenate two lists, you use the concatena-
tion operator: ++. For example, to concatenate a and b, you use a ++ b.

You should know about some interesting Haskell functions. For example, the
filter function removes certain elements based on specific criteria, such as all
odd numbers. In this case, you use filter odd a to produce an output of [1,3,5].
The zip function is also exceptionally useful. You can use it to combine two lists.
Use zip a ['a', 'b', 'c', 'd', 'e', 'f'] to create a new list of tuples like
this: [(1,'a'),(2,'b'),(3,'c'),(4,'d'),(5,'e'),(6,'f')]. All these func-
tions appear in the Data.List library that you can find discussed at http://
hackage.haskell.org/package/base-4.11.1.0/docs/Data-List.html.

Using Python to manipulate lists
When working with Python, you have access to a whole array of list manipulation
functions. Many of them are dot functions you append to a list. For example, using
a list like a = [1, 2, 3, 4, 5, 6], reversing the list would require the reverse
function like this: a.reverse(). However, what you get isn’t the output you
expected, but a changed version of a. Instead of the original list, a now contains:
[6, 5, 4, 3, 2, 1].

Of course, using the dot functions is fine if you want to modify your original list,
but in many situations, modifying the original idea is simply a bad idea, so you
need another way to accomplish the task. In this case, you can use the following
code to reverse a list and place the result in another list without modifying the
original:

reverse = lambda x: x[::-1]
b = reverse(a)

As with Haskell, Python provides an amazing array of list functions — too many
to cover in this chapter (but you do see more as the book progresses). One of the
best places to find a comprehensive list of Python list functions is at https://
likegeeks.com/python-list-functions/.

http://hackage.haskell.org/package/base-4.11.1.0/docs/Data-List.html
http://hackage.haskell.org/package/base-4.11.1.0/docs/Data-List.html
https://likegeeks.com/python-list-functions/
https://likegeeks.com/python-list-functions/

CHAPTER 6 Working with Lists and Strings 103

Understanding the Dictionary
and Set Alternatives

This chapter doesn’t cover dictionaries and sets in any detail. You use these two
structures in detail in Part 3 of the book. However, note that both dictionaries and
sets are alternatives to lists and enforce certain rules that make working with data
easier because they enforce greater structure and specialization. As mentioned in
the chapter introduction, a dictionary uses name/value pairs to make accessing
data easier and to provide uniqueness. A set also enforces uniqueness, but without
the use of the keys offered by the name part of the name/value pair. You often use
dictionaries to store complex datasets and sets to perform specialized math-
related tasks.

Using dictionaries
Both Haskell and Python support dictionaries. However, when working with
Haskell, you use the HashMap (or a Map). In both cases, you provide name value
pairs, as shown here for Python:

myDict = {"First": 1, "Second": 2, "Third": 3}

The first value, the name, is also a key. The keys are separated from the values by
a colon; individual entries are separated by commas. You can access any value in
the dictionary using the key, such as print(myDict["First"]). The Haskell ver-
sion of dictionaries looks like this:

import qualified Data.Map as M
let myDict = M.fromList[("First", 1), ("Second", 2),
 ("Third", 3)]

import qualified Data.HashMap.Strict as HM
let myDict2 = HM.fromList[("First", 1), ("Second", 2),
 ("Third", 3)]

The Map and HashMap objects are different; you can’t interchange them. The two
structures are implemented differently internally, and you may find performance
differences using one over the other. In creation and use, the two are hard to tell
apart. To access a particular member of the dictionary, you use M.lookup "First"
myDict for the first and HM.lookup "First" myDict2 for the second. In both

104 PART 2 Starting Functional Programming Tasks

cases, the output is Just 1, which indicates that there is only one match and its
value is 1. (The discussion at https://stackoverflow.com/questions/7894867/
performant-haskell-hashed-structure provides some additional details on
how the data structures differ.)

Using sets
Sets in Python are either mutable (the set object) or immutable (the frozenset
object). The immutability of the frozenset allows you to use it as a subset within
another set or make it hashable for use in a dictionary. (The set object doesn’t
offer these features.) There are other kinds of sets, too, but for now, the focus is
on immutable sets for functional programming uses. Consequently, you see the
frozenset used in this book, but be aware that other set types exist that may work
better for your particular application. The following code creates a frozenset:

myFSet = frozenset([1, 2, 3, 4, 5, 6])

You use the frozenset to perform math operations or to act as a list of items. For
example, you could create a set consisting of the days of the week. You can’t locate
individual values in a frozenset but rather must interact with the object as a
whole. However, the object is iterable, so the following code tells you whether
myFSet contains the value 1:

for entry in myFSet:
 if entry == 1:
 print(True)

Haskell sets follow a pattern similar to that used for dictionaries. As with all other
Haskell objects, sets are immutable, so you don’t need to make the same choices
as you do when working with Python. The following code shows how to create
a set:

import Data.Set as Set
let mySet = Set.fromList[1, 2, 3, 4, 5, 6]

Oddly enough, the Haskell set is a lot easier to use than the Python set. For exam-
ple, if you want to know whether mySet contains the value 1, you simply make the
following call:

Set.member 1 mySet

https://stackoverflow.com/questions/7894867/performant-haskell-hashed-structure
https://stackoverflow.com/questions/7894867/performant-haskell-hashed-structure

CHAPTER 6 Working with Lists and Strings 105

Considering the Use of Strings
Strings convey thoughts in human terms. Humans don’t typically speak numbers
or math; they use strings of words made up of individual letters to convey thoughts
and feelings. Unfortunately, computers don’t know what a letter is, much less
strings of letters used to create words or groups of words used to create sentences.
None of it makes sense to computers. So, as foreign as numbers and math might
be to most humans, strings are just as foreign to the computer (if not more so).
The following sections provide an overview of the use of strings within the func-
tional programming paradigm.

Understanding the uses for strings
Humans see several kinds of objects as strings, but computer languages usually
treat them as separate entities. Two of them are important for programming tasks
in this book: characters and strings. A character is a single element from a charac-
ter set, such as the letter A. Character sets can contain nonletter components, such
as the carriage return control character. Extended character sets can provide
access to letters used in languages other than English. However, no matter how
someone structures a character set, a character is always a single entity within
that character set. Depending on how the originator structures the character set,
an individual character can consume 7, 8, 16, or even 32-bits.

A string is a sequential grouping of zero or more characters from a character set.
When a string contains zero elements, it appears as an empty string. Most strings
contain at least one character, however. The representation of a character in
memory is relatively standard across languages; it consumes just one memory
location for the specific size of that character. Strings, however, appear in various
forms depending on the language. So computer languages treat strings differently
from characters because of how each of them uses memory.

Strings don’t just see use as user output in applications. Yes, you do use strings to
communicate with the user, but you can also use strings for other purposes such
as labeling numeric data within a dataset. Strings are also central to certain data
formats, such as XML. In addition, strings appear as a kind of data. For example,
HTML relies on the agent string to identify the characteristics of the client system.
Consequently, even if your application doesn’t ever interact with the user, you’re
likely to use strings in some capacity.

106 PART 2 Starting Functional Programming Tasks

Performing string-related tasks in Haskell
A string is actually a list of characters in Haskell. To see this for yourself, create a
new string by typing let myString = "Hello There!" and pressing Enter. On the
next line, type :t myString and press Enter. The output will tell you that myString
is of type [Char], a character list.

As you might expect from a purely functional language, Haskell strings are also
immutable. When you assign a new string to a Haskell string variable, what you
really do is create a new string and point the variable to it. Strings in Haskell are
the equivalents of constants in other languages.

Haskell does provide a few string-specific libraries, such as Data.String, where
you find functions such as lines (which breaks a string into individual strings in
a list between new line characters, \n) and words (which breaks strings into a list
of individual words). You can see the results of these functions in Figure 6-5.

Later chapters spend more time dealing with Haskell strings, but string manage-
ment is acknowledged as one of the major shortfalls of this particular language.
The article at https://mmhaskell.com/blog/2017/5/15/untangling-haskells-
strings provides a succinct discussion of some of the issues and demonstrates
some string-management techniques. The one thing to get out of this article is
that you actually have five different types to deal with if you want to fully imple-
ment strings in Haskell.

Performing string-related tasks in Python
Python, as an impure language, also comes with a full list of string functions —
too many to go into in this chapter. Creating a string is exceptionally easy: You

FIGURE 6-5:
Haskell offers
at least a few
string-related

libraries.

https://mmhaskell.com/blog/2017/5/15/untangling-haskells-strings
https://mmhaskell.com/blog/2017/5/15/untangling-haskells-strings

CHAPTER 6 Working with Lists and Strings 107

just type myString = "Hello There!" and press Enter. Strings are first-class
citizens in Python, and you have access to all the usual manipulation features
found in other languages, including special formatting and escape characters.
(The tutorial at https://www.tutorialspoint.com/python/python_strings.
htm doesn’t even begin to show you everything, but it’s a good start.)

An important issue for Python developers is that strings are immutable. Of course,
that leads to all sorts of questions relating to how someone can seemingly change
the value of a string in a variable. However, what really happens is that when you
change the contents of a variable, Python actually creates a new string and points
the variable to that string rather than the existing string.

One of the more interesting aspects of Python is that you can also treat strings
sort of like lists. The “Using Python to evaluate lists” section talks about how to
evaluate lists, and many of the same features work with strings. You have access
to all the indexing features to start with, but you can also do things like use
min(myString), which returns the space, or max(myString), which returns r, to
process your strings. Obviously, you can’t use sum(myString) because there is
nothing to sum. With Python, if you’re not quite sure whether something will
work on a string, give it a try.

https://www.tutorialspoint.com/python/python_strings.htm
https://www.tutorialspoint.com/python/python_strings.htm

3Making
Functional
Programming
Practical

IN THIS PART . . .

Use pattern matching in practical ways.

Consider the functional recursion difference.

See how recursion differs between Haskell and Python.

Define and use a higher-order function.

Understand functional types.

CHAPTER 7 Performing Pattern Matching 111

Chapter 7
Performing Pattern
Matching

Patterns are a set of qualities, properties, or tendencies that form a character-
istic or consistent arrangement — a repetitive model. Humans are good at
seeing strong patterns everywhere and in everything. In fact, we purposely

place patterns in everyday things, such as wallpaper or fabric. However, computers
are better than humans are at seeing weak or extremely complex patterns because
computers have the memory capacity and processing speed to do so. The capabil-
ity to see a pattern is pattern matching, which is the overall topic for this chapter.
Pattern matching is an essential component in the usefulness of computer systems
and has been from the outset, so this chapter is hardly about something radical or
new. Even so, understanding how computers find patterns is incredibly important
in defining how this seemingly old technology plays such an important part in
new applications such as AI, machine learning, deep learning, and data analysis of
all sorts.

The most useful patterns are those that we can share with others. To share a
pattern with someone else, you must create a language to define it — an expression.
This chapter also discusses regular expressions, a particular kind of pattern lan-
guage, and their use in performing tasks such as data analysis. The creation of a
regular expression helps you describe to an application what sort of pattern it
should find, and then the computer, with its faster processing power, can locate
the precise data you need in a minimum amount of time. This basic information

IN THIS CHAPTER

»» Understanding data patterns

»» Looking for patterns in data

»» Adding pattern matching to
applications

112 PART 3 Making Functional Programming Practical

helps you understand more complex pattern matching of the sort that occurs
within the realms of AI and advanced data analysis.

Of course, working with patterns using pattern matching through expressions of
various sorts works a little differently in the functional programming paradigm.
The final sections of this chapter look at how to perform pattern matching using
the two languages for this book: Haskell and Python. These examples aren’t earth
shattering, but they do give you an idea of just how pattern matching works within
functional programs so that you can apply pattern matching to other uses.

Looking for Patterns in Data
When you look at the world around you, you see patterns of all sorts. The same
holds true for data that you work with, even if you aren’t fully aware of seeing the
pattern at all. For example, telephone numbers and social security numbers are
examples of data that follows one sort of pattern, that of a positional pattern.
A telephone number consists of an area code of three digits, an exchange of three
digits (even though the exchange number is no longer held by a specific exchange),
and an actual number within that exchange of four digits. The positions of these
three entities is important to the formation of the telephone number, so you often
see a telephone number pattern expressed as (999) 999-9999 (or some variant),
where the value 9 is representative of a number. The other characters provide
separation between the pattern elements to help humans see the pattern.

Other sorts of patterns exist in data, even if you don’t think of them as such. For
example, the arrangement of letters from A to Z is a pattern. This may not seem
like a revelation, but the use of this particular pattern occurs almost constantly in
applications when the application presents data in ordered form to make it easier
for humans to understand and interact with the data. Organizational patterns are
essential to the proper functioning of applications today, yet humans take them
for granted for the most part.

Another sort of pattern is the progression. One of the easiest and most often
applied patterns in this category is the exponential progression expressed as Nx,
where a number N is raised to the x power. For example, an exponential progres-
sion of 2 starting with 0 and ending with 4 would be: 1, 2, 4, 8, and 16. The
language used to express a pattern of this sort is the algorithm, and you often use
programming language features, such as recursion, to express it in code.

Some patterns are abstractions of real-world experiences. Consider color, as an
example. To express color in terms that a computer can understand requires the
use of three or four three-digit variables, where the first three are always some

CHAPTER 7 Performing Pattern Matching 113

value of red, blue, and green. The fourth entry can be an alpha value, which
expresses opacity, or a gamma value, which expresses a correction used to define
a particular color with the display capabilities of a device in mind. These abstract
patterns help humans model the real world in the computer environment so that
still other forms of pattern matching can occur (along with other tasks, such as
image augmentation or color correction).

Transitional patterns help humans make sense of other data. For example, refer-
encing all data to a known base value makes it possible to compare data from dif-
ferent sources, collected at different times and in different ways, using the same
scale. Knowing how various entities collect the required data provides the means
for determining which transition to apply to the data so that it can become useful
as part of a data analysis.

Data can even have patterns when missing or damaged. The pattern of unusable
data could signal a device malfunction, a lack of understanding of how the data
collection process should occur, or even human behavioral tendencies. The point
is that patterns occur in all sorts of places and in all sorts of ways, which is why
having a computer recognize them can be important. Humans may see only part
of the picture, but a properly trained computer can potentially see them all.

So many kinds of patterns exist that documenting them all fully would easily take
an entire book. Just keep in mind that you can train computers to recognize and
react to data patterns automatically in such a manner that the data becomes useful
to humans in various endeavors. The automation of data patterns is perhaps one
of the most useful applications of computer technology today, yet very few people
even know that the act is taking place. What they see instead is an organized list
of product recommendations on their favorite site or a map containing instruc-
tions on how to get from one point to another — both of which require the recog-
nition of various sorts of patterns and the transition of data to meet human needs.

Understanding Regular Expressions
Regular expressions are special strings that describe a data pattern. The use of
these special strings is so consistent across programming languages that knowing
how to use regular expressions in one language makes it significantly easier to use
them in all other languages that support regular expressions. As with all reason-
ably flexible and feature-complete syntaxes, regular expressions can become
quite complex, which is why you’ll likely spend more than a little time working
out the precise manner by which to represent a particular pattern to use in pattern
matching.

114 PART 3 Making Functional Programming Practical

You use regular expressions to refer to the technique of performing pattern
matching using specially formatted strings in applications. However, the actual
code class used to perform the technique appears as Regex, regex, or even RegEx,
depending on the language you use. Some languages use a different term entirely,
but they’re in the minority. Consequently, when referring to the code class rather
than the technique, use Regex (or one of its other capitalizations).

The following sections constitute a brief overview of regular expressions. You can
find the more detailed Haskell documentation at https://wiki.haskell.org/
Regular_expressions and the corresponding Python documentation at https://
docs.python.org/3.6/library/re.html. These sources of additional help can
become quite dense and hard to follow, though, so you might also want to review
the tutorial at https://www.regular-expressions.info/ for further insights.

Defining special characters using escapes
Character escapes usually define a special character of some sort, very often a
control character. You escape a character using the backslash (\), which means
that if you want to search for a backslash, you must use two backslashes in a row
(\\). The character in question follows the escape. Consequently, \b signals that
you want to look for a backspace character. Programming languages standardize
these characters in several ways:

»» Control character: Provides access to control characters such as tab (\t),
newline (\n), and carriage return (\r). Note that the \n character (which has a
value of \u000D) is different from the \r character (which has a value of \u000A).

»» Numeric character: Defines a character based on numeric value. The
common types include octal (\nnn), hexadecimal (\xnn), and Unicode
(\unnnn). In each case, you replace the n with the numeric value of the
character, such as \u0041 for a capital letter A in Unicode. Note that you
must supply the correct number of digits and use 0s to fill out the code.

CAPITALIZATION MATTERS!
When working with regular expressions, you must exercise extreme care in capitalizing
the pattern correctly. For example, telling the regular expression compiler to look for a
lowercase a excludes an uppercase A. To look for both, you must specify both.

The same holds true when defining control characters, anchors, and other regular
expression pattern elements. Some elements may have both lowercase and uppercase
equivalents. For example, \w may specify any word character, while \W specifies any
nonword character. The difference in capitalization is important.

https://wiki.haskell.org/Regular_expressions
https://wiki.haskell.org/Regular_expressions
https://docs.python.org/3.6/library/re.html
https://docs.python.org/3.6/library/re.html
https://www.regular-expressions.info/

CHAPTER 7 Performing Pattern Matching 115

»» Escaped special character: Specifies that the regular expression compiler
should view a special character, such as (or [, as a literal character rather than
as a special character. For example, \(would specify an opening parenthesis
rather than the start of a subexpression.

Defining wildcard characters
A wildcard character can define a kind of character, but never a specific character.
You use wildcard characters to specify any digit or any character at all. The fol-
lowing list tells you about the common wildcard characters. Your language may
not support all these characters, or it may define characters in addition to those
listed. Here’s what the following characters match with:

»» .: Any character (with the possible exception of the newline character or other
control characters).

»» \w: Any word character

»» \W: Any nonword character

»» \s: Any whitespace character

»» \S: Any non-whitespace character

»» \d: Any decimal digit

»» \D: Any nondecimal digit

Working with anchors
Anchors define how to interact with a regular expression. For example, you may
want to work only with the start or end of the target data. Each programming
language appears to implement some special conditions with regard to anchors,
but they all adhere to the basic syntax (when the language supports the anchor).
The following list defines the commonly used anchors:

»» ^: Looks at the start of the string.

»» $: Looks at the end of the string.

»» *: Matches zero or more occurrences of the specified character.

»» +: Matches one or more occurrences of the specified character. The character
must appear at least once.

»» ?: Matches zero or one occurrences of the specified character.

116 PART 3 Making Functional Programming Practical

»» {m}: Specifies m number of the preceding characters required for a match.

»» {m,n}: Specifies the range from m to n number of the preceding characters
required for a match.

»» expression|expression: Performs or searches where the regular expression
compiler will locate either one expression or the other expression and count it
as a match.

You may find figuring out some of these anchors difficult. The idea of matching
means to define a particular condition that meets a demand. For example, con-
sider this pattern: h?t, which would match hit and hot, but not hoot or heat, because
the ? anchor matches just one character. If you instead wanted to match hoot and
heat as well, you’d use h*t, because the * anchor can match multiple characters.
Using the right anchor is essential to obtaining a desired result.

Delineating subexpressions using
grouping constructs
A grouping construct tells the regular expression compiler to treat a series of
characters as a group. For example, the grouping construct [a-z] tells the regular
expression compiler to look for all lowercase characters between a and z. How-
ever, the grouping construct [az] (without the dash between a and z) tells the
regular expression compiler to look for just the letters a and z, but nothing in
between, and the grouping construct [^a-z] tells the regular expression compiler
to look for everything but the lowercase letters a through z. The following list
describes the commonly used grouping constructs. The italicized letters and
words in this list are placeholders.

»» [x]: Look for a single character from the characters specified by x.

»» [x-y]: Search for a single character from the range of characters specified
by x and y.

»» [^expression]: Locate any single character not found in the character
expression.

»» (expression): Define a regular expression group. For example, ab{3} would
match the letter a and then three copies of the letter b, that is, abbb. However,
(ab){3} would match three copies of the expression ab: ababab.

CHAPTER 7 Performing Pattern Matching 117

Using Pattern Matching in Analysis
Pattern matching in computers is as old as the computers themselves. In looking at
various sources, you can find different starting points for pattern matching, such
as editors. However, the fact is that you can’t really do much with a computer sys-
tem without having some sort of pattern matching occur. For example, the mere
act of stopping certain kinds of loops requires that a computer match a pattern
between the existing state of a variable and the desired state. Likewise, user input
requires that the application match the user’s input to a set of acceptable inputs.

Developers recognize that function declarations also form a kind of pattern and
that in order to call the function successfully, the caller must match the pattern.
Sending the wrong number or types of variables as part of the function call causes
the call to fail. Data structures also form a kind of pattern because the data must
appear in a certain order and be of a specific type.

Where you choose to set the beginning for pattern matching depends on how you
interpret the act. Certainly, pattern matching isn’t the same as counting, as in a
for loop in an application. However, it could be argued that testing for a condition
in a while loop matches the definition of pattern matching to some extent. The
reason that many people look at editors as the first use of pattern matching is that
editors were the first kinds of applications to use pattern matching to perform a
search, such as to locate a name in a document. Searching is most definitely part
of the act of analysis because you must find the data before you can do anything
with it.

The act of searching is just one aspect, however, of a broader application of pat-
tern matching in analysis. The act of filtering data also requires pattern matching.
A search is a singular approach to pattern matching in that the search succeeds
the moment that the application locates a match. Filtering is a batch process that
accepts all the matches in a document and discards anything that doesn’t match,
enabling you to see all the matches without doing anything else. Filtering can also
vary from searching in that searching generally employs static conditions, while
filtering can employ some level of dynamic condition, such as locating the mem-
bers of a set or finding a value within a given range.

Filtering is the basis for many of the analysis features in declarative languages,
such as SQL, when you want to locate all the instances of a particular data struc-
ture (a record) in a large data store (the database). The level of filtering in SQL is
much more dynamic than in mere filtering because you can now apply conditional
sets and limited algorithms to the process of locating particular data elements.

118 PART 3 Making Functional Programming Practical

Regular expressions, although not the most advanced of modern pattern-
matching techniques, offer a good view of how pattern matching works in modern
applications. You can check for ranges and conditional situations, and you can
even apply a certain level of dynamic control. Even so, the current master of pat-
tern matching is the algorithm, which can be fully dynamic and incredibly respon-
sive to particular conditions.

Working with Pattern Matching in Haskell
Haskell provides a full array of pattern matching functionality. The example
in this section specifically uses the Text.Regex.Posix package. You can, in fact,
find a number of regular expression implementations discussed at https://wiki.
haskell.org/Regular_expressions. However, the implementation that is
easiest to use is the Text.Regex.Posix package described at http://hackage.
haskell.org/package/regex-posix-0.95.1/docs/Text-Regex-Posix.html
and supported by the Text.Regix package described at http://hackage.haskell.
org/package/regex-compat-0.95.1/docs/Text-Regex.html. The following sec-
tions detail Haskell pattern matching using two examples.

Performing simple Posix matches
Every language you work with will have quirks when it comes to Regex. Unfortu-
nately, figuring out what those quirks are in Haskell can prove frustrating at
times. One of the better resources you can use to determine how to format a
Haskell Regex string is at https://www.regular-expressions.info/posix.
html. In fact, if you look at the sidebar for this site, you find Regex implementa-
tions for a lot of other languages as well. The Text.Regex.Posix package adheres
to these conventions for the most part. However, when looking at the table used
to describe character classes at https://www.regular-expressions.info/
posixbrackets.html, you need to know that Haskell doesn’t support the short-
hand characters, such as \d for digits. You must use [0-9] to represent all digits
instead.

To begin working with the Posix form of Regex in Haskell, you first type import
Text.Regex.Posix and press Enter. You can then create a pattern to use, such as
let vowels = "[aeiou]". Try it by typing "This is a test sentence." =~ vowels ::
Bool and pressing Enter. The results appear in Figure 7-1.

https://wiki.haskell.org/Regular_expressions
https://wiki.haskell.org/Regular_expressions
http://hackage.haskell.org/package/regex-posix-0.95.1/docs/Text-Regex-Posix.html
http://hackage.haskell.org/package/regex-posix-0.95.1/docs/Text-Regex-Posix.html
http://hackage.haskell.org/package/regex-compat-0.95.1/docs/Text-Regex.html
http://hackage.haskell.org/package/regex-compat-0.95.1/docs/Text-Regex.html
https://www.regular-expressions.info/posix.html
https://www.regular-expressions.info/posix.html
https://www.regular-expressions.info/posixbrackets.html
https://www.regular-expressions.info/posixbrackets.html

CHAPTER 7 Performing Pattern Matching 119

The output shows that the sentence does contain vowels. Notice that the test
process uses the =~ (that’s a tilde, ~) operator. In addition, you choose a form of
output by providing the :: operator followed by a type, which is Bool in this case.
The results are interesting if you change types. For example, if you use Int instead,
you discover that the test sentence contains seven vowels. Using String tells you
that the first instance is the letter i.

Things become even more interesting when you provide tuples as the type. For
example, if you use (String,String,String), you see the entire sentence with
the part before the match as the first entry, the match itself, and then the part
after the match as the last entry, as shown in Figure 7-2. The (String,String,
String,[String]) tuple provides the addition of a list of matching groups.

Another useful tuple is (Int,Int). In this case, you receive the starting zero-
based offset of the first match and its length. In this case, you see an output of
(2,1) because i is at offset 2 and has a length of 1.

FIGURE 7-1:
This Haskell

Regex checks a
test sentence for

the presence of
vowels.

FIGURE 7-2:
Provide a tuple

as input to get a
fuller view of

how the match
appears in

context.

120 PART 3 Making Functional Programming Practical

Matching a telephone number with Haskell
The previous section outlined the methods used to create many simple matches in
Haskell. However, most matches aren’t all that simple. The example in this sec-
tion shows a common type of match that requires a bit more in the way of expres-
sion string structure: a telephone number. Here’s the pattern used for this section:

let tel = "\\([0-9]{3}\\)[0-9]{3}\\-[0-9]{4}"

The tel pattern includes several new features. Beginning at the left, you have the
\\ escape that equates to a literally interpreted backslash, followed by a left
parenthesis, (. You need all three of these characters to define an opening paren-
thesis in the pattern. The next entry is the numbers 0 through 9 ([0-9]) repeated
three times ({3}). The next three characters define the closing parenthesis for the
area code. Defining the exchange, [0-9]{3}, comes next. To create a dash between
the exchange and the number, you must again use a three-character combination
of \\-. The number part of the pattern appears as [0-9]{4}.

To test this pattern out, type "My telephone number is: (555)555-1234." =~ tel ::
String and press Enter. (The My telephone number is: part of the entry isn’t part
of the pattern, and you’ll get the right output even if you don’t include it.) You see
just the telephone number as output. Of course, you can use all the type modifiers
discussed in the previous section. The problem with using pattern matching is
that it can be quite brittle. If you instead type "My telephone number is:
555-555-1234." =~ tel :: String and press Enter, you get a blank output, despite
the fact that the sentence does include what humans would recognize as a tele-
phone number, as shown in Figure 7-3. The problem is that the pattern doesn’t
match this form of telephone number.

FIGURE 7-3:
Regular

expression
patterns can be

brittle.

CHAPTER 7 Performing Pattern Matching 121

Working with Pattern Matching in Python
Pattern matching in Python closely matches the functionality found in many other
languages. Although Haskell (discussed in the previous section) can seem a little
limited, Python more than makes up for it with robust pattern-matching capabilities
provided by the regular expression (re) library (https://docs.python.org/3.6/
library/re.html). The resource at https://www.regular-expressions.info/
python.html provides a good overview of the Python capabilities. The following
sections detail Python functionality using a number of examples.

Performing simple Python matches
All the functionality you need for employing Python in basic RegEx tasks appears
in the re library. To use this library, you type import re and press Enter. As with
Haskell, you can create a pattern by typing vowels = "[aeiou]" and pressing Enter.
Test the result by typing re.search(vowels, "This is a test sentence.") and press-
ing Enter. The only problem is that you get a match object (https://docs.
python.org/3.6/library/re.html#match-objects) in return, rather than the
actual search value as you might have expected. To overcome this issue, make a
call to group, re.search(vowels, "This is a test sentence.").group().
Figure 7-4 shows the difference.

When you look at the Python documentation, you find quite a few functions
devoted to working with regular expressions, some of them not entirely clear in
their purpose. For example, you have a choice between performing a search or a
match. A match works only at the beginning of a string. Consequently, if you type

FIGURE 7-4:
Python searches

yield a match
object, rather

than pure text
output.

https://docs.python.org/3.6/library/re.html
https://docs.python.org/3.6/library/re.html
https://www.regular-expressions.info/python.html
https://www.regular-expressions.info/python.html
https://docs.python.org/3.6/library/re.html#match-objects
https://docs.python.org/3.6/library/re.html#match-objects

122 PART 3 Making Functional Programming Practical

re.match(vowels, "This is a test sentence.") and press Enter, you see no output at
all, which seems impossible given that there should be a match. To understand the
difference, type re.match("a", "abcde") and press Enter. Now you see a match
because the match occurs at the first letter of the target string.

Neither search nor match will locate all occurrences of the pattern in the target
string. To locate all the matches, you use findall or finditer instead. To see how
this works, type re.findall(vowels, "This is a test sentence.") and press Enter.
You see the list output shown in Figure 7-5. Because this is a list, you can manip-
ulate it as you would any other list.

Look again at Figure 7-4. Notice that the match object contains the entry
span=(2, 3). That information is important because it tells you the location of the
match in the sentence. You can use this information with the match object start
and end functions, as shown here:

testSentence = "This is a test sentence."
m = re.search(vowels, testSentence)
while m:
 print(testSentence[m.start():m.end()])
 testSentence = testSentence[m.end():]
 m = re.search(vowels, testSentence)

This code keeps performing searches on the remainder of the sentence after each
search until it no longer finds a match. Figure 7-6 shows the output from this
example. Obviously, using the finditer function would be easier, but this code
points out that Python does provide everything needed to create relatively com-
plex pattern-matching code.

FIGURE 7-5:
Use findall to

locate all the
matches for a

pattern in a
string.

CHAPTER 7 Performing Pattern Matching 123

Doing more than matching
Python’s regular expression library makes it quite easy to perform a wide variety
of tasks that don’t strictly fall into the category of pattern matching. This chapter
discusses only a few of the more interesting capabilities. One of the most com-
monly used is splitting strings. For example, you might use the following code to
split a test string using a number of whitespace characters:

testString = "This is\ta test string.\nYippee!"
whiteSpace = "[\s]"
re.split(whiteSpace, testString)

The escaped character, \s, stands for all space characters, which includes the set
of [\t\n\r\f\v]. The split function can split any content using any of the
accepted regular expression characters, so it’s an extremely powerful data manip-
ulation function. The output from this example appears in Figure 7-7.

Performing substitutions using the sub function is another forte of Python. Rather
than perform common substitutions one at a time, you can perform them all

FIGURE 7-6:
Python makes

relatively complex
pattern-matching

sequences
possible.

FIGURE 7-7:
The split

function provides
an extremely

powerful method
for manipulating

data.

124 PART 3 Making Functional Programming Practical

simultaneously, as long as the replacement value is the same in all cases. Consider
the following code:

testString = "Stan says hello to Margot from Estoria."
pattern = "Stan|hello|Margot|Estoria"
replace = "Unknown"
re.sub(pattern, replace, testString)

The output of this example is 'Unknown says Unknown to Unknown from
Unknown.'. You can create a pattern of any complexity and use a single replace-
ment value to represent each match. This is handy when performing certain kinds
of data manipulation for tasks such as dataset cleanup prior to analysis.

Matching a telephone number with Python
Whether you create a telephone number matching a regular expression in Python
or Haskell, the same basic principles apply. The language-specific implementa-
tion details, however, do differ. When creating the pattern in Python, you type
something along the lines of tel = "\(\d{3}\)\d{3}\-\d{4}" and press Enter. Note
that as with Haskell, you must escape the (,), and - characters. However, in con-
trast to Haskell, you do have access to the shortcuts. The \d represents any digit.

To test this pattern, type re.search(tel, testString).group() and press Enter. You
see the output shown in Figure 7-8. As with the Haskell example, this pattern is
equally brittle, and you would need to amend it to make it work with a variety of
telephone-number patterns.

FIGURE 7-8:
Python makes

working with
patterns a little

easier than
Haskell does.

CHAPTER 8 Using Recursive Functions 125

Chapter 8
Using Recursive
Functions

Some people confuse recursion with a kind of looping. The two are completely
different sorts of programming and wouldn’t even look the same if you
could view them at a low level. In recursion, a function calls itself repetitively

and keeps track of each call through stack entries, rather than an application
state, until the condition used to determine the need to make the function call
meets some requirement. At this point, the list of stack entries unwinds with the
function passing the results of its part of the calculation to the caller until the
stack is empty and the initiating function has the required output of the call.
Although this sounds mind-numbingly complex, in practice, recursion is an
extremely elegant method of solving certain computing problems and may be the
only solution in some situations. This chapter introduces you to the basics of
recursion using the two target languages for this book, so don’t worry if this
initial definition leaves you in doubt of what recursion means.

Of course, you might wonder just how well recursion works on some common
tasks, such as iterating a list, dictionary, or set. This chapter discusses all the
basic requirements for replacing loops with recursion when interacting with com-
mon data structures. It then moves on to more advanced tasks and demonstrates
how using recursion can actually prove superior to the loops you used in the
past — not to mention that it can be easier to read and more flexible as well. Of
course, when using other programming paradigms, you’ll likely continue using
loops because those languages are designed to work with them.

IN THIS CHAPTER

»» Defining recursion and how it works

»» Using recursion to perform advanced
tasks

»» Mixing recursion with functions

»» Understanding common recursion
errors

126 PART 3 Making Functional Programming Practical

One of the most interesting aspects of using first-class functions in the functional
programming paradigm is that you can now pass functions rather than variables
to enable recursion. This capability makes recursion in the functional program-
ming paradigm significantly more powerful than it is in other paradigms because
the function can do more than a variable, and by passing different functions, you
can alter how the main recursion sequence works.

People understand loops with considerably greater ease because we naturally use
loops in our daily lives. Every day, you perform repetitive tasks a set number of
times or until you satisfy a certain condition. You go to the store, know that you
need a dozen nice apples, and count them out one at a time as you place them in
one of those plastic bags. The lack of recursion in our daily lives is one of the rea-
sons that it’s so hard to wrap our brains around recursion, and it’s why people
make so many common mistakes when using recursion. The end of the chapter
discusses a few common programming errors so that you can successfully use
recursion to create an amazing application.

Performing Tasks More than Once
One of the main advantages of using a computer is its capability to perform tasks
repetitively — often far faster and with greater accuracy than a human can. Even
a language that relies on the functional programming paradigms requires some
method of performing tasks more than once; otherwise, creating the language
wouldn’t make sense. Because the conditions under which functional languages
repeat tasks differ from those of other languages using other paradigms, thinking
about the whole concept of repetition again is worthwhile, even if you’ve worked
with these other languages. The following sections provide you with a brief
overview.

Defining the need for repetition
The act of repeating an action seems simple enough to understand. However,
repetition in applications occurs more often than you might think. Here are just a
few uses of repetition to consider:

»» Performing a task a set number of times

»» Performing a task a variable number of times until a condition is met

»» Performing a task a variable number of times until an event occurs

CHAPTER 8 Using Recursive Functions 127

»» Polling for input

»» Creating a message pump

»» Breaking a large task into smaller pieces and then executing the pieces

»» Obtaining data in chunks from a source other than the application

»» Automating data processing using various data structures as input

In fact, you could easily create an incredibly long list of repeated code elements in
most applications. The point of repetition is to keep from writing the same code
more than once. Any application that contains repeated code becomes a mainte-
nance nightmare. Each routine must appear only once to make its maintenance
easy, which means using repetition to allow execution more than one time.

Without actual loop statements, the need for repetition becomes significantly
clearer because repetition suddenly receives the limelight. Thinking through the
process of repeating certain acts without relying on state or mutable variables
takes on new significance. In fact, the difficulty of actually accomplishing this
task in a straightforward manner forces most language designers to augment even
pure languages with some sort of generalized looping mechanism. For example,
Haskell provides the forM function, which actually has to do with performing I/O
(see the article at http://learnyouahaskell.com/input-and-output for details).
The Control.Monad library contains a number of interesting loop-like functions
that really aren’t loops; they’re functions that implement repetition using data
structures as input (see https://hackage.haskell.org/package/base-4.2.0.1/
docs/Control-Monad.html for details). Here’s an example of forM in use:

import Control.Monad
values <- forM [1, 2, 3, 4]
 (\a -> do
 putStrLn $ "The value is: " ++ show a)

In this case, forM processes a list containing four values, passing it to the lambda
function that follows. The lambda function simply outputs the values using
putStrLn and show a. Figure 8-1 shows the output from this example. Obviously,
impure languages, such as Python, do provide the more traditional methods of
repeating actions.

Using recursion instead of looping
The functional programming paradigm doesn’t allow the use of loops for two
simple reasons. First, a loop requires the maintenance of state, and the functional
programming paradigm doesn’t allow state. Second, loops generally require

http://learnyouahaskell.com/input-and-output
https://hackage.haskell.org/package/base-4.2.0.1/docs/Control-Monad.html
https://hackage.haskell.org/package/base-4.2.0.1/docs/Control-Monad.html

128 PART 3 Making Functional Programming Practical

mutable variables so that the variable can receive the latest data updates as the
loop continues to perform its task. As mentioned previously, you can’t use muta-
ble variables in functional programming. These two reasons would seem to sum
up the entirety of why to avoid loops, but there is yet another.

One of the reasons that functional programming is so amazing is that you can use
it on multiple processors without concern for the usual issues found with other
programming paradigms. Because each function call is guaranteed to produce
precisely the same result, every time, given the same inputs, you can execute a
function on any processor without regard to the processor use for the previous
call. This feature also affects recursion because recursion lacks state.

When a function calls itself, it doesn’t matter where the next function call occurs;
it can occur on any processor in any location. The lack of state and mutable vari-
ables makes recursion the perfect tool for using as many processors as a system
has to speed applications as much as possible.

Understanding Recursion
Recursion, in its essence, is a method of performing tasks repetitively, wherein
the original function calls itself. Various methods are available for accomplishing
this task, as described in the following sections. The important aspect to keep in
mind, though, is the repetition. Whether you use a list, dictionary, set, or collection
as the mechanism to input data is less important than the concept of a function’s
calling itself until an event occurs or it fulfills a specific requirement.

FIGURE 8-1:
Even Haskell

provides a
looping-type
mechanism
in the form

of functions.

CHAPTER 8 Using Recursive Functions 129

Considering basic recursion
This section discusses basic recursion, which is the kind that you normally see
demonstrated for most languages. In this case, the doRep function creates a list
containing a specific number, n, of a value, x, as shown here for Python:

def doRep(x, n):
 y = []
 if n == 0:
 return []
 else:
 y = doRep(x, n - 1)
 y.append(x)
 return y

To understand this code, you must think about the process in reverse. Before it
does anything else, the code actually calls doRep repeatedly until n == 0. So, when
n == 0, the first actual step in the recursion process is to create an empty list,
which is what the code does.

At this point, the call returns and the first actual step concludes, even though you
have called doRep six times before it gets to this point. The next actual step, when
n == 1, is to make y equal to the first actual step, an empty list, and then append
x to the empty list by calling y.append(x). At this point, the second actual step
concludes by returning [4] to the previous step, which has been waiting in limbo
all this time.

The recursion continues to unwind until n == 5, at which point it performs the
final append and returns [4, 4, 4, 4, 4] to the caller, as shown in Figure 8-2.

FIGURE 8-2:
Recursion almost

seems to work
backward when it

comes to code
execution.

130 PART 3 Making Functional Programming Practical

Sometimes it’s incredibly hard to wrap your head around what happens with
recursion, so putting a print statement in the right place can help. Here’s a modi-
fied version of the Python code with the print statement inserted. Note that the
print statement goes after the recursive call so that you can see the result of
making it. Figure 8-3 shows the flow of calls in this case.

def doRep(x, n):
 y = []
 if n == 0:
 return []
 else:
 y = doRep(x, n - 1)
 print(y)
 y.append(x)
 return y

Performing the same task in Haskell requires about the same code, but with a
Haskell twist. Here’s the same function written in Haskell:

doRep x n | n <= 0 = [] | otherwise = x:doRep x (n-1)

The technique is the same as the Python example. The function accepts two inputs,
x (the number to append) and n (the number of times to append it). When n is 0,
the Haskell code returns an empty list. Otherwise, Haskell appends x to the list
and returns the appended list. Figure 8-4 shows the functionality of the Haskell
example.

FIGURE 8-3:
Adding a print

statement in the
right place can

make recursion
easier to

understand.

CHAPTER 8 Using Recursive Functions 131

Performing tasks using lists
Lists represent multiple inputs to the same call during the same execution. A list
can contain any data type in any order. You use a list when a function requires
more than one value to calculate an output. For example, consider the following
Python list:

myList = [1, 2, 3, 4, 5]

If you wanted to use standard recursion to sum the values in the list and provide
an output, you could use the following code:

def lSum(list):
 if not list:
 return 0
 else:
 return list[0] + lSum(list[1:])

The function relies on slicing to remove one value at a time from the list and add
it to the sum. The base case (principle, simplest, or foundation) is that all the val-
ues are gone and now list contains the empty set, ([]), which means that it has a
value of 0. To test this example out, you type lSum(myList) and press Enter.

Using lambda functions in Python recursion isn’t always easy, but this particular
example lends itself to using a lambda function quite easily. The advantage is that
you can create the entire function in a single line, as shown in the following code
(with two lines, but using a line-continuation character):

lSum2 = lambda list: 0 if not list \
 else list[0] + lSum2(list[1:])

The code works precisely the same as the longer example, relying on slicing to get
the job done. You use it in the same way, typing lSum2(myList) and pressing
Enter. The result is the same, as shown in Figure 8-5.

FIGURE 8-4:
Haskell also

makes creating
the doRep

function easy.

132 PART 3 Making Functional Programming Practical

Upgrading to set and dictionary
Both Haskell and Python support sets, but with Python, you get them as part of
the initial environment, and with Haskell, you must load the Data.Set library (see
http://hackage.haskell.org/package/containers-0.5.11.0/docs/Data-
Set.html to obtain the required support). Sets differ from lists in that sets can’t
contain any duplicates and are generally presented as ordered. In Python, the sets
are stored as hashes. In some respects, sets represent a formalization of lists. You
can convert lists to sets in either language. Here’s the Haskell version:

import Data.Set as Set
myList = [1, 4, 8, 2, 3, 3, 5, 1, 6]
mySet = Set.fromList(myList)
mySet

which has an output of fromList [1,2,3,4,5,6,8] in this case. Note that even
though the input list is unordered, mySet is ordered when displayed. Python relies
on the set function to perform the conversion, as shown here:

myList = [1, 4, 8, 2, 3, 3, 5, 1, 6]
mySet = set(myList)
mySet

The output in this case is {1, 2, 3, 4, 5, 6, 8}. Notice that sets in Python use
a different enclosing character, the curly brace. The unique and ordered nature of
sets makes them easier to use in certain kinds of recursive routines, such as find-
ing a unique value.

FIGURE 8-5:
Use lists

for multiple
simple entries

to the same
function call.

http://hackage.haskell.org/package/containers-0.5.11.0/docs/Data-Set.html
http://hackage.haskell.org/package/containers-0.5.11.0/docs/Data-Set.html

CHAPTER 8 Using Recursive Functions 133

You can find a number of discussions about Haskell sets online, and some people
are even unsure as to whether the language implements them as shown at
https://stackoverflow.com/questions/7556573/why-is-there-no-built-
in-set-data-type-in-haskell. Many Haskell practitioners prefer to use lists for
everything and then rely on an approach called list comprehensions to achieve an
effect similar to using sets, as described at http://learnyouahaskell.com/
starting-out#im-a-list-comprehension. The point is that if you want to use
sets in Haskell, they are available.

A dictionary takes the exclusivity of sets one step further by creating key/value
pairs, in which the key is unique but the value need not be. Using keys makes
searches faster because the keys are usually short and you need only to look at the
keys to find a particular value. Both Haskell and Python place the key first,
followed by the value. However, the methods used to create a dictionary differ.
Here’s the Haskell version:

let myDic = [("a", 1), ("b", 2), ("c", 3), ("d", 4)]

Note that Haskell actually uses a list of tuples. In addition, many Haskell practitio-
ners call this an association list, rather than a dictionary, even though the concept
is the same no matter what you call it. Here’s the Python form:

myDic = {"a": 1, "b": 2, "c": 3, "d": 4}

Python uses a special form of set to accomplish the same task. In both Python and
Haskell, you can access the individual values by using the key. In Haskell, you
might use the lookup function: lookup "b" myDic, to find that b is associated
with 2. Python uses a form of index to access individual values, such as myDic["b"],
which also accesses the value 2.

You can use recursion with both sets and dictionaries in the same manner as you
do lists. However, recursion really begins to shine when it comes to complex data
structures. Consider this Python nested dictionary:

myDic = {"A":{"A": 1, "B":{"B": 2, "C":{"C": 3}}}, "D": 4}

In this case, you have a dictionary nested within other dictionaries down to four
levels, creating a complex dataset. In addition, the nested dictionary contains
the same "A" key value as the first level dictionary (which is allowed), the same
"B" key value as the second level, and the "C" key on the third level. You might

https://stackoverflow.com/questions/7556573/why-is-there-no-built-in-set-data-type-in-haskell
https://stackoverflow.com/questions/7556573/why-is-there-no-built-in-set-data-type-in-haskell
http://learnyouahaskell.com/starting-out#im-a-list-comprehension
http://learnyouahaskell.com/starting-out#im-a-list-comprehension

134 PART 3 Making Functional Programming Practical

need to look for the repetitious keys, and recursion is a great way to do that, as
shown here:

def findKey(obj, key):
 for k, v in obj.items():
 if isinstance(v, dict):
 findKey(v, key)
 else:
 if key in obj:
 print(obj[key])

This code looks at all the entries by using a for loop. Notice that the loop unpacks
the entries into key, k, and value, v. When the value is another dictionary, the code
recursively calls findKey with the value and the key as input. Otherwise, if
the instance isn’t a dictionary, the code checks to verify that the key appears in the
input object and prints just the value of that object. In this case, an object can be
a single entry or a sub-dictionary. Figure 8-6 shows this example in use.

Considering the use of collections
Depending on which language you choose, you might have access to other kinds
of collections. Most languages support lists, sets, and dictionaries as a minimum,
but you can see some alternatives for Haskell at http://hackage.haskell.org/
package/collections-api-1.0.0.0/docs/Data-Collections.html and Python
at https://docs.python.org/3/library/collections.html. All these collec-
tions have one thing in common: You can use recursion to process their content.
Often, the issue isn’t one of making recursion work, but of simply finding the
right technique for accessing the individual data elements.

FIGURE 8-6:
Dictionaries
can provide

complex datasets
you can parse

recursively.

http://hackage.haskell.org/package/collections-api-1.0.0.0/docs/Data-Collections.html
http://hackage.haskell.org/package/collections-api-1.0.0.0/docs/Data-Collections.html
https://docs.python.org/3/library/collections.html

CHAPTER 8 Using Recursive Functions 135

Using Recursion on Lists
The previous sections of the chapter prepare you to work with various kinds of
data structures by using recursion. You commonly see lists used whenever possi-
ble because they’re simple and can hold any sort of data. Unfortunately, lists can
also be quite hard to work with because they can hold any sort of data (most
analysis requires working with a single kind of data) and the data can contain
duplicates. In addition, you might find that the user doesn’t provide the right data
at all. The following sections look at a simple case of looking for the next and
previous values in the following list of numbers:

myList = [1,2,3,4,5,6]

Working with Haskell
This example introduces a few new concepts from previous examples because it
seeks to provide more complete coverage. The following code shows how to find
the next and previous values in a list:

findNext :: Int -> [Int] -> Int
findNext _ [] = -1
findNext _[_] = -1
findNext n (x:y:xs)
 | n == x = y
 | otherwise = findNext n (y:xs)

findPrev :: Int -> [Int] -> Int
findPrev _ [] = -1
findPrev _[_] = -1
findPrev n (x:y:xs)
 | n == y = x
 | otherwise = findPrev n (y:xs)

In both cases, the code begins with a type signature that defines what is expected
regarding inputs and outputs. As you can see, both functions require Int values
for input and provide Int values as output. The next two lines provide outputs
that handle the cases of empty input (a list with no entries) and singleton input
(a list with one entry). There is no next or previous value in either case.

136 PART 3 Making Functional Programming Practical

The meat of the two functions begins by breaking the list into parts: the current
entry, the next entry, and the rest of the list. So, the processing begins with
x = 1, y = 2, and xs = [3,4,5,6]. The code begins by asking whether n equals x
for findNext and whether n equals y for findPrev. When the two are equal, the
function returns either the next or previous value, as appropriate. Otherwise, it
recursively calls findNext or findPrev with the remainder of the list. Because the
list gets one item shorter with each recursion, processing stops with a successful
return of the next or previous value, or with -1 if the list is empty. Figure 8-7
shows this example in use. The figure presents both successful and unsuccessful
searches.

Working with Python
The Python version of the code relies on lambda functions because the process is
straightforward enough to avoid using multiple lines. Here is the Python code
used for this example:

findNext = lambda x, obj: -1 if len(obj) == 0 \
 or len(obj) == 1 \
 else obj[1] if x == obj[0] \
 else findNext(x, obj[1:])

findPrev = lambda x, obj: -1 if len(obj) == 0 \
 or len(obj) == 1 \
 else obj[0] if x == obj[1] \
 else findPrev(x, obj[1:])

FIGURE 8-7:
The findNext
and findPrev
functions help

you locate
items in a list.

CHAPTER 8 Using Recursive Functions 137

Normally, you could place everything on a single line; this example uses line-
continuation characters to accommodate this book’s margins. As with the Haskell
code, the example begins by verifying that the incoming list contains two or more
values. It also returns -1 when there is no next or previous value to find. The
essential mechanism used, a comparison, is the same as the Haskell example. In
this case, the Python code relies on slicing to reduce the size of the list on each
pass. Figure 8-8 shows this example in action using both successful and unsuc-
cessful searches.

Passing Functions Instead of Variables
This section looks at passing functions to other functions, using a technique that
is one of the most powerful features of the functional programming paradigm.
Even though this section isn’t strictly about recursion, you can use the technique
in it with recursion. The example code is simplified to make the principle clear.

FIGURE 8-8:
Python uses

the same
mechanism

as Haskell to
find matches.

LAMBDA TYPING IN PYTHON
You may wonder why the example code for the lambda functions in this chapter doesn’t
include data type as part of the argument list. The short answer is that you can’t provide
a data type according to the discussion at https://www.python.org/dev/peps/
pep-3107/#lambda, which also provides reasons for this omission. If data typing is
important, you need to use a function form of your lambda function.

https://www.python.org/dev/peps/pep-3107/#lambda
https://www.python.org/dev/peps/pep-3107/#lambda

138 PART 3 Making Functional Programming Practical

Understanding when you need a function
Being able to pass a function to another function provides much needed flexibility.
The passed function can modify the receiving function’s response without modi-
fying that receiving function’s execution. The two functions work in tandem to
create output that’s an amalgamation of both.

Normally, when you use this function-within-a-function technique, one function
determines the process used to produce an output, while the second function
determines how the output is achieved. This isn’t always the case, but when cre-
ating a function that receives another function as input, you need to have a par-
ticular goal in mind that actually requires that function as input. Given the
complexity of debugging this sort of code, you need to achieve a specific level of
flexibility by using a function rather than some other input.

Also tempting is to pass a function to another function to mask how a process
works, but this approach can become a trap. Try to execute the function externally
when possible and input the result instead. Otherwise, you might find yourself
trying to discover the precise location of a problem, rather than processing data.

Passing functions in Haskell
Haskell provides some interesting functionality, and this example shines a light
on some of it. The following code shows the use of Haskell signatures to good
effect when creating functions that accept functions as input:

doAdd :: Int -> Int -> Int
doAdd x y = x + y

doSub :: Int -> Int -> Int
doSub x y = x - y

cmp100 :: (Int -> Int -> Int) -> Int -> Int -> Ordering
cmp100 f x y = compare 100 (f x y)

The signatures and code for both doAdd and doSub are straightforward. Both
functions receive two integers as input and provide an integer as output. The first
function simply adds to values; the second subtracts them. The signatures are
important to the next step.

The second step is to create the cmp100 function, which accepts a function as the
first input. Notice the (Int -> Int -> Int) part of the signature. This section
indicates a function (because of the parentheses) that accepts two integers as
input and provides an integer as output. The function in question can be any

CHAPTER 8 Using Recursive Functions 139

function that has these characteristics. The next part of the signature shows that
the function will receive two integers as input (to pass along to the called func-
tion) and provide an order as output.

The actual code shows that the function is called with the two integers as input.
Next, compare is called with 100 as the first value and the result of whatever hap-
pens in the called function as the second input. Figure 8-9 shows the example
code in action. Notice that the two numeric input values provide different results,
depending on which function you provide.

Passing functions in Python
For the example in this section, you can’t use a lambda function to perform the
required tasks with Python, so the following code relies on standard functions
instead. Notice that the functions are the same as those provided in the previous
example for Haskell and they work nearly the same way.

def doAdd(x, y):
 return x + y

def doSub(x, y):
 return x - y

def compareWithHundred(function, x, y):
 z = function(x, y)
 out = lambda x: "GT" if 100 > x \
 else "EQ" if 100 == x else "LT"
 return out(z)

FIGURE 8-9:
Depending on

the function you
pass, the same

numbers produce
different results.

140 PART 3 Making Functional Programming Practical

The one big difference is that Python doesn’t provide a compare function that
provides the same sort of output as the Haskell compare function. In this case, a
lambda function performs the comparison and provides the proper output.
Figure 8-10 shows this example in action.

Defining Common Recursion Errors
Recursion can actually cause quite a few problems — not because recursion is
brittle or poorly designed, but because developers don’t rely on it very often. In
fact, most developers avoid using recursion because they see it as hard when it
truly isn’t. A properly designed recursive routine has an elegance and efficiency
not found in other programming structures. With all this said, developers still do
make some common errors when using recursion, and the following sections give
you some examples.

Forgetting an ending
When working with looping structures, you can see the beginning and end of the
loop with relative ease. Even so, most looping structures aren’t foolproof when it
comes to providing an exit strategy, and developers do make mistakes. Recursive
routines are harder because you can’t see the ending. All you really see is a func-
tion that calls itself, and you know where the beginning is because it’s where the
function is called initially.

FIGURE 8-10:
Python makes

performing
the comparison

a bit harder.

CHAPTER 8 Using Recursive Functions 141

Recursion doesn’t rely on state, so you can’t rely on it to perform a task a set
number of times (as in a for loop) and then end unless you design the recursion
to end in this manner. Likewise, even though recursion does seem like a while
statement because it often relies on a condition to end, it doesn’t use a variable,
so there is nothing to update. Recursion does end when it detects an event
or meets a condition, but the circumstances for doing so differ from loops.
Consequently, you need to exercise caution when using recursion to ensure that
the recursion will end before the host system runs out of stack space to support
the recursive routine.

Passing data incorrectly
Each level of recursion generally requires some type of data input. Otherwise,
knowing whether an event has occurred or a condition is met becomes impossi-
ble. The problem isn’t with understanding the need to pass data, it’s with
understanding the need to pass the correct data. When most developers write
applications, the focus is on the current level — that is, where the application is
at now. However, when working through a recursion problem, the focus is
instead on where the application will be in the future — the next step, anyway.
This ability to write code for the present but work with data in the future can
make it difficult to understand precisely what to pass to the next level when the
function calls itself again.

Likewise, when processing the data that the previous level passed, see the data in
the present is often difficult. When developers write most applications, they look
at the past. For example, when looking at user input, the developer sees that input
as the key (or keys) the user pressed — past tense. The data received from the
previous level in a recursion is the present, which can affect how you view that
data when writing code.

Defining a correct base instruction
Recursion is all about breaking down a complex task into one simple task. The
complex task, such as processing a list, looks impossible. So, what you do is
think about what is possible. You need to consider the essential output for a
single data element and then use that as your base instruction. For example,
when processing a list, you might simply want to display the data element’s
value. That instruction becomes your base instruction. Many recursion processes
fail because the developer looks at the wrong end first. You need to think about

142 PART 3 Making Functional Programming Practical

the conclusion of the task first, and then work on progressively more complex
parts of the data after that.

Simpler is always better when working with recursion. The smaller and simpler
your base instruction, the smaller and simpler the rest of the recursion tends to
become. A base instruction shouldn’t include any sort of logic or looping. In fact,
if you can get it down to a single instruction, that’s the best way to go. You don’t
want to do anything more than absolutely necessary when you get to the base
instruction.

CHAPTER 9 Advancing with Higher-Order Functions 143

Chapter 9
Advancing with
Higher-Order Functions

Previous chapters in this book spend a lot of time looking at how to perform
basic application tasks and viewing data to see what it contains in various
ways. Just viewing the data won’t do you much good, however. Data rarely

comes in the form you need it and even if it does, you still want the option to mix
it with other data to create yet newer views of the real world. Gaining the ability
to shape data in certain ways, throw out what you don’t need, refine its appear-
ance, change its type, and otherwise condition it to meet your needs is the essen-
tial goal of this chapter.

Shaping, in the form of slicing and dicing, is the most common kind of manipu-
lation. Data analysis can take hours, days, or even weeks at times. Anything you
can do to refine the data to match specific criteria is important in getting answers
fast. Obtaining answers quickly is essential in today’s world. Yes, you need the
correct answer, but if someone else gets the correct answer first, you may find
that the answer no longer matters. You lose your competitive edge.

Also essential is having the right data. The use of data mapping enables you to
correlate data between information systems so that you can draw new conclu-
sions. In addition, information overload, especially the wrong kind of information,
is never productive, so filtering is essential as well. The combination of mapping
and filtering lets you control the dataset content without changing the dataset
truthfulness. In short, you get a new view of the same old information.

IN THIS CHAPTER

»» Defining the kinds of data
manipulation

»» Changing dataset size using slicing
and dicing

»» Changing dataset content using
mapping and filtering

»» Organizing your data

144 PART 3 Making Functional Programming Practical

Data presentation — that is, its organization — is also important. The final section
of this chapter discusses the issue of how to organize data to better see the patterns
it contains. Given that there isn’t just one way to organize data, one presentation
may show one set of patterns, and another presentation could display other pat-
terns. The goal of all this data manipulation is to see something in the data that you
haven’t seen before. Perhaps the data will give you an idea for a new product or help
you market products to a new group of users. The possibilities are nearly limitless.

Considering Types of Data Manipulation
When you mention the term data manipulation, you convey different information
to different people, depending on their particular specialty. An overview of data
manipulation may include the term CRUD, which stands for Create, Read, Update,
and Delete. A database manager may view data solely from this low-level per-
spective that involves just the mechanics of working with data. However, a data-
base full of data, even accurate and informative data, isn’t particularly useful,
even if you have all the best CRUD procedures and policies in place. Consequently,
just defining data manipulation as CRUD isn’t enough, but it’s a start.

To make really huge datasets useful, you must transform them in some manner.
Again, depending on whom you talk to, transformation can take on all sorts of
meanings. The one meaning that you won’t see in this book is the modification of
data such that it implies one thing when it actually said something else at the out-
set (think of this as spin doctoring the data). In fact, it’s a good idea to avoid this
sort of data manipulation entirely because you can end up with completely unpre-
dictable results when performing analysis, even if those results initially look
promising and even say what you feel they should say.

Another kind of data transformation actually does something worthwhile. In this
case, the meaning of the data doesn’t change; only the presentation of the data
changes. You can separate this kind of transformation into a number of methods
that include (but aren’t necessarily limited to) tasks such as the following:

»» Cleaning: As with anything else, data gets dirty. You may find that some of it
is missing information and some of it may actually be correct but outdated. In
fact, data becomes dirty in many ways, and you always need to clean it before
you can use it. Machine Learning For Dummies, by John Paul Mueller and Luca
Massaron (Wiley), discusses the topic of cleaning in considerable detail.

»» Verification: Establishing that data is clean doesn’t mean that the data is
correct. A dataset may contain many entries that seem correct but really aren’t.
For example, a birthday may be in the right form and appear to be correct until
you determine that the person in question is more than 200 years old. A part

CHAPTER 9 Advancing with Higher-Order Functions 145

number may appear in the correct form, but after checking, you find that your
organization never produced a part with that number. The act of verification
helps ensure the veracity of any analysis you perform and generates fewer
outliers to skew the results.

»» Data typing: Data can appear to be correct and you can verify it as true, yet
it may still not work. A significant problem with data is that the type may be
incorrect or it may appear in the wrong form. For example, one dataset may
use integers for a particular column (feature), while another uses floating-point
values for the same column. Likewise, some datasets may use local time for
dates and times, while others might use GMT. The transformation of the data
from various datasets to match is an essential task, yet the transformation
doesn’t actually change the data’s meaning.

»» Form: Datasets come with many form issues. For example, one dataset may
use a single column for people’s names, while another might use three
columns (first, middle, and last), and another might use five columns (prefix,
first, middle, last, and suffix). The three datasets are correct, but the form of
the information is different, so a transformation is needed to make them
work together.

»» Range: Some data is categorical or uses specific ranges to denote certain
conditions. For example, probabilities range from 0 to 1. In some cases,
there isn’t an agreed-upon range. Consequently, you find data appearing in
different ranges even though the data refers to the same sort of information.
Transforming all the data to match the same range enables you to perform
analysis by using data from multiple datasets.

»» Baseline: You hear many people talk about dB when considering audio
output in various scenarios. However, a decibel is simply a logarithmic ratio,
as described at http://www.animations.physics.unsw.edu.au/jw/
dB.htm. Without a reference value or a baseline, determining what the dB
value truly means is impossible. For audio, the dB is referenced to 1 volt (dBV),
as described at http://www.sengpielaudio.com/calculator-db-volt.
htm. The reference is standard and therefore implied, even though few people
actually know that a reference is involved. Now, imagine the chaos that would
result if some people used 1 volt for a reference and others used 2 volts. dBV
would become meaningless as a unit of measure. Many kinds of data form a
ratio or other value that requires a reference. Transformations can adjust the
reference or baseline value as needed so that the values can be compared in
a meaningful way.

You can come up with many other transformations. The point of this section is
that the method used determines the kind of transformation that occurs, and you
must perform certain kinds of transformations to make data useful. Applying an
incorrect transformation or the correct transformation in the wrong way will
result in useless output even when the data itself is correct.

http://www.animations.physics.unsw.edu.au/jw/dB.htm
http://www.animations.physics.unsw.edu.au/jw/dB.htm
http://www.sengpielaudio.com/calculator-db-volt.htm
http://www.sengpielaudio.com/calculator-db-volt.htm

146 PART 3 Making Functional Programming Practical

Performing Slicing and Dicing
Slicing and dicing are two ways to control the size of a dataset. Slicing occurs when
you use a subset of the dataset in a single axis. For example, you may want only
certain records (also called cases) or you may want only certain columns (also
called features). Dicing occurs when you perform slicing in multiple directions.
When working with two-dimensional data, you select certain rows and certain
columns from those rows. You see dicing used more often with three-dimensional
or higher data, when you want to restrict the x-axis and the y-axis but keep all the
z-axis (as an example). The following sections describe slicing and dicing in more
detail and demonstrate how to perform this task using both Haskell and Python.

Keeping datasets controlled
Datasets can become immense. The data continues to accumulate from various
sources until it becomes impossible for the typical human to comprehend it all. So
slicing and dicing might at first seem to be a means for making data more com-
prehensible. It can do that, but making the data comprehensible isn’t the point.
Too much data can even overwhelm a computer — not in the same way as a
human gets overwhelmed, because a computer doesn’t understand anything, but
to the point where processing proceeds at a glacial pace. As the cliché says, time is
money, which is precisely why you want to control dataset size. The more focused
you can make any data analysis, the faster the analysis will proceed.

REAL-WORLD SLICING AND DICING
The examples in this chapter are meant to demonstrate techniques used with the func-
tional programming paradigm in the simplest manner possible. With this in mind, the
examples rely on native language capabilities whenever possible. In the real world, when
working with large applications rather than experimenting, you use libraries to make the
task easier — especially when working with immense datasets. For example, Python
developers often rely on NumPy (http://www.numpy.org/) or pandas (https://
pandas.pydata.org/) when performing this task. Likewise, Haskell developers often
use hmatrix (https://hackage.haskell.org/package/hmatrix), repa (https://
hackage.haskell.org/package/repa), and vector (https://hackage.haskell.
org/package/vector) to perform the same tasks. The libraries vary in functionality,
provide language-specific features, and make it tough to compare code. Consequently,
when you’re initially discovering how to perform a technique, it’s often best to rely on
native capability and then add library functionality to augment the language.

http://www.numpy.org/
https://pandas.pydata.org/
https://pandas.pydata.org/
https://hackage.haskell.org/package/hmatrix
https://hackage.haskell.org/package/repa
https://hackage.haskell.org/package/repa
https://hackage.haskell.org/package/vector
https://hackage.haskell.org/package/vector

CHAPTER 9 Advancing with Higher-Order Functions 147

Sometimes you must use slicing and dicing to break the data down into training
and testing units for computer technologies such as machine learning. You use the
training set to help an algorithm perform the correct processing in the correct way
through examples. The testing set then verifies that the training went as planned.
Even though machine learning is the most prominent technology today that
requires breaking data into groups, you can find other examples. Many database
managers work better when you break data into pieces and perform batch
processing on it, for example.

Slicing and dicing can give you a result that doesn’t actually reflect the realities of
the data as a whole. If the data isn’t randomized, one piece of the data may contain
more of some items than the other piece. Consequently, you must sometimes
randomize (shuffle) the dataset before using slicing and dicing techniques on it.

Focusing on specific data
Slicing and dicing techniques can also help you improve the focus of a particular
analysis. For example, you may not actually require all the columns (features) in
a dataset. Removing the extraneous columns can actually make the data easier to
use and provide results that are more reliable.

Likewise, you may need to remove unneeded information from the dataset. For
example, a dataset that contains entries from the last three years requires slicing
or dicing when you need to analyze only the results from one year. Even though
you could use various techniques to ignore the extra entries in code, eliminating
the unwanted years from the dataset using slicing and dicing techniques makes
more sense.

Be sure to keep slicing and dicing separate from filtering. Slicing and dicing
focuses on groups of randomized data for which you don’t need to consider indi-
vidual data values. Slicing out a particular year from a dataset containing sales
figures is different from filtering the sales produced by a particular agent. Filter-
ing looks for specific data values regardless of which group contains that value.
The “Filtering Data” section, later in this chapter, discusses filtering in more
detail, but just keep in mind that the two techniques are different.

Slicing and dicing with Haskell
Haskell slicing and dicing requires a bit of expertise to understand because you
don’t directly access the slice as you might with other languages through indexing.

148 PART 3 Making Functional Programming Practical

Of course, there are libraries that encapsulate the process, but this section reviews
a native language technique that will do the job for you using the take and drop
functions. Slicing can be a single-step process if you have the correct code. To
begin, the following code begins with a one-dimensional list, let myList = [1,
2, 3, 4, 5].

-- Display the first two elements.
take 2 myList

-- Display the remaining three elements.
drop 2 myList

-- Display a data slice of just the center element.
take 1 $ drop 2 myList

The slice created by the last statement begins by dropping the first two elements
using drop 2 myList, leaving [3,4,5]. The $ operator connects this output to the
next function call, take 1, which produces an output of [3]. Using this little
experiment, you can easily create a slice function that looks like this:

slice xs x y = take y $ drop x xs

To obtain just the center element from myList, you would call slice myList 2 1,
where 2 is the zero-based starting index and 1 is the length of the output you
want. Figure 9-1 shows how this sequence works.

FIGURE 9-1:
Use the slice

function to obtain
just a slice of

myList.

CHAPTER 9 Advancing with Higher-Order Functions 149

Of course, slicing that works only on one-dimensional arrays isn’t particularly
useful. You can test the slice function on a two-dimensional array by starting
with a new list, let myList2 = [[1,2],[3,4],[5,6],[7,8],[9,10]]. Try the
same call as before, slice myList2 2 1, and you see the expected output of
[[5,6]]. So, slice works fine even with a two-dimensional list.

Dicing is somewhat the same, but not quite. To test the dice function, begin
with a slightly more robust list, let myList3 = [[1,2,3],[4,5,6],[7,8,9],
[10,11,12],[13,14,15]]. Because you’re now dealing with the inner values
rather than the lists contained with a list, you must rely on recursion to perform
the task. The “Defining the need for repetition” section of Chapter 8 introduces
you to the forM function, which repeats a particular code segment. The following
code shows a simplified, but complete, dicing sequence.

import Control.Monad
let myList3 =
 [[1,2,3],[4,5,6],[7,8,9],[10,11,12],[13,14,15]]
slice xs x y = take y $ drop x xs
dice lst x y = forM lst (\i -> do return(slice i x y))
lstr = slice myList3 1 3
lstr
lstc = dice lstr 1 1
lstc

To use forM, you must import Control.Monad. The slice function is the same as
before, but you must define it within the scope created after the import. The dice
function uses forM to examine every element within the input list and then slice
it as required. What you’re doing is slicing the list within the list. The next items
of code first slice myList3 into rows, and then into columns. The output is as you
would expect: [[5],[8],[11]]. Figure 9-2 shows the sequence of events.

FIGURE 9-2:
Dicing is a

two-step process.

150 PART 3 Making Functional Programming Practical

Slicing and dicing with Python
In some respects, slicing and dicing is considerably easier in Python than in
Haskell. For one thing, you use indexes to perform the task. Also, Python offers
more built-in functionality. Consequently, the one-dimensional list example
looks like this:

myList = [1, 2, 3, 4, 5]

print(myList[:2])
print(myList[2:])
print(myList[2:3])

The use of indexes enables you to write the code succinctly and without using
special functions. The output is as you would expect:

[1, 2]
[3, 4, 5]
[3]

Slicing a two-dimensional list is every bit as easy as working with a one-
dimensional list. Here’s the code and output for the two-dimensional part of the
example:

myList2 = [[1,2],[3,4],[5,6],[7,8],[9,10]]

print(myList2[:2])
print(myList2[2:])
print(myList2[2:3])

[[1, 2], [3, 4]]
[[5, 6], [7, 8], [9, 10]]
[[5, 6]]

Notice that the Python functionality matches that of Haskell’s take and drop
functions; you simply perform the task using indexes instead. Dicing does require
using a special function, but the function is concise in this case and doesn’t require
multiple steps:

def dice(lst, rb, re, cb, ce):
 lstr = lst[rb:re]
 lstc = []

CHAPTER 9 Advancing with Higher-Order Functions 151

 for i in lstr:
 lstc.append(i[cb:ce])
 return lstc

In this case, you can’t really use a lambda function — or not easily, at least. The
code slices the incoming list first and then dices it, just as in the Haskell example,
but everything occurs within a single function. Notice that Python requires the use
of looping, but this function uses a standard for loop instead of relying on recur-
sion. The disadvantage of this approach is that the loop relies on state, which
means that you can’t really use it in a fully functional setting. Here’s the test code
for the dicing part of the example:

myList3 = [[1,2,3],[4,5,6],[7,8,9],[10,11,12],[13,14,15]]

print(dice(myList3, 1, 4, 1, 2))

[[5], [8], [11]]

Mapping Your Data
You can find a number of extremely confusing references to the term map in com-
puter science. For example, a map is associated with database management (see
https://en.wikipedia.org/wiki/Data_mapping), in which data elements are
mapped between two distinct data models. However, for this chapter, mapping
refers to a process of applying a high-order function to each member of a list.
Because the function is applied to every member of the list, the relationships
among list members is unchanged. Many reasons exist to perform mapping, such
as ensuring that the range of the data falls within certain limits. The following
sections of the chapter help you better understand the uses for mapping and dem-
onstrate the technique using the two languages supported in this book.

Understanding the purpose of mapping
The main idea behind mapping is to apply a function to all members of a list or
similar structure. Using mapping can help you adjust the range of the values or
prepare the values for particular kinds of analysis. Functional languages origi-
nated the idea of mapping, but mapping now sees use in most programming lan-
guages that support first-class functions.

https://en.wikipedia.org/wiki/Data_mapping

152 PART 3 Making Functional Programming Practical

The goal of mapping is to apply the function or functions to a series of numbers
equally to achieve specific results. For example, squaring the numbers can rid the
series of any negative values. Of course, you can just as easily take the absolute
value of each number. You may need to convert a probability between 0 and 1 to a
percentage between 0 and 100 for a report or other output. The relationship
between the values will stay the same, but the range won’t. Mapping enables you
to obtain specific data views.

Performing mapping tasks with Haskell
Haskell is one of the few computer languages whose map function isn’t necessarily
what you want. For example, the map associated with Data.Map.Strict, Data.Map.
Lazy, and Data.IntMap works with the creation and management of dictionaries, not
the application of a consistent function to all members of a list (see https://
haskell-containers.readthedocs.io/en/latest/map.html and http://hackage.
haskell.org/package/containers-0.5.11.0/docs/Data-Map-Strict.html
for details). What you want instead is the map function that appears as part of the
base prelude so that you can access map without importing any libraries.

The map function accepts a function as input, along with one or more values in a
list. You might create a function, square, that outputs the square of the input
value: square x = x * x. A list of values, items = [0, 1, 2, 3, 4], serves as
input. Calling map square items produces an output of [0,1,4,9,16]. Of course,
you could easily create another function: double x = x + x, with a map double
items output of [0,2,4,6,8]. The output you receive clearly depends on the
function you use as input (as expected).

You can easily get overwhelmed trying to create complex functions to modify the
values in a list. Fortunately, you can use the composition operator (., or dot) to
combine them. Haskell actually applies the second function first. Consequently, map
(square.double) items produces an output of [0,4,16,36,64] because Haskell
doubles the numbers first, and then squares them. Likewise, map (double.square)
items produces an output of [0,2,8,18,32] because squaring occurs first,
followed by doubling.

The apply operator ($) is also important to mapping. You can create a condition
for which you apply an argument to a list of functions. As shown in Figure 9-3,
you place the argument first in the list, followed by the function list (map ($4)
[double, square]). The output is a list with one element for each function, which
is [8,16] in this case. Using recursion would allow you to apply a list of numbers
to a list of functions.

https://haskell-containers.readthedocs.io/en/latest/map.html
https://haskell-containers.readthedocs.io/en/latest/map.html
http://hackage.haskell.org/package/containers-0.5.11.0/docs/Data-Map-Strict.html
http://hackage.haskell.org/package/containers-0.5.11.0/docs/Data-Map-Strict.html

CHAPTER 9 Advancing with Higher-Order Functions 153

Performing mapping tasks with Python
Python performs many of the same mapping tasks as Haskell, but often in a
slightly different manner. Look, for example, at the following code:

square = lambda x: x**2
double = lambda x: x + x
items = [0, 1, 2, 3, 4]

print(list(map(square, items)))
print(list(map(double, items)))

You obtain the same output as you would with Haskell using similar code. How-
ever, note that you must convert the map object to a list object before printing it.
Given that Python is an impure language, creating code that processes a list of
inputs against two or more functions is relatively easy, as shown in this code:

funcs = [square, double]

for i in items:
 value = list(map(lambda items: items(i), funcs))
 print(value)

Note that, as with the Haskell code, you’re actually applying individual list values
against the list of functions. However, Python requires a lambda function to get
the job done. Figure 9-4 shows the output from the example.

FIGURE 9-3:
You can apply a
single value to a
list of functions.

154 PART 3 Making Functional Programming Practical

Filtering Data
Most programming languages provide specialized functions for filtering data
today. Even when the language doesn’t provide a specialized function, you can use
common methods to perform filtering manually. The following sections discuss
what filtering is all about and how to use the two target languages to perform
the task.

Understanding the purpose of filtering
Data filtering is an essential tool in removing outliers from datasets, as well as
selecting specific data based on one or more criteria for analysis. While slicing and
dicing selects data regardless of specific content, data filtering makes specific
selections to achieve particular goals. Consequently, the two techniques aren’t
mutually exclusive; you may well employ both on the same dataset in an effort to
locate the particular data needed for an analysis. The following sections discuss
details of filtering use and provide examples of simple data filtering techniques
for both of the languages used in this book.

FIGURE 9-4:
Using multiple

paradigms in
Python makes
mapping tasks

easier.

CHAPTER 9 Advancing with Higher-Order Functions 155

Developers often apply slicing and dicing, mapping, and filtering together to
shape data in a manner that doesn’t change the inherent relationships among
data elements. In all three cases, the data’s organization remains unchanged, and
an element that is twice the size of another element tends to remain in that same
relationship. Modifying data range, the number of data elements, and other fac-
tors in a dataset that don’t modify the data’s content — its relationship to the
environment from which it was taken — is common in data science in preparation
for performing tasks such as analysis and comparison, along with creating single,
huge datasets from numerous smaller datasets. Filtering enables you to ensure
that the right data is in the right place and at the right time.

Using Haskell to filter data
Haskell relies on a filter function to remove unwanted elements from lists and
other dataset structures. The filter function accepts two inputs: a description of
what you want removed and the list of elements to filter. The filter descriptions
come in three forms:

»» Special keywords, such as odd and even

»» Simple logical comparisons, such as >

»» Lambda functions, such as \x -> mod x 3 == 0

To see how this all works, you could create a list such as items = [0, 1, 2, 3,
4, 5]. Figure 9-5 shows the results of each of the filtering scenarios.

FIGURE 9-5:
Filtering

descriptions take
three forms in

Haskell.

156 PART 3 Making Functional Programming Practical

You want to carefully consider the use of Haskell operators when performing any
task, but especially filtering. For example, at first look, rem and mod might not seem
much different. Using rem 5 3 produces the same output as mod 5 3 (an output
of 2). However, as noted at https://stackoverflow.com/questions/5891140/
difference-between-mod-and-rem-in-haskell, a difference arises when working
with a negative number. In this situation, mod 3 (-5) produces an output of -2,
while rem 3 (-5) produces an output of 3.

Using Python to filter data
Python doesn’t provide a few of the niceties that Haskell does when it comes to
filtering. For example, you don’t have access to special keywords, such as odd or
even. In fact, all the filtering in Python requires the use of lambda functions. Con-
sequently, to obtain the same results for the three cases in the previous section,
you use code like this:

items = [0, 1, 2, 3, 4, 5]

print(list(filter(lambda x: x % 2 == 1, items)))
print(list(filter(lambda x: x > 3, items)))
print(list(filter(lambda x: x % 3 == 0, items)))

Notice that you must convert the filter output using a function such as list. You
don’t have to use list; you could use any data structure, including set and tuple.
The lambda function you create must evaluate to True or False, just as it must
with Haskell. Figure 9-6 shows the output from this example.

FIGURE 9-6:
Python lacks
some of the

Haskell special
filtering features.

https://stackoverflow.com/questions/5891140/difference-between-mod-and-rem-in-haskell
https://stackoverflow.com/questions/5891140/difference-between-mod-and-rem-in-haskell

CHAPTER 9 Advancing with Higher-Order Functions 157

Organizing Data
None of the techniques discussed so far changes the organization of the data
directly. All these techniques can indirectly change organization through a pro-
cess of data selection, but that’s not the goal of the methods applied. However,
sometimes you do need to change the organization of the data. For example, you
might need it sorted or grouped based on specific criteria. In some cases, organiz-
ing the data can also mean to randomize it in some manner to ensure that an
analysis reflects the real world. The following sections discuss the kinds of orga-
nization that most people apply to data; also covered is how you can implement
sorting using the two languages that appear in this book.

Considering the types of organization
Organization — the forming of any object based on a particular pattern—is an
essential part of working with data for humans. The coordination of elements
within a dataset based on a particular need is usually the last step in making the
data useful, except when other parts of the cleaning process require organization
to work properly. How something is organized affects the way in which humans
view it, and organizing the object in some other manner will change the human
perspective, so often people find themselves organizing datasets one way and
then reorganizing them in another. No right or wrong way to organize data exists;
you just want to use the approach that works best for viewing the information in
a way that helps see the desired pattern.

You can think about organization in a number of ways. Sometimes the best
organization is disorganization. Seeing patterns in seemingly random patterns
finds a place in many areas of life, including art (see the stereograms at http://
www.vision3d.com/sghidden.html as an example). A pattern is what you make
of it, so sometimes thinking about what you want to see, rather than making
things neat and tidy, is the best way to achieve your objectives. The following list
provides some ideas on organization, most of which you have thought about, but
some of which you likely haven’t. The list is by no means exhaustive.

»» Sorting: One of the most common ways to organize data is to sort it, with the
alphanumeric sort being the most common. However, sorts need not be
limited to ordering the data by the alphabet or computer character number.
For example, you could sort according to value length or by commonality. In
fact, the idea of sorting simply means placing the values in an order from
greatest to least (or vice versa) according to whatever criteria the sorter
deems necessary.

http://www.vision3d.com/sghidden.html
http://www.vision3d.com/sghidden.html

158 PART 3 Making Functional Programming Practical

»» Grouping: Clustering data such that the data with the highest degree of
commonality is together is another kind of sorting. For example, you might
group data by value range, with each range forming a particular group. As with
sorting, grouping criteria can be anything. You might choose to group textual
data by the number of vowels contained in each element. You might group
numeric data according to an algorithm of some sort. Perhaps you want all
the values that are divisible by 3 in one bin and those that are divisible by 7 in
another, with a third bin holding values that can’t be divided by either.

»» Categorizing: Analyzing the data and placing data that has the same properties
together is another method of organization. The properties can be anything.
Perhaps you need to find values that match specific colors, or words that impart
a particular kind of meaning. The values need not hold any particular commonal-
ity; they just need to have the same properties.

»» Shuffling: Disorganization can be a kind of organization. Chaos theory (see
https://fractalfoundation.org/resources/what-is-chaos-theory/
for an explanation) finds use in a wide variety of everyday events. In fact,
many of today’s sciences rely heavily on the effects of chaos. Data shuffling
often enhances the output of algorithms and creates conditions that enable
you to see unexpected patterns. Creating a kind of organization through the
randomization of data may seem counter to human thought, but it works
nonetheless.

Sorting data with Haskell
Haskell provides a wide variety of sorting mechanisms, such that you probably
won’t have to resort to doing anything of a custom nature unless your data is unique
and your requirements are unusual. However, getting the native functionality
that’s found in existing libraries can prove a little daunting at times unless you
think the process through first. To start, you need a list that’s a little more complex
than others used in this chapter: original = [(1, "Hello"), (4, "Yellow"),
(5, "Goodbye"), (2, "Yes"), (3, "No")]. Use the following code to perform a
basic sort:

import Data.List as Dl
sort original

The output is based on the first member of each tuple: [(1,"Hello"),(2,"Yes"),
(3,"No"),(4,"Yellow"),(5,"Goodbye")]. If you want to perform a reverse
sort, you can use the following call instead:

(reverse . sort) original

https://fractalfoundation.org/resources/what-is-chaos-theory/

CHAPTER 9 Advancing with Higher-Order Functions 159

Notice how the reverse and sort function calls appear in this example. You must
also include the space shown between reverse, sort, and the composition
operator (.). The problem with using this approach is that Haskell must go
through the list twice: once to sort it and once to reverse it. An alternative is to use
the sortBy function, as shown here:

sortBy (\x y -> compare y x) original

The sortBy function lets you use any comparison function needed to obtain the
desired result. For example, you might not be interested in sorting by the first
member of the tuple but instead prefer to sort by the second member. In this case,
you must use the snd function from Data.Tuple (which loads with Prelude) with
the comparing function from Data.Ord (which you must import), as shown here:

import Data.Ord as Do
sortBy (comparing $ snd) original

Notice how the call applies comparing to snd using the apply operator ($). Using
the correct operator is essential to make sorts work. The results are as you would
expect: [(5,"Goodbye"),(1,"Hello"),(3,"No"),(4,"Yellow"),(2,"Yes")].
However, you might not want a straight sort. You really may want to sort by the
length of the words in the second member of the tuple. In this case, you can make
the following call:

sortBy (comparing $ length . snd) original

The call applies comparing to the result of the composition of snd, followed by
length (essentially, the length of the second tuple member). The output reflects
the change in comparison: [(3,"No"),(2,"Yes"),(1,"Hello"),(4,"Yellow"),
(5,"Goodbye")]. The point is that you can sort in any manner needed using rel-
atively simple statements in Haskell unless you work with complex data.

Sorting data with Python
The examples in this section use the same list as that found in the previous
section: original = [(1, "Hello"), (4, "Yellow"), (5, "Goodbye"), (2,
"Yes"), (3, "No")], and you’ll see essentially the same sorts, but from a Python
perspective. To understand these examples, you need to know how to use the sort
method, versus the sorted function. When you use the sort method, Python
changes the original list, which may not be what you want. In addition, sort

160 PART 3 Making Functional Programming Practical

works only with lists, while sorted works with any iterable. The sorted function
produces output that doesn’t change the original list. Consequently, if you want to
maintain your original list form, you use the following call:

sorted(original)

The output is sorted by the first member of the tuple: [(1, 'Hello'), (2,
'Yes'), (3, 'No'), (4, 'Yellow'), (5, 'Goodbye')], but the original list
remains intact. Reversing a list requires the use of the reverse keyword, as shown
here:

sorted(original, reverse=True)

Both Haskell and Python make use of lambda functions to perform special sorts.
For example, to sort by the second element of the tuple, you use the following
code:

sorted(original, key=lambda x: x[1])

The key keyword is extremely flexible. You can use it in several ways. For example,
key=str.lower would perform a case-insensitive sort. Some of the common
lambda functions appear in the operator module. For example, you could also
sort by the second element of the tuple using this code:

from operator import itemgetter
sorted(original, key=itemgetter(1))

You can also create complex sorts. For example, you can sort by the length of the
second tuple element by using this code:

sorted(original, key=lambda x: len(x[1]))

Notice that you must use a lambda function when performing a custom sort. For
example, trying this code will result in an error:

sorted(original, key=len(itemgetter(1)))

Even though itemgetter is obtaining the key from the second element of the
tuple, it doesn’t possess a length. To use the second tuple’s length, you must work
with the tuple directly.

CHAPTER 10 Dealing with Types 161

Chapter 10
Dealing with Types

The term type takes on new meaning when working with functional lan-
guages. In other languages, when you speak of a type, you mean the label
attached to a certain kind of data. This label tells the compiler how to inter-

act with the data. The label is intimately involved with the value. In functional
languages, type is more about mapping. You compose functions that express a
mapping of or transformation between types of data. The function is a mathemat-
ical expression that defines the transformation using a representation of the math
involved in the transformation. Just how a language supports this idea of mapping
and transformation depends on how it treats underlying types. Because Haskell
actually provides a purer approach with regard to type and the functional pro-
gramming paradigm, this chapter focuses a little heavier on Haskell.

As with other languages, you can create new types as needed in functional lan-
guages. However, the manner in which you create and use new types differs
because of how you view type. Interestingly enough, creating new types can be
easier in functional languages because the process is relatively straightforward
and the result is easier to read in most cases.

The other side of the coin is that functional languages tend toward stricter man-
agement of type. (This is true for the most part, at least. Exceptions definitely exist,
such as JavaScript, which is being fixed; see https://www.w3schools.com/js/
js_strict.asp for details.) Because of this strictness, you need to know how to
understand, manage, and fix type errors. In addition, you should understand how
the use of type affects issues such as missing data. The chapter includes examples
in both Haskell and Python to demonstrate all of the various aspects of type.

IN THIS CHAPTER

»» Understanding types

»» Creating and managing types

»» Fixing type errors

»» Using types in code

https://www.w3schools.com/js/js_strict.asp
https://www.w3schools.com/js/js_strict.asp

162 PART 3 Making Functional Programming Practical

Developing Basic Types
Functional languages provide a number of methods for defining type. Remember
that no matter what programming paradigm you use, the computer sees
numbers — 0s and 1s, actually. The concept of type has no meaning for the com-
puter; type is there to help the humans writing the code. As with anything, when
working with types, starting simply is best. The following sections examine the
basics of type in the functional setting and discuss how to augment those types to
create new types.

Understanding the functional
perception of type
As mentioned in the introduction, a pure functional language, such as Haskell,
uses expressions for everything. Because everything is an expression, you can
substitute functions that provide the correct output in place of a value. However,
values are also expressions, and you can test this idea by using :t to see their
types. When you type :t True and press Enter, you see True :: Bool as output
because True is an expression that produces a Bool output. Likewise, when you
type :t 5 == 6 and press Enter, you see 5 == 6 :: Bool as the output. Any time
you use the :t command, you see the definition of the type of whatever you place
after the command.

Python takes a similar view, but in a different manner, because it supports mul-
tiple programming paradigms. In Python, you point to an object using a name.
The object contains the value and provides its associated properties. The object
controls its use because it knows how to be that particular object. You can point to
a different object using the name you define, but the original object remains
unchanged. To see this perception of type, you use the Python type function.
When you type type(1), you see <class 'int'> as output. Other languages might
say that the type of a value 1 is an int, rather than say that the type of a value 1 is
an instance of the class int. If you create a variable by typing myInt = 1 and press-
ing Enter, then use the type(myInt) function, you still see <class 'int'> as
output. The name myInt merely points to an object that is an instance of class int.
Even expressions work this way. For example, when you type myAdd = 1 + 1 and
then use type(myAdd), you still get <class 'int'> as output.

Considering the type signature
A number of nonfunctional languages use type signatures to good effect, although
they may have slightly different names and slightly different uses, such as the
function signature in C++. Even so, signatures used to describe the inputs
and outputs of the major units of application construction for a language are

CHAPTER 10 Dealing with Types 163

nothing new. The type signature in Haskell is straightforward. You use one for the
findNext function in Chapter 8:

findNext :: Int -> [Int] -> Int

In this case, the expression findNext (on the left side of the double colon) expects
an Int and an [Int] (list) as input, and provides an Int as output. A type signature
encompasses everything needed to fully describe an expression and helps relieve
potential ambiguity concerning the use of the expression. Haskell doesn’t always
require that you provide a type signature (many of the examples in this book don’t
use one), but will raise an error if ambiguity exists in the use of an expression and
you don’t provide the required type signature. When you don’t provide a type
signature, the compiler infers one (as described in the previous section). Later
sections of this chapter discuss some of the complexities of using type signatures.

Python can also use type signatures, but the philosophy behind Python is different
from that of many other languages. The type signature isn’t enforced by the inter-
preter, but IDEs and other tools can use the type signature to help you locate poten-
tial problems with your code. Consider this function with the type signature:

def doAdd (value1 : int, value2 : int) -> int:
 return value1 + value2

The function works much as you might expect. For example, doAdd(1, 2) pro-
duces an output of 3. When you type type((doAdd(1, 2))) and press Enter, you also
obtain the expected result of <class 'int'>. However, the philosophy of Python
is that function calls will respect the typing needed to make the function work, so
the interpreter doesn’t perform any checks. The call doAdd("Hello", " Goodbye")
produces an output of 'Hello Goodbye', which is most definitely not an int.
When you type type((doAdd("Hello", " Goodbye"))) and press Enter, you obtain
the correct, but not expected, output of <class 'str'>.

One way around this problem is to use a static type checker such as mypy (http://
mypy-lang.org/). When you call on this tool, it checks your code against the
signature you provide.

A more complete type signature for Python would tend to include some sort of
error trapping. In addition, you could use default values to make the intended
input more apparent. For example, you could change doAdd to look like this:

def doAdd (value1 : int = 0, value2 : int = 0) -> int:
 if not isinstance(value1, int) or \
 not isinstance(value2, int):
 raise TypeError
 return value1 + value2

http://mypy-lang.org/
http://mypy-lang.org/

164 PART 3 Making Functional Programming Practical

The problem with this approach is that it runs counter to the Python way of per-
forming tasks. When you add type checking code of this sort, you automatically
limit the potential for other people to use functions in useful, unexpected, and
completely safe ways. Python relies on an approach called Duck Typing (see
http://wiki.c2.com/?DuckTyping and https://en.wikipedia.org/wiki/
Duck_typing for details). Essentially, if it walks like a duck and talks like a duck,
it must be a duck, despite the fact that the originator didn’t envision it as a duck.

Creating types
At some point, the built-in types for any language won’t satisfy your needs and
you’ll need to create a custom type. The method used to create custom types varies
by language. As noted in the “Understanding the functional perception of type”
section, earlier in this chapter, Python views everything as an object. In this
respect, Python is an object-oriented language within limits (for example, Python
doesn’t actually support data hiding). With this in mind, to create a new type in
Python, you create a new class, as described at https://docs.python.org/3/
tutorial/classes.html and https://www.learnpython.org/en/Classes_and_
Objects. This book doesn’t discuss object orientation to any degree, so you won’t
see much with regard to creating custom Python types.

Haskell takes an entirely different approach to the process that is naturally in line
with functional programming principles. In fact, you may be amazed to discover
the sorts of things you can do with very little code. The following sections offer an
overview of creating types in Haskell, emphasizing the functional programming
paradigm functionality.

Using AND
Haskell has this concept of adding types together to create a new kind of type. One
of the operations you can perform on these types is AND, which equates to this
type and this type as a single new type. In this case, you provide a definition like
this one shown here.

data CompNum = Comp Int Int

It’s essential to track the left and right side of the definition separately. The left
side is the type constructor and begins with the data keyword. For now, you create
a type constructor simply by providing a name, which is CompNum (for complex
number, see https://www.mathsisfun.com/numbers/complex-numbers.html
for details).

http://wiki.c2.com/?DuckTyping
https://en.wikipedia.org/wiki/Duck_typing
https://en.wikipedia.org/wiki/Duck_typing
https://docs.python.org/3/tutorial/classes.html
https://docs.python.org/3/tutorial/classes.html
https://www.learnpython.org/en/Classes_and_Objects
https://www.learnpython.org/en/Classes_and_Objects
https://www.mathsisfun.com/numbers/complex-numbers.html

CHAPTER 10 Dealing with Types 165

The right side is the data constructor. It defines the essence of the data type. In
this case, it includes an identifier, Comp, followed by two Int values (the real com-
ponent and the imaginary component). To create and test this type, you would use
the following code:

x = Comp 5 7
:t x

The output, as you might expect, is x :: CompNum, and the new data type shows
the correct data constructor. This particular version of CompNum has a problem.
Type x by itself and you see the error message shown in Figure 10-1.

To fix this problem, you must tell the data type to derive the required functional-
ity. The declarative nature of Haskell means that you don’t actually have to pro-
vide an implementation; declaring that a data type does something is enough to
create the implementation, as shown here:

data CompNum = Comp Int Int deriving Show
x = Comp 5 7
:t x
x

The deriving keyword is important to remember because it makes your life much
simpler. The new data type now works as expected (see Figure 10-2).

FIGURE 10-1:
This data

type doesn’t
provide a means

of showing
the content.

166 PART 3 Making Functional Programming Practical

Using OR
One of the more interesting aspects of Haskell data types is that you can create a
Sum data type — a type that contains multiple constructors that essentially define
multiple associated types. To create such a type, you separate each data construc-
tor using a bar (|), which is essentially an OR operator. The following code shows
how you might create a version of CompNum (shown in the previous section) that
provides for complex, purely real, and purely imaginary numbers:

data CompNum = Comp Int Int | Real Int | Img Int deriving
 Show

When working with a real number, the imaginary part is always 0. Likewise, when
working with an imaginary number, the real part is always 0. Consequently, the
Real and Img definitions require only one Int as input. Figure 10-3 shows the new
version of CompNum in action.

FIGURE 10-2:
Use the deriving
keyword to add
features to the

data type.

FIGURE 10-3:
Use the deriving
keyword to add
features to the

data type.

CHAPTER 10 Dealing with Types 167

As you can see, you define each of the variables using the applicable data con-
structor. When you check type using :t, you see that they all use the same type
constructor: CompNum. However, when you display the individual values, you see
the kind of number that the expression contains.

Defining enumerations
The ability to enumerate values is essential as a part of categorizing. Providing
distinct values for a particular real-world object’s properties is important if you
want to better understand the object and show how it relates to other objects in
the world. Previous sections explored the use of data constructors with some sort
of input, but nothing says that you must provide a value at all. The following code
demonstrates how to create an enumeration in Haskell:

data Colors = Red | Blue | Green deriving (Show, Eq, Ord)

Notice that you provide only a label for the individual constructors that are then
separated by an OR operator. As with previous examples, you must use deriving
to allow the display of the particular variable’s content. Notice, however, that this
example also derives from Eq (which tests for equality) and Ord (which tests for
inequality). Figure 10-4 shows how this enumeration works.

As usual, the individual variables all use the same data type, which is Colors in
this case. You can compare the variable content. For example, x == y is False
because they’re two different values. Note that you can compare a variable to its
data constructor, as in the case of x == Red, which is True. You have access to all
of the logical operators in this case, so you could create relatively complex logic
based on the truth value of this particular type.

FIGURE 10-4:
Enumerations are

made of data
constructors

without inputs.

168 PART 3 Making Functional Programming Practical

Enumerations also appear using alternative text. Fortunately, Haskell addresses
this need as well. This updated code presents the colors in a new way:

data Colors = Red | Blue | Green deriving (Eq, Ord)
instance Show Colors where
 show Red = "Fire Engine Red"
 show Blue = "Sky Blue"
 show Green = "Apple Green"

The instance keyword defines a specific manner in which instances of this type
should perform particular tasks. In this case, it defines the use of Show. Each color
appears in turn with the color to associate with it. Notice that you don’t define
Show in deriving any longer; you use the deriving or instance form, but not
both. Assuming that you create three variables as shown in Figure 10-4, (where
x = Red, y = Blue, and z = Green), here’s the output of this example:

x = Fire Engine Red
y = Sky Blue
z = Apple Green

Considering type constructors
and data constructors
Many data sources rely on records to package data for easy use. A record has indi-
vidual elements that you use together to describe something. Fortunately, you can
create record types in Haskell. Here’s an example of such a type:

data Name = Employee {
 first :: String,
 middle :: Char,
 last :: String} deriving Show

The Name type includes a data constructor for Employee that contains fields named
first and last of type String and middle of type Char.

newbie = Employee "Sam" 'L' "Wise"

Notice that the 'L' must appear in single quotes to make it the Char type, while
the other two entries appear in double quotes to make them the String type.
Because you’ve derived Show, you can display the record, as shown in Figure 10-5.
Just in case you’re wondering, you can also display individual field values, as
shown in the figure.

CHAPTER 10 Dealing with Types 169

The problem with this construction is that it’s rigid, and you may need flexibility.
Another way to create records (or any other type, for that matter) is to add the
arguments to the type constructor instead, as shown here:

data Name f m l = Employee {
 first :: f,
 middle :: m,
 last :: l} deriving Show

This form of construction is parameterized, which means that the input comes
from the type constructor. The difference is that you can now create the record
using a Char or a String for the middle name. Unfortunately, you can also create
Employee records that really don’t make any sense at all, as shown in Figure 10-6,
unless you create a corresponding type signature of Name :: (String String
String) -> Employee.

Haskell supports an incredibly rich set of type structures, and this chapter doesn’t
do much more than get you started on understanding them. The article at https://
wiki.haskell.org/Constructor provides some additional information about
type constructors and data constructors, including the use of recursive types.

FIGURE 10-5:
Haskell supports

record types
using special data

constructor
syntax.

FIGURE 10-6:
Parameterized
types are more

flexible.

https://wiki.haskell.org/Constructor
https://wiki.haskell.org/Constructor

170 PART 3 Making Functional Programming Practical

Composing Types
The following sections talk about composing special types: monoids, monads, and
semigroups. What makes these types special is that they have a basis in math, as
do most things functional; this particular math, however, is about abstracting
away details so that you can see the underlying general rules that govern some-
thing and then develop code to satisfy those rules.

The reason you want to perform the abstraction process is that it helps you create
better code with fewer (or possibly no) side effects. Aren’t functional languages
supposed to be free of side effects, though? Generally, yes, but some activities,
such as getting user input, introduces side effects. The math part of functional
programming is side-effect free, but the moment you introduce user interaction
(as an example), you begin having to perform tasks in a certain order, which
introduces side effects. The article at https://wiki.haskell.org/Haskell_IO_
for_Imperative_Programmers provides a good overview of why side effects are
unavoidable and, in some case, actually necessary.

Understanding monoids
The “Considering the math basis for monoids and semigroups” sidebar may still
have you confused. Sometimes an example works best to show how something
actually works, instead of all the jargon used to describe it. So, this section begins

CREATING HASKELL SYNONYMS
Anyone who has used C++ understands the value of synonyms in making code more
readable. However, a synonym isn’t really a new type; it merely provides another name
for an existing type so that you can create code that is easier to understand. Fortunately,
Haskell also supports this feature. For example, the following code creates a synonym
for Float named MyFloat:

type MyFloat = Float

You use this sort of type as part of a type signature to make the type signature easier
to read. For example, the following code creates a new type named Test with a data
constructor named DoIt that uses MyFloat to create a variable named x.

data Test = DoIt MyFloat deriving Show
x = DoIt 3.3

https://wiki.haskell.org/Haskell_IO_for_Imperative_Programmers
https://wiki.haskell.org/Haskell_IO_for_Imperative_Programmers

CHAPTER 10 Dealing with Types 171

with a Haskell list, which is a monoid, as it turns out. To prove that it’s a monoid,
a list has to follow three laws:

»» Closure: The result of an operation must always be a part of the set compris-
ing the group that defines the monoid.

»» Associativity: The order in which operations on three or more objects occur
shouldn’t matter. However, the order of the individual elements can matter.

»» Identity: There is always an operation that does nothing.

CONSIDERING THE MATH BASIS FOR
MONOIDS AND SEMIGROUPS
Monoids and semigroups ultimately belong to abstract algebra and discrete mathemat-
ics, as shown at http://www.euclideanspace.com/maths/discrete/index.htm.
These are somewhat scary-sounding terms to most people. However, you can view
abstractions in a simple way. Say that you look at the picture of three bears on a com-
puter. When asked, the computer will reveal that it’s managing millions of pixels — a
difficult task. However, when someone asks you the same question, you say you see
three bears. In a moment, you have abstracted away the details (millions of pixels with
their various properties) and come to a new truth (three bears).

Math abstraction goes even further. In the example of the three bears, a math abstrac-
tion would remove the background because it wants to focus on the individual bears
(becoming discrete). It might then remove the differences among the animals and even-
tually remove the animal features of the image so that you end up with an outline
showing the essence of the bears — what makes bears in this picture unique — a gen-
eralization of those bears. You can then use those bears to identify other bears in other
pictures. What the math is doing is helping you generalize the world around you; you
really aren’t performing arithmetic.

The next level down from math abstraction, as described in this chapter, is the use of
groups (see http://www.euclideanspace.com/maths/discrete/groups/index.
htm). A group is a set of objects that relies on a particular operation to combine pairs of
objects within the set. Many of the texts you may read talk about this task using num-
bers because defining the required rules is easier using numbers. However, you can use
any object. Say that you have the set of all letters and the operation of concatenation
(essentially letter addition). A word, then, would be the concatenation of individual let-
ters found in the set — the group of all letters.

(continued)

http://www.euclideanspace.com/maths/discrete/index.htm
http://www.euclideanspace.com/maths/discrete/groups/index.htm
http://www.euclideanspace.com/maths/discrete/groups/index.htm

172 PART 3 Making Functional Programming Practical

Lists automatically address the first law. If you’re working with a list of numbers,
performing an operation on that list will result in a numeric output, even if that
output is another list. In other words, you can’t create a list of numbers, perform
an operation on it, and get a Char result. To demonstrate the other two rules, you
begin by creating the following three lists:

a = [1, 2, 3]
b = [4, 5, 6]
c = [7, 8, 9]

In this case, the example uses concatenation (++) to create a single list from the
three lists. The associativity law demands that the order in which an operation
occurs shouldn’t matter, but that the order of the individual elements can matter.
The following two lines test both of these criteria:

(a ++ b) ++ c == a ++ (b ++ c)
(a ++ b) ++ c == (c ++ b) ++ a

The output of the first comparison is True because the order of the concatenation
doesn’t matter. The output of the second comparison is False because the order
of the individual elements does matter.

The concept of groups always involves like objects found in a set with an associated
operation, but beyond this definition, the objects can be of any type, the operation can
be of any type, and the result is based on the type of the object and the operation used
to combine them. However, groups have specific rules that usually rely on numbers,
such as the identity rule, which is an operation that doesn’t do anything. For example,
adding 0 to a group of numbers doesn’t do anything, so using the 0 element with the
add operation would satisfy the identity rule. The inverse operation provides what
amounts to the negative of the group. For example, in working with the set of all
numbers and the add operation, if you combine 1 with –1, you receive 0, the identity
element, back.

To create a group that is the concatenation of letters, you need a monoid, as described
at http://www.euclideanspace.com/maths/discrete/groups/monoid/index.
htm. A monoid is like a group except that it doesn’t require an inverse operation. There
isn’t a –a, for example, to go with the letter a. Consequently, you can create words from
the set of all letters without having to provide an inverse operation for each word. A
semigroup is actually a special kind of monoid except that it doesn’t include the identity
operation, either. In considering the group of all letters, a group that lacks a null charac-
ter (the identity element) would require a semigroup for expression.

(continued)

http://www.euclideanspace.com/maths/discrete/groups/monoid/index.htm
http://www.euclideanspace.com/maths/discrete/groups/monoid/index.htm

CHAPTER 10 Dealing with Types 173

The third law, the identity law, requires the use of an empty list, which is equiv-
alent to the 0 in the set of all numbers that is often used to explain identity. Con-
sequently, both of these statements are true:

a ++ [] == a
[] ++ a == a

When performing tasks using some Haskell, you need to use import Data.Monoid.
This is the case when working with strings. As shown in Figure 10-7, strings also
work just fine as monoids. Note the demonstration of identity using an empty
string. In fact, many Haskell collection types work as monoids with a variety of
operators, including Sequence, Map, Set, IntMap, and IntSet. Using the custom
type examples described earlier in the chapter as a starting point, any collection
that you use as a basis for a new type will automatically have the monoid func-
tionality built in. The example at https://www.yesodweb.com/blog/2012/10/
generic-monoid shows a more complex Haskell implementation of monoids as a
custom type (using a record in this case).

After you import Data.Monoid, you also have access to the <> operator to perform
append operations. For example, the following line of Haskell code tests the asso-
ciative law:

(a <> b) <> c == a <> (b <> c)

Even though this section has focused on the simple task of appending one object
to another, most languages provide an assortment of additional functions to use
with monoids, which is what makes monoids particularly useful. For example,
Haskell provides the Dual function, which reverses the output of an append oper-
ation. The following statement is true because the right expression uses the Dual
function:

((a <> b) <> c) == getDual ((Dual c <> Dual b) <> Dual a)

FIGURE 10-7:
Strings can act as

monoids, too.

https://www.yesodweb.com/blog/2012/10/generic-monoid
https://www.yesodweb.com/blog/2012/10/generic-monoid

174 PART 3 Making Functional Programming Practical

Even though the right side would seem not to work based on earlier text, the use
of the Dual function makes it possible. To make the statement work, you must
also call getDual to convert the Dual object to a standard list. You can find more
functions of this sort at http://hackage.haskell.org/package/base-4.11.1.0/
docs/Data-Monoid.html.

The same rules for collections apply with Python. As shown in Figure 10-8, Python
lists behave in the same manner as Haskell lists.

In contrast to Haskell, Python doesn’t have a built-in monoid class that you
can use as a basis for creating your own type with monoid support. However,
you can see plenty of Python monoid implementations online. The explanation at
https://github.com/justanr/pynads/blob/master/pynads/abc/monoid.py
describes how you can implement the Haskell functionality as part of Python.
The implementation at https://gist.github.com/zeeshanlakhani/1284589 is
shorter and probably easier to use, plus it comes with examples of how to use the
class in your own code.

Considering the use of Nothing,
Maybe, and Just
Haskell doesn’t actually have a universal sort of null value. It does have Nothing,
but to use Nothing, the underlying type must support it. In addition, Nothing is
actually something, so it’s not actually null (which truly is nothing). If you assign
Nothing to a variable and then print the variable onscreen, Haskell tells you that
its value is Nothing. In short, Nothing is a special kind of value that tells you that
the data is missing, without actually assigning null to the variable. Using this
approach has significant advantages, not the least of which is fewer application
crashes and less potential for a missing value to create security holes.

FIGURE 10-8:
Python

collections can
also act as
monoids.

http://hackage.haskell.org/package/base-4.11.1.0/docs/Data-Monoid.html
http://hackage.haskell.org/package/base-4.11.1.0/docs/Data-Monoid.html
https://github.com/justanr/pynads/blob/master/pynads/abc/monoid.py
https://gist.github.com/zeeshanlakhani/1284589

CHAPTER 10 Dealing with Types 175

You normally don’t assign Nothing to a variable directly. Rather, you create a
function or other expression that makes the assignment. The following example
shows a simple function that simply adds two numbers. However, the numbers
must be positive integers greater than 0:

doAdd::Int -> Int -> Maybe Int
doAdd _ 0 = Nothing
doAdd 0 _ = Nothing
doAdd x y = Just (x + y)

Notice that the type signature has Maybe Int as the output. This means that the
output could be an Int or Nothing. Before you can use this example, you need to
load some support for it:

import Data.Maybe as Dm

To test this how Maybe works, you can try various versions of the function call:

doAdd 5 0
doAdd 0 6
doAdd 5 6

The first two result in an output of Nothing. However, the third results in an out-
put of Just 11. Of course, now you have a problem, because you can’t use the
output of Just 11 as numeric input to something else. To overcome this problem,
you can make a call to fromMaybe 0 (doAdd 5 6). The output will now appear as
11. Likewise, when the output is Nothing, you see a value of 0, as shown in
Figure 10-9. The first value to fromMaybe, 0, tells what to output when the output
of the function call is Nothing. Consequently, if you want to avoid the whole
Nothing issue with the next call, you can instead provide a value of 1.

FIGURE 10-9:
Haskell enables
you to process
data in unique
ways with little

code.

176 PART 3 Making Functional Programming Practical

As you might guess, Python doesn’t come with Maybe and Just installed.
However, you can add this functionality or rely on code that others have created.
The article at http://blog.senko.net/maybe-monad-in-python describes this
process and provides a link to a Maybe implementation that you can use with
Python. The PyMonad library found at https://pypi.org/project/PyMonad/
also includes all of the required features and is easy to use.

Understanding semigroups
The “Understanding monoids” section, earlier in this chapter, discusses three
rules that monoids must follow. Semigroups are like monoids except that they
have no identity requirement. Semigroups actually represent a final level of
abstraction, as discussed in the earlier sidebar, “Considering the math basis for
monoids and semigroups”. At this final level, things are as simple and flexible as
possible. Of course, sometimes you really do need to handle a situation in which
something is Nothing, and the identity rule aids in dealing with this issue. People
have differing opinions over the need for and usefulness of semigroups, as
shown in the discussion at https://stackoverflow.com/questions/40688352/
why-prefer-monoids-over-semigroups-in-haskell-why-do-we-need-mempty.
However, a good rule of thumb is to use the simplest abstraction when possible,
which would be semigroups whenever possible. To work with semigroups, you
must execute import Data.Semigroup.

You may wonder why you would use a semigroup when a monoid seems so much
more capable. An example of an object that must use a semigroup is a bounding
box. A bounding box can’t be empty; it must take up some space or it doesn’t exist
and therefore the accompanying object has no purpose. Another example of when
to use a semigroup is Data.List.NonEmpty (http://hackage.haskell.org/
package/base-4.11.1.0/docs/Data-List-NonEmpty.html), which is a list that
must always have at least one entry. Using a monoid in this case wouldn’t work.
The point is that semigroups have a definite place in creating robust code, and in
some cases, you actually open your code to error conditions by not using them.
Fortunately, semigroups work much the same as monoids, so if you know how to
use one, you know how to use the other.

Parameterizing Types
The “Considering type constructors and data constructors” section, earlier in this
chapter, shows you one example of a parameterized type in the form of the Name
type. In that section, you consider two kinds of constructions for the Name type
that essentially end in the same result. However, you need to use parameterized

http://blog.senko.net/maybe-monad-in-python
https://pypi.org/project/PyMonad/
https://stackoverflow.com/questions/40688352/why-prefer-monoids-over-semigroups-in-haskell-why-do-we-need-mempty
https://stackoverflow.com/questions/40688352/why-prefer-monoids-over-semigroups-in-haskell-why-do-we-need-mempty
http://hackage.haskell.org/package/base-4.11.1.0/docs/Data-List-NonEmpty.html
http://hackage.haskell.org/package/base-4.11.1.0/docs/Data-List-NonEmpty.html

CHAPTER 10 Dealing with Types 177

types at the right time. Parameterized types work best when the type acts as a sort
of box that could hold any sort of value. The Name type is pretty specific, so it’s not
the best type to parameterize because it really can’t accept just any kind of input.

A better example for parameterizing types would be to create a custom tuple that
accepts three inputs and provides the means to access each member using a spe-
cial function. It would be sort of an extension of the fst and snd functions pro-
vided by the default tuple. In addition, when creating a type of this sort, you want
to provide some sort of conversion feature to a default. Here is the code used for
this example:

data Triple a b c = Triple (a, b, c) deriving Show

fstT (Triple (a, b, c)) = show a
sndT (Triple (a, b, c)) = show b
thdT (Triple (a, b, c)) = show c

cvtToTuple (Triple (a, b, c)) = (a, b, c)

In this case, the type uses parameters to create a new value: a, b, and c represent
elements of any type. Consequently, this example starts with a real tuple, but of a
special kind, Triple. When you display the value using show, the output looks like
any other custom type.

The special functions enable you to access specific elements of the Triple. To
avoid name confusion, the example uses a similar, but different, naming strategy
of fstT, sndT, and thdT. Theoretically, you could use wildcard characters for each
of the nonessential inputs, but good reason exists to do so in this case.

Finally, cvtToTuple enables you to change a Triple back into a tuple with three
elements. The converted tuple has all the same functionality as a tuple that you
create any other way. The following test code lets you check the operation of the
type and associated functions:

x = Triple("Hello", 1, True)

show(x)
fstT(x)
sndT(x)
thdT(x)
show(cvtToTuple(x)))

178 PART 3 Making Functional Programming Practical

The outputs demonstrate that the type works as expected:

Triple ("Hello",1,True)
"Hello"
1
True
("Hello",1,True)

Unfortunately, there isn’t a Python equivalent of this code. You can mimic it, but
you must create a custom solution. The material at https://ioam.github.io/
param/Reference_Manual/param.html#parameterized-module and https://
stackoverflow.com/questions/46382170/how-can-i-create-my-own-
parameterized-type-in-python-like-optionalt is helpful, but this is one time
when you may want to rely on Haskell if this sort of task is critical for your
particular application and you don’t want to create a custom solution.

Dealing with Missing Data
In a perfect world, all data acquisition would result in complete records with
nothing missing and nothing wrong. However, in the real world, datasets often
contain a lot of missing data, and you’re often left wondering just how to address
the issue so that your analysis is correct, your application doesn’t crash, and no
one from the outside can corrupt your setup using something like a virus. The fol-
lowing sections don’t handle every possible missing-data issue, but they give you
an overview of what can go wrong as well as offer possible fixes for it.

Handling nulls
Different languages use different terms for the absence of a value. Python uses the
term None and Haskell uses the term Nothing. In both cases, the value indicates
an absence of an anticipated value. Often, the reasons for the missing data aren’t
evident. The issue is that the data is missing, which means that it’s not available
for use in analysis or other purposes. In some languages, the missing value can
cause crashes or open a doorway to viruses (see the upcoming “Null values, the
billion-dollar mistake” sidebar for more information).

When working with Haskell, you must provide a check for Nothing values, as
described in the “Considering the use of Maybe and Just” section, earlier in this
chapter. The goal is to ensure that the checks in place now that a good reason for
unchecked null values no longer exist. Of course, you must still write your code
proactively to handle the Nothing case (helped by the Haskell runtime that ensures
that functions receive proper values). The point is that Haskell doesn’t have an

https://ioam.github.io/param/Reference_Manual/param.html#parameterized-module
https://ioam.github.io/param/Reference_Manual/param.html#parameterized-module
https://stackoverflow.com/questions/46382170/how-can-i-create-my-own-parameterized-type-in-python-like-optionalt
https://stackoverflow.com/questions/46382170/how-can-i-create-my-own-parameterized-type-in-python-like-optionalt
https://stackoverflow.com/questions/46382170/how-can-i-create-my-own-parameterized-type-in-python-like-optionalt

CHAPTER 10 Dealing with Types 179

independent type that you can call upon as Nothing; the Nothing type is associ-
ated with each data type that requires it, which makes locating and handling null
values easier.

Python does include an individual null type called None, and you can assign it to a
variable. However, note that None is still an object in Python, although it’s not in
other languages. The variable still has an object assigned to it: the None object.
Because None is an object, you can check for it using is. In addition, because of the
nature of None, it tends to cause fewer crashes and leave fewer doors open to
nefarious individuals. Here is an example of using None:

x = None
if x is None:
 print("x is missing")

The output of this example is x is missing, as you might expect. You should also
note that Python lacks the concept of pointers, which is a huge cause of null values
in other languages. Someone will likely point out that you can also check for None
using x == None. This is a bad idea because you can override the == (equality) oper-
ator but you can’t override is, which means that using is provides a consistent
behavior. The discussion at https://stackoverflow.com/questions/3289601/
null-object-in-python provides all the details about the differences between
== and is and why you should always use is.

NULL VALUES, THE BILLION-DOLLAR
MISTAKE
Null values cause all sorts of havoc in modern-day applications. However, they were
actually started as a means of allowing applications to run faster on notoriously slow
equipment. The checks required to ensure that null values didn’t exist took time and
could cause applications to run absurdly slowly. Like most fixes for problems with
speed, this one comes with a high cost that continues to create problems such as open-
ing doors to viruses and causing a host of tough-to-locate data errors. The presentation
at https://www.infoq.com/presentations/Null-References-The-Billion-
Dollar-Mistake-Tony-Hoare calls null references a billion-dollar mistake. This pres-
entation that helps developers understand the history, and therefore the reasoning,
behind null values that are now a plague in modern application development.

https://stackoverflow.com/questions/3289601/null-object-in-python
https://stackoverflow.com/questions/3289601/null-object-in-python
https://www.infoq.com/presentations/Null-References-The-Billion-Dollar-Mistake-Tony-Hoare
https://www.infoq.com/presentations/Null-References-The-Billion-Dollar-Mistake-Tony-Hoare

180 PART 3 Making Functional Programming Practical

Performing data replacement
Missing and incorrect data present problems. Before you can do anything at all,
you must verify the dataset you use. Creating types (using the techniques found in
earlier sections in the chapter) that automatically verify their own data is a good
start. For example, you can create a type for bank balances that ensure that the
balance is never negative (unless you want to allow an overdraft). However, even
with the best type construction available, a dataset may contain unusable data
entries or some entries that don’t contain data at all. Consequently, you must per-
form verification of such issues as missing data and data that appears out of range.

After you find missing or incorrect data, you consider the ramifications of the
error. In most cases, you have the following three options:

»» Ignore the issue

»» Correct the entry

»» Delete the entry and associated elements

Ignoring the issue might cause the application to fail and will most certainly pro-
duce inaccurate results when the entry is critical for analysis. However, most
datasets contain superfluous entries — those that you can ignore unless you
require the amplifying information they provide.

Correcting the entry is time consuming in most cases because you must now
define a method of correction. Because you don’t know what caused the data error
in the first place, or the original data value, any correction you make will be flawed
to some extent. Some people use statistical measures (as described in the next
section) to make a correction that neither adds to nor detracts from the overall
statistical picture of the entries taken together. Unfortunately, even this approach
is flawed because the entry may have represented an important departure from
the norm.

Deleting the entry is fast and fixes the problem in a way that’s unlikely to cause
the application to crash. However, deleting the entry comes with the problem of
affecting any analysis you perform. In addition, deleting an entire row (case) from
a dataset means losing not only the corrected entry (the particular feature) but
also all the other entries in that row. Consequently, deletion of a row can cause
noticeable data damage in some cases.

Considering statistical measures
A statistical measure is one that relies on math to create some sort of overall or
average entry to use in place of a missing or incorrect entry. Depending on the
data in question and the manner in which you create types to support your

CHAPTER 10 Dealing with Types 181

application, you may be able to rely on statistical measures to fix at least some
problems in your dataset.

Statistical measures generally see use for only numeric data. For example, guess-
ing about the content of a string field would be impossible. If the analysis you per-
form on the string field involves a numeric measure such as length or frequency of
specific letters, you might use statistical measures to create a greeked text (essen-
tially nonsense text) replacement (see http://www.webdesignerstoolkit.com/
copy.php for details), but you can’t create the actual original text.

Some statistical corrections for missing or inaccurate data see more use than oth-
ers do. In fact, you can narrow the list of commonly used statistical measures
down to these:

»» Average (or mean): A calculation that involves adding all the values in a
column together and dividing by the number of items in that column. The
result is a number that is the average of all the numbers in the column. This is
the measure that is least likely to affect your analysis.

»» Median: The middle value of a series of numbers. This value is not necessarily
an average but is simply a middle value. For example, in the series 1, 2, 4, 4, 5,
the value 4 is the median because it appears in the middle of the set. The
average (or mean) would be 3.2 instead. This is the measure that is most likely
to represent the middle value and generally affects the analysis only slightly.

»» Most common (mode): The number that appears most often in a series, even
if the value is at either end of the scale. For example, in the series 1, 1, 1, 2, 4,
5, 6, the mode is 1, the average is 2.8, and the median is 2. This is the measure
that reflects the value that has the highest probability of being correct, even if
it affects your analysis significantly.

As you can see, using the right statistical measure is important. Of course, there
are many other statistical measures, and you may find that one of them fits your
data better. A technique that you can use to ensure that especially critical values
are the most accurate possible is to plot the data to see what shape it creates and
then use a statistical measure based on shape.

Creating and Using Type Classes
Haskell has plenty of type classes. In fact, you use them several times in this
chapter. The most common type classes include Eq, Ord, Show, Read, Enum,
Bounded, Num, Integral, and Floating. The name type class confuses a great many
people — especially those with an Object-Oriented Programming (OOP) background.

http://www.webdesignerstoolkit.com/copy.php
http://www.webdesignerstoolkit.com/copy.php
http://www.webdesignerstoolkit.com/copy.php

182 PART 3 Making Functional Programming Practical

In addition, some people confuse type classes and types such as Int, Float, Double,
Bool, and Char. Perhaps the best way to view a type class is as a kind of interface in
which you describe what to do but not how to do it. You can’t use a type class directly;
rather, you derive from it. The following example shows how to use a type class
named Equal:

class Equal a where (##) :: a -> a -> Bool

data MyNum = I Int deriving Show
instance Equal MyNum where
 (I i1) ## (I i2) = i1 == i2

In this case, Equal defines the ## operator, which Haskell doesn’t actually use.
Equal accepts two values of any type, but of the same types (as defined by a) and
outputs a Bool. However, other than these facts, Equal has no implementation.

MyNum, a type, defines I as accepting a single Int value. It derives from the com-
mon type class, Show, and then implements an instance of Equal. When creating
your own type class, you must create an implementation for it in any type that will
use it. In this case, Equal simply checks the equality of two variables of type
MyNum. You can use the following code to test the result:

x = I 5
y = I 5
z = I 6

x ## y
x ## z

In the first case, the comparison between x and y, you get True as the output. In
the second case, the comparison of x and z, you get False as the output. Type
classes provide an effective means of creating common methods of extending
basic type functionality. Of course, the implementation of the type class depends
on the needs of the deriving type.

4Interacting in
Various Ways

IN THIS PART . . .

Interact with users and networks.

Read and use command-line data.

Create, read, update, and delete text files.

Define and use binary files.

Import and use datasets.

CHAPTER 11 Performing Basic I/O 185

Chapter 11
Performing Basic I/O

To be useful, most applications must perform some level of Input/Output
(I/O). Interaction with the world outside the application enables the appli-
cation to receive data (input) and provide the results of any operations per-

formed on that data (output). Without this interaction, the application is
self-contained, and although it could conceivably perform work, that work would
be useless. Any language that you use to create a useful application must support
I/O. However, I/O would seem to be counter to the functional programming para-
digm because most languages implement it as a procedure — a process. But func-
tional languages implement I/O differently from other languages; they use it as a
pure function. The goal is to implement I/O without side effects, not to keep I/O
from occurring. The first part of this chapter discusses how I/O works in the func-
tional programming paradigm.

After you know how the I/O process works, you need some means of managing the
data. This chapter begins by looking at the first kind of I/O that most applications
perform, data input, and then reviews data output. You discover how the func-
tional programming paradigm makes I/O work without the usual side effects. This
first part also discusses some differences in device interactions.

Jupyter Notebook offers magic functions that make working with I/O easier. This
chapter also looks at the features provided by magic functions when you’re work-
ing Python. Because Jupyter Notebook provides support for a long list of lan-
guages, you may eventually be able to use magic functions with Haskell as well.

IN THIS CHAPTER

»» Understanding the relationship
between I/O and functional
programming

»» Managing data

»» Exploring the Jupyter Notebook
magic functions

»» Performing I/O-related tasks

186 PART 4 Interacting in Various Ways

The final part of this chapter puts together everything you’ve discovered about I/O
in the functional programming paradigm. You see how Haskell and Python handle
the task in both pure and impure ways. Performing I/O and programming in a
functional way aren’t mutually exclusive, and no one is breaking the rules to make
it happen. However, each language has a slightly different approach to the issue,
so a good understanding of each approach is important.

Understanding the Essentials of I/O
Previous chapters discuss the essentials of the functional programming paradigm.
Some of these issues are mechanical, such as the immutability of data. In fact,
some would argue that these issues aren’t important — that only the use of pure
functions is important. The various coding examples and explanations in those
previous chapters tend to argue otherwise, but for now, consider only the need to
perform I/O using pure functions that produce no side effects. In some respects,
that really isn’t possible. (Some people say it is, but the proof is often lacking.)
The following sections discuss I/O from a functional perspective and help you
understand the various sides of the argument over whether performing I/O using
pure functions is possible.

Understanding I/O side effects
An essential argument that many people make regarding I/O side effects is actu-
ally quite straightforward. When you create a function in a functional language
and apply specific inputs, you receive the same answer every time, as long as
those inputs remain the same. For example, if you calculate the square root of 4
and then make the same call 99 more times, you receive the answer 2 every time.
In fact, a language optimizer would do well to simply cache the result, rather than
perform the calculation, to save time.

However, if you make a call to query the user for input, you receive a certain
result. Making the same call, with the same query, 99 more times may not always
produce the same result. For example, if you pose the question “What is your
name?” the response will differ according to user. In fact, the same user could
answer differently by providing a full name one time and only a first name another.
The fact that the function call potentially produces a different result with each call
is a side effect. Even though the developer meant for the side effect to occur, from
the definitions of the functional programming paradigm in past chapters, I/O
produces a side effect in this case.

The situation becomes worse when you consider output. For example, when a
function makes a query to the user by outputting text to the console, it has changed

CHAPTER 11 Performing Basic I/O 187

the state of the system. The state is permanently changed because returning the
system to its previous state is not possible. Even removing the characters would
mean making a subsequent change.

Unfortunately, because I/O is a real-world event, you can’t depend on the occur-
rence of the activity that you specify. When you calculate the square root of 4, you
always receive 2 because you can perform the task as a pure function. However,
when you ask the user for a name, you can’t be sure that the user will supply a
name; the user might simply press Enter and present you with nothing. Because
I/O is a real-world event with real-world consequences, even functional lan-
guages must supply some means of dealing with the unexpected, which may mean
exceptions — yet another side effect.

Many languages also support performing I/O separately from the main applica-
tion thread so that the application can remain responsive. The act of creating a
thread changes the system state. Again, creating a thread is another sort of side
effect that you must consider when performing I/O. You need to deal with issues
such as the system’s incapability to support another thread or knowing whether
any other problems arose with the thread. The application may need to allow
inter-thread communication, as well as communication designed to ascertain
thread status, all of which requires changing application state.

This section could continue detailing potential side effects because myriad side
effects are caused by I/O, even successful I/O. Functional languages make a clear
distinction between pure functions used to perform calculations and other inter-
nal tasks and I/O used to affect the outside world. The use of I/O in any application
can potentially cause these problems:

»» No actual divide: Any function can perform I/O when needed. So the
theoretical divide between pure functions and I/O may not be as solid as
you think.

»» Monolithic: Because I/O occurs in a sequence (you can’t obtain the next
answer from a user before you obtain the current answer), the resulting code
is monolithic and tends to break easily. In addition, you can’t cache the result
of an I/O; the application must perform the call each time, which means that
optimizing I/O isn’t easy.

»» Testing: All sorts of issues affect I/O. For example, an environmental condi-
tion (such as lightning) that exists now and causes an I/O to fail may not exist
five minutes from now.

»» Scaling: Because I/O changes system state and interacts with the real world,
the associated code must continue executing in the same environment. If the
system load suddenly changes, the code will slow as well because scaling the
code to use other resources isn’t possible.

188 PART 4 Interacting in Various Ways

The one way you have to overcome these problems in a functional environment is
to ensure that all the functions that perform I/O remain separate from those that
perform calculations. Yes, the language you use may allow the mixing and match-
ing of I/O and calculations, but the only true way around many of these problems
is to enforce policies that ensure that the tasks remain separate.

Using monads for I/O
The “Understanding monoids” section of Chapter 10 discusses monads and their
use, including strings. Interestingly enough, the IO class in Haskell, which pro-
vides all the I/O functionality, is a kind of monad, as described at https://
hackage.haskell.org/package/base-4.11.1.0/docs/System-IO.html. Of course,
this sounds rather odd, but it’s a fact. Given what you know about monads, you need
to wonder what the two objects are and what the operator is. In looking down the list
of functions for the IO class, you discover that IO is the operator. The two objects are
a handle and the associated data.

A handle is a method for accessing a device. Some handles, such as stderr, stdin,
and stdout, are standard for the system, and you don’t need to do anything spe-
cial to use them. For both Python and Haskell, these standard handles point to the
keyboard for stdin and the display (console) for stdout and stderr. Other han-
dles are unique to the destination, such as a file on the local drive. You must first
acquire the handle (including providing a description of how you plan to use it)
and then add it to any call you make.

Interacting with the user
The concept of using a monad for I/O has some ramifications that actually make
Haskell I/O easier to understand, despite its being essentially the same as any
other I/O you might have used. When performing input using getLine, what you
really do is combine the stdin handle with the data the user provides using the IO
operator. Yes, it’s the same thing you do with the Python input method, but the
underlying explanation for the action is different in the two cases; when working
with Python, you’re viewing the task as a procedure, not as a function. To see how
this works, type :t getLine and press Enter. You see that the type of getLine
(a function) is IO String. Likewise, type :t putStrLn and press Enter, and you
see that the type of putStrLn is String -> IO (). However, when you use the
following code:

putStrLn "What is your name?"
name <- getLine
putStrLn $ "Hello " ++ name

https://hackage.haskell.org/package/base-4.11.1.0/docs/System-IO.html
https://hackage.haskell.org/package/base-4.11.1.0/docs/System-IO.html

CHAPTER 11 Performing Basic I/O 189

you obtain the same result as you might expect from any programming language.
Only the manner in which you review the action differs, not the actual result of the
action, as shown in Figure 11-1.

Notice that you must use the apply operator ($) to the second putStrLn call
because you need to apply the result of the monad "Hello " ++ name (with ++ as
the operator) to putStrLn. Otherwise, Haskell will complain that it was expecting
a [char]. You could also use putStrLn ("Hello " ++ name) in place of the apply
operator.

Working with devices
Always remember that humans interact with devices — not code, not applica-
tions, and not actually with data. You could probably come up with a lot of differ-
ent ways to view devices, but the following list provides a quick overview of the
essential device types:

»» Host: The host device is the system on which the application runs. Most
languages support standard inputs and outputs for the host device that don’t
require any special handling.

»» Input: Anything external to the host can provide input. In this case, external
to the host means anything outside the localized processing environment,
including hard drives housed within the same physical structure as the
motherboard that supports the host. However, inputs can come from
anywhere, including devices such as external cameras from a security
system.

FIGURE 11-1:
Interacting with
the user implies

using monads
with an operator

of IO.

190 PART 4 Interacting in Various Ways

»» Output: An output device can be anything, including a hard drive within the
same physical case as the host. However, outputs also include physical
devices outside the host case. For example, sending a specific value to a robot
may create a thousand widgets. The I/O has a distinct effect on the outside
world outside the realm of the host device.

»» Cloud: A cloud device is one that doesn’t necessarily have physicality. The
device could be anywhere. Even if the device must have a physical presence
(such as a hard drive owned by a host organization), you may not know where
the device is located and likely don’t even care. People are using more and
more cloud devices for everything from data storage to website hosting, so
you’re almost certain to deal with some sort of cloud environment.

All the I/O that you perform with a programming language implies access to a
device, even when working with a host device. For example, when working with
Haskell, the hPutStrLn and putStrLn lines of code that follow are identical in
effect (note that you must import System.IO before you can perform this task):

import System.IO as IO
hPutStrLn stdout "Hello there!"
putStrLn "Hello there!"

The inclusion of stdout in the first call to hPutStrLn simply repeats what
putStrLn does without an explicit handle. However, in both cases, you do need a
handle to a device, which is the host in this case. Because the handle is standard,
you don’t need to obtain one.

Getting a handle for a local device is relatively easy. The following code shows a
three-step process for writing to a file:

import System.IO as IO
handle <- openFile "MyData.txt" WriteMode
hPutStrLn handle "This is some test data."
hClose handle

When calling openFile, you again use the IO operator. This time, the two objects
are the file path and the I/O mode. The output, when accessing a file successfully,
is the I/O handle. Haskell doesn’t use the term file handle as other languages
do because the handle need not necessarily point to a file. As always, you can use
:t openFile to see the definition for this function. When you don’t supply a des-
tination directory, GHCi resorts to using whatever directory you have assigned for
loading files. Here is the code used to read the content from the file:

CHAPTER 11 Performing Basic I/O 191

import System.IO as IO
handle <- openFile "MyData.txt" ReadMode
myData <- hGetLine handle
hClose handle
putStrLn myData

This chapter doesn’t fully explore everything you can do with various I/O
methodologies in Haskell. For example, you can avoid getting a handle to read and
write files by using the readFile, writeFile, and appendFile functions. These
three functions actually reduce the three-step process into a single step, but the
same steps occur in the background. Haskell does support the full range of device-
oriented functions for I/O found in other languages.

Manipulating I/O Data
This chapter doesn’t discuss all the ins and outs of data manipulation for I/O pur-
poses, but it does give you a quick overview of some issues. One of the more
important issues is that both Haskell and Python tend to deal with string or char-
acter output, not other data types. Consequently, you must convert all data you
want to output to a string or a character. Likewise, when you read the data from
the source, you must convert it back to its original form. A call, such as
appendFile "MyData.txt" 2, simply won’t work. The need to work with a spe-
cific data type contrasts to other operations you can perform with functional lan-
guages, which often assume acceptance of any data type. When creating functions
to output data, you need to be aware of the conversion requirement because some-
times the error messages provided by the various functional languages are less
than clear as to the cause of the problem.

Another issue is the actual method used to communicate with the outside world.
For example, when working with files, you need to consider character encoding (the
physical representation of the characters within the file, such as the number of
bits used for each character). Both Haskell and Python support a broad range of
encoding types, including the various Unicode Transformation Format (UTF)
standards described at https://www.w3.org/People/danield/unic/unitra.
htm. When working with text, you also need to consider issues such as the method
used to indicate the end of the line. Some systems use both a carriage return and
line feed; others don’t.

https://www.w3.org/People/danield/unic/unitra.htm
https://www.w3.org/People/danield/unic/unitra.htm

192 PART 4 Interacting in Various Ways

Devices may also require the use of special commands or headers to alert the
device to the need to communicate and establish the communication methods.
Neither Haskell nor Python has these sorts of needs built into the language, so you
must either create your own solution or rely on a third-party library. Likewise,
when working with the cloud, you often must provide the data in a specific format
and include headers to describe how to communicate and with which service to
communicate (among other things).

The reason for considering all these issues before you try to communicate is that
a large number of online help messages deal with these sorts of issues. The lan-
guage works as intended in producing output or attempting to receive input, but
the communication doesn’t work because of the lack of communication protocol (a
set of mutually acceptable rules). Unfortunately, the rules are so diverse and some
so arcane as to defy any sort of explanation in a single book. Make sure to keep in
mind that communication is often a lot more than simply sending or receiving
data, even in a functional language in which some things seem to happen
magically.

Using the Jupyter Notebook
Magic Functions

Python can make your I/O experience easier when you work with specific tools,
which is the point of this section. Notebook and its counterpart, IPython, provide
you with some special functionality in the form of magic functions. It’s kind of
amazing to think that these applications offer you magic, but that’s precisely
what you get with the magic functions. The magic is in the output. For example,
instead of displaying graphic output in a separate window, you can choose to dis-
play it within the cell, as if by magic (because the cells appear to hold only text).
Or you can use magic to check the performance of your application, and do so
without all the usual added code that such performance checks require.

A magic function begins with either a percent sign (%) or double percent sign
(%%). Those with a % sign work within the environment, and those with a %%
sign work at the cell level. For example, if you want to obtain a list of magic func-
tions, type %lsmagic and then press Enter in IPython (or run the command in
Notebook) to see them, as shown in Figure 11-2. (Note that IPython uses the same
input, In, and output, Out, prompts that Notebook uses.)

Not every magic function works with IPython. For example, the %autosave func-
tion has no purpose in IPython because IPython doesn’t automatically save
anything.

CHAPTER 11 Performing Basic I/O 193

Table 11-1 lists a few of the most common magic functions and their purpose. To
obtain a full listing, type %quickref and press Enter in Notebook (or the IPython
console) or check out the full listing at https://damontallen.github.io/
IPython-quick-ref-sheets/.

FIGURE 11-2:
The %lsmagic

function displays
a list of magic

functions for you.

TABLE 11-1	 Common Notebook and IPython Magic Functions

Magic Function
Type Alone
Provides Status? Description

%alias Yes Assigns or displays an alias for a system command.

%autocall Yes Enables you to call functions without including the parentheses.
The settings are Off, Smart (default), and Full. The Smart setting
applies the parentheses only if you include an argument with
the call.

%automagic Yes Enables you to call the line magic functions without including the
percent (%) sign. The settings are False (default) and True.

%autosave Yes Displays or modifies the intervals between automatic Notebook
saves. The default setting is every 120 seconds.

%cd Yes Changes directory to a new storage location. You can also use this
command to move through the directory history or to change
directories to a bookmark.

%cls No Clears the screen.

%colors No Specifies the colors used to display text associated with prompts,
the information system, and exception handlers. You can choose
between NoColor (black and white), Linux (default), and LightBG.

%config Yes Enables you to configure IPython.

%dhist Yes Displays a list of directories visited during the current session.

(continued)

https://damontallen.github.io/IPython-quick-ref-sheets/
https://damontallen.github.io/IPython-quick-ref-sheets/

194 PART 4 Interacting in Various Ways

Magic Function
Type Alone
Provides Status? Description

%file No Outputs the name of the file that contains the source code for the
object.

%hist Yes Displays a list of magic function commands issued during the
current session.

%install_ext No Installs the specified extension.

%load No Loads application code from another source, such as an online
example.

%load_ext No Loads a Python extension using its module name.

%lsmagic Yes Displays a list of the currently available magic functions.

%magic Yes Displays a help screen showing information about the magic
functions.

%matplotlib Yes Sets the back-end processor used for plots. Using the inline value
displays the plot within the cell for an IPython Notebook file. The
possible values are: ’gtk’, ‘gtk3’, ‘inline’, ‘nbagg’, ‘osx’, ‘qt’, ‘qt4’, ‘qt5’,
‘tk’, and ‘wx’.

%paste No Pastes the content of the Clipboard into the IPython environment.

%pdef No Shows how to call the object (assuming that the object is callable).

%pdoc No Displays the docstring for an object.

%pinfo No Displays detailed information about the object (often more than
provided by help alone).

%pinfo2 No Displays extra detailed information about the object (when
available).

%reload_ext No Reloads a previously installed extension.

%source No Displays the source code for the object (assuming that the source
is available).

%timeit No Calculates the best performance time for an instruction.

%%timeit No Calculates the best performance time for all the instructions in a
cell, apart from the one placed on the same cell line as the cell
magic (which could therefore be an initialization instruction).

%unalias No Removes a previously created alias from the list.

%unload_ext No Unloads the specified extension.

%%writefile No Writes the contents of a cell to the specified file.

TABLE 11-1 (continued)

CHAPTER 11 Performing Basic I/O 195

Receiving and Sending I/O with Haskell
Now that you have a better idea of how I/O in the functional realm works, you can
find out a few additional tricks to use to make I/O easier. The following sections
deal specifically with Haskell because the I/O provided with Python follows the
more traditional procedural approach (except in the use of things like lambda
functions, which already appear in previous chapters).

Using monad sequencing
Monad sequencing helps you create better-looking code by enabling you to combine
functions into a procedure-like entity. The goal is to create an environment in
which you can combine functions in a manner that makes sense, yet doesn’t nec-
essarily break the functional programming paradigm rules. Haskell supports two
kinds of monad sequencing: without value passing and with value passing. Here is
an example of monad sequencing without value passing:

name <- putStr "Enter your name: " >> getLine
putStrLn $ "Hello " ++ name

In this case, the code creates a prompt, displays it onscreen, obtains input from
the user, and places that input into name. Notice the monad sequencing operator
(>>) between the two functions. The assignment operator works only with output
values, so name contains only the result of the call to getLine. The second line
demonstrates this fact by showing the content of name.

You can also create monad sequencing that includes value passing. In this case,
the direction of travel is from left to right. The following code shows a function
that calls getLine and then passes the result of that call to putStrLn.

echo = getLine >>= putStrLn

To use this function, type echo and press Enter. Anything you type as input echoes
as output. Figure 11-3 shows the results of these calls.

Employing monad functions
Because Haskell views I/O as a kind of monad, you also gain access to all the
monad functions found at http://hackage.haskell.org/package/base-
4.11.1.0/docs/Control-Monad.html. Most of these functions don’t appear par-
ticularly useful until you start using them together. For example, say that you

http://hackage.haskell.org/package/base-4.11.1.0/docs/Control-Monad.html
http://hackage.haskell.org/package/base-4.11.1.0/docs/Control-Monad.html

196 PART 4 Interacting in Various Ways

need to replicate a particular string a number of times. You could use the following
code to do it:

sequence_ (replicate 10 (putStrLn "Hello"))

The call to sequence_ (with an underscore) causes Haskell to evaluate the sequence
of monadic actions from left to right and to discard the result. The replicate
function performs a task repetitively a set number of times. Finally, putStrLn
outputs a string to stdout. Put it all together and you see the result shown in
Figure 11-4.

FIGURE 11-4:
Use monad

functions
to achieve

specific results
using little code.

FIGURE 11-3:
Monad

sequencing
makes combining
monad functions

in specific ways
easier.

CHAPTER 12 Handling the Command Line 197

Chapter 12
Handling the
Command Line

Working at the command line may seem mildly old fashioned in a world
of GUI applications that can perform amazing tricks. However, most
developers and administrators know differently. Many of the tools in

use today still rely on the command line because it provides a relatively simple,
straightforward, and efficient method of interacting with an application. Of
course, working at the command line has downsides, too. The most easily under-
stood price of using the command line pertains to ease of use. Anyone who has
used the command line extensively knows that it’s all too easy to forget command
line switches, data inputs, and other required information that a GUI would nor-
mally supply as part of a menu entry or form. This chapter begins by discussing
methods to make the command line a bit easier to work with.

From the user perspective, remembering arcane command-line syntax is one of
the negatives of using the command line. From the developer perspective, finding
effective ways to separate the various bits of input and turn them into useful
application arguments can sometimes be harder still. The problem for the devel-
oper is one of creating an effective interface that provides great flexibility and is
forgiving of errant user input (whenever possible). The next part of this chapter
talks about using libraries to make working with the command line easier.

IN THIS CHAPTER

»» Obtaining command-line input

»» Working with individual values

»» Performing command-line tasks

198 PART 4 Interacting in Various Ways

Getting Input from the Command Line
When users interact with an application that you create at the command line, they
the command line to provide a flexible, simple interface with a certain amount of
assistance and robust error detection. Unfortunately, these expectations can be
hard to meet, especially that of robust error detection. Trying to create robust
command-line error detection can help you better understand the issues faced by
people who write compilers because you suddenly face the vagaries of turning text
into useful tokens. The following sections help you get started at the command
line with a focus on achieving the user goals for application use.

Automating the command line
Even though you see lots of online tutorials that demonstrate utility-type applica-
tions used manually, many people simply don’t have time or the inclination to
type everything manually every time they need a particular application. One of the
best features of command-line utilities is that you can automate them in various
ways, such as by using batch processing. To automate a command-line utility, you
must provide it with a complete set of commands accessible with switches.

The most common switches in use today begin with a slash (/), dash (-), or double
dash (--). For example, typing MyApp -h could display a help screen for your appli-
cation. In many cases, the command-line switch is followed by data required to
execute the command. The data can be optional or required. For example, MyApp -h
Topic could display specific help about Topic, rather than more generalized help.

Considering the use of prompts
Application developers often feel that adding prompts to the application makes it
friendlier. In some respects, adding prompts to ask the user for additional informa-
tion is better than providing an error message or an error output. However, the use
of prompts can also interfere with automation because a batch process won’t know
what to do with a prompt. Consequently, you must consider the balance between
user friendliness and the need to automate when creating a command-line utility.
Most people use one of these options when designing their application:

»» Avoid using prompts or error messages at all and always provide an error
code that is testable in a batch process.

»» Use a combination of error messages and error codes to convey the need for
additional information without resorting to prompts.

CHAPTER 12 Handling the Command Line 199

»» Provide a special command-line switch to turn prompts on or off and then
rely on one of the first two options in this list when the prompts are off.

»» Employ timed prompts that give the user a specific timeframe in which to
respond to queries. A command-line switch can set the interval for displaying
the prompt. The application then relies on one of the first two options in this
list when the response time expires.

»» Try to obtain the required information using a prompt first, and then rely on a
combination of an error message and error code when the user fails to
provide the required information on request.

»» Use prompts only, and never provide an error output that could cause
potential environmental issues. On failure, the task simply remains undone.

The choice you make depends on the task your utility performs and on what the user
expects from it. For example, a utility that displays the time without doing much else
might use the last item on the list without a problem because displaying the time is
hardly consequential in most cases. On the other hand, if your utility is performing
required analysis of input before the next utility uses the information to configure
a set of robotic workers, the first or second option in the list might be better.

Using the command line effectively
A command line utility will interact with the user in a manner that contrasts with
a GUI application of the same sort. When working with a GUI, the user has visual
aids to understand the relationships among commands. Even if the required com-
mand exists several layers down in the menu structure or on a pop-up form, its
relationship to other commands is visual. For example, to open a file, you may use
the File ➪ Open command in a GUI, which requires two mouse clicks, one for each
menu level. The speed obtained from using a command-line utility stems partly
from not having to deal with a visual interface, thereby letting you access any
command at any time without having to delve into the interface at all. Instead of
using a File ➪ Open command, you may simply specify the filename on the com-
mand line, such as MyApp MyFile. In addition, command-line utilities allow add-
ing all the commands you want to execute as part of a single command line,
making command-line utilities incredibly efficient. For example, say that you
want to print the file after you open it. Using a GUI, you might need four mouse
clicks: File ➪ Open, followed by File ➪ Print. A command-line utility needs just one
command, MyApp /p MyFile, where /p is the print switch. Consequently, you
must design your command line with the need for brevity and efficiency in mind.

Because users have bad memories, you must provide help with your command-
line utility, and convention dictates using the h command-line switch for this
purpose. Of course, you precede the h with whatever special symbol you use to

200 PART 4 Interacting in Various Ways

designate a command, such as /h, -h, or --h. In addition, most developers allow
you to use the question mark (?) to provide access to general help.

A problem with the help provided with most command-line utilities is that com-
plex utilities often try to answer every question by using a single help screen that
goes on for several pages. In some cases, the help screen is so large that it actually
scrolls right off the screen buffer, so the developer often tries to solve the problem
by adding paging to the help screen. A better option is to provide a general page of
help topics and then augment help using individual, short screens for each topic.

Accessing the Command Line in Haskell
The operating system makes certain kinds of information available to applications,
such as the command line and environment variable, no matter which language
you use to create the applications. Of course, the language must also make access to
the information available, but no language is likely to hide the required access
because hackers would figure out how to access it anyway. However, it’s not always
best to use the native information directly. The following sections help you decide
how to provide access to command-line arguments in your Haskell application.

Using the Haskell environment directly
Haskell provides access to the operating system environment, including the
command-line arguments, in a number of ways. Even though you can find a
number of detailed tutorials online, such as the one found at https://wiki.
haskell.org/Tutorials/Programming_Haskell/Argument_handling, the pro-
cess is actually easier than you might initially think. To set the arguments used for
this section, simply type :set args Arg1 Arg2 and press Enter. You can remove
command line arguments using the :unset command.

To access the command-line arguments, you type import System.Environment as
Se and press Enter. System.Environment contains the same sorts of functions
found in other languages, as described at http://hackage.haskell.org/
package/base-4.11.1.0/docs/System-Environment.html. For this example,
you use only getArgs. To see the arguments you just provided, you can type
getArgs and press Enter. You see a list containing the two arguments.

Obtaining a list of arguments means that you can process them using any of
the list methods found earlier in this book and online. However, Chapter 11 also
shows how to use monad sequencing, which works fine in this case by using the
following code:

https://wiki.haskell.org/Tutorials/Programming_Haskell/Argument_handling
https://wiki.haskell.org/Tutorials/Programming_Haskell/Argument_handling
http://hackage.haskell.org/package/base-4.11.1.0/docs/System-Environment.html
http://hackage.haskell.org/package/base-4.11.1.0/docs/System-Environment.html

CHAPTER 12 Handling the Command Line 201

getArgs >>= mapM_ putStrLn

The output you see is each of the arguments displayed separately, one on each
line, as shown in Figure 12-1. Of course, you could just as easily use a custom
function to process the arguments in place of putStrLn. The tutorial at https://
wiki.haskell.org/Tutorials/Programming_Haskell/Argument_handling
gives you a better idea of how to use this approach with a custom parser.

When using the downloadable source for these examples, you still need to provide
a command-line argument. However, using the :set command won’t help.
Instead, you need to type :main Arg1 Arg2 and press Enter to get the same result
after loading the code. Likewise, when working through the CmdArgs example
found in the “Getting a simple command line in Haskell,” later in this chapter,
you type :main --username=Sam (with two dashes) and press Enter to obtain the
correct result.

Making sense of the variety of packages
Haskell lacks any sort of command-line processing other than the native capabil-
ity described in the previous section. However, you can find a wide variety of pack-
ages that provide various kinds of command-line argument processing on the
Command Line Option Parsers page at https://wiki.haskell.org/
Command_line_option_parsers. As mentioned on the page, the two current favor-
ites are CmdArgs and optparse-applicative. This book uses the CmdArgs option
(http://hackage.haskell.org/package/cmdargs) because it provides the sim-
plest command-line parsing, but working with the other packages is similar.

FIGURE 12-1:
Haskell provides

native techniques
for accessing

command line
arguments.

https://wiki.haskell.org/Tutorials/Programming_Haskell/Argument_handling
https://wiki.haskell.org/Tutorials/Programming_Haskell/Argument_handling
https://wiki.haskell.org/Command_line_option_parsers
https://wiki.haskell.org/Command_line_option_parsers
http://hackage.haskell.org/package/cmdargs

202 PART 4 Interacting in Various Ways

If you need extensive command-line processing functionality, optparse-applicative
(http://hackage.haskell.org/package/optparse-applicative) may be a bet-
ter option, but it does come with some substantial coding requirements.

The multi-mode column on the Command Line Option Parsers page simply tells
you how the Cabal (the Haskell installer) package is put together. Using a multi-
mode package is more convenient because you need only one library to do every-
thing, but many people go with the Linux principle of having a single task assigned
to each library so that the library can do one thing and do it well.

Of more importance are the extensions and remarks columns for each package
that appear on the Command Line Option Parsers page. The extensions describe
the kinds of support that the package provides. For example, optparse-applicative
supports the General Algebraic Datatypes (GADT) provided by Haskell (as described
at https://en.wikibooks.org/wiki/Haskell/GADT). CmdArgs provides an
extensive list of extensions, only three of which appear in the table. The remarks
tell you about potential package issues, such as the lack of specific error messages
for the Applicative Functor in optparse-applicative. The unsafePerformIO refer-
ence for CmdArgs refers to the method used to process code with side effects as
described at http://hackage.haskell.org/package/base-4.11.1.0/docs/System-
IO-Unsafe.html.

Obtaining CmdArgs
Before you can use CmdArgs, you must install it. The easiest way to do this is to
open a command or terminal window on your system, type cabal update, and
press Enter. This command ensures that you have the latest package list. After the
update, type cabal install cmdargs and press Enter. Cabal will display a list of
installation steps. Figure 12-2 shows the output you see in most cases.

FIGURE 12-2:
Install optparse-

applicative before
you use it.

http://hackage.haskell.org/package/optparse-applicative
https://en.wikibooks.org/wiki/Haskell/GADT
http://hackage.haskell.org/package/base-4.11.1.0/docs/System-IO-Unsafe.html
http://hackage.haskell.org/package/base-4.11.1.0/docs/System-IO-Unsafe.html

CHAPTER 12 Handling the Command Line 203

When working with CmdArgs, you also see references to DeriveDataTypeable,
which you can add to the top of your executable code by typing {-# LANGUAGE
DeriveDataTypeable #-}. However, when working in the WinGHCi interpreter,
you need to do something a bit different, as described in the following steps:

1.	 Choose File ➪ Options.

You see the dialog box shown in Figure 12-3.

2.	 Add -XDeriveDataTypeable to the GHCi Startup field.

This option adds the required support to your interpreter. Don’t remove any
other command-line switches that you find in the field.

3.	 Restart the interpreter.

You’re ready to use CmdArgs.

FIGURE 12-3:
Add Derive-

DataTypeable
support to your

interpreter.

OVERCOMING THE CABAL UPDATE ERROR
You may encounter an update error when attempting to update Cabal using cabal
update. In this case, you can try cabal --http-transport=plain-http update
instead. The problem is that Cabal is unable to resolve error messages from some sites.

204 PART 4 Interacting in Various Ways

Getting a simple command line in Haskell
Using a third-party library rather than cooking your own command-line parser
has some specific advantages, depending on the library you use. This section dis-
cusses a minimum sort of command line, but you can use the information to make
something more extensive. Before you can do anything, you need to add CmdArgs
support to your application by typing import System.Console.CmdArgs as Ca and
pressing Enter. You also need to set an argument for testing by typing :set args
--username=Sam and pressing Enter. Make sure that you have no spaces in the
argument and that you use two dashes, not one. Now that you have the support
included, you can use the following code to create a test scenario.

data Greet = Greet {username :: String} deriving (Show,
 Data, Typeable)
sayHello = Greet {username = def}
print =<< cmdArgs sayHello

Chapter 10 tells you about data types. In this case, you create the Greet data type
that provides access to a single argument, username, of type String. The next step
is to create a variable of type Greet named sayHello. This is actually a kind of
template that provides access to username using the default (def) arguments. The
final line obtains the command-line argument using cmdArgs and formats any
--name argument using the sayHello template. In this case, the output is Greet
{name = "Sam"}. Notice the use of monad sequencing (=<<) to obtain the value
from the command line and send it to print.

You’ll want to do more than simply print the command line, which means access-
ing the values in some way. Chapter 10 showed how to perform a conversion of a
custom type to a standard type using the cvtToTuple function. This example per-
forms a similar conversion using the following code:

cvtToName (Greet {username=a}) = a
theName <- cmdArgs sayHello
putStrLn ("Hello " ++ (cvtToName theName))

The cvtToName function accepts a Greet object with a name and returns the string
value that it contains. When you compare this function with cvtToTuple in the
“Parameterizing Types” section of Chapter 10, you see that they’re much alike in
pattern.

The next line may be a bit of a puzzle at first until you try typing :t (cmdArgs
sayHello) and pressing Enter. The result is (cmdArgs sayHello) :: IO Greet,
which isn’t a Greet type, but rather an IO Greet type. Be sure to remember that
Haskell relies on monads for I/O, as described in Chapter 11; a common mistake is
to forget that you must deal with the results of using the IO operator to obtain

CHAPTER 12 Handling the Command Line 205

access to the command-line arguments. When you obtain the type of theName,
you find that it’s of type Greet, which is precisely what you need as input to
cvtToName.

The final line of code shows the complete conversion and output to screen using
putStrLn. You could use this technique to obtain the value for any purpose. The
CmdArgs main page shows you considerably more about displaying help informa-
tion in various ways using the library. For example, it comes with --help and
--version command-line switches by default.

Accessing the Command Line in Python
The Python command line is more traditional in most respects. As previously
stated, it does make use of the functionality supplied by the operating system, as
does every other language around, to obtain the command line. However, Python
provides two forms of built-in support, with the Argparse library being favored
for complex command-line management.

The following sections give you a brief overview of the Python approach. Because
Jupyter Notebook doesn’t provide a convenient method of adding arguments
to the command line, you need to rely on the Python interpreter instead. To
access the Python interpreter, open the Anaconda Prompt (choose Start ➪ All
Programs ➪ Anaconda3 on Windows systems and find it in the Anaconda3 folder).

Using the Python environment directly
The native Python command-line argument functionality follows that used by
many other languages. For example, the information appears within argv, which
is the same variable name used by languages such as C++. The following code
shows typical access of argv from an application.

import sys

print(sys.argv)
print(len(sys.argv))
if (len(sys.argv) > 0):
 print(sys.argv[0])

To test this script, type python Native.py name=Sam at the Anaconda prompt and
press Enter. The output should show two arguments: Native.py and name=Sam.
The command-line arguments always include the name of the application as the

206 PART 4 Interacting in Various Ways

first argument. You can find additional information about using the native
functionality at http://www.pythonforbeginners.com/system/python-sys-
argv and https://www.tutorialspoint.com/python/python_command_line_
arguments.htm.

Interacting with Argparse
Argparse provides some native functionality along the same lines as CmdArgs for
Haskell. However, in this case, all you get is the -h command-line switch for help.
Of course, just getting a help switch is nice, but hardly worthwhile for your appli-
cation. The following code shows how to use Argparse to obtain a name and then
display a hello message as output. Before you can do anything, you need to import
argparse into the Python environment.

import argparse

parser = argparse.ArgumentParser()
parser.add_argument("name")
args = parser.parse_args()

nameStr = args.name.split("=")

print("Hello " + nameStr[1])

The first three lines of actual code create a parser, add an argument to it for name,
and then obtain the list of arguments. When a user asks for help, name will appear
as a positional argument.

You can access each argument by name, as shown in the next line of code.
The argument will actually appear as name=Sam if you supply Sam as the name
at the command line. The combination of the two elements isn’t useful, though,
so the example splits the string at the = sign. Finally, the example outputs the
message with the supplied name. You can test this example by typing python
Argparse.py name=Sam and pressing Enter at the command line.

This example was just enough to get you started and to demonstrate that Python
also provides a great library with added command-line functionality. You can find
out more about Argparse at https://docs.python.org/3/howto/argparse.html

http://www.pythonforbeginners.com/system/python-sys-argv
http://www.pythonforbeginners.com/system/python-sys-argv
https://www.tutorialspoint.com/python/python_command_line_arguments.htm
https://www.tutorialspoint.com/python/python_command_line_arguments.htm
https://docs.python.org/3/howto/argparse.html

CHAPTER 13 Dealing with Files 207

Chapter 13
Dealing with Files

Chapter 11 gives you a very brief look at localized file management in the
“Working with devices” section of the chapter. Now it’s time to look at local
files in more detail because you often use local files as part of applications —

everything from storing application settings to analyzing a moderately large
dataset. In fact, as you may already know, local files were the first kind of data
storage that computers used; networks and the cloud came much later. Even on
the smallest tablet today, you can still find local files stored in a hard-drive–like
environment (although hard drives have come a very long way from those disk
packs of old).

After you get past some of the general mechanics of how files are stored, you
actually need to start working with them. Developers face a number of issues
when working with files. For example, one of the more common problems is that
a user can’t access a file because of a lack of rights. Security is a two-edged sword
that protects data by restricting access to it and keeping the right people from
accessing it for the right reasons. This chapter helps you understand various file
access issues and demonstrates how to overcome them.

The chapter also discusses Create, Read, Update, and Delete (CRUD), the four
actions you can perform on any file for which you have the correct rights. CRUD
normally appears in reference to database management, but it applies just as
much to any file you might work with.

IN THIS CHAPTER

»» Considering local file storage
methods

»» Dealing with file access issues

»» Performing typical file access tasks

»» Using file management techniques
CRUD style

208 PART 4 Interacting in Various Ways

Understanding How Local Files are Stored
If you have worked with computers for a while, you know that the operating
system handles all the details of working with files. An application requests these
services of the operating system. Using this approach is important for security
reasons, and it ensures that all applications can work together on the same system.
If each application was allowed to perform tasks in a unique manner, the resulting
chaos would make it impossible for any application to work.

The reason that operating system and other application considerations are impor-
tant for the functional programming paradigm is that unlike other tasks you
might perform, file access depends on a nonfunctional, procedural third party. In
most cases, you must perform a set of prescribed steps in a specific order to
get any work done. As with anything, you can find exceptions, such as the func-
tional operating systems described at http://wiki.c2.com/?PurelyFunctional
OperatingSystem and https://en.wikipedia.org/wiki/House_(operating_
system). However, you have to ask yourself whether you’ve ever even heard of
these operating systems. You’re more likely to need to work with OS X, Linux, or
Windows on the desktop and something like Android or iOS on mobile devices.

Most operating systems use a hierarchical approach to storing files. Each operating
system does have differences, such as those discussed between Linux and Windows
at https://www.howtogeek.com/137096/6-ways-the-linux-file-system-is-
different-from-the-windows-file-system/. However, the fact that Linux
doesn’t use locks on files but Windows does really won’t affect your application in
most cases. The recursive nature of the functional programming paradigm does
work well in locating files and ensuring that files get stored in the right location.
Ultimately, the hierarchy used to store files means that you need a path to locate
the file on the drive (regardless of whether the operating system specifically
mentions the drive).

Files also have specific characteristics associated with them that vary by operating
system. However, most operating systems include a creation and last modification
date, file size, file type (possibly through the use of a particular file extension), and
security access rights with the filename. If you plan to use your application on
multiple platforms, which is becoming more common, you must create a plan for
interacting with file properties in a consistent manner across platforms if possible.

All the considerations described in this section come into play when performing
file access, even with a functional language. However, as you see later, functional
languages often rely on the use of monads to perform most file access tasks in a
consistent manner across operating systems, as described for any I/O in Chapter 11.
By abstracting the process of interacting with files, the functional programming
paradigm actually makes things simpler.

http://wiki.c2.com/?PurelyFunctionalOperatingSystem
http://wiki.c2.com/?PurelyFunctionalOperatingSystem
https://en.wikipedia.org/wiki/House_(operating_system)
https://en.wikipedia.org/wiki/House_(operating_system)
https://www.howtogeek.com/137096/6-ways-the-linux-file-system-is-different-from-the-windows-file-system/
https://www.howtogeek.com/137096/6-ways-the-linux-file-system-is-different-from-the-windows-file-system/

CHAPTER 13 Dealing with Files 209

Ensuring Access to Files
A number of common problems arise in accessing files on a system — problems
that the functional programming paradigm can’t hide. The most common problem
is a lack of rights to access the file. Security issues plague not only the local drive,
but every other sort of drive as well, including cloud-based storage. One of the
best practices for a developer to follow is to test everything using precisely the
same rights that the user will have. Unfortunately, even then you may not find
every security issue, but you’ll find the vast majority of them.

Some access issues are also the result of bad information — fallacies that
developers have simply believed without testing. One of these issues is the
supposed difference in using the backslash on Windows and the forward slash on
Linux and OS X. The truth is that you can use the forward slash on all operating
systems, as described at http://blog.johnmuellerbooks.com/2014/03/10/
backslash-versus-forward-slash/. All the example code in this chapter uses
the forward slash when dealing with paths as a point of demonstration.

Often a developer also runs afoul of file property issues. Some of these issues are
external to the file, such as mistaking one file type for another. Other issues are
internal to the file, such as trying to read a UTF-7 file using code designed for
UTF-8 or UTF16, which are currently more common. Even though you can access
a file when facing a property issue, the access doesn’t help because you can’t do
anything with the file after you access it. As far as your application is concerned,
you still lack access to the file (and in a practical sense, you do, even if you have
successfully opened it).

Specific language tools also present problems. For example, the message thread at
https://github.com/haskell/cabal/issues/447 discusses issues that occur as
part of the installation process using Cabal (the utility that ships with Haskell).
Imagine installing a new application that you built and then finding that only
administrators can use it. Unfortunately, this problem might not show up unless
you test your application installation on the right version of Windows. Haskell
isn’t alone in this problem; every language comes with special issues that may
affect your ability to access files, so constant testing and handling of error reports
is an essential part of working with files.

Interacting with Files
Understanding how the files are stored and knowing the requirements for access
are the first two steps in interacting with them. If you have worked with other
programming languages, you have likely worked with files in a procedural manner:

http://blog.johnmuellerbooks.com/2014/03/10/backslash-versus-forward-slash/
http://blog.johnmuellerbooks.com/2014/03/10/backslash-versus-forward-slash/
https://github.com/haskell/cabal/issues/447

210 PART 4 Interacting in Various Ways

obtaining a file handle, using it to open the file, and then closing the file handle
when finished. The functional programming paradigm must also follow these
rules, as demonstrated in Chapter 11, but working in the functional world brings
different nuances, as discussed in the sections that follow.

Creating new files
Operating systems generally provide a number of ways of opening files. In the
default method, you normally open the file and overwrite the existing content
with anything new that you write. When the file doesn’t exist, the operating sys-
tem automatically creates it for you. The following code shows an example of
opening a file for writing and automatically creating that file when it doesn’t
exist:

import System.IO as IO

main = do
 handle <- openFile "MyData.txt" WriteMode
 hPutStrLn handle "This is some test data."
 hClose handle

The defining factor here is the WriteMode argument. When you use the WriteMode
argument, you tell the operating system to create a new file when one doesn’t
exist or to overwrite any existing content. The Python equivalent to this code is

handle = open("MyData2.txt", "w")
print(handle.write("This is some test data.\n"))
handle.close()

Notice that when using Python, you use the "w" argument to access the write
mode. In addition, Python has no method of writing a line with a carriage return;
you add it manually by using the \n escape. Adding the print function lets you see
how many characters Python writes to the file.

As an alternative to using the WriteMode argument, you can use the ReadWriteMode
argument when you want to both read from and write to the file. Writing to the file
works as before: You either create a new file or overwrite the content of an existing
file. To read from the file, of course, the file must contain something to read. The
“Reading data” section of the chapter discusses this issue in more detail.

CHAPTER 13 Dealing with Files 211

Opening existing files
When you have an existing file, you can read, append, update, and delete the data
it contains. Even though you will create new files when writing an application,
most applications spend more time opening existing files in order to manage con-
tent in some way. For the application to perform data-management tasks, the file
must exist. Even if you think that the file exists, you must verify its presence
because the user or another application may have deleted it, or the user may not
have followed protocol and created it, or sunspot could have damaged the file
directory entry on disk, or The list can become quite long as to why the file you
thought was there really isn’t. The process of data management can become com-
plex because you often perform searches for specific content as well. However, the
initial task focuses on simply opening the file.

The “Reading data” section of the chapter discusses the task of opening a file to
read it, especially when you need to search for specific data. Likewise, writing,
updating, and deleting data appears in the “Updating data” section of the chapter.

FILE LOCKING OVERVIEW
When working with data files, it’s generally important to perform a complete or partial
lock of the file while the data changes or you risk overwriting the data. Databases nor-
mally use record level locks so that several people can work with the file at the same time.

Depending on your operating system, however, you may find that the operating system
doesn’t lock files — or at least not with an actual lock (see https://www.howtogeek.
com/141393/why-cant-i-alter-in-use-files-on-windows-like-i-can-on-
linux-and-os-x/ and https://stackoverflow.com/questions/196897/locking-
executing-files-windows-does-linux-doesnt-why for details). In addition, some
applications actually follow a policy of not locking the file and prefer using a “last edit
wins” approach to dealing with data changes.

Sometimes rules like file locking can actually cause problems. Articles like the one at
https://success.outsystems.com/Documentation/10/Developing_an_
Application/Use_Data/Offline/Offline_Data_Sync_Patterns/Read%2F%
2FWrite_Data_Last_Write_Wins describe why this approach is actually beneficial
when working with mobile applications. The programming language you use may also
change how file locks work, with many languages automatically incorporating file lock-
ing unless you specify otherwise. The bottom line is to know whether file locking occurs
with your operating system and language combination, determine when file locking is
beneficial, and set a policy that specifically defines file locking for your application.

https://www.howtogeek.com/141393/why-cant-i-alter-in-use-files-on-windows-like-i-can-on-linux-and-os-x/
https://www.howtogeek.com/141393/why-cant-i-alter-in-use-files-on-windows-like-i-can-on-linux-and-os-x/
https://www.howtogeek.com/141393/why-cant-i-alter-in-use-files-on-windows-like-i-can-on-linux-and-os-x/
https://stackoverflow.com/questions/196897/locking-executing-files-windows-does-linux-doesnt-why
https://stackoverflow.com/questions/196897/locking-executing-files-windows-does-linux-doesnt-why
https://success.outsystems.com/Documentation/10/Developing_an_Application/Use_Data/Offline/Offline_Data_Sync_Patterns/Read%2F%2FWrite_Data_Last_Write_Wins
https://success.outsystems.com/Documentation/10/Developing_an_Application/Use_Data/Offline/Offline_Data_Sync_Patterns/Read%2F%2FWrite_Data_Last_Write_Wins
https://success.outsystems.com/Documentation/10/Developing_an_Application/Use_Data/Offline/Offline_Data_Sync_Patterns/Read%2F%2FWrite_Data_Last_Write_Wins

212 PART 4 Interacting in Various Ways

However, the task of appending — adding content to the end of the file — is some-
what different. The following code shows how to append data to a file that already
exists:

import System.IO as IO

main = do
 handle <- openFile "MyData.txt" AppendMode
 hPutStrLn handle "This is some test data too."
 hClose handle

Except for the AppendMode argument, this code looks much like the code in the
previous section. However, no matter how often you run the code in the previous
section, the resulting file always contains just one line of text. When you run this
example, you see multiple lines, as shown in Figure 13-1.

Python provides the same functionality. The following code shows the Python
version, which relies on the "a" (append) mode:

handle = open("MyData2.txt", "a")
print(handle.write("This is some test data too.\n"))
handle.close()

Some languages treat appending differently from standard writing. If the file
doesn’t exist, the language will raise an exception to tell you that you can’t append
to a file that doesn’t exist. To append to a file, you must create it first. Both Haskell
and Python take a better route — appending also covers creating a new file when
one doesn’t exist.

Manipulating File Content
When thinking through the process of dealing with I/O on the local system in the
form of files, you have to separate the main components and deal with them
individually:

FIGURE 13-1:
Appending

means adding
content to the

end of a file.

CHAPTER 13 Dealing with Files 213

»» Physicality: The location of the file on the storage system. The operating
system can hide this location in some respects, and even create mappings
so that a single storage unit actually points to multiple physical drives that
aren’t necessarily located on the local machine. The fact remains, however,
that the file must appear somewhere. Even if the user accesses this file by
clicking a convenient icon, the developer must still have some idea of where
the file resides, or access is impossible.

»» Container: Data resides in a container of some sort. The container used in
this chapter is a file, but it could just as easily be a database or a collection
of files within a particular folder. As with physicality, users don’t often see the
container used to hold the data except as an abstraction (and sometimes not
even that, as in the case of an application that opens a database automati-
cally). Again, the developer must know the properties and characteristics of
the container to write a successful application.

»» Data: The data itself is an entity and the one that everyone, including users,
is intimately aware of when working with an application. Previous sections of
the chapter discuss the other entities in this list. The following sections discuss
this final entity. It begins with the Create, Read, Update, and Delete (CRUD)
operations associated with data and views two of those entities in closer detail.

Considering CRUD
People create acronyms to make remember something easier. Sometimes those
acronyms are unfortunate, as in calling operations on data CRUD. However, the
people who work with databases wanted something easy to remember, so data-
related tasks became CRUD. Another school of thought called the list of tasks
Browse, Read, Edit, Add, and Delete (BREAD), but that particular acronym didn’t
seem to stick, even though your daily BREAD might rely on your ability to employ
CRUD. This chapter uses CRUD because that seems to be the most popular acro-
nym. You can view CRUD as comprising the following tasks:

»» Create: Adding new data to storage. Anytime you create new storage, such as
a file, you generally create new data as well. Empty storage isn’t useful. The
examples in the “Interacting with Files” section, earlier in this chapter,
demonstrate creating data in both a new and an existing file. In both cases,
the functional programming paradigm uses the IO monad operation on the
combination of a handle and the associated data to place data in the file. This
takes place after creating the file using another monad consisting of the IO
operating on a combination of the filename and opening mode.

214 PART 4 Interacting in Various Ways

»» Read: Reading data within a storage container means to do something with
the content that doesn’t change it in any way. You can see at least two kinds of
read tasks in most applications:

a.	 Employ an IO monad operation on the combination of a handle and data
location to retrieve specific data. In this case, the data output is the target of
the task. When you don’t supply a specific location, the operation assumes
either the start of the storage or the current storage location pointer value.
(The location pointer is an internally maintained value that indicates the end
of the last read location within the storage.)

b.	 Employ an IO monad operating on the combination of a handle and search
criteria. In this case, the goal is to search for specific data and retrieve a data
location based on that search. Some developers view this task as a browse,
rather than as a read.

»» Update: When data within the storage container still has value but contains
mistakes, it requires an update, which the application performs using the
following steps. In this case, you’re really looking at a series of IO monads:

1.	 Locate the existing data using the combination of a handle and the search
expression.

2.	 Copy the existing data using the combination of a handle and the data
location.

3.	 Write the new data using a combination of a handle and the data.

»» Delete: When the data within storage no longer has value, the application
deletes the entry. In this case, you rely on the following IO monads to perform
the task:

1.	 Locate the data to remove using a combination of a handle and a search
expression.

2.	 Delete the data using a combination of a handle and a data location.

Reading data
The concept of reading data isn’t merely about obtaining information from a stor-
age container, such as a file. When a person reads a book, a lot more goes on than
simple information acquisition, in many cases. Often, the person must search for
the appropriate information (unless the intent is to read the entire book) and then
track progress during each reading session (unless there is just one session). A
computer must do the same. The following example shows how the computer
tracks its current position within the file during the read:

CHAPTER 13 Dealing with Files 215

import System.IO as IO

main = do
 handle <- openFile "MyData.txt" ReadMode
 myData <- hGetLine handle
 position <- hGetPosn handle
 hClose handle
 putStrLn myData
 putStrLn (show position)

Here, the application performs a read using hGetLine, which obtains an entire
line of text (ending with a carriage return). However, the test file contains more
than one line of text if you worked through the examples in the previous sections.
This means that the file pointer isn’t at the end of the file.

The call to hGetPosn obtains the actual position of the file pointer. The example
outputs both the first line of text and the file position, which is reported as
{handle: MyData.txt} at position 25 if you used the file from the previous
examples. A second call to hGetLine will actually retrieve the next line of text
from the file, at which point the file pointer will be at the end of the file.

The example shows hGetLine, but Haskell and Python both provide an extensive
array of calls to obtain data from a file. For example, you can get a single character
by calling hGetChar. You can also peek at the next character in line without moving
the file pointer by calling hLookAhead.

Updating data
Of the tasks you can perform with a data container, such as a file, updating is
often the hardest because it involves finding the data first and then writing new
data to the same location without overwriting any data that isn’t part of the
update. The combination of the language you use and the operating system do
reduce the work you perform immensely, but the process is still error prone. The
following code demonstrates one of a number of ways to change the contents of a
file. (Note that the two lines beginning with let writeData must appear on a
single line in your code file.)

import System.IO as IO
import Data.Text as DT

displayData (filePath) = do
 handle <- openFile filePath ReadMode
 myData <- hGetContents handle

216 PART 4 Interacting in Various Ways

 putStrLn myData
 hClose handle

main = do
 displayData "MyData3.txt"

 contents <- readFile "MyData3.txt"
 let writeData = unpack(replace
 (pack "Edit") (pack "Update") (pack contents))
 writeFile "MyData4.txt" writeData

 displayData "MyData4.txt"

This example shows two methods for opening a file for reading. The first (as
defined by the displayData function) relies on a modified form of the code shown
in the “Reading data” section, earlier in this chapter. In this case, the example
gets the entire contents of the file in a single read using hGetContents. The second
version (starting with the second line of the main function) uses readFile, which
also obtains the entire content of the file in a single read. This second form is
easier to use but provides less flexibility.

The code uses the functions found in Data.Text to manipulate the file content.
These functions rely on the Text data type, not the String data type. To convert a
String to Text, you must call the pack function, as shown in the code. The reverse
operation relies on the unpack function. The replace function provides just one
method of modifying the content of a string. You can also rely on mapping to
perform certain kinds of replacement, such as this single-character replacement:

let transform = pack contents
DT.map (\c -> if c == '.' then '!' else c) transform

This method relies on a lambda function and provides considerable flexibility for
a single-character replacement. The output replaces the periods in the text with
exclamation marks by mapping the lambda function to the packed String (which
is a Text object) found in transform. Notice how the lambda function examines
characters separately, as opposed to the word-level search used in the example.

Observe how the example uses one file for input and an entirely different file
for output. Haskell relies on lazy reads and writes. If you were to attempt to use
readFile on a file and then writeFile on the same file a few lines down, the
resulting application would display a “resource busy” type of error message.

CHAPTER 13 Dealing with Files 217

Completing File-related Tasks
After you finish performing data-related tasks, you need to do something with the
data storage container. In most cases, that means closing the handle associated
with the container. When working with files, some functions, such as readFile
and writeFile, perform the task automatically. Otherwise, you close the file
manually using hClose.

Haskell, like most languages, comes with a few odd calls. For example, when you
call hGetContents, the handle you use is semi-closed. A semi-closed handle is
almost but not quite closed, which is odd when you think about it. You can’t
perform any additional reads, nor can you obtain the position of the file pointers.
However, calling hClose to fully close the handle is still possible. The odd nature
of this particular call can cause problems in your application because the error
message will tell you that the handle is semi-closed, but it won’t tell you what
that means or define the actual source of the semi-closure.

Another potential need may arise. If you use temporary files in your application,
you need to remove them. The removeFile function performs this task by deleting
the file from the path you supply. However, when working with Haskell, you find
the call in System.Directory, not System.IO.

CHAPTER 14 Working with Binary Data 219

Chapter 14
Working with
Binary Data

The term binary data is an oxymoron because as far as the computer is con-
cerned, only binary data exists. Binary data is the data that people associate
with a nonhuman-readable form; the data is a series of seemingly unrelated

0s and 1s that somehow form patterns the computer sees as data, despite the
human inability to do so in many cases — at least, not without analysis.
Consequently, when this chapter contrasts textual data to binary data, it does so
from the human perspective, which means that data must be readable and under-
standable by humans to be meaningful. Of course, with computer assistance,
binary data is also quite meaningful, but in a different way from text. This chapter
begins by helping you understand the need and uses for binary data.

The days of worrying about data usage at the bit level are long gone, but binary
data, in which individual bits do matter, still appears as part of data analysis.
The search for patterns in data isn’t limited to human-readable form, nor is the
output from an analysis always in human-readable form, even when the input is.
Consequently, you need to understand the role of the binary form in data analysis.
As part of understanding why functional programming is so important, this
chapter considers the use of binary data in data analysis.

Binary data also appears in many human-pleasing forms. For example, raster
graphic files rely exclusively on binary data for the data-storage part of the file.
The conversion of a human-readable file to a compressed form also appears as

IN THIS CHAPTER

»» Contrasting binary and textual data

»» Analyzing binary data

»» Understanding the uses for binary
data

»» Performing binary-related data tasks

220 PART 4 Interacting in Various Ways

binary data until you decompress it. This chapter explores a few of these forms of
binary data. The chapter doesn’t explore binary file forms in any depth, but you do
get an overview of them.

Comparing Binary to Textual Data
Chapter 13 discusses textual data. All the information in that chapter is in a human-
readable form. Likewise, most data you encounter directly today is in some human-
readable form, much of it textual. However, under the surface lies the binary data
that the computer understands. The true difference between binary and textual
data is interpretation — that is, how humans see the data (or don’t see it). The
letter A is simply the number 65 in disguise when viewed as ASCII.

Oddly enough, the ASCII numeric representation of the letter A isn’t the end of the
line. Somewhere, a raster representation of the letter A exists that determines
what you see as the letter A in print or onscreen. (The article at https://www.ibm.
com/support/knowledgecenter/en/SSLTBW_2.3.0/com.ibm.zos.v2r3.
e0zx100/e0z2o00_char_rep.htm discusses raster representations in more detail.)
The fact is that the letter A doesn’t actually exist in your computer; you simply see
a representation of it that is quite different to the computer.

When it comes to numeric data, the whole issue of textual versus binary data
becomes more complex. The number could appear as text — meaning a sequence
of characters expressing a numeric value. The ASCII values 48 through 57 provide
the required textual values. Add a decimal point and you have a human-readable,
textual number.

However, a numeric value can also appear as a number in various forms that the
computer will directly understand (integers) or require to be translated (as in the
IEEE 754 floating-point values). Even though integers and floating-point values
both appear as 0s and 1s, the human interpretation often differs from the computer
interpretation. For example, in a single-precision floating-point value, the
computer sees 32-bits of data — just a series of 0s and 1s that mean nothing to the
computer. Yet the interpretation requires splitting those bits into one sign bit,
8 exponent bits, and 23 significand bits (see https://www.geeksforgeeks.org/
floating-point-representation-basics/ for details).

Underlying all these representations of data that humans create is a binary stream
that the computer controls and understands. All the computer sees is 0s and 1s.
The computer merely manipulates the stream and, as with any other machine, has
no understanding whatsoever of what those 0s and 1s mean. When you work with
binary data, what you really do is work with the computer presentation of the

https://www.ibm.com/support/knowledgecenter/en/SSLTBW_2.3.0/com.ibm.zos.v2r3.e0zx100/e0z2o00_char_rep.htm
https://www.ibm.com/support/knowledgecenter/en/SSLTBW_2.3.0/com.ibm.zos.v2r3.e0zx100/e0z2o00_char_rep.htm
https://www.ibm.com/support/knowledgecenter/en/SSLTBW_2.3.0/com.ibm.zos.v2r3.e0zx100/e0z2o00_char_rep.htm
https://www.geeksforgeeks.org/floating-point-representation-basics/
https://www.geeksforgeeks.org/floating-point-representation-basics/

CHAPTER 14 Working with Binary Data 221

human-readable form that you want to express, no matter what form that data
may take. All data is binary to the computer. To make the data useful, however, an
application must take the binary presentation and translate it in some way to cre-
ate a form that humans can understand and use.

Also, a particular language makes specific presentations available and controls the
manner in which you create and manipulate the presentations. However, no lan-
guage actually controls the underlying data, which is always in 0s and 1s. A lan-
guage interacts with the underlying data through libraries, the operating system,
and the machine hardware itself. Consequently, all languages share the same
underlying data type, which is binary.

Using Binary Data in Data Analysis
Binary data figures strongly in data analysis, where it often indicates a Boolean
value — that is, True or False. Some languages use an entire byte (8 bits in most
cases) or even a word (16, 32, or 64bits, in most cases) to hold Boolean values
because memory is cheap and manipulating individual bits can be time consum-
ing. However, other languages use each bit in a byte or word to indicate truth-
values in a form called flags. A few languages provide both options.

The Boolean value often indicates the outcome of a data analysis such as a Bernoulli
trial (see http://www.mathwords.com/b/bernoulli_trials.htm for details). In pure
functional programming languages, a Bernoulli trial is often expressed as a binomial
distribution (see https://hackage.haskell.org/package/statistics-0.14.0.2/
docs/Statistics-Distribution-Binomial.html) and the language often provides
specific functionality to perform the calculations. When working with impure
languages, you can either simulate the effect or rely on a third-party library for
support, such as NumPy (see https://docs.scipy.org/doc/numpy/reference/
generated/numpy.random.binomial.html for details). The example at http://www.
chadfulton.com/topics/bernoulli_trials_classical.html describes the specif-
ics of performing a Bernoulli trial in Python.

When considering binary data, you need to think about how the calculation you
perform can skew any results obtained. For example, many people use the coin
toss as an example for explaining the Bernoulli trial. However, it works only when
you ignore the possibility of a coin landing on its edge, landing on neither heads
or tails. Even though the probability of such a result is incredibly small, a true
analysis would consider it a potential output. However, to calculate the result, you
must now eschew the use of binary analysis, which would greatly increase calcu-
lation times. The point is that data analysis is often an imperfect science, and the
person performing the required calculations needs to consider the ramifications
of any shortcuts used in the interest of speed.

http://www.mathwords.com/b/bernoulli_trials.htm
https://hackage.haskell.org/package/statistics-0.14.0.2/docs/Statistics-Distribution-Binomial.html
https://hackage.haskell.org/package/statistics-0.14.0.2/docs/Statistics-Distribution-Binomial.html
https://docs.scipy.org/doc/numpy/reference/generated/numpy.random.binomial.html
https://docs.scipy.org/doc/numpy/reference/generated/numpy.random.binomial.html
http://www.chadfulton.com/topics/bernoulli_trials_classical.html
http://www.chadfulton.com/topics/bernoulli_trials_classical.html

222 PART 4 Interacting in Various Ways

Of course, Boolean values (binary data, really) is used for Boolean algebra (see
http://mathworld.wolfram.com/BooleanAlgebra.html for details) where the
truth value of a particular set of expressions comes as a result of the logical opera-
tors applied to the target monads. In many cases, the outcome of such binary
analysis sees visual representation as a Hasse diagram (see http://mathworld.
wolfram.com/HasseDiagram.html) for details.

Every computer language today has built-in primitives for performing Boolean
algebra. However, pure functional languages also have libraries for performing
more advanced tasks, such as the Data.Algebra.Boolean Haskell library discussed
at http://hackage.haskell.org/package/cond-0.4.1.1/docs/Data-Algebra-
Boolean.html. As with other kinds of analysis of this sort, impure languages
often rely on third-party libraries, such as the SymPy library for Python discussed
at http://docs.sympy.org/latest/modules/logic.html.

This section could easily spend more time on data analysis, but one final consid-
eration is regression analysis of binary variables. Regression analysis takes in a
number of analysis types, some of which appear at https://www.analytics
vidhya.com/blog/2015/08/comprehensive-guide-regression/. The most com-
mon for binary data are logistic regression (see http://www.statistics
solutions.com/what-is-logistic-regression/) and probit regression (see
https://stats.idre.ucla.edu/stata/dae/probit-regression/). Even in this
case, pure functional languages tend to provide built-in support, such as the
Haskell library found at http://hackage.haskell.org/package/regress-0.1.1/
docs/Numeric-Regression-Logistic.html for logistic regression. Of course,
third-party counterparts exist for impure languages, such as Python (see http://
scikit-learn.org/stable/modules/generated/sklearn.linear_model.
LogisticRegression.html).

Understanding the Binary Data Format
As mentioned in earlier sections, the computer manages binary data without
understanding it in any way. Moving bits around is a mechanical task. In fact,
even the concept of bits is foreign because the hardware sees only differences in
voltage between a 0 and a 1. However, to be useful, the binary data must have a
format; it must be organized in some manner that creates a pattern. Even text data
of the simplest sort has formatting that defines a pattern. One of the best ways to
understand how this all works is to actually examine some files using a hexadeci-
mal editor such as XVI32 (http://www.chmaas.handshake.de/delphi/freeware/
xvi32/xvi32.htm). Figure 14-1 shows an example of this tool in action using the
extremely simple MyData.txt file that you create in Chapter 13.

http://mathworld.wolfram.com/BooleanAlgebra.html
http://mathworld.wolfram.com/HasseDiagram.html
http://mathworld.wolfram.com/HasseDiagram.html
http://hackage.haskell.org/package/cond-0.4.1.1/docs/Data-Algebra-Boolean.html
http://hackage.haskell.org/package/cond-0.4.1.1/docs/Data-Algebra-Boolean.html
http://docs.sympy.org/latest/modules/logic.html
https://www.analyticsvidhya.com/blog/2015/08/comprehensive-guide-regression/
https://www.analyticsvidhya.com/blog/2015/08/comprehensive-guide-regression/
http://www.statisticssolutions.com/what-is-logistic-regression/
http://www.statisticssolutions.com/what-is-logistic-regression/
https://stats.idre.ucla.edu/stata/dae/probit-regression/
http://hackage.haskell.org/package/regress-0.1.1/docs/Numeric-Regression-Logistic.html
http://hackage.haskell.org/package/regress-0.1.1/docs/Numeric-Regression-Logistic.html
http://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html
http://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html
http://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html
http://www.chmaas.handshake.de/delphi/freeware/xvi32/xvi32.htm
http://www.chmaas.handshake.de/delphi/freeware/xvi32/xvi32.htm

CHAPTER 14 Working with Binary Data 223

In this case, you see the hexadecimal numbers in the middle pane of the main
window and the associated letters in the right pane. The Bit Manipulation dialog
box shows the individual bits used to create the hexadecimal value. What the
computer sees is those bits and nothing more. However, in looking at this file, you
can see the pattern—one character following the next to create words and then
sentences. Each sentence ends with a 0D (carriage return) and a 0A (line feed). If
you decided that it was in your best interest to do so, you could easily create this
file using binary methods, but Chapter 13 shows the easier method of using
characters.

Every file on your system has a format of some sort or it wouldn’t contain useful
information. Even executable files have a format. If you’re working with Windows,
many of your executables will rely on the MZ file format described at https://
www.fileformat.info/format/exe/corion-mz.htm. Figure 14-2 shows the
XVI32.exe executable file (just the bare beginning of it). Notice that the first two
letters in the file are MZ, which identify it as an executable that will run under
Windows. When a native executable lacks this signature, Windows won’t run
it unless it’s part of some other executable format. If you follow the informa-
tion found on the FileFormat.Info site, you can actually decode the content of
this executable to learn more about it. The executable even contains human read-
able text that you can use to discover some additional information about the
application.

FIGURE 14-1:
Use a product

such as XVI32 to
understand

binary better.

https://www.fileformat.info/format/exe/corion-mz.htm
https://www.fileformat.info/format/exe/corion-mz.htm

224 PART 4 Interacting in Various Ways

This information is important to the functional programmer because the languages
(at least the pure ones) provide the means to interact with bits should the need
arise in a mathematical manner. One such library is Data.Bits (http://hackage.
haskell.org/package/base-4.11.1.0/docs/Data-Bits.html) for Haskell. The
bit manipulation features in Haskell are somewhat better than those found natively
in Python (https://wiki.python.org/moin/BitManipulation), but both languages
also support third-party libraries to make the process easier. Given a need, you can
create your own binary formats to store specific kinds of information, especially the
result of various kinds of analysis that can rely on bit-level truth-values.

Of course, you need to remember the common binary formats used to store data.
For example, a Joint Photographic Experts Group (JPEG) file uses a binary format
(see https://www.fileformat.info/format/jpeg/internal.htm), which has a
signature of JFIF (JPEG File Information Format), as shown in Figure 14-3. The use
of this signature is similar to the use of the MZ for executable files. A study of the
bits used for graphic files can consume a lot of time because so many ways exist
to store the information (see https://modassicmarketing.com/understanding-
image-file-types). In fact, so many storage methodologies are available for just
graphic files that people have divided the formats into groups, such as lossy versus
lossless and vector versus raster.

FIGURE 14-2:
Even executables

have a format.

FIGURE 14-3:
Many binary
files include

signatures to
make them

easier to
identify.

http://hackage.haskell.org/package/base-4.11.1.0/docs/Data-Bits.html
http://hackage.haskell.org/package/base-4.11.1.0/docs/Data-Bits.html
https://wiki.python.org/moin/BitManipulation
https://www.fileformat.info/format/jpeg/internal.htm
https://modassicmarketing.com/understanding-image-file-types
https://modassicmarketing.com/understanding-image-file-types

CHAPTER 14 Working with Binary Data 225

Working with Binary Data
So far, this chapter has demonstrated that binary data exists as the only
hardware-manipulated data within a computer and that binary data exists in
every piece of information you use. You have also discovered that languages gen-
erally use abstractions to make the binary data easier to manipulate (such as by
using text) and that functional languages have certain advantages when working
directly with binary data. The question remains, however, as to why you would
want to work directly with binary data when the abstractions exist. For example,
you have no reason to create a JPEG file using bits when libraries exist to manipu-
late them graphically. A human understands the graphics, not the bits. In most
cases, you don’t manipulate binary data directly unless one of these conditions
arises:

»» No binary format exists to store custom data containing binary components.

»» The storage capabilities of the target device have strict limits on size.

»» Transmitting data stored using less efficient methods is too time consuming.

»» Translating between common storage forms and the custom form needed to
perform a task requires too much time.

»» A common storage format file contains an error that self-correction can’t
locate and fix.

»» You need to perform bit-level data transfers so that you can perform machine
control, for example.

»» Curiosity mandates studying the file format in detail.

Interacting with Binary Data in Haskell
The examples presented in this section are extremely simple. You can find
a considerable number of complex examples online; one appears at http://
hackage.haskell.org/package/bytestring-0.10.8.2/docs/Data-
ByteString-Builder.html and https://wiki.haskell.org/Serialisation_
and_compression_with_Data_Binary. However, most of these examples don’t
answer the basic question of what you need to do as a minimum, which is what
you find in the following sections. For these cases, you write several data types
to a file, examine the file, and then read the data back using the simplest meth-
ods possible.

http://hackage.haskell.org/package/bytestring-0.10.8.2/docs/Data-ByteString-Builder.html
http://hackage.haskell.org/package/bytestring-0.10.8.2/docs/Data-ByteString-Builder.html
http://hackage.haskell.org/package/bytestring-0.10.8.2/docs/Data-ByteString-Builder.html
https://wiki.haskell.org/Serialisation_and_compression_with_Data_Binary
https://wiki.haskell.org/Serialisation_and_compression_with_Data_Binary

226 PART 4 Interacting in Various Ways

Writing binary data using Haskell
Remember that you have no limitations when working with data in binary mode.
You can create any sort of output necessary, even concatenating unlike types
together. The best way to create the desired output is to use Builder classes,
which contain the tools necessary to build the output in a manner similar to work-
ing with blocks. The Data.Binary.Builder and Data.ByteString.Builder
libraries both contain functions that you can use to create any needed output, as
shown in the following code:

import Data.Binary.Builder as DB
import Data.ByteString.Builder as DBB
import System.IO as IO

main = do
 let x1 = putStringUtf8 "This is binary content."
 let y = putCharUtf8 '\r'
 let z = putCharUtf8 '\n'
 let x2 = putStringUtf8 "Second line..."

 handle <- openBinaryFile "HBinary.txt" WriteMode
 hPutBuilder handle x1
 hPutBuilder handle y
 hPutBuilder handle z
 hPutBuilder handle x2
 hClose handle

This example uses two functions, putStringUtf8 and putCharUtf8. However, you
also have access to functions for working with data types such as integers and
floats. In addition, you have access to functions for working in decimal or hexa-
decimal as needed.

The process for working with the file is similar to working with a text file, but you
use the openBinaryFile function instead to place Haskell in binary mode (where
it won’t interpret your data) versus text mode (where it does interpret things like
escape characters). When outputting the values, you use the hPutBuilder func-
tion to chain them together. Putting output together like this (or using other,
more complex methods) is called serialization. You serialize each of the outputs so
that they appear in the file in the right order. As always, close the handle when
you finish with it. Figure 14-4 shows the binary output of this application, which
includes the carriage return and linefeed control characters.

CHAPTER 14 Working with Binary Data 227

Reading binary data using Haskell
This example uses a simplified reading process because the example file does con-
tain text. Even so, the Data.ByteString.Char8 library contains functions for
reading specific file lengths. This means that you can read the file a piece at a time
to deal with different data types. The process of reading a file and extracting each
of the constituent parts is called deserialization. The following code shows how to
work with the output of this example in binary mode.

import Data.ByteString.Char8 as DB
import System.IO as IO

main = do
 handle <- openBinaryFile "HBinary.txt" ReadMode
 x <- DB.hGetContents handle
 DB.putStrLn x
 hClose handle

Notice that you must precede both hGetContents and putStrLn with DB, which
tells Haskell to use the Data.ByteString.Char8 functions. If you don’t make this
distinction, the application will fail because it won’t be able to determine whether
to use DB or IO. However, if you guess wrong and use IO, the application will still
fail because you need the functions from DB to read the binary content. Figure 14-5
shows the output from this example.

FIGURE 14-4:
Even though this
output contains

text, it could
contain any sort

of data at all.

228 PART 4 Interacting in Various Ways

Interacting with Binary Data in Python
Python uses a more traditional approach to working with binary files, which can
have a few advantages, such as being able to convert data with greater ease and
having fewer file management needs. Remember that Haskell, as a pure language,
relies on monads to perform tasks and expressions to describe what to do.
However, when you review the resulting files, both languages produce precisely
the same output, so the issue isn’t one of how one language performs the task as
contrasted to another, but rather which language provides the functionality you
need in the form you need it. The following sections look at how Python works
with binary data.

Writing binary data using Python
Python uses a lot of subtle changes to modify how it works with binary data. The
following example produces precisely the same output as the Haskell example
found in the “Writing binary data using Haskell” section, earlier in this chapter.

handle = open("PBinary.txt", "wb")
print(handle.write(b"This is binary content."))
print(handle.write(bytearray(b'\x0D\x0A')))
print(handle.write(b"Second line..."))
handle.close()

When you want to open a file for text-mode writing, in which case the output is
interpreted by Python, you use "w". The binary version of writing relies on "wb",
where the b provides binary support. Creating binary text is also quite easy; you
simply prepend a b to the string you want to write. An advantage to writing in
binary mode is that you can mix bytes in with the text by using a type such as
bytearray, as shown in this example. The \x0D and \x0A outputs represent the
carriage return and newline control characters. Of course, you always want to

FIGURE 14-5:
The result of
reading the

binary file is
simple text.

CHAPTER 14 Working with Binary Data 229

close the file handle on exit. The output of this example shows the number of
bytes written in each case:

23
2
14

Reading binary data using Python
Reading binary data in Python requires conversion, just as it does in Haskell.
Because this example uses pure text (even the control characters are considered
text), you can use a simple decode to perform the task, as shown in the following
code. Figure 14-6 shows the output of running the example.

handle = open("PBinary.txt", "rb")
binary_data = handle.read()
print(binary_data)
data = binary_data.decode('utf8')
print(data)

FIGURE 14-6:
The raw binary

data requires
decoding before

displaying it.

CHAPTER 15 Dealing with Common Datasets 231

Chapter 15
Dealing with Common
Datasets

The reason to have computers in the first place is to manage data. You can
easily lose sight of the overriding goal of computers when faced with all the
applications that don’t seem to manage anything. However, even these

applications manage data. For example, a graphics application, even if it simply
displays pictures from last year’s camping trip, is still managing data. When look-
ing at a Facebook page, you see data in myriad forms transferred over an Internet
connection. In fact, it would be hard to find a consumer application that doesn’t
manage data, and impossible to find a business application that doesn’t manage
data in some way. Consequently, data is king on the computer.

The datasets in this chapter are composed of a specific kind of data. For you to be
able to perform comparisons, conduct testing, and verify results of a group of
applications, each application must have access to the same standard data.
Of course, more than just managing data comes into play when you’re considering
a standard dataset. Other considerations involve convenience and repeatable
results. This chapter helps you take these various considerations into account.

Because the sorts of management an application performs differs by the purpose of
the application, the number of commonly available standard datasets is quite large.
Consequently, finding the right dataset for your needs can be time consuming.
Along with defining the need for standardized datasets, this chapter also looks at
methods that you can use to locate the right standard dataset for your application.

IN THIS CHAPTER

»» Considering the use of standard
datasets

»» Accessing a standard dataset

»» Performing dataset tasks

232 PART 4 Interacting in Various Ways

After you have a dataset loaded, you need to perform various tasks with it.
An application can perform a simple analysis, display data content, or perform
Create, Read, Update, and Delete (CRUD) tasks as described in the “Considering
CRUD” section of Chapter 13. The point is that functional applications, like any
other application, require access to a standardized data source to look for better
ways of accomplishing tasks.

Understanding the Need
for Standard Datasets

A standard dataset is one that provides a specific number of records using a specific
format. It normally appears in the public domain and is used by professionals
around the world for various sorts of tests. Professionals categorize these datasets
in various ways:

»» Kinds of fields (features or attributes)

»» Number of fields

»» Number of records (cases)

»» Complexity of data

»» Task categories (such as classification)

»» Missing values

»» Data orientation (such as biology)

»» Popularity

Depending on where you search, you can find all sorts of other information, such
as who donated the data and when. In some cases, old data may not reflect current
social trends, making any testing you perform suspect. Some languages actually
build the datasets into their downloadable source so that you don’t even have to
do anything more than load them.

Given the mandates of the General Data Protection Regulation (GDPR), you also
need to exercise care in choosing any dataset that could potentially contain any
individually identifiable information. Some people didn’t prepare datasets cor-
rectly in the past, and these datasets don’t quite meet the requirements. Fortu-
nately, you have access to resources that can help you determine whether a dataset
is acceptable, such as the one found on IBM at https://www.ibm.com/security/
data-security/gdpr. None of the datasets used in this book are problematic.

https://www.ibm.com/security/data-security/gdpr
https://www.ibm.com/security/data-security/gdpr

CHAPTER 15 Dealing with Common Datasets 233

Of course, knowing what a standard dataset is and why you would use it are two
different questions. Many developers want to test using their own custom data,
which is prudent, but using a standard dataset does provide specific benefits, as
listed here:

»» Using common data for performance testing

»» Reducing the risk of hidden data errors causing application crashes

»» Comparing results with other developers

»» Creating a baseline test for custom data testing later

»» Verifying the adequacy of error-trapping code used for issues such as
missing data

»» Ensuring that graphs and plots appear as they should

»» Saving time creating a test dataset

»» Devising mock-ups for demo purposes that don’t compromise sensitive
custom data

A standardized common dataset is just a starting point, however. At some point, you
need to verify that your own custom data works, but after verifying that the standard
dataset works, you can do so with more confidence in the reliability of your applica-
tion code. Perhaps the best reason to use one of these datasets is to reduce the time
needed to locate and fix errors of various sorts — errors that might otherwise prove
time consuming because you couldn’t be sure of the data that you’re using.

Finding the Right Dataset
Locating the right dataset for testing purposes is essential. Fortunately, you don’t
have to look very hard because some online sites provide you with everything
needed to make a good decision. The following sections offer insights into locat-
ing the right dataset for your needs.

Locating general dataset information
Datasets appear in a number of places online, and you can use many of them for
general needs. An example of these sorts of datasets appears on the UCI Machine
Learning Repository at http://archive.ics.uci.edu/ml/datasets.html, shown
in Figure 15-1. As the table shows, the site categorizes the individual datasets so
that you can find the dataset you need. More important, the table helps you under-
stand the kinds of tasks that people normally employ the dataset to perform.

http://archive.ics.uci.edu/ml/datasets.html

234 PART 4 Interacting in Various Ways

If you want to know more about a particular dataset, you click its link and go to a
page like the one shown in Figure 15-2. You can determine whether a dataset will
help you test certain application features, such as searching for and repairing
missing values. The Number of Web Hits field tells you how popular the dataset is,
which can affect your ability to find others who have used the dataset for testing
purposes. All this information is helpful in ensuring that you get the right dataset
for a particular need; the goals include error detection, performance testing, and
comparison with other applications of the same type.

Even if your language provides easy access to these datasets, getting onto a site
such as UCI Machine Learning Repository can help you understand which of these
datasets will work best. In many cases, a language will provide access to the data-
set and a brief description of dataset content — not a complete description of the
sort you find on this site.

Using library-specific datasets
Depending on your programming language, you likely need to use a library to
work with datasets in any meaningful way. One such library for Python is Scikit-
learn (http://scikit-learn.org/stable/). This is one of the more popular
libraries because it contains such an extensive set of features and also provides the
means for loading both internal and external datasets as described at http://
scikit-learn.org/stable/datasets/index.html. You can obtain various kinds
of datasets using Scikit-learn as follows:

FIGURE 15-1:
Standardized,

common,
datasets are

categorized in
specific ways.

http://scikit-learn.org/stable/
http://scikit-learn.org/stable/datasets/index.html
http://scikit-learn.org/stable/datasets/index.html

CHAPTER 15 Dealing with Common Datasets 235

»» Toy datasets: Provides smaller datasets that you can use to test theories and
basic coding.

»» Image datasets: Includes datasets containing basic picture information that
you can use for various kinds of graphic analysis.

»» Generators: Defines randomly generated data based on the specifications
you provide and the generator used. You can find generators for

•	 Classification and clustering

•	 Regression

•	 Manifold learning

•	 Decomposition

»» Support Vector Machine (SVM) datasets: Provides access to both the
svmlight (http://svmlight.joachims.org/) and libsvm (https://www.
csie.ntu.edu.tw/~cjlin/libsvm/) implementations, which include
datasets that enable you to perform sparse dataset tasks.

»» External load: Obtains datasets from external sources. Python provides
access to a huge number of datasets, each of which is useful for a particular
kind of analysis or comparison. When accessing an external dataset, you may
have to rely on additional libraries:

•	 pandas.io: Provides access to common data formats that include CSV,
Excel, JSON, and SQL.

FIGURE 15-2:
Dataset details
are important
because they

help you find the
right dataset.

http://svmlight.joachims.org/
https://www.csie.ntu.edu.tw/~cjlin/libsvm/
https://www.csie.ntu.edu.tw/~cjlin/libsvm/

236 PART 4 Interacting in Various Ways

•	 scipy.io: Obtains information from binary formats popular with the
scientific community, including .mat and .arff files.

•	 numpy/routines.io: Loads columnar data into NumPy (http://www.
numpy.org/) arrays.

•	 skimage.io: Loads images and videos into NumPy arrays.

•	 scipy.io.wavfile.read: Reads .wav file data into NumPy arrays.

»» Other: Includes standard datasets that provide enough information for
specific kinds of testing in a real-world manner. These datasets include (but
are not limited to) Olivetti Faces and 20 Newsgroups Text.

Loading a Dataset
The fact that Python provides access to such a large variety of datasets might
make you think that a common mechanism exists for loading them. Actually, you
need a variety of techniques to load even common datasets. As the datasets become
more esoteric, you need additional libraries and other techniques to get the job
done. The following sections don’t give you an exhaustive view of dataset loading

FINDING HASKELL SUPPORT
Haskell is outstanding as a functional language and certainly has a lot to recommend it,
but support for standardized datasets is one area in which Haskell is a bit weak. You
can find a library called HLearn at https://github.com/mikeizbicki/HLearn. The
library does work with the current version of Haskell, but the author isn’t supporting it
any longer. The discussion at https://news.ycombinator.com/item?id=14409595
tells you the author’s perspective and offers the perspectives of many other Haskell
users. The point is that you can’t expect this library to work forever without some sort
of support. If you choose to use HLearn, use the GitHub version. Even though you get
most packages from Hackage, the package found at http://hackage.haskell.org/
package/HLearn-classification is even more outdated than the one at GitHub.
Because of the lack of support for datasets in Haskell, as noted in the Quora article at
https://www.quora.com/Is-Haskell-a-good-fit-for-machine-learning-
problems-Why-Or-why-not, this chapter discusses only the Python view of datasets.
If a Haskell dataset becomes available later, you’ll find an article about it on my blog at
http://blog.johnmuellerbooks.com/. In the meantime, combining the functional
programming capabilities of Python with its extensive dataset support is your best bet.

http://www.numpy.org/
http://www.numpy.org/
https://github.com/mikeizbicki/HLearn
https://news.ycombinator.com/item?id=14409595
http://hackage.haskell.org/package/HLearn-classification
http://hackage.haskell.org/package/HLearn-classification
https://www.quora.com/Is-Haskell-a-good-fit-for-machine-learning-problems-Why-Or-why-not
https://www.quora.com/Is-Haskell-a-good-fit-for-machine-learning-problems-Why-Or-why-not
http://blog.johnmuellerbooks.com/

CHAPTER 15 Dealing with Common Datasets 237

in Python, but you do get a good overview of the process for commonly used
datasets so that you can use these datasets within the functional programming
environment. (See the “Finding Haskell support” sidebar in this chapter for
reasons that Haskell isn’t included in the sections that follow.)

Working with toy datasets
As previously mentioned, a toy dataset is one that contains a small amount of
common data that you can use to test basic assumptions, functions, algorithms,
and simple code. The toy datasets reside directly in Scikit-learn, so you don’t have
to do anything special except call a function to use them. The following list pro-
vides a quick overview of the function used to import each of the toy datasets into
your Python code:

»» load_boston(): Regression analysis with the Boston house-prices dataset

»» load_iris(): Classification with the iris dataset

»» load_diabetes(): Regression with the diabetes dataset

»» load_digits([n_class]): Classification with the digits dataset

»» load_linnerud(): Multivariate regression using the linnerud dataset (health
data described at https://github.com/scikit-learn/scikit-learn/
blob/master/sklearn/datasets/descr/linnerud.rst)

»» load_wine(): Classification with the wine dataset

»» load_breast_cancer(): Classification with the Wisconsin breast cancer
dataset

Note that each of these functions begins with the word load. When you see this
formulation in Python, the chances are good that the associated dataset is one of
the Scikit-learn toy datasets.

The technique for loading each of these datasets is the same across examples. The
following example shows how to load the Boston house-prices dataset:

from sklearn.datasets import load_boston
Boston = load_boston()
print(Boston.data.shape)

To see how the code works, click Run Cell. The output from the print() call is
(506, 13). You can see the output shown in Figure 15-3.

https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/datasets/descr/linnerud.rst
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/datasets/descr/linnerud.rst

238 PART 4 Interacting in Various Ways

Creating custom data
The purpose of each of the data generator functions is to create randomly generated
datasets that have specific attributes. For example, you can control the number of
data points using the n_samples argument and use the centers argument to control
how many groups the function creates within the dataset. Each of the calls starts
with the word make. The kind of data depends on the function; for example, make_
blobs() creates Gaussian blobs for clustering (see http://scikit-learn.org/
stable/modules/generated/sklearn.datasets.make_blobs.html for details). The
various functions reflect the kind of labeling provided: single label and multilabel.
You can also choose bi-clustering, which allows clustering of both matrix rows and
columns. Here’s an example of creating custom data:

from sklearn.datasets import make_blobs
X, Y = make_blobs(n_samples=120, n_features=2, centers=4)
print(X.shape)

The output will tell you that you have indeed created an X object containing a
dataset with two features and 120 cases for each feature. The Y object contains the
color values for the cases. Seeing the data plotted using the following code is more
interesting:

import matplotlib.pyplot as plt
%matplotlib inline
plt.scatter(X[:, 0], X[:, 1], s=25, c=Y)
plt.show()

The %matplotlib magic function appears in Table 11-1. In this case, you tell Note-
book to present the plot inline. The output is a scatter chart using the x-axis and

FIGURE 15-3:
The Boston object

contains the
loaded dataset.

http://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_blobs.html
http://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_blobs.html

CHAPTER 15 Dealing with Common Datasets 239

y-axis contained in X. The c=Y argument tells scatter() to create the chart using
the color values found in Y. Figure 15-4 shows the output of this example. Notice
that you can clearly see the four clusters based on their color (even though the
colors don’t appear in the book).

Fetching common datasets
At some point, you need larger datasets of common data to use for testing. The toy
datasets that worked fine when you were testing your functions may not do the
job any longer. Python provides access to larger datasets that help you perform
more complex testing but won’t require you to rely on network sources. These
datasets will still load on your system so that you’re not waiting on network
latency during testing. Consequently, they’re between the toy datasets and a real-
world dataset in size. More important, because they rely on actual (standardized)
data, they reflect real-world complexity. The following list tells you about the
common datasets:

»» fetch_olivetti_faces(): Olivetti faces dataset from AT&T containing
ten images each of 40 different test subjects; each grayscale image is
64 x 64 pixels in size

FIGURE 15-4:
Custom

datasets provide
randomized data

output in the
form you specify.

http://scikit-learn.org/stable/modules/generated/sklearn.datasets.fetch_olivetti_faces.html#sklearn.datasets.fetch_olivetti_faces#sklearn.datasets.fetch_olivetti_faces

240 PART 4 Interacting in Various Ways

»» fetch_20newsgroups(subset='train'): Data from 18,000 newsgroup
posts based on 20 topics, with the dataset split into two subgroups: one
for training and one for testing

»» fetch_mldata('MNIST original', data_home=custom_data_home):
Dataset containing machine learning data in the form of 70,000, 28-x-28-pixel
handwritten digits from 0 through 9

»» fetch_lfw_people(min_faces_per_person=70, resize=0.4): Labeled
Faces in the Wild dataset described at http://vis-www.cs.umass.edu/
lfw/, which contains pictures of famous people in JPEG format

»» sklearn.datasets.fetch_covtype(): U.S. forestry dataset containing the
predominant tree type in each of the patches of forest in the dataset

»» sklearn.datasets.fetch_rcv1(): Reuters Corpus Volume I (RCV1) is a
dataset containing 800,000 manually categorized stories from Reuters, Ltd.

Notice that each of these functions begins with the word fetch. Some of these
datasets require a long time to load. For example, the Labeled Faces in the Wild
(LFW) dataset is 200MB in size, which means that you wait several minutes just
to load it. However, at 200MB, the dataset also begins (in small measure) to start
reflecting the size of real-world datasets. The following code shows how to fetch
the Olivetti faces dataset:

from sklearn.datasets import fetch_olivetti_faces
data = fetch_olivetti_faces()
print(data.images.shape)

When you run this code, you see that the shape is 400 images, each of which is
64 x 64 pixels. The resulting data object contains a number of properties, includ-
ing images. To access a particular image, you use data.images[?], where ? is the
number of the image you want to access in the range from 0 to 399. Here is an
example of how you can display an individual image from the dataset.

import matplotlib.pyplot as plt
%matplotlib inline
plt.imshow(data.images[1], cmap="gray")
plt.show()

The cmap argument tells how to display the image, which is in grayscale in this
case. The tutorial at https://matplotlib.org/tutorials/introductory/
images.html provides additional information on using cmap, as well as on adjust-
ing the image in various ways. Figure 15-5 shows the output from this example.

http://vis-www.cs.umass.edu/lfw/
http://vis-www.cs.umass.edu/lfw/
https://matplotlib.org/tutorials/introductory/images.html
https://matplotlib.org/tutorials/introductory/images.html

CHAPTER 15 Dealing with Common Datasets 241

Manipulating Dataset Entries
You’re unlikely to find a common dataset used with Python that doesn’t provide
relatively good documentation. You need to find the documentation online if you
want the full story about how the dataset is put together, what purpose it serves,
and who originated it, as well as any needed statistics. Fortunately, you can
employ a few tricks to interact with a dataset without resorting to major online
research. The following sections offer some tips for working with the dataset
entries found in this chapter.

Determining the dataset content
The previous sections of this chapter show how to load or fetch existing datasets
from specific sources. These datasets generally have specific characteristics that you
can discover online at places like http://scikit-learn.org/stable/modules/
generated/sklearn.datasets.load_boston.html for the Boston house-prices

FIGURE 15-5:
The image

appears as a
64-x-64-pixel

matrix.

http://scikit-learn.org/stable/modules/generated/sklearn.datasets.load_boston.html
http://scikit-learn.org/stable/modules/generated/sklearn.datasets.load_boston.html

242 PART 4 Interacting in Various Ways

dataset. However, you can also use the dir() function to learn about dataset content.
When you use dir(Boston) with the previously created Boston house-prices data-
set, you discover that it contains DESCR, data, feature_names, and target proper-
ties. Here is a short description of each property:

»» DESCR: Text that describes the dataset content and some of the information
you need to use it effectively

»» data: The content of the dataset in the form of values used for analysis
purposes

»» feature_names: The names of the various attributes in the order in which
they appear in data

»» target: An array of values used with data to perform various kinds of
analysis

The print(Boston.DESCR) function displays a wealth of information about the
Boston house-prices dataset, including the names of attributes that you can use to
interact with the data. Figure 15-6 shows the results of these queries.

FIGURE 15-6:
Most common

datasets are
configured to tell

you about
themselves.

CHAPTER 15 Dealing with Common Datasets 243

The information that the datasets contain can have significant commonality. For
example, if you use dir(data) for the Olivetti faces dataset example described
earlier, you find that it provides access to DESCR, data, images, and target proper-
ties. As with the Boston house-prices dataset, DESCR gives you a description of the
Olivetti faces dataset, which you can use for things like accessing particular attri-
butes. By knowing the names of common properties and understanding how to
use them, you can discover all you need to know about a common dataset in most
cases without resorting to any online resource. In this case, you’d use print(data.
DESCR) to obtain a description of the Olivetti faces dataset. Also, some of the
description data contains links to sites where you can learn more information.

Creating a DataFrame
The common datasets are in a form that allows various types of analysis, as shown
by the examples provided on the sites that describe them. However, you might not
want to work with the dataset in that manner; instead, you may want something
that looks a bit more like a database table. Fortunately, you can use the pandas
(https://pandas.pydata.org/) library to perform the conversion in a manner
that makes using the datasets in other ways easy. Using the Boston house-prices
dataset as an example, the following code performs the required conversion:

import pandas as pd
BostonTable = pd.DataFrame(Boston.data,
 columns=Boston.feature_names)

USING THE DATASET SAMPLE CODE
The online sources are important because they provide you with access to sample code,
in addition to information about the dataset. For example, the Boston house-prices site
at http://scikit-learn.org/stable/modules/generated/sklearn.datasets.
load_boston.html provides access to six examples, one of which is the Gradient
Boosting Regression example at http://scikit-learn.org/stable/auto_
examples/ensemble/plot_gradient_boosting_regression.html#sphx-
glr-auto-examples-ensemble-plot-gradient-boosting-regression-py.
Discovering how others access these datasets can help you build your own code.
Of course, the dataset doesn’t limit you to the uses shown by these examples; the
data is available for any use you might have for it.

https://pandas.pydata.org/
http://scikit-learn.org/stable/modules/generated/sklearn.datasets.load_boston.html
http://scikit-learn.org/stable/modules/generated/sklearn.datasets.load_boston.html
http://scikit-learn.org/stable/auto_examples/ensemble/plot_gradient_boosting_regression.html#sphx-glr-auto-examples-ensemble-plot-gradient-boosting-regression-py
http://scikit-learn.org/stable/auto_examples/ensemble/plot_gradient_boosting_regression.html#sphx-glr-auto-examples-ensemble-plot-gradient-boosting-regression-py
http://scikit-learn.org/stable/auto_examples/ensemble/plot_gradient_boosting_regression.html#sphx-glr-auto-examples-ensemble-plot-gradient-boosting-regression-py

244 PART 4 Interacting in Various Ways

If you want to include the target values with the DataFrame, you must also execute:
BostonTable['target'] = Boston.target. However, this chapter doesn’t use
the target data.

Accessing specific records
If you were to do a dir() command against a DataFrame, you would find that it
provides you with an overwhelming number of functions to try. The documenta-
tion at https://pandas.pydata.org/pandas-docs/version/0.23/generated/
pandas.DataFrame.html supplies a good overview of what’s possible (which
includes all the usual database-specific tasks specified by CRUD). The following
example code shows how to perform a query against a pandas DataFrame. In this
case, the code selects only those housing areas where the crime rate is below
0.02 per capita.

CRIMTable = BostonTable.query('CRIM < 0.02')
print(CRIMTable.count()['CRIM'])

The output shows that only 17 records match the criteria. The count() function
enables the application to count the records in the resulting CRIMTable. The index,
['CRIM'], selects just one of the available attributes (because every column is
likely to have the same values).

You can display all these records with all of the attributes, but you may want to
see only the number of rooms and the average house age for the affected areas.
The following code shows how to display just the attributes you actually need:

print(CRIMTable[['RM', 'AGE']])

Figure 15-7 shows the output from this code. As you can see, the houses vary
between 5 and nearly 8 rooms in size. The age varies from almost 14 years to a
little over 65 years.

You might find it a bit hard to work with the unsorted data in Figure 15-7. Fortu-
nately, you do have access to the full range of common database features. If you
want to sort the values by number of rooms, you use:

print(CRIMTable[['RM', 'AGE']].sort_values('RM'))

As an alternative, you can always choose to sort by average home age:

print(CRIMTable[['RM', 'AGE']].sort_values('AGE'))

https://pandas.pydata.org/pandas-docs/version/0.23/generated/pandas.DataFrame.html
https://pandas.pydata.org/pandas-docs/version/0.23/generated/pandas.DataFrame.html

CHAPTER 15 Dealing with Common Datasets 245

FIGURE 15-7:
Manipulating the

data helps you
find specific

information.

5Performing
Simple Error
Trapping

IN THIS PART . . .

Define errors (bugs) in functional languages.

Avoid the use of exceptions.

Locate and fix errors in Haskell.

Locate and fix errors in Python.

CHAPTER 16 Handling Errors in Haskell 249

Chapter 16
Handling Errors
in Haskell

Most application code contains errors. It’s a blanket statement that you
may doubt, but the wealth of errors is obvious when you consider the
number of security breaches and hacks that appear in the trade press,

not to mention the odd results that sometimes occur from seemingly correct data
analysis. If the code has no bugs, updates will occur less often. This chapter
­discusses errors from a pure functional language perspective; Chapter 17 looks at
the same issue from an impure language perspective, which can differ because
impure languages often rely on procedures.

After you identify an error, you can describe the error in detail and use that
description to locate the error in the application code. At least, this process is the
theory that most people go by when finding errors. Reality is different. Errors
commonly hide in plain view because the developer isn’t squinting just the right
way in order to see them. Bias, perspective, and lack of understanding all play a
role in hiding errors from view. This chapter also describes how to locate and
describe errors so that they become easier to deal with.

Knowing the source, location, and complete description of an error doesn’t fix the
error. People want applications that provide a desired result based on specific
inputs. If your application doesn’t provide this sort of service, people will stop
using it. To keep people from discarding your application, you need to correct the

IN THIS CHAPTER

»» Understanding Haskell bugs

»» Locating and describing Haskell
errors

»» Squashing Haskell bugs

250 PART 5 Performing Simple Error Trapping

error or handle the situation that creates the environment in which the error
occurs. The final section of this chapter describes how to squash errors —for most
of the time, at least.

Defining a Bug in Haskell
A bug occurs when an application either fails to run or produces an output other
than the one expected. An infinite loop is an example of the first bug type, and
obtaining a result of 5 when adding 1 and 1 is an example of the second bug type.
Some people may try to convince you that other kinds of bugs exist, but these
other bugs end up being subsets of the two just mentioned.

Haskell and other functional languages don’t allow you to write applications that
are bug free. Quite the contrary: You can find the same sorts of bugs in Haskell
that you can find in other languages, such as Python. Chapter 17 explores some
common Python issues and examines the conditions under which bugs occur in
that language, but many of those issues also translate into Haskell. Bugs occur at
compile time or runtime. In addition, they can be syntactical, semantic, or logical
in nature.

However, functional languages tend to bring their own assortment of bugs into
applications, and knowing what these bugs are is a good idea. They’re not neces-
sarily new bugs, but they occur differently with functional languages. The follow-
ing sections consider the specifics of bugs that occur with functional languages,
using Haskell as an example. These sections provide an overview of the kinds of
Haskell-specific bugs that you need to think about, but you can likely find others.

Considering recursion
Functional languages generally avoid mutable variables by using recursion. This
difference in focus means that you’re less apt to see logic errors that occur when
loops don’t execute the number of times expected or fail to stop because the
­condition that you expected doesn’t occur. However, it also means that stack-
related errors from infinite recursion happen more often.

You may think that loops and recursion produce similar errors. However, unlike a
loop, recursion can’t go on indefinitely because the stack uses memory for each
call, which means that the application eventually runs out of memory. In fact,
memory helps define the difference between functional and other languages that
do rely on loops. When a functional language runs out of memory to perform
recursion, the problem could simply be that the host machine lacks the required
resources, rather than an actual code error.

CHAPTER 16 Handling Errors in Haskell 251

Understanding laziness
Haskell is a lazy language for the most part, which means that it doesn’t perform
actions until it actually needs to perform them. For example, it won’t evaluate an
expression until it needs to use the output from that expression. The advantages
of using a lazy language include (but aren’t limited to) the following:

»» Faster execution speed because an expression doesn’t use processing cycles
until needed

»» Reduced errors because an error shows up only when the expression is
evaluated

INTRODUCING THE ALGORITHM
CONNECTION
According to the National Public Radio (NPR) article at https://www.npr.org/
sections/alltechconsidered/2015/03/23/394827451/now-algorithms-are-
deciding-whom-to-hire-based-on-voice, an algorithm can decide whether a
company hires you for a job based solely on your voice. The algorithm won’t make the
final decision, but it does reduce the size of the list that a human will go through to make
the final determination. If a human never sees your name, you’ll never get the job. The
problem is that algorithms contain a human element.

The Big Think article at https://bigthink.com/ideafeed/when-algorithms-go-
awry discusses the issue of human thought behind the algorithm. The laws that define
human understanding of the universe today rely on the information at hand, which
constantly changes. Therefore, the laws constantly change as well. Given that the laws
are, at best, unstable and that functional languages rely heavily on algorithms presented
in a specific manner, the bug you’re hunting may have nothing to do with your code; it
may instead have everything to do with the algorithm you’re using. You can find more
information about the biases and other issues surrounding algorithms in Algorithms For
Dummies, by John Mueller and Luca Massaron (Wiley).

The problem with algorithms goes deeper, however, than simply serving as the basis on
which someone creates the algorithm. Absolute laws tend to pervert the intent of a par-
ticular set of rules. Unlike humans, computers execute only the instructions that
humans provide; a computer can’t understand the concept of exceptions. In addition,
no one can provide a list of every exception as part of an application. Consequently,
algorithms, no matter how well constructed, will eventually become incorrect because
of changes in the information used to create them and the incapability of an algorithm
to adapt to exceptions.

https://www.npr.org/sections/alltechconsidered/2015/03/23/394827451/now-algorithms-are-deciding-whom-to-hire-based-on-voice
https://www.npr.org/sections/alltechconsidered/2015/03/23/394827451/now-algorithms-are-deciding-whom-to-hire-based-on-voice
https://www.npr.org/sections/alltechconsidered/2015/03/23/394827451/now-algorithms-are-deciding-whom-to-hire-based-on-voice
https://bigthink.com/ideafeed/when-algorithms-go-awry
https://bigthink.com/ideafeed/when-algorithms-go-awry

252 PART 5 Performing Simple Error Trapping

»» Reduced resource usage because resources are used only when needed

»» Enhanced ability to create data structures that other languages can’t support
(such as a data structure of infinite size)

»» Improved control flow because you can define some objects as abstractions
rather than primitives

However, lazy languages can also create strange bug scenarios. For example, the
following code purports to open a file and then read its content:

withFile "MyData.txt" ReadMode handle >>= putStr

If you looked at the code from a procedural perspective, you would think that it
should work. The problem is that lazy evaluation using withFile means that
Haskell closes handle before it reads the data from MyData.txt. The solution to
the problem is to perform the task as part of a do, like this:

main = withFile "MyData.txt" ReadMode $ \handle -> do
 myData <- hGetLine handle
 putStrLn myData

However, by the time you create the code like this, it really isn’t much different
from the example found in the “Reading data” section of Chapter 13. The main
advantage is that Haskell automatically closes the file handle for you. Offsetting
this advantage is that the example in Chapter 13 is easier to read. Consequently,
lazy evaluation can impose certain unexpected restrictions.

Using unsafe functions
Haskell generally provides safe means of performing tasks, as mentioned in several
previous chapters. Not only is type safety ensured, but Haskell also checks for
issues such as the correct number of inputs and even the correct usage of outputs.
However, you may encounter extremely rare circumstances in which you need to
perform tasks in an unsafe manner in Haskell, which means using unsafe functions
of the sort described at https://wiki.haskell.org/Unsafe_functions. Most of
these functions are fully described as part of the System.IO.Unsafe package at
http://hackage.haskell.org/package/base-4.11.1.0/docs/System-
IO-Unsafe.html. The problem is that these functions are, as described, unsafe and
therefore the source of bugs in many cases.

You can find the rare exceptions for using unsafe functions in posts online. For
example, you might want to access the functions in the C math library (as accessed
through math.h). The discussion at https://stackoverflow.com/questions/
10529284/is-there-ever-a-good-reason-to-use-unsafeperformio tells how

https://wiki.haskell.org/Unsafe_functions
http://hackage.haskell.org/package/base-4.11.1.0/docs/System-IO-Unsafe.html
http://hackage.haskell.org/package/base-4.11.1.0/docs/System-IO-Unsafe.html
https://stackoverflow.com/questions/10529284/is-there-ever-a-good-reason-to-use-unsafeperformio
https://stackoverflow.com/questions/10529284/is-there-ever-a-good-reason-to-use-unsafeperformio

CHAPTER 16 Handling Errors in Haskell 253

to perform this task. However, you need to consider whether such access is really
needed because Haskell provides such an extensive array of math functions.

The same discussion explores other uses for unsafePerformIO. For example, one
of the code samples shows how to create global mutable variables in Haskell,
which would seem counterproductive, given the reason you’re using Haskell in
the first place. Avoiding unsafe functions in the first place is a better idea because
you open yourself to hours of debugging, unassisted by Haskell’s built-in func-
tionality (after all, you marked the call as unsafe).

Considering implementation-specific issues
As with most language implementations, you can experience implementation-
specific issues with Haskell. This book uses the Glasgow Haskell Compiler (GHC)
version 8.2.2, which comes with its own set of incompatibilities as described at
http://downloads.haskell.org/~ghc/8.2.2/docs/html/users_guide/bugs.
html. Many of these issues will introduce subtle bugs into your code, so you need
to be aware of them. When you run your code on other systems using other imple-
mentations, you may find that you need to rework the code to bring it into
compliance with that implementation, which may not necessarily match the
Haskell standard.

Understanding the Haskell-Related Errors
It’s essential to understand that the functional nature of Haskell and its use of
expressions modifies how people commonly think about errors. For example, if
you type x = 5/0 and press Enter in Python, you see a ZeroDivisionError as
­output. In fact, you expect to see this sort of error in any procedural language. On
the other hand, if you type x = 5/0 in Haskell and press Enter, nothing seems to
happen. However, x now has the value of Infinity. The fact that some pieces of
code that define an error in a procedural language but may not define an error in
a functional language means that you need to be aware of the consequences.

To see the consequences in this case, type :t x and press Enter. You find that the
type of x is Fractional, not Float or Double as you might suppose. Actually, you
can convert x to either Float or Double by typing y = x::Double or y = x::Float and
pressing Enter.

http://downloads.haskell.org/~ghc/8.2.2/docs/html/users_guide/bugs.html
http://downloads.haskell.org/~ghc/8.2.2/docs/html/users_guide/bugs.html

254 PART 5 Performing Simple Error Trapping

The Fractional type is a superset of both Double and Float, which can lead to
some interesting errors that you don’t find in other languages. Consider the
following code:

x = 5/2
:t x
y = (5/2)::Float
:t y
z = (5/2)::Double
:t z
x * y
:t (x * y)
x * z
:t (x * z)
y * z

The code assigns the same values to three variables, x, y, and z, but of different
types: Fractional, Float, and Double. You verify this information using the :t
command. The first two multiplications work as expected and produce the type of
the subtype, rather than the host, Fractional. However, notice that trying to
multiply a Float by a Double, something you could easily do in most procedural
languages, doesn’t work in Haskell, as shown in Figure 16-1. You can read about
the reason for the lack of automatic type conversion in Haskell at https://wiki.
haskell.org/Generic_number_type. To make this last multiplication work, you
need to convert one of the two variables to Fractional first using code like this:
realToFrac(y) * z.

FIGURE 16-1:
Automatic

number
conversion is

unavailable in
Haskell.

https://wiki.haskell.org/Generic_number_type
https://wiki.haskell.org/Generic_number_type

CHAPTER 16 Handling Errors in Haskell 255

Some odd situations exist in which a Haskell application can enter an infinite loop
because it works with expressions rather than relying on procedures. For example,
the following code will execute fine in Python:

x = 5/2
x = x + 1
x

In Python, you see an output of 3.5, which is what anyone working with procedural
code will expect. However, this same code causes Haskell to enter into an infinite

REDUCING THE NUMBER OF BUGS
Some people will try to convince you that one language or another provides some sort
of magic that reduces bugs to nearly zero without any real effort on your part.
Unfortunately, those people are wrong. In fact, you could say that accurately comparing
languages against each other for bug deterrence is impossible. Someone who is skilled
in one language but not another will almost certainly produce more bugs in the latter,
despite any protections that the latter has. In addition, any developer is unlikely to have
precisely the same level of skill in using two languages, so the comparison isn’t mean-
ingful. Consequently, the language that produces the fewest bugs is often the language
you know best.

Another important issue to consider is that programmers tend to use differing mean-
ings for the word bug, which is why this chapter attempts to provide a fairly comprehen-
sive definition — albeit one that you may not agree with. If the target for analysis isn’t
fully defined, you can’t perform any meaningful comparison. Before you could hope to
determine which language produces the fewest bugs, you would need to have agree-
ment on what constitutes a bug, and such agreement doesn’t currently exist.

Even more important is the concept of what a bug means to nondevelopers. A devel-
oper will look for correct output for specific input. However, a user may see a bug in
presenting three digits past the decimal point, instead of just two. A manager may see a
bug in presenting output that doesn’t match company policies and should be vetted to
ensure that the output is consistent with those polices. An administrator may see a bug
in a suggested fix for an error message that runs counter to security requirements.
Consequently, you must also perform stakeholder testing, and adding this level of test-
ing makes it even harder to compare languages, environments, testing methodologies,
and a whole host of other concerns that affect that seemingly simple word bug. So if you
were hoping to find some meaningful comparison between the relative numbers of
bugs that Haskell produces versus those created by Python in this book, you’ll be
disappointed.

256 PART 5 Performing Simple Error Trapping

loop because the information is evaluated as an expression, not as a procedure.
The output, when working with compiled code, is <<loop>>, which you can read
about in more detail at https://stackoverflow.com/questions/21505192/
haskell-program-outputs-loop. When using WinGHCi (or another interpreter),
the call will simply never return. You need to click the Pause button (which looks
like the Pause button on a remote) instead. A message of Interrupted appears to
tell you that the code, which will never finish its work, has been interrupted. The
fact that Haskell actually detects many simpler infinite loops and tells you about
them says a lot about its design.

Haskell does prevent a wide variety of errors that you see in many other
languages. For example, it doesn’t have a global state. Therefore, one function
can’t use a global variable to corrupt another function. The type system also
prevents a broad range of errors that plague other languages, such as trying to
stuff too much data into a variable that can’t hold it. You can read a discussion of
other sorts of common errors that Haskell prevents at https://www.quora.com/
Exactly-what-kind-of-bugs-does-Haskell-prevent-from-introducing-
compared-to-other-mainstream-languages.

Even though this section isn’t a complete list of all the potential kinds of errors
that you see in Haskell, understand that functional languages have many similari-
ties in the potential sources of errors but that the actual kinds of errors can differ.

Fixing Haskell Errors Quickly
Haskell, as you’ve seen in the error messages in this book, is good about providing
you with trace information when it does encounter an error. Errors can occur in a
number of ways, as described in Chapter 17. Of course, the previous sections have
filled you in on Haskell exceptions to the general rules. The following sections
give an overview of some of the ways to fix Haskell errors quickly.

Relying on standard debugging
Haskell provides the usual number of debugging tricks, and the IDE you use may
provide others. Because of how Haskell works, your first line of defense against
bugs is in the form of the messages, such as error and CallStack output, that
Haskell provides. Figure 16-1 shows an example of an error output, and Figure 16-2
shows an example of CallStack output. Comparing the two, you can see that they’re
quite similar. The point is that you can use this output to trace the origin of a bug
in your code.

https://stackoverflow.com/questions/21505192/haskell-program-outputs-loop
https://stackoverflow.com/questions/21505192/haskell-program-outputs-loop
https://www.quora.com/Exactly-what-kind-of-bugs-does-Haskell-prevent-from-introducing-compared-to-other-mainstream-languages
https://www.quora.com/Exactly-what-kind-of-bugs-does-Haskell-prevent-from-introducing-compared-to-other-mainstream-languages
https://www.quora.com/Exactly-what-kind-of-bugs-does-Haskell-prevent-from-introducing-compared-to-other-mainstream-languages

CHAPTER 16 Handling Errors in Haskell 257

During the debugging process, you can use the trace function to validate your
assumptions. To use trace, you must import Debug.Trace. Figure 16-3 shows a
quick example of this function at work.

You provide the assumption as a string in the first argument and the function call
as the second argument. The article at http://hackage.haskell.org/package/
base-4.11.1.0/docs/Debug-Trace.html gives additional details on using trace.
Note that with lazy execution, you see trace output only when Haskell actually
executes your code. Consequently, in contrast to other development languages,
you may not see all your trace statements every time you run the application.
A specialized alternative to trace is htrace, which you can read about at http://
hackage.haskell.org/package/htrace.

Haskell does provide other debugging functionality. For example, you gain full
access to breakpoints. As with other languages, you have methods available for
determining the status of variables when your code reaches a breakpoint (assum-
ing that the breakpoint actually occurs with lazy execution). The article at
https://wiki.haskell.org/Debugging offers additional details.

FIGURE 16-2:
Haskell provides

you with
reasonably

useful messages
in most cases.

FIGURE 16-3:
Use trace to
validate your
assumptions.

http://hackage.haskell.org/package/base-4.11.1.0/docs/Debug-Trace.html
http://hackage.haskell.org/package/base-4.11.1.0/docs/Debug-Trace.html
http://hackage.haskell.org/package/htrace
http://hackage.haskell.org/package/htrace
https://wiki.haskell.org/Debugging

258 PART 5 Performing Simple Error Trapping

Understanding errors versus exceptions
For most programming languages, you can use the terms error and exception
almost interchangeably because they both occur for about the same reasons. Some
languages purport to provide a different perspective on the two but then fail to
support the differences completely. However, Haskell actually does differentiate
between the two:

»» Error: An error always occurs as the result of a mistake in the code. The error
is never expected and you must fix it to make the code run properly. The
functions that support errors are

•	 error
•	 assert
•	 Control.Exception.catch
•	 Debug.Trace.trace

»» Exception: An exception is an expected, but unusual, occurrence. In many
cases, exceptions reflect conditions outside the application, such as a lack of
drive space or an incapability to create a connection. You may not be able to
fix an exception but you can sometimes compensate for it. The function that
support exceptions are

•	 Prelude.catch
•	 Control.Exception.catch
•	 Control.Exception.try
•	 IOError
•	 Control.Monad.Error

As you can see, errors and exceptions fulfill completely different purposes and
generally use different functions. The only repeat is Control.Exception.catch,
and there are some caveats about using this function for an error versus an
­exception, as described at https://wiki.haskell.org/Error_vs._Exception.
This article also gives you additional details about the precise differences between
errors and exceptions.

https://wiki.haskell.org/Error_vs._Exception

CHAPTER 17 Handling Errors in Python 259

Chapter 17
Handling Errors
in Python

Chapter 16 discusses errors in code from a Haskell perspective, and some of
the errors you encounter in Haskell might take you by surprise. Oddly
enough, so might some of the coding techniques used in other languages

that would appear as errors. (Chapter 16 also provides a good reason not to
compare the bug mitigation properties of various languages in the “Reducing the
number of bugs” sidebar.) Python is more traditional in its approach to errors.
For example, dividing a number by zero actually does produce an error, not a spe-
cial data type designed to handle the division using the value Infinity.
Consequently, you may find the discussion (in the first section of this chapter) of
what constitutes a bug in Python a little boring if you have worked through coding
errors in other procedural languages. Even so, reading the material is a good idea
so that you can better understand how Python and Haskell differ in their handling
of errors in the functional programming environment.

The next section of the chapter goes into the specifics of Python-related errors,
especially those related to the functional features that Python provides. Although
the chapter does contain a little general information as background, it focuses
mostly on the functional programming errors.

IN THIS CHAPTER

»» Understanding Python bugs

»» Considering bug sources

»» Locating and describing Python
errors

»» Squashing Python bugs

260 PART 5 Performing Simple Error Trapping

Finally, the chapter tells you about techniques that you can use to fix Python
functional programming errors a little faster. You’ll find the same sorts of things
that you can do when using Python for procedural programming, such as
step-by-step debugging. However, fixing functional errors sometimes requires a
different thought process, and this chapter helps you understand what you need
to do when such cases arise.

Defining a Bug in Python
As with Haskell, Python bugs occur when an application fails to work as antici-
pated. Both languages also view errors that create bugs in essentially the same
manner, even though Haskell errors take a functional paradigm’s approach, while
those in Python are more procedural in nature. The following sections help you
understand what is meant by a bug in Python and provide input on how using the
functional approach can affect the normal view of bugs.

Considering the sources of errors
You might be able to divine the potential sources of error in your application by
reading tea leaves, but that’s hardly an efficient way to do things. Errors actually
fall into well-defined categories that help you predict (to some degree) when and
where they’ll occur. By thinking about these categories as you work through your
application, you’re far more likely to discover potential errors’ sources before they
occur and cause potential damage. The two principal categories are

»» Errors that occur at a specific time

»» Errors that are of a specific type

The following sections discuss these two categories in greater detail. The overall
concept is that you need to think about error classifications in order to start find-
ing and fixing potential errors in your application before they become a problem.

Classifying when errors occur
Errors occur at specific times. However, no matter when an error occurs, it causes
your application to misbehave. The two major time frames in which errors occur are

»» Compile time: A compile time error occurs when you ask Python to run the
application. Before Python can run the application, it must interpret the code
and put it into a form that the computer can understand. A computer relies

CHAPTER 17 Handling Errors in Python 261

on machine code that is specific to that processor and architecture. If the
instructions you write are malformed or lack needed information, Python
can’t perform the required conversion. It presents an error that you must fix
before the application can run.

»» Runtime: A runtime error occurs after Python compiles the code that you
write and the computer begins to execute it. Runtime errors come in several
different types, and some are harder to find than others. You know you have
a runtime error when the application suddenly stops running and displays
an exception dialog box or when the user complains about erroneous output
(or at least instability).

Not all runtime errors produce an exception. Some runtime errors cause
instability (the application freezes), errant output, or data damage. Runtime
errors can affect other applications or create unforeseen damage to the
platform on which the application is running. In short, runtime errors can
cause you quite a bit of grief, depending on precisely the kind of error you’re
dealing with at the time.

Distinguishing error types
You can distinguish errors by type, that is, by how they’re made. Knowing the
error types helps you understand where to look in an application for potential
problems. Exceptions work like many other things in life. For example, you know
that electronic devices don’t work without power. So when you try to turn your
television on and it doesn’t do anything, you might look to ensure that the power
cord is firmly seated in the socket.

Understanding the error types helps you locate errors faster, earlier, and more
consistently, resulting in fewer misdiagnoses. The best developers know that
fixing errors while an application is in development is always easier than fixing it
when the application is in production because users are inherently impatient and
want errors fixed immediately and correctly. In addition, fixing an error earlier in
the development cycle is always easier than fixing it when the application nears
completion because less code exists to review.

The trick is to know where to look. With this in mind, Python (and most other
programming languages) breaks errors into the following types (arranged in order
of difficulty, starting with the easiest to find):

»» Syntactical: Whenever you make a typo of some sort, you create a syntactical
error. Some Python syntactical errors are quite easy to find because the
application simply doesn’t run. The interpreter may even point out the error
for you by highlighting the errant code and displaying an error message.

262 PART 5 Performing Simple Error Trapping

However, some syntactical errors are quite hard to find. Python is case
sensitive, so you may use the wrong case for a variable in one place and find
that the variable isn’t quite working as you thought it would. Finding the one
place where you used the wrong capitalization can be quite challenging.

»» Semantic: When you create a loop that executes one too many times, you
don’t generally receive any sort of error information from the application.
The application will happily run because it thinks that it’s doing everything
correctly, but that one additional loop can cause all sorts of data errors.
When you create an error of this sort in your code, it’s called a semantic error.
Semantic errors are tough to find, and you sometimes need some sort of
debugger to find them.

»» Logical: Some developers don’t create a division between semantic and
logical errors, but they are different. A semantic error occurs when the code
is essentially correct but the implementation is wrong (such as having a loop
execute once too often). Logical errors occur when the developer’s thinking is
faulty. In many cases, this sort of error happens when the developer uses a
relational or logical operator incorrectly. However, logical errors can happen
in all sorts of other ways, too. For example, a developer might think that data
is always stored on the local hard drive, which means that the application may
behave in an unusual manner when it attempts to load data from a network
drive instead. Logical errors are quite hard to fix because the problem isn’t
with the actual code, yet the code itself is incorrectly defined. The thought
process that went into creating the code is faulty; therefore, the developer
who created the error is less likely to find it. Smart developers use a second
pair of eyes to help spot logical errors.

Considering version differences
Python is one of the few languages around today that has active support for
two major language versions. Even though Python 2.x support will officially end
in 2020 (see https://pythonclock.org/ for details), you can bet that many
developers will continue to use it until they’re certain that the libraries they need
come in a fully compatible Python 3.x form. However, the problem isn’t just with
libraries but also with processes, documentation, existing code, and all sorts of
other things that could affect someone who is using functional programming
techniques in Python.

Although the Python community has worked hard to make the transition easier,
you can see significant functional programming differences by reviewing the
Python 2.x material at https://docs.python.org/2/howto/functional.html
and comparing it to the Python 3.x material at https://docs.python.org/3/
howto/functional.html. The transition will introduce bugs into your applica-
tions, some of them quite hard to find and others that the compiler will let you

https://pythonclock.org/
https://docs.python.org/2/howto/functional.html
https://docs.python.org/3/howto/functional.html
https://docs.python.org/3/howto/functional.html

CHAPTER 17 Handling Errors in Python 263

know about. Articles, such as the one at http://sebastianraschka.com/
Articles/2014_python_2_3_key_diff.html can help you locate and potentially
fix these issues. (Note especially the integer division differences stated by the
article because they really can throw your functional code off in a manner that is
particularly hard to find.)

Understanding the Python-Related Errors
You can encounter more than a few kinds of errors when working with Python
code. This chapter doesn’t provide exhaustive treatment of those errors. However,
the following sections do offer some clues as to what might be wrong with your
functional code, especially as it deals with lambda expressions.

Dealing with late binding closures
You need to realize that Python is late binding, which means that Python looks up
the values of variables when it calls an inner function that is part of a loop only
when the loop is completed. Consequently, rather than use individual values
within a loop, what you see is the final value. For a demonstration of this issue,
consider the following code:

def create_values(numValues):
 return [lambda x : i * x for i in range(numValues)]

for indValue in create_values(5):
 print(indValue(2))

This code creates the specified number of functions, one for each value in
range(numValues), which is create_values(5) (five) in this case. The idea is to
create an output of five values using a particular multiplier (which is indValue(2)
in this case). You might assume that the first function call will be 0 (the value
of i) * 2 (the value of x supplied as an input). However, the first function is never
called while i is equal to 0. In fact, it gets called the first time only when its value
is 4 — at the end of the loop. As a result, the output you see when you call this
function is a series of 8s. To fix this code, you need to use the following create_
values() code instead:

def create_values(numValues):
 return [lambda x, i=i : i * x for i in
 range(numValues)]

http://sebastianraschka.com/Articles/2014_python_2_3_key_diff.html
http://sebastianraschka.com/Articles/2014_python_2_3_key_diff.html

264 PART 5 Performing Simple Error Trapping

This version of the code uses a trick to force the value of i to reflect the actual
value produced by each of the values output by range(numValues). Instead of
being part of the inner function, i is now provided as an input. You call the
function in the same manner as before, but now the output is correct. Oddly
enough, this particular problem isn’t specific to lambda expressions; it can happen
in any Python code. However, developers see it more often in this situation because
the tendency is to use a lambda expression in this case.

You can find another example of this late-binding closure issue in the posting at
https://bugs.python.org/issue27738 (with another fix like the one shown in
this section). The discussion at https://stackoverflow.com/questions/1107210/
python-lambda-problems provides another solution to this problem using
functools.partial(). The point is that you must remember that Python is late
binding.

Using a variable
In some situations, you can’t use a lambda expression inline. Fortunately, Python
will generally find these errors and tell you about them, as in the following code:

garbled = "IXX aXXmX sXeXcXrXeXt mXXeXsXsXaXXXXXXgXeX!XX"
print filter(lambda x: x != "X", garbled)

Obviously, this example is incredible simple, and you likely wouldn’t use it in the
real world. However, it shows that you can’t use the lambda inline in this case;
you must first assign it to a variable and then loop through the values. The follow-
ing code shows the correct alternative code:

garbled = "IXX aXXmX sXeXcXrXeXt mXXeXsXsXaXXXXXXgXeX!XX"
ungarble = filter(lambda x: x != "X", garbled)
for x in ungarble:
 print(x, end='')

Working with third-party libraries
Your Python functional programming experience will include third-party libraries
that may not always benefit from the functional programming approach. Before
you assume that a particular approach will work, you should review potential
sources of error online. For example, the following message thread discusses
potential problems with using lambda expressions to perform an aggregation
with Pandas: https://github.com/pandas-dev/pandas/issues/7186. In many
cases, the community of developers will have alternatives for you to try, as
happened in this case.

https://bugs.python.org/issue27738
https://stackoverflow.com/questions/1107210/python-lambda-problems
https://stackoverflow.com/questions/1107210/python-lambda-problems
https://github.com/pandas-dev/pandas/issues/7186

CHAPTER 17 Handling Errors in Python 265

Fixing Python Errors Quickly
The key to fixing Python errors quickly is to have a strategy for dealing with each
sort of error described in the “Distinguishing error types” section, earlier in this
chapter. If Python doesn’t recognize an error during the compilation process, it
often generates an exception or you see unwanted behavior. The use of lambda
expressions to define an application that relies on the functional paradigm does-
n’t really change things, but the use of lambda expressions can create special
circumstances, such as those described in the “Introducing the algorithm connec-
tion” sidebar of Chapter 16. The following sections describe the mix of error-
correction processes that you can employ when using Python in functional mode.

Understanding the built-in exceptions
Python comes with a host of built-in exceptions — far more than you might think
possible. You can see a list of these exceptions at https://docs.python.org/3.6/
library/exceptions.html. The documentation breaks the exception list down
into categories. Here is a brief overview of the Python exception categories that
you work with regularly:

»» Base classes: The base classes provide the essential building blocks (such as
the Exception exception) for other exceptions. However, you might actually
see some of these exceptions, such as the ArithmeticError exception, when
working with an application.

»» Concrete exceptions: Applications can experience hard errors — errors that
are hard to overcome because no good way to handle them exists or they
signal an event that the application must handle. For example, when a system
runs out of memory, Python generates a MemoryError exception. Recovering
from this error is hard because it releasing memory from other uses isn’t
always possible. When the user presses an interrupt key (such as Ctrl+C or
Delete), Python generates a KeyboardInterrupt exception. The application
must handle this exception before proceeding with any other tasks.

»» OS exceptions: The operating system can generate errors that Python then
passes along to your application. For example, if your application tries to open
a file that doesn’t exist, the operating system generates a
FileNotFoundError exception.

»» Warnings: Python tries to warn you about unexpected events or actions that
could result in errors later. For example, if you try to inappropriately use a
resource, such as an icon, Python generates a ResourceWarning exception.
You want to remember that this particular category is a warning and not an
actual error: Ignoring it can cause you woe later, but you can ignore it.

https://docs.python.org/3.6/library/exceptions.html
https://docs.python.org/3.6/library/exceptions.html

266 PART 5 Performing Simple Error Trapping

Obtaining a list of exception arguments
The list of arguments supplied with exceptions varies by exception and by what
the sender provides. You can’t always easily figure out what you can hope to obtain
in the way of additional information. One way to handle the problem is to simply
print everything by using code like this:

import sys
try:
 File = open('myfile.txt')
except IOError as e:
 for Arg in e.args:
 print(Arg)
else:
 print("File opened as expected.")
 File.close();

The args property always contains a list of the exception arguments in string
format. You can use a simple for loop to print each of the arguments. The only
problem with this approach is that you’re missing the argument names, so you
know the output information (which is obvious in this case), but you don’t know
what to call it.

A more complex method of dealing with the issue is to print both the names and
the contents of the arguments. The following code displays both the names and
the values of each of the arguments:

import sys
try:
 File = open('myfile.txt')
except IOError as e:
 for Entry in dir(e):
 if (not Entry.startswith("_")):
 try:
 print(Entry, " = ", e.__getattribute__(Entry))
 except AttributeError:
 print("Attribute ", Entry, " not accessible.")
else:
 print("File opened as expected.")
 File.close();

CHAPTER 17 Handling Errors in Python 267

In this case, you begin by getting a listing of the attributes associated with the
error argument object using the dir() function. The output of the dir() function
is a list of strings containing the names of the attributes that you can print.
Only those arguments that don’t start with an underscore (_) contain useful
information about the exception. However, even some of those entries are inac-
cessible, so you must encase the output code in a second try...except block.

The attribute name is easy because it’s contained in Entry. To obtain the value
associated with that attribute, you must use the __getattribute() function and
supply the name of the attribute you want. When you run this code, you see both
the name and the value of each of the attributes supplied with a particular error
argument object. In this case, the actual output is as follows:

args = (2, 'No such file or directory')
Attribute characters_written not accessible.
errno = 2
filename = myfile.txt
filename2 = None
strerror = No such file or directory
winerror = None
with_traceback = <built-in method with_traceback of
 FileNotFoundError object at 0x0000000003416DC8>

Considering functional style
exception handling
The previous sections of this chapter have discussed using exceptions, but as pre-
sented in previous chapters, Haskell actually discourages the use of exceptions,
partly because they’re indicative of state, and many functional programming afi-
cionados discourage this use as well. The fact that Haskell does present exceptions
as needed is proof that they’re not absolutely forbidden, which is a good thing
considering that in some situations, you really do need to use exceptions when
working with Python.

However, when working in a functional programming environment with Python,
you have some alternatives to using exceptions that are more in line with the
functional programming paradigm. For example, instead of raising an exception
as the result of certain events, you could always use a base value, as discussed at
https://softwareengineering.stackexchange.com/questions/334769/
functional-style-exception-handling.

https://softwareengineering.stackexchange.com/questions/334769/functional-style-exception-handling
https://softwareengineering.stackexchange.com/questions/334769/functional-style-exception-handling

268 PART 5 Performing Simple Error Trapping

Haskell also offers some specialized numeric handling that you might also want to
incorporate as part of using Python. For example, as shown in Chapter 16, the
Fractional type allows statements such as 5 / 0 in Haskell. The same statement
produces an error in Python. Fortunately, you have access to the fractions
package in Python, as described at https://docs.python.org/3/library/
fractions.html.

Although the fractions package addresses some issues and you get a full
fractional type, that package doesn’t address the 5 / 0 problem; you still get a
ZeroDivisionError exception. To avoid this final issue, you can use specialized
techniques such as those found in the message thread at https://stackover
flow.com/questions/27317517/make-division-by-zero-equal-to-zero. The
point is that you have ways around exceptions in some cases if you want to use a
more functional style of reporting. If you really want some of the advantages of
using Haskell in your Python application, the hyphen module at https://github.
com/tbarnetlamb/hyphen makes it possible.

https://docs.python.org/3/library/fractions.html
https://docs.python.org/3/library/fractions.html
https://stackoverflow.com/questions/27317517/make-division-by-zero-equal-to-zero
https://stackoverflow.com/questions/27317517/make-division-by-zero-equal-to-zero
https://github.com/tbarnetlamb/hyphen
https://github.com/tbarnetlamb/hyphen

6The Part of Tens

IN THIS PART . . .

Discover must-have Haskell libraries.

Discover must-have Python packages.

Gain employment using functional programming
techniques.

CHAPTER 18 Ten Must-Have Haskell Libraries 271

Chapter 18
Ten Must-Have Haskell
Libraries

Haskell supports a broad range of libraries, which is why it’s such a good
product to use. Even though this chapter explores a few of the more
­interesting Haskell library offerings, you should also check out the rather

lengthy list of available libraries at http://hackage.haskell.org/packages/.
Chances are that you’ll find a library to meet almost any need in that list.

The problem is figuring out precisely which library to use and, unfortunately, the
Hackage site doesn’t really help much. The associated short descriptions are gen-
erally enough to get you pointed in the right direction, but experimentation is the
only real way to determine whether a library will meet your needs. In addition,
you should seek online reviews of the various libraries before you begin using
them. Of course, that’s part of the pleasure of development: discovering new tools
to meet specific needs and then testing them yourself.

binary
To store certain kinds of data, you must be able to serialize it — that is, change it
into a format that you can store on disk or transfer over a network to another
machine. Serialization takes complex data structures and data objects and turns

IN THIS CHAPTER

»» Improving the user interface with
sights and sounds

»» Manipulating data better

»» Working with algorithms

http://hackage.haskell.org/packages/

272 PART 6 The Part of Tens

them into a series of bits that an application can later reconstitute into the original
structure or object using deserialization. The point is that the data can’t travel
in its original form. The binary library (http://hackage.haskell.org/package/
binary) enables an application to serialize binary data of the sort used for all sorts
of purposes, including both sound and graphics files. It works on lazy byte strings,
which can provide a performance advantage as long as the byte strings are error
free and the code is well behaved.

This particular library’s fast speed is why it’s so helpful for real-time binary data
needs. According to the originator, you can perform serialization and deserializa-
tion tasks at speeds approaching 1 Gbps. According to the discussion at https://
superuser.com/questions/434532/what-data-transfer-rates-are-needed-
or-streaming-hd-1080p-or-720p-video-or-stan, a 1 Gb/sec data rate is more
than sufficient to meet the 22 Mbps transfer rate requirement for 1080p video
used for many purposes today. This transfer rate might not be good enough for
4K video data rates as shown by the table found at http://vashivisuals.
com/4k-beyond-video-data-rates/.

If you find that binary doesn’t quite meet your video or audio processing needs,
you can also try the cereal library (http://hackage.haskell.org/package/
cereal). It provides many of the same features as binary, but uses a different
­coding strategy (strict versus lazy execution). You can read a short discussion of
the differences at https://stackoverflow.com/questions/14658031/cereal-
versus-binary.

GHC VERSION
Most of the libraries you use with Haskell will specify a GHC version. The version num-
ber tells you the requirements for the Haskell environment; the library won’t work with
an older GHC version. In most cases, you want to keep your copy of Haskell current to
ensure that the libraries you want to use will work with it. Also, note that many library
descriptions will include support requirements in addition to the version number. Often,
you must perform GHC upgrades to obtain the required support or import other librar-
ies. Make sure to always understand the GHC requirements before using a library or
assuming that the library isn’t working properly.

http://hackage.haskell.org/package/binary
http://hackage.haskell.org/package/binary
https://superuser.com/questions/434532/what-data-transfer-rates-are-needed-or-streaming-hd-1080p-or-720p-video-or-stan
https://superuser.com/questions/434532/what-data-transfer-rates-are-needed-or-streaming-hd-1080p-or-720p-video-or-stan
https://superuser.com/questions/434532/what-data-transfer-rates-are-needed-or-streaming-hd-1080p-or-720p-video-or-stan
http://vashivisuals.com/4k-beyond-video-data-rates/
http://vashivisuals.com/4k-beyond-video-data-rates/
http://hackage.haskell.org/package/cereal
http://hackage.haskell.org/package/cereal
https://stackoverflow.com/questions/14658031/cereal-versus-binary
https://stackoverflow.com/questions/14658031/cereal-versus-binary

CHAPTER 18 Ten Must-Have Haskell Libraries 273

Hascore
The Hascore library found at https://wiki.haskell.org/Haskore gives you the
means to describe music. You use this library to create, analyze, and manipulate
music in various ways. An interesting aspect of this particular library is that it
helps you see music in a new way. It also enables people who might not ordinarily
be able to work with music express themselves. The site shows how the library
makes lets you visualize music as a kind of math expression.

Of course, some musicians probably think that viewing music as a kind of math is
to miss the point. However, you can find a wealth of sites that fully embrace the
math in music, such as the American Mathematical Society (AMS) page at http://
www.ams.org/publicoutreach/math-and-music. Some sites, such as Scientific
American (https://www.scientificamerican.com/article/is-there-a-link-
between-music-and-math/) even express the idea that knowing music can help
someone understand math better, too.

The point is that Hascore enables you to experience music in a new way through
Haskell application programming. You can find other music and sound oriented
libraries at https://wiki.haskell.org/Applications_and_libraries/Music_
and_sound.

vect
Computer graphics in computers are based heavily in math. Haskell provides a
wide variety of suitable math libraries for graphic manipulation, but vect (http://
hackage.haskell.org/package/vect) represents one of the better choices
because it’s relatively fast and doesn’t get mired in detail. Plus, you can find it
used in existing applications such as the LambdaCube engine (http://hackage.
haskell.org/package/lambdacube-engine), which helps you to render advanced
graphics on newer hardware.

If your main interest in a graphics library is to experiment with relatively simple
output, vect does come with OpenGL (https://www.opengl.org/) support,
including projective four-dimensional operations and quaternions. You must load
the support separately, but the support is fully integrated into the library.

https://wiki.haskell.org/Haskore
http://www.ams.org/publicoutreach/math-and-music
http://www.ams.org/publicoutreach/math-and-music
https://www.scientificamerican.com/article/is-there-a-link-between-music-and-math/
https://www.scientificamerican.com/article/is-there-a-link-between-music-and-math/
https://wiki.haskell.org/Applications_and_libraries/Music_and_sound
https://wiki.haskell.org/Applications_and_libraries/Music_and_sound
http://hackage.haskell.org/package/vect
http://hackage.haskell.org/package/vect
http://hackage.haskell.org/package/lambdacube-engine
http://hackage.haskell.org/package/lambdacube-engine
https://www.opengl.org/

274 PART 6 The Part of Tens

vector
All sorts of programming tasks revolve around the use of arrays. The immutable
built-in list type is a linked-list configuration, which means that it can use mem-
ory inefficiently and not process data requests at a speed that will work for your
application. In addition, you can’t pass a linked list to other languages, which may
be a requirement when working in a graphics or other scenario in which high-
speed interaction with other languages is a requirement. The vector library
(http://hackage.haskell.org/package/vector) solves these and many other
issues for which an array will work better than a linked list.

The vector library not only includes a wealth of features for managing data but
also provides both mutable and immutable forms. Yes, using mutable data objects
is the bane of functional programming, but sometimes you need to bend the rules
a bit to process data fast enough to have it available when needed. Because of the
nature of this particular library, you should see the need for eager execution
(in place of the lazy execution that Haskell normally relies on) as essential. The
use of eager processing also ensures that no potential for data loss exists and that
cache issues are fewer.

aeson
A great many data stores today use JavaScript Object Notation (JSON) as a format.
In fact, you can find JSON used in places you might not initially think about.
For example, Amazon Web Services (AWS), among others, uses JSON to do
­everything from creating processing rules to creating configuration files. With
this need in mind, you need a library to manage JSON data in Haskell, which is
where aeson (http://hackage.haskell.org/package/aeson) comes into play.
This library provides everything needed to create, modify, and parse JSON data in
a Haskell application.

LIBRARY NAMES
Many of the library names in this chapter are relatively straightforward. For example,
the text library works on text, so it’s not hard to remember what to import when you
use it. However, some library names are a bit more creative, which is the case with
aeson. It turns out that in Greek mythology, Aeson is the father of Jason (http://www.
argonauts-book.com/aeson.html). Of course, in this case, JSON did come first.

http://hackage.haskell.org/package/vector
http://hackage.haskell.org/package/aeson
http://www.argonauts-book.com/aeson.html
http://www.argonauts-book.com/aeson.html

CHAPTER 18 Ten Must-Have Haskell Libraries 275

attoparsec
Mixed-format data files can present problems. For example, an HTML page can
contain both ASCII and binary data. The attoparsec library (http://hackage.
haskell.org/package/attoparsec) provides you with the means for parsing
these complex data files and extracting the data you need from them. The actual
performance of this particular library depends on how you write your parser and
whether you use lazy evaluation. However, according to a number of sources, you
should be able to achieve relatively high parsing speeds using this library.

One of the more interesting ways to use attoparsec is to parse log files. The article at
https://www.schoolofhaskell.com/school/starting-with-haskell/
libraries-and-frameworks/text-manipulation/attoparsec discusses how to
use the library for this particular task. The article also gives an example of what
writing a parser involves. Before you decide to use this particular library, you should
spend time with a few tutorials of this type to ensure that you understand the parser
creation process.

bytestring
You use the bytestring (http://hackage.haskell.org/package/bytestring)
library to interact with binary data, such as network packets. One of the best
things about using bytestring is that it allows you to interact with the data using
the same features as Haskell lists. Consequently, the learning curve is less steep
than you might imagine and your code is easier to explain to others. The library is
also optimized for high performance use, so it should meet any speed require-
ments for your application.

Unlike many other parts of Haskell, bytestring also enables you to interact with
data in the manner you actually need. With this in mind, you can use one of two
forms of bytestring calls:

»» Strict: The library retains the data in one huge array, which may not use
resources efficiently. However, this approach does let you to interact
with other APIs and other languages. You can pass the binary data with-
out concern that the data will appear fragmented to the recipient.

»» Lazy: The library uses smaller strict arrays to hold the data. This approach
uses resources more efficiently and can speed data transfers. You use the
lazy approach when performing tasks such as streaming data online.

http://hackage.haskell.org/package/attoparsec
http://hackage.haskell.org/package/attoparsec
https://www.schoolofhaskell.com/school/starting-with-haskell/libraries-and-frameworks/text-manipulation/attoparsec
https://www.schoolofhaskell.com/school/starting-with-haskell/libraries-and-frameworks/text-manipulation/attoparsec
http://hackage.haskell.org/package/bytestring

276 PART 6 The Part of Tens

The bytestring library also provides support for a number of data presentations
to make it easier to interact with the data in a convenient manner. In addition, you
can mix binary and character data as needed. A Builder module also lets you
easily create byte strings using simple concatenation.

stringsearch
Manipulating strings can be difficult, but you’re aided by the fact that the data you
manipulate is in human-readable form for the most part. When it comes to byte
strings, the patterns are significantly harder to see, and precision often becomes
more critical because of the manner in which applications use byte strings. The
stringsearch library (http://hackage.haskell.org/package/stringsearch)
enables you to perform the following tasks on byte strings quite quickly:

»» Search for particular byte sequences

»» Break the strings into pieces using specific markers

»» Replace specific byte sequences with new sequences

This library will work with both strict and lazy byte strings. Consequently, it makes
a good addition to libraries such as bytestring, which support both forms of
bytestring calls. The page at http://hackage.haskell.org/package/string
search-0.3.6.6/docs/Data-ByteString-Search.html tells you more about how
this library performs its various tasks.

text
There are times when the text-processing capabilities of Haskell leave a lot to be
desired. The text library (http://hackage.haskell.org/package/text) helps
you to perform a wide range of tasks using text in various forms, including
­Unicode. You can encode or decode text as needed to meet the various Unicode
Transformation Format (UTF) standards.

As helpful as it is to have a library for managing Unicode, the text library does a
lot more with respect to text manipulation. For one thing, it can help you with
internationalization issues, such as proper capitalization of words in strings.

http://hackage.haskell.org/package/stringsearch
http://hackage.haskell.org/package/stringsearch-0.3.6.6/docs/Data-ByteString-Search.html
http://hackage.haskell.org/package/stringsearch-0.3.6.6/docs/Data-ByteString-Search.html
http://hackage.haskell.org/package/text

CHAPTER 18 Ten Must-Have Haskell Libraries 277

This library also works with byte strings in both a strict and lazy manner (see the
“bytestring” section, earlier in this chapter). Providing this functionality means
that the text library can help you in streaming situations to perform text
­conversions quickly.

moo
The moo library (http://hackage.haskell.org/package/moo) provides Genetic
Algorithm (GA) functionality for Haskell. GA is often used to perform various
kinds of optimizations and to solve search problems using techniques found in
nature (natural selection). Yes, GA also helps in understanding physical or natural
environments or objects, as you can see in the tutorial at https://towardsdata
science.com/introduction-to-genetic-algorithms-including-example-
code-e396e98d8bf3?gi=a42e35af5762. The point is that it relies on evolutionary
theory, one of the tenets of Artificial Intelligence (AI). This library supports a
number of GA variants out of the box:

»» Binary using bit-strings:

•	 Binary and Gray encoding

•	 Point mutation

•	 One-point, two-point, and uniform crossover

»» Continuous using a sequence of real values:

•	 Gaussian mutation

•	 BLX-α, UNDX, and SBX crossover

You can also create other variants through coding. These potential variants include

»» Permutation

»» Tree

»» Hybrid encodings, which would require customizations

The readme (http://hackage.haskell.org/package/moo-1.0#readme) for this
library tells you about other moo features and describes how they relate to the two
out-of-the-box GA variants. Of course, the variants you code will have different
features depending on your requirements. The single example provided with the
readme shows how to minimize Beale’s function (see https://www.sfu.ca/
~ssurjano/beale.html for a description of this function). You may be surprised
at how few lines of code this particular example requires.

http://hackage.haskell.org/package/moo
https://towardsdatascience.com/introduction-to-genetic-algorithms-including-example-code-e396e98d8bf3?gi=a42e35af5762
https://towardsdatascience.com/introduction-to-genetic-algorithms-including-example-code-e396e98d8bf3?gi=a42e35af5762
https://towardsdatascience.com/introduction-to-genetic-algorithms-including-example-code-e396e98d8bf3?gi=a42e35af5762
http://hackage.haskell.org/package/moo-1.0#readme
https://www.sfu.ca/~ssurjano/beale.html
https://www.sfu.ca/~ssurjano/beale.html

CHAPTER 19 Ten (Plus) Must-Have Python Packages 279

Chapter 19
Ten (Plus) Must-Have
Python Packages

This chapter reviews just a few of the more interesting Python packages
available today. Unlike with Haskell, finding reviews of Python packages is
incredibly easy, along with articles stating people’s lists of favorite pack-

ages. However, if you want to look at a more-or-less complete listing, the best
place is the Python Package Index at https://pypi.org/. The list is so huge that
you won’t find a single list but must search through categories or for particular
needs. Consequently, this chapter reflects just a few interesting choices, and if you
don’t see what you need, you really should search online.

IN THIS CHAPTER

»» Improving the user interface with
sights and sounds

»» Manipulating data better

»» Working with algorithms

https://pypi.org/

280 PART 6 The Part of Tens

Gensim
Gensim (https://radimrehurek.com/gensim/) is a Python library that can per-
form natural language processing (NLP) and unsupervised learning on textual
data. It offers a wide range of algorithms to choose from:

»» TF-IDF

»» Random projections

»» Latent Dirichlet allocation

»» Latent semantic analysis

»» Semantic algorithms:

•	 word2vec

•	 document2vec (https://code.google.com/archive/p/word2vec/)

MODULES, PACKAGES, AND LIBRARIES
There is general confusion over some terms (module, package, and library) used in
Python and, unfortunately, this book won’t help you untie this Gordian knot. When
possible, this chapter uses the vendor term for whatever product you’re reading
about. However, the terms do have different meanings, which you can read about
at https://knowpapa.com/modpaclib-py/. Consequently, sites such as PyPI use
package (https://pypi.org/) because they offer collections of modules (which are
individual .py files), while some vendors use the term library, presumably because
the product uses compiled code created in another language, such as C.

Of course, you might ask why Python’s core code is called the core library. That’s
because the core library is written in C and compiled, but then you have access to all
the packages (collections of modules) that add to that core library. If you find that one or
more of the descriptions in this chapter contain the wrong term, it’s really not a matter
of wanting to use the wrong term; it’s more a of matter of dealing with the confusion
caused by multiple terms that aren’t necessarily well defined or appropriately used.

https://radimrehurek.com/gensim/
https://code.google.com/archive/p/word2vec/
https://knowpapa.com/modpaclib-py/
https://pypi.org/

CHAPTER 19 Ten (Plus) Must-Have Python Packages 281

Word2vec is based on neural networks (shallow, not deep learning, networks) and
it allows meaningful transformations of words into vectors of coordinates that
you can operate in a semantic way. For instance, operating on the vector repre-
senting Paris, subtracting the vector France, and then adding the vector Italy
results in the vector Rome, demonstrating how you can use mathematics and the
right Word2vec model to operate semantic operations on text. Fortunately, if this
seems like Greek to you, Gensim offers excellent tutorials to make using this
product easier.

PyAudio
One of the better platform-independent libraries to make sound work with your
Python application is PyAudio (http://people.csail.mit.edu/hubert/pyaudio/).
This library lets you record and play back sounds as needed. For example, a user can
record an audio note of tasks to perform later and then play back the list of items as
needed).

Working with sound on a computer always involves trade-offs. For example, a
platform-independent library can’t take advantage of special features that a par-
ticular platform might possess. In addition, it might not support all the file for-
mats that a particular platform uses. The reason to use a platform-independent
library is to ensure that your application provides basic sound support on all
systems that it might interact with.

USING SOUND APPROPRIATELY
Sound is a useful way to convey certain types of information to the user. However,
you must exercise care in using sound because special-needs users might not be able
to hear it, and for those who can, using too much sound can interfere with normal
business operations. However, sometimes audio is an important means of communi-
cating supplementary information to users who can interact with it (or it can simply
add a bit of pizzazz to make your application more interesting).

http://people.csail.mit.edu/hubert/pyaudio/

282 PART 6 The Part of Tens

PyQtGraph
Humans are visually oriented. If you show someone a table of information and
then show the same information as a graph, the graph is always the winner when
it comes to conveying information. Graphs help people see trends and understand
why the data has taken the course that it has. However, getting those pixels that
represent the tabular information onscreen is difficult, which is why you need a
library such as PyQtGraph (http://www.pyqtgraph.org/) to make things simpler.

Even though the library is designed around engineering, mathematical, and sci-
entific requirements, you have no reason to avoid using it for other purposes.
PyQtGraph supports both 2-D and 3-D displays, and you can use it to generate
new graphics based on numeric input. The output is completely interactive, so a
user can select image areas for enhancement or other sorts of manipulation. In
addition, the library comes with a wealth of useful widgets (controls, such as but-
tons, that you can display onscreen) to make the coding process even easier.

CLASSIFYING PYTHON SOUND
TECHNOLOGIES
Realize that sound comes in many forms in computers. The basic multimedia services
provided by Python (see the documentation at https://docs.python.org/3/
library/mm.html) provide essential playback functionality. You can also write
certain types of audio files, but the selection of file formats is limited. In addition,
some packages, such as winsound (https://docs.python.org/3/library/
winsound.html), are platform dependent, so you can’t use them in an application
designed to work everywhere. The standard Python offerings are designed to provide
basic multimedia support for playing back system sounds.

The middle ground, augmented audio functionality designed to improve application
usability, is covered by libraries such as PyAudio. You can see a list of these libraries at
https://wiki.python.org/moin/Audio. However, these libraries usually focus on
business needs, such as recording notes and playing them back later. Hi-fidelity output
isn’t part of the plan for these libraries.

Gamers need special audio support to ensure that they can hear special effects, such
as a monster walking behind them. These needs are addressed by libraries such as
PyGame (http://www.pygame.org/news.html). When using these libraries, you
need higher-end equipment and have to plan to spend considerable time working
on just the audio features of your application. You can see a list of these libraries at
https://wiki.python.org/moin/PythonGameLibraries.

http://www.pyqtgraph.org/
https://docs.python.org/3/library/mm.html
https://docs.python.org/3/library/mm.html
https://docs.python.org/3/library/winsound.html
https://docs.python.org/3/library/winsound.html
https://wiki.python.org/moin/Audio
http://www.pygame.org/news.html
https://wiki.python.org/moin/PythonGameLibraries

CHAPTER 19 Ten (Plus) Must-Have Python Packages 283

Unlike many of the offerings in this chapter, PyQtGraph isn’t a free-standing
library, which means that you must have other products installed to use it. This
isn’t unexpected because PyQtGraph is doing quite a lot of work. You need these
items installed on your system to use it:

»» Python version 2.7 or higher

»» PyQt version 4.8 or higher (https://wiki.python.org/moin/PyQt) or
PySide (https://wiki.python.org/moin/PySide)

»» numpy (http://www.numpy.org/)

»» scipy (http://www.scipy.org/)

»» PyOpenGL (http://pyopengl.sourceforge.net/)

TkInter
Users respond to the Graphical User Interface (GUI) because it’s friendlier and
requires less thought than using a command-line interface. Many products out
there can give your Python application a GUI. However, the most commonly used
product is TkInter (https://wiki.python.org/moin/TkInter). Developers like it
so much because TkInter keeps things simple. It’s actually an interface for the
Tool Command Language (Tcl)/Toolkit (Tk) found at http://www.tcl.tk/.
A number of languages use Tcl/Tk as the basis for creating a GUI.

You might not relish the idea of adding a GUI to your application. Doing so tends
to be time consuming and doesn’t make the application any more functional (it
also slows down the application, in many cases). The point is that users like GUIs,
and if you want your application to see strong use, you need to meet user
requirements.

PrettyTable
Displaying tabular data in a manner the user can understand is important. Python
stores this type of data in a form that works best for programming needs. How-
ever, users need something that is organized in a manner that humans under-
stand and that is visually appealing. The PrettyTable library (https://pypi.
python.org/pypi/PrettyTable) lets you easily add an appealing tabular presen-
tation to your command-line application.

https://wiki.python.org/moin/PyQt
https://wiki.python.org/moin/PySide
http://www.numpy.org/
http://www.scipy.org/
http://pyopengl.sourceforge.net/
https://wiki.python.org/moin/TkInter
http://www.tcl.tk/
https://pypi.python.org/pypi/PrettyTable
https://pypi.python.org/pypi/PrettyTable

284 PART 6 The Part of Tens

SQLAlchemy
A database is essentially an organized manner of storing repetitive or structured
data on disk. For example, customer records (individual entries in the database)
are repetitive because each customer has the same sort of information require-
ments, such as name, address, and telephone number. The precise organization of
the data determines the sort of database you’re using. Some database products
specialize in text organization, others in tabular information, and still others
in random bits of data (such as readings taken from a scientific instrument).
Databases can use a tree-like structure or a flat-file configuration to store data.
You’ll hear all sorts of odd terms when you start looking into DataBase Manage-
ment System (DBMS) technology — most of which will mean something only to a
DataBase Administrator (DBA) and won’t matter to you.

The most common type of database is called a Relational DataBase Management
System (RDBMS), which uses tables that are organized into records and fields (just
like a table you might draw on a sheet of paper). Each field is part of a column of the
same kind of information, such as the customer’s name. Tables are related to each
other in various ways, so creating complex relationships is possible. For example,
each customer may have one or more entries in a purchase-order table, and the
customer table and the purchase-order table are therefore related to each other.

An RDBMS relies on a special language called the Structured Query Language
(SQL) to access the individual records inside. Of course, you need some means of
interacting with both the RDBMS and SQL, which is where SQLAlchemy (http://
www.sqlalchemy.org/) comes into play. This product reduces the amount of work
needed to ask the database to perform tasks such as returning a specific customer
record, creating a new customer record, updating an existing customer record,
and deleting an old customer record.

Toolz
The Toolz package (https://github.com/pytoolz/toolz) fills in some of the
functional programming paradigm gaps in Python. You specifically use it for
functional support of

»» Iterators

»» Functions

»» Dictionaries

http://www.sqlalchemy.org/
http://www.sqlalchemy.org/
https://github.com/pytoolz/toolz

CHAPTER 19 Ten (Plus) Must-Have Python Packages 285

Interestingly enough, this same package works fine for both Python 2.x and 3.x
developers, so you can get a single package to meet many of your functional data-
processing needs. This package is a pure Python implementation, which means
that it works everywhere.

If you need additional speed, don’t really care about interoperability with every
third-party package out there, and don’t need the ability to work on every plat-
form, you can use a Cython (http://cython.org/) implementation of the same
package called CyToolz (https://github.com/pytoolz/cytoolz/). Besides being
two to five times faster, CyToolz offers access to a C API, so there are some advan-
tages to using it.

Cloudera Oryx
Cloudera Oryx (http://www.cloudera.com/) is a machine learning project for
Apache Hadoop (http://hadoop.apache.org/) that provides you with a basis for
performing machine learning tasks. It emphasizes the use of live data streaming.
This product helps you add security, governance, and management functionality
that’s missing from Hadoop so that you can create enterprise-level applications
with greater ease.

The functionality provided by Oryx builds on Apache Kafka (http://kafka.
apache.org/) and Apache Spark (http://spark.apache.org/). Common tasks
for this product are real-time spam filters and recommendation engines. You can
download Oryx from https://github.com/cloudera/oryx.

funcy
The funcy package (https://github.com/suor/funcy/) is a mix of features
inspired by clojure (https://clojure.org/). It allows you to make your Python
environment better oriented toward the functional programming paradigm, while
also adding support for data processing and additional algorithms. That sounds
like a lot of ground to cover, and it is, but you can break the functionality of this
particular package into these areas:

»» Manipulation of collections

»» Manipulation of sequences

»» Additional support for functional programming constructs

http://cython.org/
https://github.com/pytoolz/cytoolz/
http://www.cloudera.com/
http://hadoop.apache.org/
http://kafka.apache.org/
http://kafka.apache.org/
http://spark.apache.org/
https://github.com/cloudera/oryx
https://github.com/suor/funcy/
https://clojure.org/

286 PART 6 The Part of Tens

»» Creation of decorators

»» Abstraction of flow control

»» Additional debugging support

Some people might skip the bottom part of the GitHub download pages (and for
good reason; they normally don’t contain a lot of information). However, pages
the author of the funcy provides access to essays about why funcy implements
certain features in a particular manner and those essay links appear at the bottom
of the GitHub page. For example, you can read "Abstracting Control Flow"
(http://hackflow.com/blog/2013/10/08/abstracting-control-flow/),
which helps you understand the need for this feature, especially in a functional
environment. In fact, you might find that other GitHub pages (not many, but a
few) also contain these sorts of helpful links.

SciPy
The SciPy (http://www.scipy.org/) stack contains a host of other libraries that
you can also download separately. These libraries provide support for mathemat-
ics, science, and engineering. When you obtain SciPy, you get a set of libraries
designed to work together to create applications of various sorts. These librar-
ies are:

»» NumPy

»» SciPy

»» matplotlib

»» IPython

»» Sympy

»» Pandas

The SciPy library itself focuses on numerical routines, such as routines for numer-
ical integration and optimization. SciPy is a general-purpose library that provides
functionality for multiple problem domains. It also provides support for domain-
specific libraries, such as Scikit-learn, Scikit-image, and statsmodels. To make
your SciPy experience even better, try the resources at http://www.scipy-
lectures.org/. The site contains many lectures and tutorials on SciPy’s
functions.

http://hackflow.com/blog/2013/10/08/abstracting-control-flow/
http://www.scipy.org/
http://www.scipy-lectures.org/
http://www.scipy-lectures.org/

CHAPTER 19 Ten (Plus) Must-Have Python Packages 287

XGBoost
The XGBoost package (https://github.com/dmlc/xgboost) enables you to
apply a Gradient Boosting Machine (GBM) (https://towardsdatascience.com/
boosting-algorithm-gbm-97737c63daa3?gi=df155908abce) to any problem,
thanks to its wide choice of objective functions and evaluation metrics. It operates
with a variety of languages, including

»» Python

»» R

»» Java

»» C++

In spite of the fact that GBM is a sequential algorithm (and thus slower than
others that can take advantage of modern multicore computers), XGBoost lever-
ages multithread processing in order to search in parallel for the best splits among
the features. The use of multithreading helps XGBoost turn in an unbeatable
performance when compared to other GBM implementations, both in R and
Python. Because of all that it contains, the full package name is eXtreme Gradient
Boosting (or XGBoost for short). You can find complete documentation for this
package at https://xgboost.readthedocs.org/en/latest/.

https://github.com/dmlc/xgboost
https://towardsdatascience.com/boosting-algorithm-gbm-97737c63daa3?gi=df155908abce
https://towardsdatascience.com/boosting-algorithm-gbm-97737c63daa3?gi=df155908abce
https://xgboost.readthedocs.org/en/latest/

CHAPTER 20 Ten Occupation Areas that Use Functional Programming 289

Chapter 20
Ten Occupation Areas
that Use Functional
Programming

For many people, the reason to learn a new language or a new programming
paradigm focuses on the ability to obtain gainful employment. Yes, they also
have the joy of learning something new. However, to be practical, the some-

thing new must also provide a tangible result. The purpose of this chapter is to
help you see the way to a new occupation that builds on the skills you discover
through the functional programming paradigm.

Starting with Traditional Development
When asked about functional programming occupations, a number of developers
who use functional programming in their jobs actually started with a traditional
job and then applied functional programming methodologies to it. When cowork-
ers saw that these developers were writing cleaner code that executed faster, they
started adopting functional programming methodologies as well.

IN THIS CHAPTER

»» Gaining a foothold

»» Creating specialty code

»» Working with data

290 PART 6 The Part of Tens

Theoretically, this approach can apply to any language, but it helps to use a pure
language (such as Haskell) when you can, or an impure language (such as Python)
when you can’t. Of course, you’ll encounter naysayers who will tell you that
functional programming applies only to advanced developers who are already
working as programmers, but if that were the case, a person wouldn’t have a place
to start. Some organization will be willing to experiment with functional
programming and continue to rely on it after the developers using it demonstrate
positive results.

The problem is how to find such an organization. You can look online at places
such as Indeed.com (https://www.indeed.com/q-Haskell-Functional-Program
ming-jobs.html), which offers listings for the languages that work best for func-
tional programming in traditional environments. At the time of this writing,
Indeed.com had 175 Haskell job listings alone. Jobs for Python programmers with
functional programming experience topped 6,020 (https://www.indeed.com/
q-Python-Functional-Programming-jobs.html).

A few websites deal specifically with functional programming jobs. For example,
Functional Jobs (https://functionaljobs.com/) provides an interesting list of
occupations that you might want to try. The benefit of these sites is that the
listings are extremely targeted, so you know you’ll actually perform functional
programming. A disadvantage is that the sites tend to be less popular than main-
stream sites, so you may not see the variety of jobs that you were expecting.

Going with New Development
With the rise of online shopping, informational, and other kinds of sites, you can
bet that a lot of new development is also going on. In addition, traditional organi-
zations will require support for new strategies, such as using Amazon Web Services
(AWS) to reduce costs (see AWS For Admins For Dummies and AWS For Developers For
Dummies, by John Paul Mueller [Wiley], for additional information on AWS). Any
organization that wants to use serverless computing, such as AWS Lambda
(https://aws.amazon.com/lambda/), will likely need developers who are con-
versant in functional programming strategies. Consequently, the investment in
learning the functional programming paradigm can pay off in the form of finding
an interesting job using new technologies rather than spending hour after boring
hour updating ancient COBOL code on a mainframe.

When going the new development route, be sure you understand the require-
ments for your job and have any required certifications. For example, when work-
ing with AWS, your organization may require that you have an AWS Certified
Developer (or other) certification. You can find the list of AWS certifications at

https://www.indeed.com/q-Haskell-Functional-Programming-jobs.html
https://www.indeed.com/q-Haskell-Functional-Programming-jobs.html
https://www.indeed.com/q-Python-Functional-Programming-jobs.html
https://www.indeed.com/q-Python-Functional-Programming-jobs.html
https://functionaljobs.com/
https://aws.amazon.com/lambda/

CHAPTER 20 Ten Occupation Areas that Use Functional Programming 291

https://aws.amazon.com/certification/. Of course, other cloud organizations
exist, such as Microsoft Azure and Google Cloud. The article at https://www.
zdnet.com/article/cloud-providers-ranking-2018-how-aws-microsoft-
google-cloud-platform-ibm-cloud-oracle-alibaba-stack/ tells you about
the relative strengths of each of these offerings.

Creating Your Own Development
Many developers started in their home or garage tinkering with things just to see
what would happen. Becoming fascinated with code — its essence — is part of
turning development into a passion rather than just a job. Some of the richest, best-
known people in the world started out as developer entrepreneurs (think people like
Jeff Bezos and Bill Gates). In fact, you can find articles online, such as the one at
https://skillcrush.com/2014/07/15/developers-great-entrepreneurs/, that
tell precisely why developers make such great entrepreneurs. The advantage of
being your own boss is that you do things your way, make your mark on the world,
and create a new vision of what software can do.

Yes, sometimes you get the money, too, but more developers have found that they
become successful only after they figure out that creating your own development
environment is all about business — that is, offering a service that someone else
will buy. Articles, such as the one at https://hackernoon.com/reality-smacking-
tips-to-help-you-transition-from-web-developer-to-entrepreneur-
9644a5cbe0ff and https://codeburst.io/the-walk-of-becoming-a-soft
ware-developer-entrepreneur-ef16b50bab76, tell you how to make the transi-
tion from developer to entrepreneur.

The functional connection comes into play when you start to consider that the
functional programming paradigm is somewhat new. Businesses are starting to
pay attention to functional programming because of articles such as the Info-
World offering at https://www.infoworld.com/article/3190185/software/
is-functional-programming-better-for-your-startup.html. When businesses
find out that functional programming not only creates better code but also makes
developers more productive (see the article at https://medium.com/@xiaoyun
yang/why-functional-programming-from-a-developer-productivity-
perspective-69c4b8100776), they begin to see a financial reason to employ
consultants (that’s you) to move their organizations toward the functional
programming paradigm.

https://aws.amazon.com/certification/
https://www.zdnet.com/article/cloud-providers-ranking-2018-how-aws-microsoft-google-cloud-platform-ibm-cloud-oracle-alibaba-stack/
https://www.zdnet.com/article/cloud-providers-ranking-2018-how-aws-microsoft-google-cloud-platform-ibm-cloud-oracle-alibaba-stack/
https://www.zdnet.com/article/cloud-providers-ranking-2018-how-aws-microsoft-google-cloud-platform-ibm-cloud-oracle-alibaba-stack/
https://skillcrush.com/2014/07/15/developers-great-entrepreneurs/
https://hackernoon.com/reality-smacking-tips-to-help-you-transition-from-web-developer-to-entrepreneur-9644a5cbe0ff
https://hackernoon.com/reality-smacking-tips-to-help-you-transition-from-web-developer-to-entrepreneur-9644a5cbe0ff
https://hackernoon.com/reality-smacking-tips-to-help-you-transition-from-web-developer-to-entrepreneur-9644a5cbe0ff
https://codeburst.io/the-walk-of-becoming-a-software-developer-entrepreneur-ef16b50bab76
https://codeburst.io/the-walk-of-becoming-a-software-developer-entrepreneur-ef16b50bab76
https://www.infoworld.com/article/3190185/software/is-functional-programming-better-for-your-startup.html
https://www.infoworld.com/article/3190185/software/is-functional-programming-better-for-your-startup.html
https://medium.com/@xiaoyunyang/why-functional-programming-from-a-developer-productivity-perspective-69c4b8100776
https://medium.com/@xiaoyunyang/why-functional-programming-from-a-developer-productivity-perspective-69c4b8100776
https://medium.com/@xiaoyunyang/why-functional-programming-from-a-developer-productivity-perspective-69c4b8100776

292 PART 6 The Part of Tens

Finding a Forward-Thinking Business
Many businesses are already using functional programming methodologies. In
some cases, these businesses started with functional programming, but in more
cases the business transitioned. One such business is Jet.com (https://
jet.com/), which offers online shopping that’s like a mix of Amazon.com
(https://www.amazon.com/) and Costco (https://www.costco.com/). You can
read about this particular business at https://www.kiplinger.com/article/
spending/T050-C011-S001-what-you-need-to-know-before-joining-jet-
com.html. The thing that will interest you is that Jet.com relies on F#, a multipa-
radigm language similar to Python from an environmental perspective, to meet
its needs.

Most languages want you to know that real companies are using them to
do something useful. Consequently, you can find a site that provides a list of
these organizations, such as https://wiki.haskell.org/Haskell_in_industry
for Haskell and https://wiki.python.org/moin/OrganizationsUsingPython
for Python. Languages that are more popular will also sprout a lot of articles. For
example, the article at https://realpython.com/world-class-companies-
using-python/ supplies a list of well-known organizations that use Python. You
need to exercise care in applying to these organizations, however, because you
never know whether you’ll actually work with your programming language of
choice (or whether you’ll work as a developer at all).

Doing Something Really Interesting
Some people want to go to work, do a job for eight to ten hours, and then come
home and forget about work. This section isn’t for you. On the flip side, some
people want to make their mark on the world and light it on fire. This section
won’t work for you, either. This section is for those people who fall between these
two extremes: Those who don’t mind working a few extra hours as long as the
work is interesting and meaningful, and they don’t have to manage any business
details. After all, the fun of functional programming is writing the code and
figuring out interesting ways to make data jump through all sorts of hoops. That’s
where job sites like Functional Works (https://functional.works-hub.com/)
come into play.

Sites such as Functional Works search for potential candidates for large organiza-
tions, such as Google, Facebook, Two Sigma, and Spotify. The jobs are listed by
category in most cases. Be prepared to read for a while because the sites generally
describe the jobs in detail. That’s because these organizations want to be sure that
you know what you’re getting into, and they want to find the best possible fit.

https://jet.com/
https://jet.com/
https://www.amazon.com/
https://www.costco.com/
https://www.kiplinger.com/article/spending/T050-C011-S001-what-you-need-to-know-before-joining-jet-com.html
https://www.kiplinger.com/article/spending/T050-C011-S001-what-you-need-to-know-before-joining-jet-com.html
https://www.kiplinger.com/article/spending/T050-C011-S001-what-you-need-to-know-before-joining-jet-com.html
https://wiki.haskell.org/Haskell_in_industry
https://wiki.python.org/moin/OrganizationsUsingPython
https://realpython.com/world-class-companies-using-python/
https://realpython.com/world-class-companies-using-python/
https://functional.works-hub.com/

CHAPTER 20 Ten Occupation Areas that Use Functional Programming 293

These sites often offer articles, such as “Compose Tetras” (https://functional.
works-hub.com/learn/compose-tetris-61b59). The articles are interesting
because they give you a better perspective of what the site is about, and why a
company would choose this site, rather than another one, to find people. You learn
more about functional programming, as well.

Developing Deep Learning Applications
One of the most interesting and widely discussed subsets of Artificial Intelligence
(AI) today is that of deep learning, in which algorithms use huge amounts of data
to discover patterns and then use those patterns to perform data-based tasks. You
might see the output as being voice recognition or robotics, but the computer sees
data — lots and lots of data. Oddly enough, functional programming techniques
make creating deep learning applications significantly easier, as described in the
article at https://towardsdatascience.com/functional-programming-for-
deep-learning-bc7b80e347e9?gi=1f073309a77c. This article is interesting
because it looks at a number of languages that aren’t discussed in this book but
are just as important in the world of functional programming. You can learn more
about the world of AI in AI For Dummies, by John Paul Mueller and Luca Massaron
(Wiley), and the world of machine learning in Machine Learning For Dummies, also
by John Paul Mueller and Luca Massaron (Wiley).

Writing Low-Level Code
You might not initially think about using functional programming methods to
write low-level code, but the orderly nature of functional programming languages
makes them perfect for this task. Here are a few examples:

»» Compilers and interpreters: These applications (and that’s what they are)
work through many stages of processing, relying on tree-like structures to
turn application code into a running application. Recursion makes processing
tree-like structures easy, and functional languages excel at recursion (see the
article at https://stackoverflow.com/questions/2906064/why-is-
writing-a-compiler-in-a-functional-language-easier for details).
The Compcert C Compiler (http://compcert.inria.fr/compcert-C.html)
is one example of this use.

»» Concurrent and parallel programming: Creating an environment in which
application code executes concurrently, in parallel, is an incredibly hard task
for most programming languages, but functional languages handle this task

https://functional.works-hub.com/learn/compose-tetris-61b59
https://functional.works-hub.com/learn/compose-tetris-61b59
https://towardsdatascience.com/functional-programming-for-deep-learning-bc7b80e347e9?gi=1f073309a77c
https://towardsdatascience.com/functional-programming-for-deep-learning-bc7b80e347e9?gi=1f073309a77c
https://stackoverflow.com/questions/2906064/why-is-writing-a-compiler-in-a-functional-language-easier
https://stackoverflow.com/questions/2906064/why-is-writing-a-compiler-in-a-functional-language-easier
http://compcert.inria.fr/compcert-C.html

294 PART 6 The Part of Tens

with ease. You could easily write a host environment using a functional
language for applications written in other languages.

»» Security: The immutable nature of functional code makes it inherently safe.
Creating the security features of an operating system or application using
functional code significantly reduces the chance that the system will be
hacked.

You can more easily address a wide range of low-level coding applications in a
functional language because of how functional languages work. A problem can
arise, however, when resources are tight because functional languages can require
more resources than other languages. In addition, if you need real-time perfor-
mance, a functional language may not provide the ultimate in speed.

Helping Others in the Health Care Arena
The health care field is leading the charge in creating new jobs, so your new job
might just find you in the health care industry, according to the article at https://
www.cio.com/article/2369526/careers-staffing/103069-10-Hottest-
Healthcare-IT-Developer-and-Programming-Skills.html. If you regard work-
ing in the medical industry as possibly the most boring job in the world, read ads
like the one at https://remoteok.io/remote-jobs/64883-remote-functional-
programming-medical-systems. The possibilities might be more interesting than
you think. Oddly enough, many of these ads, the one referenced in this paragraph
included, specifically require you to have functional programming experience.
This particular job also specifies that the job environment is relaxed and the com-
pany expects you to be innovative in your approach to solving problems — which
is hardly a formula for a boring job.

Working as a Data Scientist
As a data scientist, you’re more likely to use the functional programming features
of Python than to adapt a wholly functional approach by using a language such as
Haskell. According to the article at https://analyticsindiamag.com/top-10-
programming-languages-data-scientists-learn-2018/, Python is still the top
language for data science.

https://www.cio.com/article/2369526/careers-staffing/103069-10-Hottest-Healthcare-IT-Developer-and-Programming-Skills.html
https://www.cio.com/article/2369526/careers-staffing/103069-10-Hottest-Healthcare-IT-Developer-and-Programming-Skills.html
https://www.cio.com/article/2369526/careers-staffing/103069-10-Hottest-Healthcare-IT-Developer-and-Programming-Skills.html
https://remoteok.io/remote-jobs/64883-remote-functional-programming-medical-systems
https://remoteok.io/remote-jobs/64883-remote-functional-programming-medical-systems
https://analyticsindiamag.com/top-10-programming-languages-data-scientists-learn-2018/
https://analyticsindiamag.com/top-10-programming-languages-data-scientists-learn-2018/

CHAPTER 20 Ten Occupation Areas that Use Functional Programming 295

Articles such as the one at https://www.kdnuggets.com/2015/04/functional-
programming-big-data-machine-learning.html seem to question just how
much penetration functional programming has made in the data science commu-
nity; however, such penetration exists. The discussion at https://datascience.
stackexchange.com/questions/30578/what-can-functional-programming-
be-used-for-in-data-science details good reasons for data scientists to use
functional programming, including better ways to implement parallel program-
ming. When you consider that a data scientist could rely on a GPU with up to 5,120
cores (such as the NVidia Titan V, https://www.nvidia.com/en-us/titan/
titan-v/), parallel programming takes on a whole new meaning.

Of course, data science involves more than just analyzing huge datasets. The act
of cleaning the data and making the various data sources work together is
extremely time consuming, especially in getting the various data types aligned.
However, even in this regard, using a functional language can be an immense
help. Knowing a functional language gives you an edge as a data scientist — one
that could lead to advancement or more interesting projects that others without
your edge will miss. The book Python For Data Science For Dummies, by John Paul
Mueller and Luca Massaron (Wiley), provides significant insights into just how
you can use Python to your advantage in data science, and implementing func-
tional programming techniques in Python is just another step beyond.

Researching the Next Big Thing
Often you’ll find a query for someone interested in working as a researcher on a
job site such as Indeed.com (https://www.indeed.com/). In some cases, the
listing will specifically state that you need functional programming skills. This
requirement exists because working with huge datasets to determine whether a
particular process is possible or an experiment succeeded, or to get the results of
the latest study, all demand strict data processing. By employing functional
languages, you can to perform these tasks quickly using parallel processing. The
strict typing and immutable nature of functional languages are a plus as well.

Oddly enough, the favored languages for research, such as Clojure (see https://
www.theinquirer.net/inquirer/feature/2462362/7-new-generation-
programming-languages-you-should-get-to-know), are also the highest-
paying languages, according to sites such as TechRepublic (https://www.
techrepublic.com/article/what-are-the-highest-paid-jobs-in-program
ming-the-top-earning-languages-in-2017/). Consequently, if you want an
interesting job in an incredibly competitive field with high pay, being a researcher
with functional programming skills may be just what you’re looking for.

https://www.kdnuggets.com/2015/04/functional-programming-big-data-machine-learning.html
https://www.kdnuggets.com/2015/04/functional-programming-big-data-machine-learning.html
https://datascience.stackexchange.com/questions/30578/what-can-functional-programming-be-used-for-in-data-science
https://datascience.stackexchange.com/questions/30578/what-can-functional-programming-be-used-for-in-data-science
https://datascience.stackexchange.com/questions/30578/what-can-functional-programming-be-used-for-in-data-science
https://www.nvidia.com/en-us/titan/titan-v/
https://www.nvidia.com/en-us/titan/titan-v/
https://www.indeed.com/
https://www.theinquirer.net/inquirer/feature/2462362/7-new-generation-programming-languages-you-should-get-to-know
https://www.theinquirer.net/inquirer/feature/2462362/7-new-generation-programming-languages-you-should-get-to-know
https://www.theinquirer.net/inquirer/feature/2462362/7-new-generation-programming-languages-you-should-get-to-know
https://www.techrepublic.com/article/what-are-the-highest-paid-jobs-in-programming-the-top-earning-languages-in-2017/
https://www.techrepublic.com/article/what-are-the-highest-paid-jobs-in-programming-the-top-earning-languages-in-2017/
https://www.techrepublic.com/article/what-are-the-highest-paid-jobs-in-programming-the-top-earning-languages-in-2017/

Index 297

Index
Symbols
- (dash), use in switches, 198
-- (double dash), use in

switches, 198
% (percent sign), 192
%% (double percent sign), 192
%%timeit magic function, 194
%alias magic function, 193
%autocall magic function, 193
%automagic magic function, 193
%autosave magic function, 193
%cd magic function, 193
%cls magic function, 193
%colors magic function, 193
%config magic function, 193
%dhist magic function, 193
%file magic function, 194
%hist magic function, 194
%install_ext magic

function, 194
%load magic function, 194
%load_ext magic function, 194
%lsmagic magic function, 194
%magic magic function, 194
%matplotlib magic function,

194, 238
%paste magic function, 194
%pdef magic function, 194
%pdoc magic function, 194
%pinfo magic function, 194
%pinfo2 magic function, 194
%reload_ext magic

function, 194
%source magic function, 194
%timeit magic function, 194
(>>) monad sequencing

operator, 195
. (dot) operator, 152, 158–159

/ (slash), use in switches, 198
:set command, 201
:t expression, 162, 167
:t openFile function, 190
:unset command, 200
\x0A output, 228
\x0D output, 228
__getattribute()

function, 267
` (back quotation mark), use in

Haskell, 98
| (OR) operator, 166–167
++ operator, 189
<<loop>> output, 256
<> operator, 173
== (equality) operator, 179

A
α (alpha)-conversion, 85
abstracting

patterns, 112
simply-typed calculus, 83–84
untyped lambda calculus,

82–83
aeson library, 274
AI (Artificial Intelligence), 277
algorithms

human element in, 251
pattern matching, 118
types of, 280

alpha (α)-conversion, 85
Amazon Web Services. See AWS
Amazon.com, 292
American Mathematical Society

(AMS), 273
Anaconda

add-ons for, 22
applications within, 26–27

downloading, 21–22
installing

on Linux, 22–23
on Mac OS, 23–24
on Windows, 24–26

version 5.1, 19
anchors, 115–116
AND operator, creating types

with, 164–166
Apache Hadoop, 285
Apache Kafka, 285
Apache Spark, 285
append function, 75, 102
appendFile function, 191
appending data, 75, 102,

129–130, 173, 212
AppendMode argument, 212
applications

Anaconda, 26–27
Haskell, 56–59
in lambda calculus, 81–82
patterns in, 112
Python, 34–38
repetition in, 126–127
state of, 13, 74–76

apply operators
interacting with user, 189
lambda calculus, 81–82
mapping tasks, 152

Argparse library, 205, 206
args property, 266
arguments

command line
Haskell, 200–201
Python, 205–206

exception, 266–267
replacing bound variables

with, 86–87

298 Functional Programming For Dummies

argv variable name, 205
ArithmeticError

exception, 265
arrays

difference between lists
and, 93

NumPy, 221, 236
Artificial Intelligence (AI), 277
ASCII, 220, 275
assert function, 258
attoparsec library, 275
automating

command line, 198–199
data patterns, 113

AWS (Amazon Web Services)
AWS Lambda, 290
certifications, 290–291
JSON and, 274

Azure, Microsoft, 290

B
β (beta)-reduction, 86–88
back quotation mark (`), use in

Haskell, 98
base case, 131
base classes, Python, 265
Beale’s function, 277
Bernoulli trial, 221
beta (β)-reduction, 86–88
bi-clustering, 238
The Big Think article, 251
binary data

defined, 219
format of, 222–224
Haskell, interacting with using,

228–229
overview, 219
textual data, comparing to,

220–221
using in data analysis, 221–222

binary library, 271–272
bit manipulation, 224
Boolean values, 221–222

bound variables, 86
BREAD (Browse, Read, Edit, Add,

and Delete) acronym, 213
bugs, 20, 250–253, 255, 260
Builder module, 276
businesses, using functional

programming
methodologies, 292

bytearray type, 228
bytes, defined, 221
bytestring calls, 275
bytestring library, 275–276

C
C math library, 252
C# programming language, 12
C++ programming language

object-oriented, 14
overview, 12
synonyms in code, 170
type signatures, using, 162

c=Y argument, 239
Cabal utility, 59–60, 202–203, 209
calculus. See also lambda

calculus
simply-typed, 83–84
untyped, 82–83

calls, bytestring, 275
carriage return (0D), 223
CD (Change Directory)

command, 38
cells, 35–38
centers argument, 238
cereal library, 272
Change Directory (CD)

command, 38
characters

character encoding, 191
defined, 105
special, 114–115
wildcard, 115

Church, Alonzo, 78–81, 83–84
classifying time frames, 260–261

Clojure language, 285, 295
closures, late binding, 263–264
Cloud, Google, 291
cloud device, 190
Cloudera Oryx package, 285
clustering data. See also

grouping data
bi-clustering, 238
defined, 158

CmdArgs, 201–203
cmp100 function, 138–139
code. See also functional

programming paradigm
comments preventing

execution of, 43–44
errors in, 20
importing, 59
low-level, 293–294
monolithic, 187
recursion in, 129, 130
repository for, 28–33
side effects in, 65
spaghetti, 14
synonyms in, 170
transitioning of, 82

Colab (Google Colaboratory),
27, 291

collections
as method for recursive

functions, 134
as monoids, 173–174

command line
automating, 198–200
error detection, creating, 197
Haskell, accessing, 200–205
overview, 197
Python, accessing, 205–206
syntax, 197

Command Line Option Parsers
page, 201–202

comments in Python, 41–44
common datasets, 239–241
comparing function, 159

Index 299

Compcert C Compiler, 293
compile time errors, Python,

259–260
compilers, 13, 161, 293
concatenation, 39, 101, 172
concrete exceptions,

Python, 265
concurrent programming, 293
constructors

data, 167–170
type, 167–170

Continuum Analytics website,
22, 23

Control.Exception.catch
function, 258

Control.Exception.try
function, 258

Control.Monad library, 127
Control.Monad.Error

function, 258
conversion. See reduction

operations
correct base instruction,

recursion, 141–142
count() function, 244
create_values(5)

function, 263
CRUD (Create, Read, Update,

and Delete), 144, 207,
212–214, 232

curried functions, 72, 74–76
Curry, Haskell, 78
currying, 70–71, 79, 82
custom data, 232, 238–239
cvtToTuple function, 177, 204
CyToolz package, 285

D
dash (-), use in switches, 198
data. See also datasets; lists

analyzing, importance of, 143
application state, modifying,

68–69
arrays, 93

binary
comparing to textual data,

220–221
format of, 222–224
interacting with in Haskell,

225–228
interacting with in Python,

225–228
overview, 219
reasons to use, 225
using in data analysis,

221–222
cleaning, 144
defined, 67
dicing, 146–151
filtering, 143
within functional programming

paradigm, 67–69
immutable, 68
manipulating, 144–145,

191–192
mapping, 152–153
missing, 113, 178–181
organizing, 144, 157–160
passing incorrectly, 141
pattern matching, 112–113,

117
reading, 214–216
replacing, 180
searching for, 117
slicing, 146–151
transforming, 144–145
underlying, 221
updating, 216
verification of, 144–145

data analysis
pattern matching, 117–118
using binary data in, 221–222

data constructors, 167–170
data keyword, 164
data property, 241, 243
data scientists, 295
data types, 84, 166

database. See also data
database managers, 144, 147
defined, 284

DataBase Management System
(DBMS), 284

Data.Binary.Builder
library, 226

Data.Bits library, 224
Data.ByteString.Builder

library, 226
Data.ByteString.Char8

library, 227
DataFrame, creating, 243–244
Data.IntMap function, 152
Data.List library, 102
Data.List.NonEmpty list, 176
Data.Map.Lazy function, 152
Data.Map.Strict function, 152
Data.Set library, 132
datasets

accessing specific records in,
244–245

choosing, 233–236
common, 239–241
controlling size of, 146–147
custom data, 238–239
Dataframe and, 243–244
determining content of,

241–243
dicing, 146–151
duplicate entries, deleting, 91
form issues, 145
in Haskell, 59–60
image, 235
LFW, 240
linnerud, multivariate

regression using, 237
loading, 60, 236–241
nested dictionaries and, 133
numeric data, labeling

within, 105
overview, 231–232
in Python, 33–34

300 Functional Programming For Dummies

datasets (continued)
randomizing, 147
sample code, 243
slicing, 146–151
standard, 232–233
SVM, 235
toy, 235, 237–238

Data.String library, 106
DBMS (DataBase Management

System), 284
debugging

defined, 20
IDEs and, 20, 49
passing functions, 138
standard, 256–257

Debug.Trace.trace
function, 258

decision problem
(Entscheidungsproblem), 79

declarations
defined, 65
differences between

declarations and, 66–67
declarative programming, 14
deep learning applications, 293
def arguments, 204
DESCR property, 241, 243
deserialization, 227
developers, functional

programming paradigm
and, 291

devices, I/O, 189–191
dicing data, 146–151
dict structure, 91
dictionaries, 103–104, 132–134
dir() command, 244
dir() function, 241, 267
displayData function, 216
doAdd function, 163
documentation, for Haskell, 60
domains, function, 83
doRep function, 129
dot (.) operator, 152, 158–159

double dash (--), use in
switches, 198

double percent sign (%%), 192
Double type, 254
dual function, 173–174
Duck Typing, 164

E
eager (strict) bytestring call, 275
eager (strict) evaluation, 16
editing lists, 101
Emacs text editor, 49
entries, dataset, 241–245
Entscheidungsproblem (decision

problem), 79
enumerations, 167–168
equality (==) operator, 179
Erlang programming

language, 12
error function, 258
errors

exceptions versus, 258
in Haskell

bugs, 250–253
fixing, 256–258
overview, 249–250
sources of, 254–256

logical, 262
in Python

bugs, 260
fixing, 265–268
late binding closure, 263–264
overview, 259–260
sources of, 260–262
third-party libraries, potential

problems with, 264
variables, using, 264
version difference, 263–264

semantic, 262
syntactical, 261–262
types of, 261–262

escapes, character, 114–115

eta (η)-conversion, 88
evaluations, 97

non-strict, 16
strict, 16

exceptions
built-in, 265
errors versus, 258
exception arguments, 266–267

exporting notebook files, 31–32
expressions

defined, 111
regular, 113–124

external load dataset, 235

F
Facebook, use of job sites, 292
feature_names property,

241, 243
fetch_20newsgroups

(subset='train')
dataset, 240

fetch_lfw_people(min_
faces_per_person=70,
resize=0.4) dataset, 240

fetch_mldata('MNIST
original', data_
home=custom_data_home)
dataset, 240

fetch_olivetti_faces()
dataset, 239

fields, RDBMS, 284
file handles, 188, 190, 210,

217, 252
file management

access issues, 209
closing files, 217
creating new files, 210
CRUD acronym, 213–214
general discussion, 212–213
locking files, 211
opening existing files, 211–212
overview, 207
reading data, 214–215

Index 301

storing local files, 208
updating data, 215–216

FileNotFoundError
exception, 265

filter function, 102
findKey function, 134
flags, defined, 221
Float type, 254
floating-point values, 220
for loop, 134, 151
forM function, 127, 149
format, of binary data, 222–224
Fractional type, 254, 268
France vector, 281
free (unbound) variables, 86–87
frozenset object, 104
fst function, 177
function application, defined, 79
functional abstraction,

defined, 79
Functional Jobs website, 290
functional programming

paradigm
basis for, 15–16
data within, 67–69
declarations, 66–67
languages supporting, 16–17
multiprocessor use and, 128
occupations using, 289–295
online resources for, 17–18
other paradigms and, 13–14
overview, 10–12
procedures, 66–67

Functional Works website, 292
functions. See also lambda

calculus; recursive
functions

abstraction and, 82
anonymous, 89
converting, 72
domain of, 83
first-class, 15
in Haskell, 69–72, 98

higher-order, 15
importing datasets into Python

code with, 33–34
invoking, 83
lambda

defined, 85
multiplying list elements, 100
performing special sort, 160
in Python, 90, 136, 153, 156
recursion of, 131
shortcuts for, 89
simplifying, 86

magic, 192–194
for manipulating lists, 101
pure, 15, 17
in Python, 73–76

functools.partial()
function, 264

funcy package, 285–286

G
GA (Genetic Algorithm), 277
GADT (General Algebraic

Datatypes), 202
Gaussian blobs, 33, 238
GBM (Gradient Boosting

Machine), 287
General Algebraic Datatypes

(GADT), 202
General Data Protection

Regulation (GDPR), 232
generators, 235
Genetic Algorithm (GA), 277
Gensim library, 280–281
getArgs function, 200
getDual function, 174
getLine function, 188, 195
GHC (Glasgow Haskell

Compiler), 253, 272
GHCi (Glasgow Haskell Compiler

interpreter), 54, 57, 190
global data, 68–69
Gödel, Kurt, 78

Google, use of job sites, 292
Google Cloud, 291
Google Colaboratory (Colab),

27, 291
Gradient Boosting Machine

(GBM), 287
Gradient Boosting

Regression, 242
Graphical User Interface

(GUI), 283
grave accent mark (`), use in

Haskell, 98
Greet data type, 204
grouping data

defined, 158
grouping constructs, 116
groups, 171–172

GUI (Graphical User
Interface), 283

H
η (eta)-conversion, 88
Hacker News website, 18
Hadoop, Apache, 285
handles, 188, 190, 210, 217, 252
Hascore library, 273
HashMap, 103
Haskell

accessing command line in,
200–205

application, compiling, 56–59
back question mark in, 98
building from source files, 50
data

dicing, 147–149
filtering, 155–156
immutable, 68
mapping, 152–153
organizing, 158–159
slicing, 147–149

errors in
bugs, 250–253
fixing, 256–258

302 Functional Programming For Dummies

Haskell (continued)
general discussion, 253–256
overview, 249–250
sources of, 254–256

functions in, 69–72, 98
HackageDB, 61
installing

on Linux, 50
on MacOS, 50–51
overview, 48–49
on Windows, 52–54

interacting with binary data in,
225–228

interpreted information
about, 55

lambda functions, creating
in, 89

libraries, 59–60, 271–277
lists in, 94–95, 97–99, 101–102,

135–136
non-strict evaluation, 16
online resources for, 60–61
passing functions with,

138–139
pattern matching in, 118–120
quitting, 55
reading data, 215
receiving I/O with, 195–196
recursion in, 57
sending I/O with, 195–196
Software Repository, 61
string-related tasks in, 106
tuples in, 133
tutorials for, 61
use of grave accent mark in, 98
version 8.2.2, 48

Hasse diagram, 222
hClose function, 217
headings

comments versus, 41
in documentation cells, 36

health care industry, 294–295
--help command-line switch, 205

hexadecimal editors, 222
hGetChar function, 215
hGetContents function,

216, 227
hGetLine function, 215
hGetPosn function, 215
HLearn library, 236
hLookAhead function, 215
host devices, 189
hPutBuilder function, 226
hPutStrLn function, 190
htrace function, 257
HyperHaskell, 49

I
IDE (Integrated Development

Environment). See also
Jupyter Notebook

for Haskell, 49
intelligence of, 20
Spyder, 27

image datasets, 235
immutable data, 68
imperative programming, 13
implementation-specific

issues, 253
importing

datasets into Python code,
33–34

external code, 59
notebook files, 32–33
regular expressions

library, 121
impure languages, 12, 17, 222
inc function, 70, 74
Indeed.com, 290, 295
indentation, in Python, 39–41
inductive reasoning, lambda

calculus, 80
indValue(2) function, 263
infinite loops, 250
Infinity value, 259
input devices, 190

input method, 188
Input/Output. See I/O
instance keyword, 168
int data type, 84
Int values, 135, 165
integers, 220
Integrated Development

Environment. See IDE
interpreters, 293
IntMap operator, 173
IntSet operator, 173
I/O (Input/Output)

devices, 189–191
interacting with user, 188–189
Jupyter Notebook magic

functions, 192–194
manipulating, 191–192
overview, 185–186
sending and receiving with

Haskell, 195–196
side effects, 186–188
using monads for, 188

IOError function, 258
IPython magic functions, 192–194
Italy vector, 281
iterations, list, 101

J
JavaScript, 12
JavaScript Object Notation

(JSON), 274
Jet.com, 292
JFIF (JPEG File Information

Format), 224
JPEG (Joint Photographic Experts

Group), 224
JPEG File Information Format

(JFIF), 224
JSON (JavaScript Object

Notation), 274
Jupyter Notebook

advantages of, 21
booting up, 28

Index 303

cells in, 35–36
closing, 44
coding in, 20
debugging capabilities of, 20
Haskell add-on for, 49
magic functions, 192–194
notebook files, 30–33
stopping server of, 28, 44

Just value, 174–176

K
Kafka, Apache, 285
key keyword, 160
KeyboardInterrupt

exception, 265
keywords, 90, 160, 164, 168
Kleene, Stephen, 80
Knuth, Donald, 21

L
Labeled Faces in the Wild (LFW)

dataset, 240
lambda calculus

abstraction and, 82–84
apply operator, 81–82
functions in

data typing and, 137
defined, 85
Haskell-related, 89
list elements, multiplying, 100
performing special sort

with, 160
Python-related, 89–90,

153, 156
recursion of, 131
simplifying, 86
updating file data with, 216

operations of, 80–84
origins of, 78–80
overview, 77
principles of, 79

reduction operations, 85–88
use of colon in, 84
variables in, 80–81

LambdaCube engine, 273
language optimizer, 186
languages. See also names

of specific languages;
programming languages

impure, 12, 17, 222
lazy, 251–252
pure, 16–17

late binding closures, 263–264
lazy (non-strict) bytestring

call, 275
lazy (non-strict) evaluation, 16
lazy (non-strict) language,

251–252
Leksah IDE, 49
length function, 98, 159
Lex/Yacc language, 12
LFW (Labeled Faces in the Wild)

dataset, 240
libraries

Argparse, 205
C math, 252
cereal, provisions of, 272
defined, 271
functools, 100
GHC version, 272
Haskell, 59–60, 271–276
HLearn, 236
hmatrix, 146
music oriented, 273
naming, 274
NumPy, 99, 146
pandas, 146
PyMonad, 176
Python, 280–283, 286
regular expressions, 121, 123
Scikitlearn, 33, 234
sound oriented, 273
statistics, 100

SymPy, 222
third-party, 192, 264
vector, 146

library-specific datasets, 234–236
libsvm dataset, 235
line feed (0A), 223
linnerud datasets, 237
Linux

installing Anaconda on, 22–23
installing Haskell on, 50
Windows operating system

versus, 208
Lisp programming language, 12
list comprehensions, 133
list function, 156
list object, 153
lists

alternatives to, 103–104
creating, 93–96
differences between arrays

and, 93
evaluating, 96–100
manipulating, 100–102
as method for recursive

functions, 131–132
uses for, 92–93
using recursive functions on,

135–137
literate programming, 21
load_boston() function, 237
load_breast_cancer()

function, 237
load_diabetes() function, 237
load_digits([n_class])

function, 237
load_iris() function, 237
load_linnerud() function, 237
load_wine() function, 237
local files, storing, 208
location pointer, defined, 214
locking files, 211
logical errors, 262

304 Functional Programming For Dummies

lookup function, 133
loops

defined, 250
infinite, 250
using recursive functions

instead of, 127–128
low-level code, writing

compilers, 293
concurrent programming, 293
interpreters, 293
parallel programming, 293

M
machine code, 13
MacOS

installing Anaconda on, 23–24
installing Haskell on, 50–51

magic functions, Jupyter
Notebook, 192–194

main function, 216
make_ blobs() function, 238
manipulating data

I/O data, 144–145
lists, 100–102
types of data manipulation,

144–145
map function, 72, 152
map object, 153
Map operator, 173
marks, types of, 98
math. See also lambda calculus

abstraction, 171
Peano arithmetic, 79
solving problems with, 10

MATLAB, 10, 21
Maybe value, 174–176
measures, statistical, 180–181
membership, list, 101
MemoryError exception, 265
Microsoft Azure, 290
Miranda programming

language, 16

mod operator, 156
modularization, 11
modules, 55–56, 280
monads

functions, 195–196
handles and, 188
monad sequencing, 195

monoids, 170–174
monolithic code, 187
moo library, 277
multivariate regression, 237
music oriented libraries, 273
mutable variables, avoiding, 250
mypy static type checker, 163

N
n_samples argument, 238
--name argument, 204
name=Sam argument, 205
Native.py argument, 205
natural language processing

(NLP), 280
Navigator, Anaconda, 26, 45–46
neoVim text editor, 49
NLP (natural language

processing), 280
non-curried functions, 72, 74–76
non-strict (lazy) bytestring

call, 275
non-strict (lazy) evaluation, 16
non-strict (lazy) language,

251–252
notebooks. See also Jupyter

Notebook
creating new, 30–31
deleting, 32
exporting, 31–32
importing, 32–33
text editors versus, 21

Nothing value, 174–176
null values, 178–179
numeric values, 220

NumPy
arrays, 221, 236
evaluating lists with, 99
slicing and dicing data

with, 146
numpy/routines.io

library, 236

O
Object-Oriented Programming

(OOP), 14, 180
OCaml programming

language, 12
occupations, using functional

programming
businesses, finding, 292
data scientist, 295
deep learning applications, 293
developers, 289–291
health care industry, 294–295
low-level code writing, 293–294
overview, 289
researching, 295
sites for, 292–293

OOP (Object-Oriented
Programming), 14, 180

openBinaryFile function, 226
operations. See also lambda

calculus
of lambda calculus, 80–84
reduction operations. See

reduction operations
operator module, 160
OR (|) operator, 166–167
OS exceptions, 265
output. See also I/O

comments as, 42
inputs and, 17
Int values as, 135
in Jupyter Notebook, 30–31
lines of text, multiple, 39–40
output devices, 190
procedures and, 67

Index 305

P
packages

defined, 280
Haskell, 201–202
Python, 279–287

pandas.io library, 235
paradigms, 9. See also functional

programming paradigm
parallel programming, 293
parameterizing, 176–178
parentheses, in lambda

calculus, 81
Paris vector, 281
partial file lock, 211
passing by reference, Python

variables, 74–76
pattern matching

algorithm, 118
in analysis, 117–118
in data, patterns, 112–113
defined, 111
in Haskell, 118–120
in Python, 121–124
regular expressions, 113–124

Peano arithmetic, 79
percent sign (%) symbol, 192
Posix matches, 118–119
Post, Emil Leon, 78
Prelude.catch function, 258
PrettyTable library, 283
prime (`) symbol, use in

Haskell, 98
print() call, 237
print() function, 13–14, 30,

34, 210
programming. See also

functional programming
paradigm

concurrent, 293
declarative, 14
functional, 9–18
imperative, 13
literate, 21
object-oriented, 14

parallel, 293
procedural, 13–14

programming languages
C#, 12
C++, 12, 14, 162, 170
functional features in, 12
η-conversion and, 88
impure, 17
Lisp, 12
Miranda, 16
non functional, using type

signatures, 162
OCaml, 12
pure, 16–17
Racket, 12
supporting coding styles, 17
supporting coding styles

with, 17
Prompt, Anaconda

code, running using, 38
description of, 27
Infix module, installing

with, 90
lists, creating using, 95

prompts, in applications, 198–199
protocol, communication, 192
pure functions, 186, 187
pure languages, 11–12, 16–17
putCharUtf8 function, 226
putStringUtf8 function, 226
putStrLn function, 188–189,

190, 195, 227
PyAudio library, 281–282
PyGame library, 282
PyMonad library, 176
PyQtGraph library, 282–283
Python

accessing command line in,
205–206

Anaconda, 21–27
bit manipulation and, 224
calls, 215
code, 28–33, 38–39
comments in, 41–44

creating application, 34–38
data

dicing with, 150–151
filtering, 156
immutable, 68
mapping, 153–154
organizing, 159–160

data typing, 137
datasets in, 33–34
errors in, 259–268
exception arguments, 266–267
functions in, 73–76, 139–140
as impure language, 17
indentation in, 39–41
interacting with binary data in,

228–229
Jupyter Notebook, 20–21, 44
lambda functions, creating in,

89–90
lists in, 95–96, 99–100, 102,

136–137
matches for, 121–123
objects, mutability of, 76
online resources for, 45–46
packages, 279–287
parameterizing types in, 178
pattern matching in, 121–124
reading data, 215
slicing data, 150–151
sound technologies of, 282
string-related tasks in, 106–107
type signatures, 163

Python Package Index, 279

Q
Quora website, 18

R
Racket programming

language, 12
range, lambda calculus, 83
RCV1 (Reuters Corpus

Volume I), 240

306 Functional Programming For Dummies

RDBMS (Relational DataBase
Management System), 284

readFile function, 191, 216, 217
reading binary data, 227–229
readme, 277
ReadWriteMode argument, 210
records

accessing, 244–245
defined, 284

recursions
defined, 15
in Haskell, 57
as method for recursive

functions, 129–131
overview, 250–251

recursive functions
errors in, 140–142
on lists, 135–137
loops versus, 127–128
methods for, 129–134
overview, 126–128
passing functions with, 137–140

reduction operations. See also
lambda calculus

alpha conversion, 85
beta reduction, 86–88
eta conversion, 88

referential transparency, 15
Regex code class, 114, 118
regression, multivariate, 237
regular expressions, 113–116
Relational DataBase

Management System
(RDBMS), 284

rem operator, 156
removeFile function, 217
repetition, list, 101
replace function, 216
replicate function, 196
repository, code, 28
ResourceWarning exception, 265
Reuters Corpus Volume I

(RCV1), 240
reverse functions, 102

reverse keyword, 160
Rome vector, 281
Rosser, J. B., 80
runtime errors, Python, 260

S
sayHello template, 204
scaling, 187
Scikitlearn library, 33, 234
SciPy library, 286
scipy.io library, 236
scipy.io.wavfile.read

library, 236
semantic errors, 262
semigroups, 172, 176
Sequence operator, 173
serialization, 226, 271–272
server, Jupyter Notebook, 28, 44
Set operator, 173
set structure, 91
sets, 104, 132–134
side effects, I/O, 186–188
simply-typed calculus, 83–84
simply-typed variables, 81
skimage.io library, 236
sklearn.datasets, 34
sklearn.datasets.fetch_

covtype() dataset, 240
sklearn.datasets.fetch_

rcv1() dataset, 240
slash (/), use in switches, 198
slice function, 149
slicing data, 146–151
snd function, 159, 177
Sookochef, Kevin, 18
sortBy function, 159
sorted function, 159
sound oriented libraries, 273
spaghetti code, 14
Spark, Apache, 285
special characters, 114–115
split function, 123

Spotify, use of job sites, 292
Spyder, 27
SQL (Structured Query

Language), 10, 12, 117, 284
SQLAlchemy package, 284
StackOverflow website, 61
standard datasets, 232–233
static type checkers, 163
statistical measures, 180–181
stderr handle, 188
stdin handle, 188
stdout handle, 188, 190
strict (eager) bytestring call, 275
strict (eager) evaluation, 16
String data type, 168, 216
strings, 105–107
stringsearch library, 276
Structured Query Language

(SQL), 10, 12, 117, 284
sub function, 123–124
Sum data type, 165
sum functions, 98
Support Vector Machine (SVM)

datasets, 235
svmlight dataset, 235
SymPy library, 222
syntactical errors, 261–262
System.Directory

function, 217
System.Environment

function, 200
System.IO.Unsafe

package, 252

T
target property, 241, 243
tasks, performing, 66–67
Tcl (Tool Command

Language), 283
TechRepublic website, 295
telephone numbers

matching, 120, 124
patterns in, 112

Index 307

testing
custom data, 232
defined, 187
Haskell installation, 54–56
stakeholder, 255

Text data type, 216
text editors

Emacs, 49
neoVim, 49
notebooks versus, 21
Vim text, 49

text library, 276–277
Text.Regex.Posix

package, 118
textual data, 220–221
third-party libraries, 192, 264
tinymce website, 18
Tk (Toolkit), 283
TkInter package, 283
Tool Command Language

(Tcl), 283
Toolkit (Tk), 283
Toolz package, 284–285
toy datasets, 235, 237–238
trace function, 257
trace output, 257
tuples

in Haskell, 133
overview, 160
as type, 119

Turing, Alan Mathison, 78
Tutorials Point website, 18
Two Sigma, use of job sites, 292
type classes, 181–182
type constructors, 168–170
type function, 162
types

composing, 170–176
conversation between, 92–93
data constructors, 168–169
defined, 83, 161
enumerations, 167–168
functional perception of, 162

general discussion, 164–168
monoids, 170–176
AND operator and, 164–166
OR operator and, 166–167
parameterizing, 176–178
semigroups, 176
type constructors, 168–169
type signatures, 162–164

U
UCI Machine Learning

Repository, 233, 234
unbound (free) variables, 86–87
Unicode Transformation Format

(UTF), 191, 276
unpack function, 216
unsafe functions, 252–253
untyped lambda calculus, 82–83
untyped variables, 80–81, 87–88
username argument, 204
UTF (Unicode Transformation

Format), 191, 276

V
values

Boolean, 221–222
enumerating, 167
floating-point, 220
index, 97
Int values, 135, 165
in lists, 94
null, 178–179
numeric, 220
types of, 220

variables
assigning anonymous

functions to, 89
bound, 86
changing content of, 68
data constructor versus, 167
functions, passing to, 69
in lambda calculus, 80

mapping, 82, 89
overview, 264
renaming, 85
replacing, 86
simply-typed, 81
unbound, 86
untyped, 80–81, 87–88

vect library, 273
vector library, 274
--version command-line

switch, 205
Vim text editor, 49
Von Neumann, John, 78

W
while statement, 141
wildcard characters, 115
Wildly Inaccurate website, 18
Windows

installing Anaconda on, 24–26
installing Haskell on, 52–54
Linux operating system

versus, 207
WinGHCi interpreter, 54,

203, 256
winsound package, 282
Word2vec algorithm, 281
words, binary data, 221
writeFile function, 191,

216, 217
WriteMode argument, 210
writing binary data, 226–227,

228–229

X
XGBoost package, 287
XVI32 hexadecimal editor, 222

Z
ZeroDivisionError

exception, 268
zip functions, 102

About the Author
John Mueller is a freelance author and technical editor. He has writing in his blood,
having produced 110 books and more than 600 articles to date. The topics range
from networking to artificial intelligence and from database management to heads-
down programming. Some of his current books include discussions of data science,
machine learning, and algorithms, all of which use Python as a demonstration
language. His technical editing skills have helped more than 70 authors refine the
content of their manuscripts. John has provided technical editing services to various
magazines, performed various kinds of consulting, and writes certification exams.
Be sure to read John’s blog at http://blog.johnmuellerbooks.com/. You can
reach John on the Internet at John@JohnMuellerBooks.com. John is also has a
website at http://www.johnmuellerbooks.com/.

Dedication
This book is in remembrance of my niece Heather.

Acknowledgments
Thanks to my wife, Rebecca. Even though she is gone now, her spirit is in every
book I write, in every word that appears on the page. She believed in me when no
one else would.

Russ Mullen deserves thanks for his technical edit of this book—especially in
dealing with what turned out to be a completely different sort of computer science
topic. He greatly added to the accuracy and depth of the material you see here.
Russ is always providing me with great URLs for new products and ideas. How-
ever, it’s the testing that Russ does that helps most. He’s the sanity check for my
work. Russ also has different computer equipment from mine, so he’s able to
point out flaws that I might not otherwise notice.

Matt Wagner, my agent, deserves credit for helping me get the contract in the
first place and taking care of all the details that most authors don’t really
consider. I always appreciate his assistance. It’s good to know that someone
wants to help.

http://blog.johnmuellerbooks.com/
mailto:John@JohnMuellerBooks.com
http://www.johnmuellerbooks.com/

A number of people read all or part of this book to help me refine the approach,
test the coding examples, and generally provide input that all readers wish they
could have. These unpaid volunteers helped in ways too numerous to mention
here. I especially appreciate the efforts of Eva Beattie, Glenn A. Russell, Luca
Massaron, and Osvaldo Téllez Almirall, who provided general input, read the
entire book, and selflessly devoted themselves to this project.

Finally, I would like to thank Katie Mohr, Susan Christophersen, and the rest of
the editorial and production staff.

Publisher’s Acknowledgments

Associate Publisher: Katie Mohr

Project and Copy Editor: Susan Christophersen

Technical Editor: Russ Mullen

Sr. Editorial Assistant: Cherie Case

Production Editor: Mohammed Zafar Ali

Cover Image: © Henrik5000/iStock.com

WILEY END USER LICENSE AGREEMENT
Go to www.wiley.com/go/eula to access Wiley’s ebook EULA.

http://www.wiley.com/go/eula

	Title Page
	Copyright Page
	Table of Contents
	Introduction
	About This Book
	Foolish Assumptions
	Icons Used in This Book
	Beyond the Book
	Where to Go from Here

	Part 1 Getting Started with Functional Programming
	Chapter 1 Introducing Functional Programming
	Defining Functional Programming
	Understanding its goals
	Using the pure approach
	Using the impure approach

	Considering Other Programming Paradigms
	Imperative
	Procedural
	Object-oriented
	Declarative

	Using Functional Programming to Perform Tasks
	Discovering Languages That Support Functional Programming
	Considering the pure languages
	Considering the impure languages

	Finding Functional Programming Online

	Chapter 2 Getting and Using Python
	Working with Python in This Book
	Creating better code
	Debugging functionality
	Defining why notebooks are useful

	Obtaining Your Copy of Anaconda
	Obtaining Analytics Anaconda
	Installing Anaconda on Linux
	Installing Anaconda on MacOS
	Installing Anaconda on Windows
	Understanding the Anaconda package

	Downloading the Datasets and Example Code
	Using Jupyter Notebook
	Defining the code repository
	Getting and using datasets

	Creating a Python Application
	Understanding cells
	Adding documentation cells
	Other cell content

	Running the Python Application
	Understanding the Use of Indentation
	Adding Comments
	Understanding comments
	Using comments to leave yourself reminders
	Using comments to keep code from executing

	Closing Jupyter Notebook
	Getting Help with the Python Language

	Chapter 3 Getting and Using Haskell
	Working with Haskell in This Book
	Obtaining and Installing Haskell
	Installing Haskell on a Linux system
	Installing Haskell on a Mac system
	Installing Haskell on a Windows system

	Testing the Haskell Installation
	Compiling a Haskell Application
	Using Haskell Libraries
	Getting Help with the Haskell Language

	Part 2 Starting Functional Programming Tasks
	Chapter 4 Defining the Functional Difference
	Comparing Declarations to Procedures
	Understanding How Data Works
	Working with immutable data
	Considering the role of state
	Eliminating side effects

	Seeing a Function in Haskell
	Using non-curried functions
	Using curried functions

	Seeing a Function in Python
	Creating and using a Python function
	Passing by reference versus by value

	Chapter 5 Understanding the Role of Lambda Calculus
	Considering the Origins of Lambda Calculus
	Understanding the Rules
	Working with variables
	Using application
	Using abstraction

	Performing Reduction Operations
	Considering α-conversion
	Considering β-reduction
	Considering η-conversion

	Creating Lambda Functions in Haskell
	Creating Lambda Functions in Python

	Chapter 6 Working with Lists and Strings
	Defining List Uses
	Creating Lists
	Using Haskell to create Lists
	Using Python to create lists

	Evaluating Lists
	Using Haskell to evaluate Lists
	Using Python to evaluate lists

	Performing Common List Manipulations
	Understanding the list manipulation functions
	Using Haskell to manipulate lists
	Using Python to manipulate lists

	Understanding the Dictionary and Set Alternatives
	Using dictionaries
	Using sets

	Considering the Use of Strings
	Understanding the uses for strings
	Performing string-related tasks in Haskell
	Performing string-related tasks in Python

	Part 3 Making Functional Programming Practical
	Chapter 7 Performing Pattern Matching
	Looking for Patterns in Data
	Understanding Regular Expressions
	Defining special characters using escapes
	Defining wildcard characters
	Working with anchors
	Delineating subexpressions using grouping constructs

	Using Pattern Matching in Analysis
	Working with Pattern Matching in Haskell
	Performing simple Posix matches
	Matching a telephone number with Haskell

	Working with Pattern Matching in Python
	Performing simple Python matches
	Doing more than matching
	Matching a telephone number with Python

	Chapter 8 Using Recursive Functions
	Performing Tasks More than Once
	Defining the need for repetition
	Using recursion instead of looping

	Understanding Recursion
	Considering basic recursion
	Performing tasks using lists
	Upgrading to set and dictionary
	Considering the use of collections

	Using Recursion on Lists
	Working with Haskell
	Working with Python

	Passing Functions Instead of Variables
	Understanding when you need a function
	Passing functions in Haskell
	Passing functions in Python

	Defining Common Recursion Errors
	Forgetting an ending
	Passing data incorrectly
	Defining a correct base instruction

	Chapter 9 Advancing with Higher-Order Functions
	Considering Types of Data Manipulation
	Performing Slicing and Dicing
	Keeping datasets controlled
	Focusing on specific data
	Slicing and dicing with Haskell
	Slicing and dicing with Python

	Mapping Your Data
	Understanding the purpose of mapping
	Performing mapping tasks with Haskell
	Performing mapping tasks with Python

	Filtering Data
	Understanding the purpose of filtering
	Using Haskell to filter data
	Using Python to filter data

	Organizing Data
	Considering the types of organization
	Sorting data with Haskell
	Sorting data with Python

	Chapter 10 Dealing with Types
	Developing Basic Types
	Understanding the functional perception of type
	Considering the type signature
	Creating types

	Composing Types
	Understanding monoids
	Considering the use of Nothing, Maybe, and Just
	Understanding semigroups

	Parameterizing Types
	Dealing with Missing Data
	Handling nulls
	Performing data replacement
	Considering statistical measures

	Creating and Using Type Classes

	Part 4 Interacting in Various Ways
	Chapter 11 Performing Basic I/O
	Understanding the Essentials of I/O
	Understanding I/O side effects
	Using monads for I/O
	Interacting with the user
	Working with devices

	Manipulating I/O Data
	Using the Jupyter Notebook Magic Functions
	Receiving and Sending I/O with Haskell
	Using monad sequencing
	Employing monad functions

	Chapter 12 Handling the Command Line
	Getting Input from the Command Line
	Automating the command line
	Considering the use of prompts
	Using the command line effectively

	Accessing the Command Line in Haskell
	Using the Haskell environment directly
	Making sense of the variety of packages
	Obtaining CmdArgs
	Getting a simple command line in Haskell

	Accessing the Command Line in Python
	Using the Python environment directly
	Interacting with Argparse

	Chapter 13 Dealing with Files
	Understanding How Local Files are Stored
	Ensuring Access to Files
	Interacting with Files
	Creating new files
	Opening existing files

	Manipulating File Content
	Considering CRUD
	Reading data
	Updating data

	Completing File-related Tasks

	Chapter 14 Working with Binary Data
	Comparing Binary to Textual Data
	Using Binary Data in Data Analysis
	Understanding the Binary Data Format
	Working with Binary Data
	Interacting with Binary Data in Haskell
	Writing binary data using Haskell
	Reading binary data using Haskell

	Interacting with Binary Data in Python
	Writing binary data using Python
	Reading binary data using Python

	Chapter 15 Dealing with Common Datasets
	Understanding the Need for Standard Datasets
	Finding the Right Dataset
	Locating general dataset information
	Using library-specific datasets

	Loading a Dataset
	Working with toy datasets
	Creating custom data
	Fetching common datasets

	Manipulating Dataset Entries
	Determining the dataset content
	Creating a DataFrame
	Accessing specific records

	Part 5 Performing Simple Error Trapping
	Chapter 16 Handling Errors in Haskell
	Defining a Bug in Haskell
	Considering recursion
	Understanding laziness
	Using unsafe functions
	Considering implementation-specific issues

	Understanding the Haskell-Related Errors
	Fixing Haskell Errors Quickly
	Relying on standard debugging
	Understanding errors versus exceptions

	Chapter 17 Handling Errors in Python
	Defining a Bug in Python
	Considering the sources of errors
	Considering version differences

	Understanding the Python-Related Errors
	Dealing with late binding closures
	Using a variable
	Working with third-party libraries

	Fixing Python Errors Quickly
	Understanding the built-in exceptions
	Obtaining a list of exception arguments
	Considering functional style exception handling

	Part 6 The Part of Tens
	Chapter 18 Ten Must-Have Haskell Libraries
	binary
	Hascore
	vect
	vector
	aeson
	attoparsec
	bytestring
	stringsearch
	text
	moo

	Chapter 19 Ten (Plus) Must-Have Python Packages
	Gensim
	PyAudio
	PyQtGraph
	TkInter
	PrettyTable
	SQLAlchemy
	Toolz
	Cloudera Oryx
	funcy
	SciPy
	XGBoost

	Chapter 20 Ten Occupation Areas that Use Functional Programming
	Starting with Traditional Development
	Going with New Development
	Creating Your Own Development
	Finding a Forward-Thinking Business
	Doing Something Really Interesting
	Developing Deep Learning Applications
	Writing Low-Level Code
	Helping Others in the Health Care Arena
	Working as a Data Scientist
	Researching the Next Big Thing

	Index
	EULA

©

Functional
Programmir
i)

el

