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Introduction      1

Introduction

You need to learn about algorithms for school or work. Yet, all the books 
you’ve tried on the subject end up being more along the lines of really good 
sleep-inducing aids rather than texts to teach you something. Assuming 

that you can get past the arcane symbols obviously written by a demented two- 
year-old with a penchant for squiggles, you end up having no idea of why you’d 
even want to know anything about them. Most math texts are boring! However, 
Algorithms For Dummies is different. The first thing you’ll note is that this book has 
a definite lack of odd symbols (especially of the squiggly sort) floating about. Yes, 
you see a few (it is a math book, after all), but what you find instead are clear 
instructions for using algorithms that actually have names and a history behind 
them to perform useful tasks. You’ll encounter simple coding techniques that 
perform amazing things that will intrigue your friends and certainly make them 
jealous as you perform amazing feats of math that they can’t begin to understand. 
You get all this without having to strain your brain, even a little, and you won’t 
even fall asleep (well, unless you really want to do so).

About This Book
Algorithms For Dummies is the math book that you wanted in college but didn’t get. 
You discover, for example, that algorithms aren’t new. After all, the Babylonians 
used algorithms to perform simple tasks as early as 1,600 BC. If the Babylonians 
could figure this stuff out, certainly you can, too! This book actually has three 
things that you won’t find in most math books:

»» Algorithms that have actual names and a historical basis so that you can 
remember the algorithm and know why someone took time to create it

»» Simple explanations of how the algorithm performs amazing feats of data 
manipulation, data analysis, or probability prediction

»» Code that shows how to use the algorithm without actually dealing with 
arcane symbols that no one without a math degree can understand

Part of the emphasis of this book is on using the right tools. This book uses Python 
to perform various tasks. Python has special features that make working with 



2      Algorithms For Dummies

algorithms significantly easier. For example, Python provides access to a huge 
array of packages that let you do just about anything you can imagine, and more 
than a few that you can’t. However, unlike many texts that use Python, this one 
doesn’t bury you in packages. We use a select group of packages that provide great 
flexibility with a lot of functionality, but don’t require you to pay anything. You 
can go through this entire book without forking over a cent of your hard-earned 
money.

You also discover some interesting techniques in this book. The most important is 
that you don’t just see the algorithms used to perform tasks; you also get an 
explanation of how the algorithms work. Unlike many other books, Algorithms For 
Dummies enables you to fully understand what you’re doing, but without requiring 
you to have a PhD in math. Every one of the examples shows the expected output 
and tells you why that output is important. You aren’t left with the feeling that 
something is missing.

Of course, you might still be worried about the whole programming environment 
issue, and this book doesn’t leave you in the dark there, either. At the beginning, 
you find complete installation instructions for Anaconda, which is the Python 
language Integrated Development Environment (IDE) used for this book. In addi-
tion, quick primers (with references) help you understand the basic Python pro-
gramming that you need to perform. The emphasis is on getting you up and 
running as quickly as possible, and to make examples straightforward and simple 
so that the code doesn’t become a stumbling block to learning.

To help you absorb the concepts, this book uses the following conventions:

»» Text that you’re meant to type just as it appears in the book is in bold. The 
exception is when you’re working through a step list: Because each step is 
bold, the text to type is not bold.

»» Words that we want you to type in that are also in italics are used as place-
holders, which means that you need to replace them with something that 
works for you. For example, if you see “Type Your Name and press Enter,” you 
need to replace Your Name with your actual name.

»» We also use italics for terms we define. This means that you don’t have to rely 
on other sources to provide the definitions you need.

»» Web addresses and programming code appear in monofont. If you’re reading 
a digital version of this book on a device connected to the Internet, you can 
click the live link to visit that website, like this: http://www.dummies.com.

»» When you need to click command sequences, you see them separated by a 
special arrow, like this: File ➪ New File, which tells you to click File and then 
New File.

http://www.dummies.com
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Foolish Assumptions
You might find it difficult to believe that we’ve assumed anything about you — 
after all, we haven’t even met you yet! Although most assumptions are indeed 
foolish, we made certain assumptions to provide a starting point for the book.

The first assumption is that you’re familiar with the platform you want to use, 
because the book doesn’t provide any guidance in this regard. (Chapter  3 does, 
however, tell you how to install Anaconda; Chapter 4 provides a basic Python lan-
guage overview; and Chapter 5 helps you understand how to perform the essential 
data manipulations using Python.) To give you the maximum information about 
Python with regard to algorithms, this book doesn’t discuss any platform-specific 
issues. You really do need to know how to install applications, use applications, and 
generally work with your chosen platform before you begin working with this book.

This book isn’t a math primer. Yes, you see lots of examples of complex math, but 
the emphasis is on helping you use Python to perform common tasks using algo-
rithms rather than learning math theory. However, you do get explanations of 
many of the algorithms used in the book so that you can understand how the 
algorithms work. Chapters 1 and 2 guide you through a better understanding of 
precisely what you need to know in order to use this book successfully.

This book also assumes that you can access items on the Internet. Sprinkled 
throughout are numerous references to online material that will enhance your 
learning experience. However, these added sources are useful only if you actually 
find and use them.

Icons Used in This Book
As you read this book, you encounter icons in the margins that indicate material 
of interest (or not, as the case may be). Here’s what the icons mean:

Tips are nice because they help you save time or perform some task without a lot 
of extra work. The tips in this book are time-saving techniques or pointers to 
resources that you should try so that you can get the maximum benefit from 
Python, or in performing algorithm-related or data analysis–related tasks.

We don’t want to sound like angry parents or some kind of maniacs, but you 
should avoid doing anything that’s marked with a Warning icon. Otherwise, you 
might find that your application fails to work as expected, you get incorrect 
answers from seemingly bulletproof algorithms, or (in the worst-case scenario) 
you lose data.
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Whenever you see this icon, think advanced tip or technique. You might find these 
tidbits of useful information just too boring for words, or they could contain the 
solution you need to get a program running. Skip these bits of information when-
ever you like.

If you don’t get anything else out of a particular chapter or section, remember the 
material marked by this icon. This text usually contains an essential process or a 
bit of information that you must know to work with Python, or to perform 
algorithm-related or data analysis–related tasks successfully.

Beyond the Book
This book isn’t the end of your Python or algorithm learning experience — it’s 
really just the beginning. We provide online content to make this book more flex-
ible and better able to meet your needs. That way, as we receive email from you, 
we can address questions and tell you how updates to Python, or its associated 
add-ons affect book content. In fact, you gain access to all these cool additions:

»» Cheat sheet: You remember using crib notes in school to make a better mark 
on a test, don’t you? You do? Well, a cheat sheet is sort of like that. It provides 
you with some special notes about tasks that you can do with Python, 
Anaconda, and algorithms that not every other person knows. To find the 
cheat sheet for this book, go to www.dummies.com and search for Algorithms 
For Dummies Cheat Sheet. It contains really neat information such as finding 
the algorithms that you commonly need to perform specific tasks.

»» Updates: Sometimes changes happen. For example, we might not have seen 
an upcoming change when we looked into our crystal ball during the writing 
of this book. In the past, this possibility simply meant that the book became 
outdated and less useful, but you can now find updates to the book at  
www.dummies.com/go/algorithmsfd.

In addition to these updates, check out the blog posts with answers to reader 
questions and demonstrations of useful book-related techniques at http://
blog.johnmuellerbooks.com/.

»» Companion files: Hey! Who really wants to type all the code in the book and 
reconstruct all those plots manually? Most readers prefer to spend their time 
actually working with Python, performing tasks using algorithms, and seeing 
the interesting things they can do, rather than typing. Fortunately for you, the 
examples used in the book are available for download, so all you need to do is 
read the book to learn algorithm usage techniques. You can find these files at 
www.dummies.com/go/algorithmsfd.

http://www.dummies.com
http://www.dummies.com/go/algorithmsfd
http://blog.johnmuellerbooks.com/
http://blog.johnmuellerbooks.com/
http://www.dummies.com/go/algorithmsfd
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Where to Go from Here
It’s time to start your algorithm learning adventure! If you’re completely new to 
algorithms, you should start with Chapter 1 and progress through the book at a 
pace that allows you to absorb as much of the material as possible. Make sure to 
read about Python because the book uses this language as needed for the 
examples.

If you’re a novice who’s in an absolute rush to get going with algorithms as quickly 
as possible, you can skip to Chapter 3 with the understanding that you may find 
some topics a bit confusing later. If you already have Anaconda installed, you can 
skim Chapter 3. To use this book, you must install Python version 3.4. The exam-
ples won’t work with the 2.x version of Python because this version doesn’t sup-
port some of the packages we use.

Readers who have some exposure to Python, and have the appropriate language 
versions installed, can save reading time by moving directly to Chapter 6. You can 
always go back to earlier chapters as necessary when you have questions. However, 
you do need to understand how each technique works before moving to the next 
one. Every technique, coding example, and procedure has important lessons for 
you, and you could miss vital content if you start skipping too much information.
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IN THIS PART . . .

Discover how you can use algorithms to perform 
practical tasks.

Understand how algorithms are put together.

Install and configure Python to work with algorithms.

Use Python to work with algorithms.

Perform basic algorithm manipulations using Python.



CHAPTER 1  Introducing Algorithms      9

IN THIS CHAPTER

»» Defining what is meant by algorithm

»» Relying on computers to use 
algorithms to provide solutions

»» Determining how issues differ from 
solutions

»» Performing data manipulation so 
that you can find a solution

Introducing Algorithms

If you’re in the majority of people, you’re likely confused as you open this book 
and begin your adventure with algorithms because most texts never tell you 
what an algorithm is, much less why you’d want to use one. Most texts assume 

that you already know something about algorithms and that you are reading about 
them to refine and elevate your knowledge. Interestingly enough, some books 
actually provide a confusing definition for algorithm that doesn’t really define it 
after all, and sometimes even equates it to some other form of abstract, numeric, 
or symbolic expression.

The first section of this chapter is dedicated to helping you understand precisely 
what the term algorithm means and why you benefit from knowing how to use 
algorithms. Far from being arcane, algorithms are actually used all over the place, 
and you have probably used or been helped by them for years without really know-
ing it. In truth, algorithms are becoming the spine that supports and regulates 
what is important in an increasingly complex and technological society like ours.

This chapter also discusses how you use computers to create solutions to prob-
lems using algorithms, how to distinguish between issues and solutions, and what 
you need to do to manipulate data to discover a solution. The goal of this chapter 
is to help you differentiate between algorithms and other tasks that people per-
form that they confuse with algorithms. In short, you discover why you really 
want to know about algorithms and how to apply them to data.

Chapter 1
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Describing Algorithms
Even though people have solved algorithms manually for literally thousands of 
years, doing so can consume huge amounts of time and require many numeric 
computations, depending on the complexity of the problem you want to solve. 
Algorithms are all about finding solutions, and the speedier and easier, the better. 
A huge gap exists between mathematical algorithms historically created by 
geniuses of their time, such as Euclid, Newton, or Gauss, and modern algorithms 
created in universities as well as private research and development laboratories. 
The main reason for this gap is the use of computers. Using computers to solve 
problems by employing the appropriate algorithm speeds up the task signifi-
cantly, which is the reason that the development of new algorithms has pro-
gressed so fast since the appearance of powerful computer systems. In fact, you 
may have noticed that more and more solutions to problems appear quickly today, 
in part, because computer power is both cheap and constantly increasing. Given 
their ability to solve problems using algorithms, computers (sometimes in the 
form of special hardware) are becoming ubiquitous.

When working with algorithms, you consider the inputs, desired outputs, and pro-
cess (a sequence of actions) used to obtain a desired output from a given input. 
However, you can get the terminology wrong and view algorithms in the wrong way 
because you haven’t really considered how they work in a real-world setting. The 
third section of the chapter discusses algorithms in a real-world manner, that is, by 
viewing the terminologies used to understand algorithms and to present algorithms 
in a way that shows that the real-world is often less than perfect. Understanding 
how to describe an algorithm in a realistic manner also makes it possible to temper 
expectations to reflect the realities of what an algorithm can actually do.

This book views algorithms in many ways. However, because it provides an over-
view telling how algorithms are changing and enriching people’s lives, the focus 
is on algorithms used to manipulate data with a computer providing the required 
processing. With this in mind, the algorithms you work with in this book require 
data input in a specific form, which sometimes means changing the data to match 
the algorithm’s requirements. Data manipulation doesn’t change the content of 
the data. What it does do is change the presentation and form of the data so that 
an algorithm can help you see new patterns that weren’t apparent before (but 
were actually present in the data all along).

Sources of information about algorithms often present them in a way that proves 
confusing because they’re too sophisticated or downright incorrect. Although you 
may find other definitions, this book uses the following definitions for terms that 
people often confuse with algorithms (but aren’t):

»» Equation: Numbers and symbols that, when taken as a whole, equate to a 
specific value. An equation always contains an equals sign so that you know 
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that the numbers and symbols represent the specific value on the other side 
of the equals sign. Equations generally contain variable information presented 
as a symbol, but they’re not required to use variables.

»» Formula: A combination of numbers and symbols used to express informa-
tion or ideas. Formulas normally present mathematical or logical concepts, 
such as defining the Greatest Common Divisor (GCD) of two integers (the 
video at https://www.khanacademy.org/math/in-sixth-grade-math/
playing-numbers/highest-common-factor/v/greatest-common-divisor 
tells how this works). Generally, they show the relationship between two or 
more variables. Most people see a formula as a special kind of equation.

»» Algorithm: A sequence of steps used to solve a problem. The sequence 
presents a unique method of addressing an issue by providing a particular 
solution. An algorithm need not represent mathematical or logical concepts, 
even though the presentations in this book often do fall into that category 
because people most commonly use algorithms in this manner. Some special 
formulas are also algorithms, such as the quadratic formula. In order for a 
process to represent an algorithm, it must be

•	 Finite: The algorithm must eventually solve the problem. This book 
discusses problems with a known solution so that you can evaluate 
whether an algorithm solves the problem correctly.

•	 Well-defined: The series of steps must be precise and present steps that 
are understandable. Especially because computers are involved in 
algorithm use, the computer must be able to understand the steps to 
create a usable algorithm.

•	 Effective: An algorithm must solve all cases of the problem for which 
someone defined it. An algorithm should always solve the problem it has 
to solve. Even though you should anticipate some failures, the incidence of 
failure is rare and occurs only in situations that are acceptable for the 
intended algorithm use.

With these definitions in mind, the following sections help to clarify the precise 
nature of algorithms. The goal isn’t to provide a precise definition for algorithms, 
but rather to help you understand how algorithms fit into the grand scheme of 
things so that you can develop your own understanding of what algorithms are 
and why they’re so important.

Defining algorithm uses
An algorithm always presents a series of steps and doesn’t necessarily perform 
these steps to solve a math formula. The scope of algorithms is incredibly large. 
You can find algorithms that solve problems in science, medicine, finance, indus-
trial production and supply, and communication. Algorithms provide support for 

https://www.khanacademy.org/math/in-sixth-grade-math/playing-numbers/highest-common-factor/v/greatest-common-divisor
https://www.khanacademy.org/math/in-sixth-grade-math/playing-numbers/highest-common-factor/v/greatest-common-divisor


12      PART 1  Getting Started

all parts of a person’s daily life. Any time a sequence of actions achieving 
something in our life is finite, well-defined, and effective, you can view it as an 
algorithm. For example, you can turn even something as trivial and simple as 
making toast into an algorithm. In fact, the making toast procedure often appears 
in computer science classes, as discussed at http://brianaspinall.com/
now-thats-how-you-make-toast-using-computer-algorithms/.

Unfortunately, the algorithm on the site is flawed. The instructor never removes the 
toast from the wrapper and never plugs the toaster in, so the result is damaged plain 
bread still in its wrapper stuffed into a nonfunctional toaster (see the discussion at 
http://blog.johnmuellerbooks.com/2013/03/04/procedures-in-technical-
writing/ for details). Even so, the idea is the correct one, yet it requires some slight, 
but essential, adjustments to make the algorithm finite and effective.

One of the most common uses of algorithms is as a means of solving formulas. For 
example, when working with the GCD of two integer values, you can perform the 
task manually by listing each of the factors for the two integers and then selecting 
the greatest factor that is common to both. For example, GCD(20, 25) is 5 because 
5 is the largest number that divides into both 20 and 25. However, processing 
every GCD manually (which is actually a kind of algorithm) is time consuming and 
error prone, so the Greek mathematician Euclid (https://en.wikipedia.org/
wiki/Euclid) created an algorithm to perform the task. You can see the Euclidean 
method demonstrated at https://www.khanacademy.org/computing/computer- 
science/cryptography/modarithmetic/a/the-euclidean-algorithm.

However, a single formula, which is a presentation of symbols and numbers used 
to express information or ideas, can have multiple solutions, each of which is an 
algorithm. In the case of GCD, another common algorithm is one created by 
Lehmer (see https://www.imsc.res.in/~kapil/crypto/notes/node11.html 
and https://en.wikipedia.org/wiki/Lehmer%27s_GCD_algorithm for details). 
Because you can solve any formula multiple ways, people often spend a great deal 
of time comparing algorithms to determine which one works best in a given situ-
ation. (See a comparison of Euclid to Lehmer at http://citeseerx.ist.psu.
edu/viewdoc/download?doi=10.1.1.31.693&rep=rep1&type=pdf.)

Because our society and its accompanying technology are gaining momentum, 
running faster and faster, we need algorithms that can keep the pace. Scientific 
achievements such as sequencing the human genome were possible in our age 
because scientists found algorithms that run fast enough to complete the task. Mea-
suring which algorithm is better in a given situation, or in an average usage situa-
tion, is really serious stuff and a topic of discussion among computer scientists.

When it comes to computer science, the same algorithm can see multiple presenta-
tions. For example, you can present the Euclidean algorithm in both a recursive and 
an iterative manner, as explained at http://cs.stackexchange.com/questions/ 
1447/what-is-most-efficient-for-gcd. In short, algorithms present a method 

http://brianaspinall.com/now-thats-how-you-make-toast-using-computer-algorithms/
http://brianaspinall.com/now-thats-how-you-make-toast-using-computer-algorithms/
http://blog.johnmuellerbooks.com/2013/03/04/procedures-in-technical-writing/
http://blog.johnmuellerbooks.com/2013/03/04/procedures-in-technical-writing/
https://en.wikipedia.org/wiki/Euclid
https://en.wikipedia.org/wiki/Euclid
https://www.khanacademy.org/computing/computer-science/cryptography/modarithmetic/a/the-euclidean-algorithm
https://www.khanacademy.org/computing/computer-science/cryptography/modarithmetic/a/the-euclidean-algorithm
https://www.imsc.res.in/~kapil/crypto/notes/node11.html
https://en.wikipedia.org/wiki/Lehmer's_GCD_algorithm
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.31.693&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.31.693&rep=rep1&type=pdf
http://cs.stackexchange.com/questions/1447/what-is-most-efficient-for-gcd
http://cs.stackexchange.com/questions/1447/what-is-most-efficient-for-gcd
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of solving formulas, but it would be a mistake to say that just one acceptable algo-
rithm exists for any given formula or that there is only one acceptable presentation 
of an algorithm. Using algorithms to solve problems of various sorts has a long 
history — it isn’t something that has just happened.

Even if you limit your gaze to computer science, data science, artificial intelli-
gence, and other technical areas, you find many kinds of algorithms — too many 
for a single book. For example, The Art of Computer Programming, by Donald 
E. Knuth (Addison-Wesley), spans 3,168 pages in four volumes (see http://www.
amazon.com/exec/obidos/ASIN/0321751043/datacservip0f-20/) and still 
doesn’t manage to cover the topic (the author intended to write more volumes). 
However, here are some interesting uses for you to consider:

»» Searching: Locating information or verifying that the information you see is 
the information you want is an essential task. Without this ability, it wouldn’t 
be possible to perform many tasks online, such as finding the website on the 
Internet selling the perfect coffee pot for your office.

»» Sorting: Determining which order to use to present information is important 
because most people today suffer from information overload, and putting 
information in order is one way to reduce the onrush of data. You likely 
learned as a child that when you place your toys in order, it’s easier to find 
and play with a toy that interests you, compared to having toys scattered 
randomly everywhere. Imagine going to Amazon, finding that over a thousand 
coffee pots are for sale there, and yet not being able to sort them in order of 
price or most positive review. Moreover, many complex algorithms require 
data in the proper order to work dependably, therefore ordering is an 
important requisite for solving more problems.

»» Transforming: Converting one sort of data to another sort of data is critical to 
understanding and using the data effectively. For example, you might 
understand imperial weights just fine, but all your sources use the metric 
system. Converting between the two systems helps you understand the data. 
Likewise, the Fast Fourier Transform (FFT) converts signals between the time 
domain and the frequency domain so that it becomes possible to make things 
like your Wi-Fi router work.

»» Scheduling: Making the use of resources fair to all concerned is another way 
in which algorithms make their presence known in a big way. For example, 
timing lights at intersections are no longer simple devices that count down the 
seconds between light changes. Modern devices consider all sorts of issues, 
such as the time of day, weather conditions, and flow of traffic. Scheduling 
comes in many forms, however. For example, consider how your computer 
runs multiple tasks at the same time. Without a scheduling algorithm, the 
operating system might grab all the available resources and keep your 
application from doing any useful work.

http://www.amazon.com/exec/obidos/ASIN/0321751043/datacservip0f-20/
http://www.amazon.com/exec/obidos/ASIN/0321751043/datacservip0f-20/
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»» Graph analysis: Deciding on the shortest line between two points finds all 
sorts of uses. For example, in a routing problem, your GPS couldn’t function 
without this particular algorithm because it could never direct you along city 
streets using the shortest route from point A to point B.

»» Cryptography: Keeping data safe is an ongoing battle with hackers constantly 
attacking data sources. Algorithms make it possible to analyze data, put it into 
some other form, and then return it to its original form later.

»» Pseudorandom number generation: Imagine playing games that never 
varied. You start at the same place; perform the same steps, in the same 
manner, every time you play. Without the capability to generate seemingly 
random numbers, many computer tasks become impossible.

This list presents an incredibly short overview. People use algorithms for many 
different tasks and in many different ways, and constantly create new algorithms 
to solve both existing problems and new problems. The most important issue to 
consider when working with algorithms is that given a particular input, you 
should expect a specific output. Secondary issues include how many resources the 
algorithm requires to perform its task and how long it takes to complete the task. 
Depending on the kind of issue and the sort of algorithm used, you may also need 
to consider issues of accuracy and consistency.

Finding algorithms everywhere
The previous section mentions the toast algorithm for a specific reason. For some 
reason, making toast is probably the most popular algorithm ever created. Many 
grade-school children write their equivalent of the toast algorithm long before 
they can even solve the most basic math. It’s not hard to imagine how many 
variations of the toast algorithm exist and what the precise output is of each of 
them. The results likely vary by individual and the level of creativity employed. In 
short, algorithms appear in great variety and often in unexpected places.

Every task you perform on a computer involves algorithms. Some algorithms 
appear as part of the computer hardware. (They are embedded, thus you hear of 
embedded microprocessors.) The very act of booting a computer involves the use 
of an algorithm. You also find algorithms in operating systems, applications, and 
every other piece of software. Even users rely on algorithms. Scripts help direct 
users to perform tasks in a specific way, but those same steps could appear as 
written instructions or as part of an organizational policy statement.

Daily routines often devolve into algorithms. Think about how you spend your 
day. If you’re like most people, you perform essentially the same tasks every day 
in the same order, making your day an algorithm that solves the problem of how 
to live successfully while expending the least amount of energy possible. After all, 
that’s what a routine does; it makes us efficient.
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Emergency procedures often rely on algorithms. You take the emergency card out 
of the packet in front of you in the plane. On it are a series of pictographs showing 
how to open the emergency door and extend the slide. In some cases, you might 
not even see words, but the pictures convey the procedure required to perform the 
task and solve the problem of getting out of the plane in a hurry. Throughout this 
book, you see the same three elements for every algorithm:

1.	 Describe the problem.

2.	 Create a series of steps to solve the problem (well defined).

3.	 Perform the steps to obtain a desired result (finite and effective).

Using Computers to Solve Problems
The term computer sounds quite technical and possibly a bit overwhelming to 
some people, but people today are neck deep (possibly even deeper) in computers. 
You wear at least one computer, your smartphone, most of the time. If you have 
any sort of special device, such as a pacemaker, it also includes a computer. Your 
smart TV contains at least one computer, as does your smart appliance. A car can 
contain as many as 30 computers in the form of embedded microprocessors that 
regulate fuel consumption, engine combustion, transmission, steering, and sta-
bility (according to a New York Times article at http://www.nytimes.com/ 
2010/02/05/technology/05electronics.html) and more lines of code than a jet 
fighter. The automated cars appearing in the car market will require even more 
embedded microprocessors and algorithms of greater complexity. A computer 
exists to solve problems quickly and with less effort than solving them manually. 
Consequently, it shouldn’t surprise you that this book uses still more computers 
to help you understand algorithms better.

Computers vary in a number of ways. The computer in your watch is quite small; 
the one on your desktop quite large. Supercomputers are immense and contain 
many smaller computers all tasked to work together to solve complex issues, such 
as tomorrow’s weather. The most complex algorithms rely on special computer 
functionality to obtain solutions to the issues people design them to solve. Yes, 
you could use lesser resources to perform the task, but the trade-off is waiting a 
lot longer for an answer or getting an answer that lacks sufficient accuracy to 
provide a useful solution. In some cases, you wait so long that the answer is no 
longer important. With the need for both speed and accuracy in mind, the follow-
ing sections discuss some special computer features that can affect algorithms.

http://www.nytimes.com/2010/02/05/technology/05electronics.html
http://www.nytimes.com/2010/02/05/technology/05electronics.html
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Leveraging modern CPUs and GPUs
General-purpose processors, CPUs, started out as a means to solve problems using 
algorithms. However, their general-purpose nature also means that a CPU can 
perform a great many other tasks, such as moving data around or interacting with 
external devices. A general-purpose processor does many things well, which 
means that it can perform the steps required to complete an algorithm, but not 
necessarily fast. In fact, owners of early general-purpose processors could add 
math coprocessors (special math-specific chips) to their systems to gain a speed 
advantage (see http://www.computerhope.com/jargon/m/mathcopr.htm for 
details). Today, general-purpose processors have the math coprocessor embedded 
into them, so when you get an Intel i7 processor, you actually get multiple proces-
sors in a single package.

Interestingly enough, Intel still markets specialty processor add-ons, such as the 
Xeon Phi processor used with the Xeon chips (see http://www.intel.com/ 
content/www/us/en/processors/xeon/xeon-phi-detail.html and https://
en.wiki2.org/wiki/Intel_Xeon_Phi for details). You use the Xeon Phi chip 
alongside a Xeon chip when performing compute-intensive tasks such as machine 
learning (see Machine Learning For Dummies, by John Mueller and Luca Massaron, 
for details on how machine learning uses algorithms to determine how to perform 
various tasks that help you use data to predict the unknown and to organize infor-
mation meaningfully).

You may wonder why this section mentions Graphics Processing Units (GPUs). 
After all, GPUs are supposed to take data, manipulate it in a special way, and then 
display a pretty picture onscreen. Any computer hardware can serve more than 
one purpose. It turns out that GPUs are particularly adept at performing data 
transformations, which is a key task for solving algorithms in many cases. A GPU 
is a special-purpose processor, but one with capabilities that lend themselves to 
faster algorithm execution. It shouldn’t surprise you to discover that people who 
create algorithms spend a lot of time thinking outside the box, which means that 
they often see methods of solving issues in nontraditional approaches.

The point is that CPUs and GPUs form the most commonly used chips for per-
forming algorithm-related tasks. The first performs general-purpose tasks quite 
well, and the second specializes in providing support for math-intensive tasks, 
especially those that involve data transformations. Using multiple cores makes 
parallel processing (performing more than one algorithmic step at a time) possi-
ble. Adding multiple chips increases the number of cores available. Having more 
cores adds speed, but a number of factors keeps the speed gain to a minimum. 
Using two i7 chips won’t produce double the speed of just one i7 chip.

http://www.computerhope.com/jargon/m/mathcopr.htm
http://www.intel.com/content/www/us/en/processors/xeon/xeon-phi-detail.html
http://www.intel.com/content/www/us/en/processors/xeon/xeon-phi-detail.html
https://en.wiki2.org/wiki/Intel_Xeon_Phi
https://en.wiki2.org/wiki/Intel_Xeon_Phi
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Working with special-purpose chips
A math coprocessor and a GPU are two examples of common special-purpose chips 
in that you don’t see them used to perform tasks such as booting the system. How-
ever, algorithms often require the use of uncommon special-purpose chips to solve 
problems. This isn’t a hardware book, but spending a little time looking around can 
show you all sorts of interesting chips, such as the new artificial neurons that IBM 
is working on (see the story at http://www.computerworld.com/article/3103294/
computer-processors/ibm-creates-artificial-neurons-from-phase-change- 
memory-for-cognitive-computing.html). Imagine performing algorithmic pro-
cessing using memory that simulates the human brain. It would create an interest-
ing environment for performing tasks that might not otherwise be possible today.

Neural networks, a technology that is used to simulate human thought and make 
deep learning techniques possible for machine learning scenarios, are now bene-
fitting from the use of specialized chips, such as the Tesla P100 from NVidia (see 
the story at https://www.technologyreview.com/s/601195/a-2-billion- 
chip-to-accelerate-artificial-intelligence/ for details). These kinds of 
chips not only perform algorithmic processing extremely fast, but learn as they 
perform the tasks, making them faster still with each iteration. Learning comput-
ers will eventually power robots that can move (after a fashion) on their own, akin 
to the robots seen in the movie I Robot (see one such robot described at http://
www.cbsnews.com/news/this-creepy-robot-is-powered-by-a-neural- 
network/). There are also special chips that perform tasks such as visual recogni-
tion (see https://www.technologyreview.com/s/537211/a-better-way-to- 
build-brain-inspired-chips/ for details).

No matter how they work, specialized processors will eventually power all sorts of 
algorithms that will have real-world consequences. You can already find many of 
these real-world applications in a relatively simple form. For example, imagine 
the tasks that a pizza-making robot would have to solve — the variables it would 
have to consider on a real-time basis. This sort of robot already exists (this is just 
one example of the many industrial robots used to produce material goods by 
employing algorithms), and you can bet that it relies on algorithms to describe 
what to do, as well as on special chips to ensure that the tasks are done quickly 
(see the story at http://www.bloomberg.com/news/articles/2016-06-24/
inside-silicon-valley-s-robot-pizzeria).

Eventually, it might even be possible to use the human mind as a processor and 
output the information through a special interface. Some companies are now 
experimenting with putting processors directly into the human brain to enhance 
its ability to process information (see the story at https://www.washingtonpost.
com/news/the-switch/wp/2016/08/15/putting-a-computer-in-your-brain- 
is-no-longer-science-fiction/ for details). Imagine a system in which humans 
can solve algorithms at the speed of computers, but with the creative “what if” 
potential of humans.

http://www.computerworld.com/article/3103294/computer-processors/ibm-creates-artificial-neurons-from-phase-change-memory-for-cognitive-computing.html
http://www.computerworld.com/article/3103294/computer-processors/ibm-creates-artificial-neurons-from-phase-change-memory-for-cognitive-computing.html
http://www.computerworld.com/article/3103294/computer-processors/ibm-creates-artificial-neurons-from-phase-change-memory-for-cognitive-computing.html
https://www.technologyreview.com/s/601195/a-2-billion-chip-to-accelerate-artificial-intelligence/
https://www.technologyreview.com/s/601195/a-2-billion-chip-to-accelerate-artificial-intelligence/
http://www.cbsnews.com/news/this-creepy-robot-is-powered-by-a-neural-network/
http://www.cbsnews.com/news/this-creepy-robot-is-powered-by-a-neural-network/
http://www.cbsnews.com/news/this-creepy-robot-is-powered-by-a-neural-network/
https://www.technologyreview.com/s/537211/a-better-way-to-build-brain-inspired-chips/
https://www.technologyreview.com/s/537211/a-better-way-to-build-brain-inspired-chips/
http://www.bloomberg.com/news/articles/2016-06-24/inside-silicon-valley-s-robot-pizzeria
http://www.bloomberg.com/news/articles/2016-06-24/inside-silicon-valley-s-robot-pizzeria
https://www.washingtonpost.com/news/the-switch/wp/2016/08/15/putting-a-computer-in-your-brain-is-no-longer-science-fiction/
https://www.washingtonpost.com/news/the-switch/wp/2016/08/15/putting-a-computer-in-your-brain-is-no-longer-science-fiction/
https://www.washingtonpost.com/news/the-switch/wp/2016/08/15/putting-a-computer-in-your-brain-is-no-longer-science-fiction/
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Leveraging networks
Unless you have unlimited funds, using some algorithms effectively may not be 
possible, even with specialized chips. In that case, you can network computers 
together. Using special software, one computer, a master, can use the processors 
of all slave computers running an agent (a kind of in-memory background appli-
cation that makes the processor available). Using this approach, you can solve 
incredibly complex problems by offloading pieces of the problem to a number of 
slave computers. As each computer in the network solves its part of the problem, 
it sends the results back to the master, which puts the pieces together to create a 
consolidated answer, a technique called cluster computing.

Lest you think this is the stuff of science fiction, people are already using cluster 
computing techniques in all sorts of interesting ways. For example, the article at 
http://www.zdnet.com/article/build-your-own-supercomputer-out-of- 
raspberry-pi-boards/ details how you can build your own supercomputer by 
combining multiple Raspberry Pi (https://www.raspberrypi.org/) boards into 
a single cluster.

Distributed computing, another version of cluster computing (but with a looser 
organization) is also popular. In fact, you can find a list of distributed computing 
projects at http://www.distributedcomputing.info/projects.html. The list of 
projects includes some major endeavors, such as Search for Extraterrestrial Intel-
ligence (SETI). You can also donate your computer’s extra processing power to 
work on a cure for cancer. The list of potential projects is amazing.

Networks also let you access other people’s processing power in an unattached 
form. For example, Amazon Web Services (AWS) and other vendors provide the 
means to use their computers to perform your work. A network connection can 
make the remote computers feel as if they’re part of your own network. The point 
is that you can use networking in all sorts of ways to create connections between 
computers to solve a variety of algorithms that would be too complicated to solve 
using just your system.

Leveraging available data
Part of solving an algorithm has nothing to do with processing power, creative 
thinking outside the box, or anything of a physical nature. To create a solution to 
most problems, you also need data on which to base a conclusion. For example, in 
the toast-making algorithm, you need to know about the availability of bread, a 
toaster, electricity to power the toaster, and so on before you can solve the prob-
lem of actually making toast. The data becomes important because you can’t fin-
ish the algorithm when missing even one element of the required solution. Of 
course, you may need additional input data as well. For example, the person 

http://www.zdnet.com/article/build-your-own-supercomputer-out-of-raspberry-pi-boards/
http://www.zdnet.com/article/build-your-own-supercomputer-out-of-raspberry-pi-boards/
https://www.raspberrypi.org/
http://www.distributedcomputing.info/projects.html
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wanting the toast may not like rye. If this is the case and all you have is rye bread 
to use, the presence of bread still won’t result in a successful result.

Data comes from all sorts of sources and in all kinds of forms. You can stream data 
from a source such as a real-time monitor, access a public data source, rely on 
private data in a database, scrape the data from websites, or get it in myriad other 
ways too numerous to mention here. The data may be static (unchanging) or 
dynamic (constantly changing). You may find that the data is complete or missing 
elements. The data may not appear in the right form (such as when you get impe-
rial units and require metric units when solving a weight problem). The data may 
appear in a tabular format when you need it in some other form. It may reside in 
an unstructured way (for instance in a NoSQL database or just in a bunch of dif-
ferent data files) when you need the formal formatting of a relational database. In 
short, you need to know all sorts of things about the data used with your algo-
rithm in order to solve problems with it.

Because data comes in so many forms and you need to work with it in so many 
ways, this book pays a lot of attention to data. Starting in Chapter 6, you discover 
just how data structure comes into play. Moving on to Chapter 7, you begin look-
ing at how to search through data to find what you need. Chapters 12 through 14 
help you work with big data. However, you can find some sort of data-specific 
information in just about every chapter of the book because without data, an algo-
rithm can’t solve any problems.

Distinguishing between Issues  
and Solutions

This book discusses two parts of the algorithmic view of the real world. On the one 
hand, you have issues, which are problems that you need to solve. An issue can 
describe the desired output of an algorithm or it can describe a hurdle you must 
overcome to obtain the desired output. Solutions are the methods, or steps, used to 
address the issues. A solution can relate to just one step or many steps within the 
algorithm. In fact, the output of an algorithm, the response to the last step, is a 
solution. The following sections help you understand some of the important 
aspects of issues and solutions.

Being correct and efficient
Using algorithms is all about getting an acceptable answer. The reason you look 
for an acceptable answer is that some algorithms generate more than one answer 
in response to fuzzy input data. Life often makes precise answers impossible to 
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get. Of course, getting a precise answer is always the goal, but often you end up 
with an acceptable answer instead.

Getting the most precise answer possible may take too much time. When you get 
a precise answer but that answer comes too late to use, the information becomes 
useless and you’ve wasted your time. Choosing between two algorithms that 
address the same issue may come down to a choice between speed and precision. 
A fast algorithm may not generate a precise answer, but the answer may still work 
well enough to provide useful output.

Wrong answers can be a problem. Creating a lot of wrong answers fast is just as 
bad as creating a lot of precisely correct answers slowly. Part of the focus of this 
book is helping you find the middle ground between too fast and too slow, and 
between inaccurate and too accurate. Even though your math teacher stressed the 
need for providing the correct answer in the way expressed by the book you used 
at the time, real-world math often involves weighing choices and making middle-
ground decisions that affect you in ways you might not think possible.

Discovering there is no free lunch
You may have heard the common myth that you can have everything in the way of 
computer output without putting much effort into deriving the solution. Unfortu-
nately, no absolute solution exists to any problem, and better answers are often 
quite costly. When working with algorithms, you quickly discover the need to pro-
vide additional resources when you require precise answers quickly. The size and 
complexity of the data sources you use greatly affect the solution resolution as 
well. As size and complexity increase, you find that the need to add resources 
increases as well.

Adapting the strategy to the problem
Part 5 of this book looks at strategies you can use to decrease the cost of working 
with algorithms. The best mathematicians use tricks to get more output from less 
computing. For example, you can create an ultimate algorithm to solve an issue, or 
you can use a host of simpler algorithms to solve the same issue, but using multiple 
processors. The host of simple algorithms will usually work faster and better than 
the single, complex algorithm, even though this approach seems counterintuitive.

Describing algorithms in a lingua franca
Algorithms do provide a basis for communication between people, even when 
those individuals have different perspectives and speak different languages. For 
example, Bayes’ Theorem (the probability of an event occurring given certain 
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premises; see https://betterexplained.com/articles/an-intuitive-and- 
short-explanation-of-bayes-theorem/ for a quick explanation of this amazing 
theorem)

P(B|E) = P(E|B)*P(B)/P(E)

appears the same whether you speak English, Spanish, Chinese, German, French, or 
any other language. Regardless what language you speak, the algorithm looks the 
same and acts the same given the same data. Algorithms help cross all sorts of divides 
that serve to separate humans from each other by expressing ideas in a form that 
anyone can prove. As you go through this book, you discover the beauty and magic 
that algorithms can provide in communicating even subtle thoughts to others.

Apart from universal mathematical notations, algorithms take advantage of pro-
gramming languages as a means for explaining and communicating the formulas 
they solve. You can find all the sorts of algorithms in C, C++, Java, Fortran, Python 
(as in this book), and other languages. Some writers rely on pseudocode to over-
come the fact that an algorithm may be proposed in a programming language that 
you don’t know. Pseudocode is a way to describe computer operations by using 
common English words.

Facing hard problems
An important consideration when working with algorithms is that you can use 
them to solve issues of any complexity. The algorithm doesn’t think, have emotion, 
or care how you use it (or even abuse it). You can use algorithms in any way required 
to solve an issue. For example, the same group of algorithms used to perform facial 
recognition to act as an alternative to computer passwords (for security purposes) 
can find terrorists lurking in an airport or recognize a lost child wandering the 
streets. The same algorithm has different uses; how to use it depends on the inter-
ests of the user. Part of the reason you want to read this book carefully is to help 
you solve those hard problems that may require only a simple algorithm to address.

Structuring Data to Obtain a Solution
Humans think about data in nonspecific ways and apply various rules to the same 
data to understand it in ways that computers never can. A computer’s view of data 
is structured, simple, uncompromising, and most definitely not creative. When 
humans prepare data for a computer to use, the data often interacts with the algo-
rithms in unexpected ways and produces undesirable output. The problem is one 
in which the human fails to appreciate the limited view of data that a computer 
has. The following sections describe two aspects of data that you see illustrated in 
many of the chapters to follow.

https://betterexplained.com/articles/an-intuitive-and-short-explanation-of-bayes-theorem/
https://betterexplained.com/articles/an-intuitive-and-short-explanation-of-bayes-theorem/
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Understanding a computer’s point of view
A computer has a simple view of data, but it’s also a view that humans typically 
don’t understand. For one thing, everything is a number to a computer because 
computers aren’t designed to work with any other kind of data. Humans see char-
acters on the computer display and assume that the computer interacts with the 
data in that manner, but the computer doesn’t understand the data or its implica-
tions. The letter A is simply the number 65 to the computer. In fact, it’s not truly 
even the number 65. The computer sees a series of electrical impulses that equate 
to a binary value of 0100 0001.

Computers also don’t understand the whole concept of uppercase and lowercase. 
To a human, the lowercase a is simply another form of the uppercase A, but to a 
computer they’re two different letters. A lowercase a appears as the number 97 to 
the computer (a binary value of 0110 0001).

If these simple sorts of single letter comparisons could cause such problems 
between humans and computers, it isn’t hard to imagine what happens when 
humans start assuming too much about other kinds of data. For example, a com-
puter can’t hear or appreciate music. Yet, music comes out of the computer speak-
ers. The same holds true for graphics. A computer sees a series of 0s and 1s, not a 
graphic containing a pretty scene of the countryside.

It’s important to consider data from the computer’s perspective when using algo-
rithms. The computer sees only 0s and 1s, nothing else. Consequently, when you 
start working through the needs of the algorithm, you must view the data in that 
manner. You may actually find it beneficial to know that the computer’s view of 
data makes some solutions easier to find, not harder. You discover more about this 
oddity in viewing data as the book progresses.

Arranging data makes the difference
Computers also have a strict idea about the form and structure of data. When you 
begin working with algorithms, you find that a large part of the job involves mak-
ing the data appear in a form that the computer can use when using the algorithm 
to find a solution to an issue. Although a human can mentally see patterns in data 
that isn’t arranged precisely right, computers really do need the precision to find 
the same pattern. The benefit of this precision is that computers can often make 
new patterns visible. In fact, that’s one of the main reasons to use algorithms with 
computers — to help locate new patterns and then use those patterns to perform 
other tasks. For example, a computer may recognize a customer’s spending pat-
tern so that you can use the information to generate more sales automatically.



CHAPTER 2  Considering Algorithm Design      23

IN THIS CHAPTER

»» Considering how to solve a problem

»» Using a divide-and-conquer approach 
to solving problems

»» Understanding the greedy approach 
to solving problems

»» Determining the costs of problem 
solutions

»» Performing algorithm measurements

Considering Algorithm 
Design

As stated in Chapter  1, an algorithm consists of a series of steps used to 
solve a problem. In most cases, input data provides the basis of solving the 
problem and sometimes offers constraints that any solution must consider 

before anyone will see the algorithm as being effective. The first section of this 
chapter helps you consider the problem solution (the solution to the problem you’re 
trying to solve). It helps you understand the need to create algorithms that are 
both flexible (in that they can handle a wide range of data inputs) and effective (in 
that they yield the desired output).

Some problems are quite complex. In fact, you look at them at first and may decide 
that they’re too complicated to solve. Feeling overwhelmed by a problem is com-
mon. The most common way to solve the issue is to divide the problem into smaller 
pieces, each of which is manageable on its own. The divide-and-conquer approach 
to problem solving, discussed in this chapter’s second section, originally referred to 
warfare (see http://classroom.synonym.com/civilization-invented-divide- 
conquer-strategy-12746.html for a history of this approach). However, people 
use the same ideas to cut problems of all sorts down to size.

Chapter 2

http://classroom.synonym.com/civilization-invented-divide-conquer-strategy-12746.html
http://classroom.synonym.com/civilization-invented-divide-conquer-strategy-12746.html
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The third section of the chapter refers to the greedy approach to problem solving. 
Greed normally has a negative connotation, but not in this case. A greedy algorithm 
is one that makes an optimal choice at each problem-solving stage. By doing so, 
it hopes to obtain an overall optimal solution to solve the problem. Unfortunately, 
this strategy doesn’t always work, but it’s always worth a try. It often yields a good 
enough solution, making it a good baseline.

No matter what problem-solving approach you choose, every algorithm comes 
with costs. Being good shoppers, people who rely heavily on algorithms want the 
best possible deal, which means performing a cost/benefit analysis. Of course, 
getting the best deal also assumes that a person using the algorithm has some 
idea of what sort of solution is good enough. Getting a solution that is too precise 
or one that offers too much in the way of output is often wasteful, so part of keep-
ing costs under control is getting what you need as output and nothing more.

To know what you have with an algorithm, you need to know how to measure it in 
various ways. Measurements create a picture of usability, size, resource usage, 
and cost in your mind. More important, measurements offer the means of making 
comparisons. You can’t compare algorithms without measurements. Until you can 
compare the algorithms, you can’t choose the best one for a task.

Starting to Solve a Problem
Before you can solve any problem, you must understand it. It isn’t just a matter of 
sizing up the problem, either. Knowing that you have certain inputs and require 
certain outputs is a start, but that’s not really enough to create a solution. Part of 
the solution process is to

»» Discover how other people have created new problem solutions

»» Know what resources you have on hand

»» Determine the sorts of solutions that worked for similar problems in the past

»» Consider what sorts of solutions haven’t produced a desirable result

The following sections help you understand these phases of solving a problem. 
Realize that you won’t necessarily perform these phases in order and that some-
times you revisit a phase after getting more information. The process of starting 
a problem solution is iterative; you keep at it until you have a good understanding 
of the problem at hand.
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Modeling real-world problems
Real-world problems differ from those found in textbooks. When creating a text-
book, the author often creates a simple example to help the reader understand the 
basic principles at work. The example models just one aspect of a more complex 
problem. A real-world problem may require that you combine several techniques 
to create a complete solution. For example, to locate the best answer to a problem, 
you may:

1.	 Need to sort the answer set by a specific criterion.

2.	 Perform some sort of filtering and transformation.

3.	 Search the result.

Without this sequence of steps, comparing each of the answers adequately may 
prove impossible, and you end up with a less-than-optimal result. A series of algo-
rithms used together to create a desired result is an ensemble. You can read about 
their use in machine learning in Machine Learning For Dummies, by John Paul Muel-
ler and Luca Massaron (Wiley). The article at https://www.toptal.com/machine-
learning/ensemble-methods-machine-learning gives you a quick overview of 
how ensembles work.

However, real-world problems are even more complex than simply looking at 
static data or iterating that data only once. For example, anything that moves, 
such as a car, airplane, or robot, receives constant input. Each updated input 
includes error information that a real-world solution will need to incorporate into 
the result in order to keep these machines working properly. In addition to other 
algorithms, the constant calculations require the proportional integral derivative 
(PID) algorithm (see http://www.ni.com/white-paper/3782/en/ for a detailed 
explanation of this algorithm) to control the machine using a feedback loop. Every 
calculation brings the solution used to control the machine into better focus, 
which is why machines often go through a settling stage when you first turn them 
on. (If you work with computers regularly, you might be used to the idea of itera-
tions. PIDs are for continuous systems; therefore, there are no iterations.) Finding 
the right solution is called settling time — the time during which the algorithm 
controlling the machine hasn’t yet found the right answer.

When modeling a real-world problem, you must also consider non-obvious issues 
that crop up. An obvious solution, even one based on significant mathematical 
input and solid theory, may not work. For example, during WWII, the allies had a 
serious problem with bomber losses. Therefore, the engineers analyzed every bul-
let hole in every plane that came back. After the analysis, the engineers used their 
solution to armor the allied planes more heavily to ensure that more of them 
would come back. It didn’t work. Enter Abraham Wald. This mathematician sug-
gested a non-obvious solution: Put armor plating in all the places that lacked 
bullet holes (because the areas with bullet holes are already strong enough; 

https://www.toptal.com/machine-learning/ensemble-methods-machine-learning
https://www.toptal.com/machine-learning/ensemble-methods-machine-learning
http://www.ni.com/white-paper/3782/en/
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otherwise the plane wouldn’t have returned). The resulting solution did work and 
is now used as the basis for survivor bias (the fact that the survivors of an incident 
often don’t show what actually caused a loss) in working with algorithms. You can 
read more about this fascinating bit of history at http://www.macgetit.com/
solving-problems-of-wwii-bombers/. The point is that biases and other prob-
lems in modeling problems can create solutions that don’t work.

Real-world modeling may also include the addition of what scientists normally 
consider undesirable traits. For example, scientists often consider noise undesir-
able because it hides the underlying data. Consider a hearing aid, which removes 
noise to enable someone to hear better (see the discussion at http://www.ncbi.
nlm.nih.gov/pmc/articles/PMC4111515/ for details). Many methods exist for 
removing noise, some of which you can find in this book starting with Chapter 9 
as part of other topic discussions. However, as counterintuitive as it might seem, 
adding noise also requires an algorithm that provides useful output. For example, 
Ken Perlin wanted to get rid of the machine-like look of computer-generated 
graphics in 1983 and created an algorithm to do so. The result is Perlin noise (see 
http://paulbourke.net/texture_colour/perlin/ for details). The effect is so 
useful that Ken won an Academy Award for his work (see http://mrl.nyu.
edu/~perlin/doc/oscar.html for details). Other people, such as Steven Worley, 
have created other sorts of noise that affect graphics in other ways (see the 
discussion at http://procworld.blogspot.com/2011/05/hello-worley.html, 
which compares Perlin noise to Worley noise). The point is that whether you need 
to remove or add noise depends on the problem domain you want to solve. A real-
world scenario often requires choices that may not be obvious when working in 
the lab or during the learning process.

The main gist of this section is that solutions often require several iterations to 
create, you may have to spend a lot of time refining them, and obvious solutions 
may not work at all. When modeling a real-world problem, you do begin with the 
solutions found in textbooks, but then you must move beyond theory to find the 
actual solution to your problem. As this book progresses, you’re exposed to a wide 
variety of algorithms — all of which help you find solutions. The important thing 
to remember is that you may need to combine these examples in various ways and 
discover methods for interacting with data so that it lends itself to finding pat-
terns that match the output you require.

Finding solutions and counterexamples
The previous section introduces you to the vagaries of discovering real-world 
solutions that consider issues that solutions found in the lab can’t consider. 
However, just finding a solution — even a good one — isn’t sufficient because 
even good solutions fail on occasion. Playing the devil’s advocate by locating 
counterexamples is an important part of starting to solve a problem. The purpose 
of counterexamples is to

http://www.macgetit.com/solving-problems-of-wwii-bombers/
http://www.macgetit.com/solving-problems-of-wwii-bombers/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4111515/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4111515/
http://paulbourke.net/texture_colour/perlin/
http://mrl.nyu.edu/~perlin/doc/oscar.html
http://mrl.nyu.edu/~perlin/doc/oscar.html
http://procworld.blogspot.com/2011/05/hello-worley.html
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»» Potentially disprove the solution

»» Provide boundaries that define the solution better

»» Consider situations in which the hypothesis used as a basis for the solution 
remains untested

»» Help you understand the limits of the solution

A common scenario that illustrates a solution and counterexample is the state-
ment that all prime numbers are odd. (Prime numbers are integers that can be 
divided only by themselves and 1 to produce an integer result.) Of course, 
the  number 2 is prime, but it’s also even, which makes the original statement 
false. Someone making the statement could then qualify it by saying that all prime 
numbers are odd except 2. The partial solution to the problem of finding all the 
prime numbers is that you need to find odd numbers, except in the case of 2, 
which is even. In this second case, disproving the solution is no longer possible, 
but adding to the original statement provides a boundary.

By casting doubt on the original assertion, you can also consider situations in 
which the hypothesis, all prime numbers except 2 are odd, may not hold true. For 
example, 1 is an odd number but isn’t considered prime (see the discussion at 
https://primes.utm.edu/notes/faq/one.html for details). So now the original 
statement has two boundaries, and you must restate it as follows: Prime numbers 
are greater than 1 and usually odd, except for 2, which is even. The boundaries for 
prime numbers are better defined by locating and considering counterexamples. 
Just in case you’re wondering, 0 is also not considered a prime number, for the 
reasons discussed at http://math.stackexchange.com/questions/539174/
is-zero-a-prime-number.

As the complexity of a problem grows, the potential for finding counterexamples 
grows as well. An essential rule to consider is that, as with reliability, having more 
failure points means greater potential for a failure to occur. Thinking of algorithms 
in this way is important. Ensembles of simple algorithms can produce better 
results with fewer potential counterexamples than a single complex algorithm.

Standing on the shoulders of giants
A myth that defies explanation is that the techniques currently used to process 
huge quantities of data are somehow new. Yes, new algorithms do appear all the 
time, but the basis for these algorithms is all of the algorithms that have gone 
before. In fact, when you think about Sir Isaac Newton, you might think of 
someone who invented something new, yet even he stated (using correct spelling 
for his time), “If I have seen further it is by standing on the sholders of Giants” 
(see https://en.wikiquote.org/wiki/Isaac_Newton for additional quotes and 
insights).

https://primes.utm.edu/notes/faq/one.html
http://math.stackexchange.com/questions/539174/is-zero-a-prime-number
http://math.stackexchange.com/questions/539174/is-zero-a-prime-number
https://en.wikiquote.org/wiki/Isaac_Newton
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The fact is that the algorithms you use today weren’t even new in the days of 
Aristotle (see http://plato.stanford.edu/entries/aristotle-mathematics/ 
for a discussion of how Aristotle used math) and Plato (see http://www.story 
ofmathematics.com/greek_plato.html for a discussion of how Plato used math). 
The origins of algorithms in use today are so hidden in history that the best that 
anyone can say is that math relies on adaptations of knowledge from ancient 
times. The use of algorithms since antiquity should give you a certain feeling of 
comfort because the algorithms in use today are based on knowledge tested for 
thousands of years.

This isn’t to say that some mathematicians haven’t overturned the apple cart over 
the years. For example, John Nash’s theory, Nash Equilibrium, significantly 
changed how economics are considered today (see https://www.khanacademy.
org/economics-finance-domain/microeconomics/nash-equilibrium- 
tutorial for a basic tutorial on this theory). Of course, recognition for such work 
comes slowly (and sometimes not at all). Nash had to wait for a long time before 
he received much in the way of professional recognition (see the story at  
https://www.princeton.edu/main/news/archive/S42/72/29C63/index.xml) 
despite having won a Nobel Prize in economics for his contributions. Just in case 
you’re interested, John Nash’s story is depicted in the movie A Beautiful Mind, 
which contains some much-debated scenes, including one containing a claim that 
the Nash Equilibrium somehow overturns some of the work of Adam Smith, 
another contributor to economic theories. (See one such discussion at https://
www.quora.com/Was-Adam-Smith-wrong-as-claimed-by-John-Nash-in-the- 
movie-A-Beautiful-Mind.)

Dividing and Conquering
If solving problems were easy, everyone would do it. However, the world is still 
filled with unsolved problems and the condition isn’t likely to change anytime 
soon, for one simple reason: Problems often appear so large that no solution is 
imaginable. Ancient warriors faced a similar problem. An opposing army would 
seem so large and their forces so small as to make the problem of winning a war 
unimaginably hard, perhaps impossible. Yet, by dividing the opposing army into 
small pieces and attacking it a little at a time, a small army could potentially 
defeat a much larger opponent. (The ancient Greeks, Romans, and Napoleon 
Bonaparte were all great users of the divide-and-conquer strategy;  see  
Napoleon For Dummies, by J. David Markham [Wiley], for details.)

You face the same problem as those ancient warriors. Often, the resources at your 
disposal seem quite small and inadequate. However, by dividing a huge problem 
into small pieces so that you can understand each piece, you can eventually create 
a solution that works for the problem as a whole. Algorithms have this premise at 

http://plato.stanford.edu/entries/aristotle-mathematics/
http://www.storyofmathematics.com/greek_plato.html
http://www.storyofmathematics.com/greek_plato.html
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https://www.khanacademy.org/economics-finance-domain/microeconomics/nash-equilibrium-tutorial
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their core: to use steps to solve problems one small piece at a time. The following 
sections help you understand the divide-and-conquer approach to problem solv-
ing in more detail.

Avoiding brute-force solutions
A brute-force solution is one in which you try each possible answer, one at a time, 
to locate the best possible answer. It’s thorough, this much is certain, but it also 
wastes time and resources in most cases. Testing every answer, even when it’s 
easy to prove that a particular answer has no chance of success, wastes time that 
an algorithm can use on answers that have a better chance of success. In addition, 
testing the various answers using this approach generally wastes resources, such 
as memory. Think of it this way: You want to break the combination for a lock, so 
you begin at 0, 0, 0, even though you know that this particular combination has 
no chance of success given the physical characteristics of combination locks. A 
brute-force solution would proceed with testing 0, 0, 0 anyway and then move on 
to the equally ridiculous 0, 0, 1.

It’s important to understand that every solution type does come with advantages, 
sometimes quite small. A brute-force solution has one such advantage. Because 
you test every answer anyway, you don’t need to perform any sort of preprocess-
ing when working with a brute-force solution. The time saved in skipping the 
preprocessing, though, is unlikely to ever pay back the time lost in trying every 
answer. However, you may find occasion to use a brute-force solution when

»» Finding a solution, if one exists, is essential.

»» The problem size is limited.

»» You can use heuristics to reduce the size of the solution set.

»» Simplicity of implementation is more important than speed.

Starting by making it simpler
The brute-force solution has a serious drawback. It looks at the entire problem at 
one time. It’s sort of like going into a package and hunting book by book through 
the shelves without ever considering any method of making your search simpler. 
The divide-and-conquer approach to package searches is different. In this case, 
you begin by dividing the package into children’s and adults’ sections. After that, 
you divide the adults’ section into categories. Finally, you search just the part of the 
category that contains the book of interest. This is the purpose of classification 
systems such as the Dewey Decimal System (see https://en.wikipedia.org/
wiki/List_of_Dewey_Decimal_classes for a list of classes, hierarchical divisions, 

https://en.wikipedia.org/wiki/List_of_Dewey_Decimal_classes
https://en.wikipedia.org/wiki/List_of_Dewey_Decimal_classes
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and sections). The point is that divide and conquer simplifies the problem. You 
make things faster and easier by reducing the number of book candidates.

The divide part of divide and conquer is an essential way to understand a problem 
better as well. Trying to understand the layout of an entire package could prove 
difficult. However, knowing that the book on comparative psychology you want to 
find appears as part of Class 100  in Division 150 of Section 156 makes your job 
easier. You can understand this smaller problem because you know that every 
Section 156 book will contain something about the topic you wish to know about. 
Algorithms work the same way. By making the problem simpler, you can create a 
set of simpler steps to finding a problem solution, which reduces the time to find 
the solution, reduces the number of resources used, and improves your chances of 
finding precisely the solution you need.

Breaking down a problem is usually better
After you have divided a problem into manageable pieces, you need to conquer the 
piece in question. This means creating a precise problem definition. You don’t 
want just any book on comparative psychology; you want one written by George 
Romanes. Knowing that the book you want appears in Section 156 of the Dewey 
Decimal System is a good start, but it doesn’t solve the problem. Now you need a 
process for reviewing every book in Section 156 for the specific book you need. The 
process might go further still and look for books with specific content. To make 
this process viable, you must break the problem down completely, define precisely 
what you need, and then, after you understand the problem thoroughly, use the 
correct set of steps (algorithm) to find what you need.

ALGORITHMS HAVE NO ABSOLUTES
You may think that you can create a scenario in which you can say that you always use a 
particular kind of algorithm to solve a particular kind of problem. However, this isn’t the 
case. For example, you can find discussions of the relative merits of using brute-force 
techniques against certain problems as compared to divide and conquer. It shouldn’t 
surprise you to discover that divide and conquer doesn’t win in every situation. For 
example, when looking for the maximum value in an array, a brute-force approach can 
win the day when the array isn’t sorted. You can read a discussion of this particular topic 
at  http://stackoverflow.com/questions/11043226/why-do-divide-and- 
conquer-algorithms-often-run-faster-than-brute-force. The interesting 
thing is that the brute-force approach also uses fewer resources in this particular case. 
Always remember that rules have exceptions and knowing the exceptions can save you 
time and effort later.

http://stackoverflow.com/questions/11043226/why-do-divide-and-conquer-algorithms-often-run-faster-than-brute-force
http://stackoverflow.com/questions/11043226/why-do-divide-and-conquer-algorithms-often-run-faster-than-brute-force
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Learning that Greed Can Be Good
In some cases, you can’t see the end of a solution process or even know whether 
you’re winning the war. The only thing you can really do is to ensure that you win 
the individual battles to create a problem solution in hopes of also winning the war. 
A greedy method to problem solving uses this approach. It looks for an overall solu-
tion such that it chooses the best possible outcome at each problem solution stage.

It seems that winning each battle would necessarily mean winning the war as 
well, but sometimes the real world doesn’t work that way. A Pyrrhic victory is one 
in which someone wins every battle but ends up losing the war because the cost of 
the victory exceeds the gains of winning by such a large margin. You can read 
about five Pyrrhic victories at http://www.history.com/news/history-lists/ 
5-famous-Pyrrhic-victories. The important lesson from these histories is that 
a greedy algorithm often does work, but not always, so you need to consider the 
best overall solution to a problem rather than become blinded by interim wins. 
The following sections describe how to avoid the Pyrrhic victory when working 
with algorithms.

Applying greedy reasoning
Greedy reasoning is often used as part of an optimization process. The algorithm 
views the problem one step at a time and focuses just on the step at hand. Every 
greedy algorithm makes two assumptions:

»» You can make a single optimal choice at a given step.

»» By choosing the optimal selection at each step, you can find an optimal 
solution for the overall problem.

You can find many greedy algorithms, each optimized to perform particular tasks. 
Here are some common examples of greedy algorithms used for graph analysis 
(see Chapter 9 for more about graphs) and data compression (see Chapter 14 for 
more about data compression) and the reason you might want to use them:

»» Kruskal’s Minimum Spanning Tree (MST): This algorithm actually demon-
strates one of the principles of greedy algorithms that people might not think 
about immediately. In this case, the algorithm chooses the edge between two 
nodes with the smallest value, not the greatest value as the word greedy might 
initially convey. This sort of algorithm might help you find the shortest path 
between two locations on a map or perform other graph-related tasks.

»» Prim’s MST: This algorithm splits an undirected graph (one in which direction 
isn’t considered) in half. It then selects the edge that connects the two halves 
such that the total weight of the two halves is the smallest that it can be. You 

http://www.history.com/news/history-lists/5-famous-pyrrhic-victories
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might find this algorithm used in a maze game to locate the shortest distance 
between the start and the finish of the maze.

»» Huffman Encoding: This algorithm is quite famous in computers because it 
forms the basis for many data-compression techniques. The algorithm assigns 
a code to every unique data entry in a stream of entries, such that the most 
commonly used data entry receives the shortest code. For example, the letter 
E would normally receive the shortest code when compressing English text, 
because you use it more often than any other letter in the alphabet. By 
changing the encoding technique, you can compress the text and make it 
considerably smaller, reducing transmission time.

Reaching a good solution
Scientists and mathematicians use greedy algorithms so often that Chapter  15 
covers them in depth. However, it’s important to realize that what you really want 
is a good solution, not just a particular solution. In most cases, a good solution 
provides optimal results of the sort you can measure, but the word good can include 
many meanings, depending on the problem domain. You must ask what problem 
you want to solve and which solution solves the problem in a manner that best 
meets your needs. For example, when working in engineering, you might need to 
weigh solutions that consider weight, size, cost, or other considerations, or per-
haps some combination of all these outputs that meet a specific requirement.

To put this issue into context, say that you build a coin machine that creates change 
for particular monetary amounts using the fewest coins possible (perhaps as part 
of an automatic checkout at a store). The reason to use the fewest coins possible is 
to reduce equipment wear, the weight of coins needed, and the time required to 
make change (your customers are always in a hurry, after all). A greedy solution 
solves the problem by using the largest coins possible. For example, to output 
$0.16 in change, you use a dime ($0.10), a nickel ($0.05), and a penny ($0.01).

A problem occurs when you’re unable to use every coin type in creating a solution. 
The change machine might be out of nickels, for example. To provide $0.40  in 
change, a greedy solution would start with a quarter ($0.25) and a dime ($0.10). 
Unfortunately, there are no nickels, so the coin machine then outputs five pennies 
(5 × $0.01) for a total of seven coins. The optimal solution in this case is to use four 
dimes instead (4 × $0.10). As a result, the greedy algorithm provides a particular 
solution, but not a good (optimal) solution in this case. The change-making prob-
lem receives considerable attention because it’s so hard to solve. You can find addi-
tional information in discussions such as “Combinatorics of the Change-Making 
Problem,” by Anna Adamaszeka and Michal Adamaszek (see http://www. 
sciencedirect.com/science/article/pii/S0195669809001292 for details).

http://www.sciencedirect.com/science/article/pii/S0195669809001292
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Computing Costs and Following Heuristics
Even when you find a good solution, one that is both efficient and effective, you 
still need to know precisely what the solution costs. You may find that the cost of 
using a particular solution is still too high, even when everything else is consid-
ered. Perhaps the answer comes almost, but not quite, on time or it uses too many 
computing resources. The search for a good solution involves creating an envi-
ronment in which you can fully test the algorithm, the states it creates, the opera-
tors it uses to change those states, and the time required to derive a solution.

Often, you find that a heuristic approach, one that relies on self-discovery and pro-
duces sufficiently useful results (not necessarily optimal, but good enough) is the 
method you actually need to solve a problem. Getting the algorithm to perform 
some of the required work for you saves time and effort because you can create 
algorithms that see patterns better than humans do. Consequently, self-discovery 
is the process of allowing the algorithm to show you a potentially useful path to a 
solution (but you must still count on human intuition and understanding to know 
whether the solution is the right one). The following sections describe techniques 
you can use to compute the cost of an algorithm using heuristics as a method of 
discovering the actual usefulness of any given solution.

Representing the problem as a space
A problem space is an environment in which a search for a solution takes place.  
A set of states and the operators used to change those states represent the prob-
lem space. For example, consider a tile game that has eight tiles in a 3-x-3 frame. 
Each tile shows one part of a picture, and the tiles start in some random order so 
that the picture is scrambled. The goal is to move one tile at a time to place all the 
tiles in the right order and reveal the picture. You can see an example of this sort 
of puzzle at http://mypuzzle.org/sliding.

The combination of the start state, the randomized tiles, and the goal state — the 
tiles in a particular order — is the problem instance. You could represent the puzzle 
graphically using a problem space graph. Each node of the problem space graph 
presents a state (the eight tiles in a particular position). The edges represent 
operations, such as to move tile number eight up. When you move tile eight up, 
the picture changes — it moves to another state.

Winning the game by moving from the start state to the goal state isn’t the only 
consideration. To solve the game efficiently, you need to perform the task in the 
least number of moves possible, which means using the smallest number of opera-
tors. The minimum number of moves used to solve the puzzle is the problem depth.

http://mypuzzle.org/sliding
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You must consider several factors when representing a problem as a space. For 
example, you must consider the maximum number of nodes that will fit in mem-
ory, which represents the space complexity. When you can’t fit all the nodes in 
memory at one time, the computer must store some nodes in other locations, such 
as the hard drive, which can slow the algorithm considerably. To determine 
whether the nodes will fit in memory, you must consider the time complexity, 
which is the maximum number of nodes created to solve the problem. In addition, 
it’s important to consider the branching factor, which is the average number of 
nodes created in the problem space graph to solve a problem.

Going random and being blessed by luck
Solving a search problem using brute-force techniques (described in “Avoiding 
brute-force techniques,” earlier in this chapter) is possible. The advantage of this 
approach is that you don’t need any domain-specific knowledge to use one of 
these algorithms. A brute-force algorithm tends to use the simplest possible 
approach to solving the problem. The disadvantage is that a brute-force approach 
works well only for a small number of nodes. Here are some of the common brute-
force search algorithms:

»» Breadth-first search: This technique begins at the root node, explores each of 
the child nodes first, and only then moves down to the next level. It progresses 
level by level until it finds a solution. The disadvantage of this algorithm is that 
it must store every node in memory, which means that it uses a considerable 
amount of memory for a large number of nodes. This technique can check for 
duplicate nodes, which saves time, and it always comes up with a solution.

»» Depth-first search: This technique begins at the root node and explores a set 
of connected child nodes until it reaches a leaf node. It progresses branch by 
branch until it finds a solution. The disadvantage of this algorithm is that it can’t 
check for duplicate nodes, which means that it might traverse the same node 
paths more than once. In fact, this algorithm may not find a solution at all, 
which means that you must define a cutoff point to keep the algorithm from 
searching infinitely. An advantage of this approach is that it’s memory efficient.

»» Bidirectional search: This technique searches simultaneously from the root 
node and the goal node until the two search paths meet in the middle. An 
advantage of this approach is that it’s time efficient because it finds the 
solution faster than many other brute-force solutions. In addition, it uses 
memory more efficiently than other approaches and always finds a solution. 
The main disadvantage is complexity of implementation, translating into a 
longer development cycle.
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Using a heuristic and a cost function
For some people, the word heuristic just sounds complicated. It would be just as 
easy to say that the algorithm makes an educated guess and then tries again when 
it fails. Unlike brute-force methods, heuristic algorithms learn. They also use cost 
functions to make better choices. Consequently, heuristic algorithms are more 
complex, but they have a distinct advantage in solving complex problems. As with 
brute-force algorithms, there are many heuristic algorithms and each comes with 
its own set of advantages, disadvantages, and special requirements. The following 
list describes a few of the most common heuristic algorithms:

»» Pure heuristic search: The algorithm expands nodes in order of their cost. It 
maintains two lists. The closed list contains the nodes it has already explored; 
the open list contains the nodes it must yet explore. In each iteration, the 
algorithm expands the node with the lowest possible cost. All its child nodes 
are placed in the closed list and the individual child node costs are calculated. 
The algorithm sends the child nodes with a low cost back to the open list and 
deletes the child nodes with a high cost. Consequently, the algorithm per-
forms an intelligent, cost-based search for the solution.

»» A * search: The algorithm tracks the cost of nodes as it explores them using 
the equation: f(n) = g(n) + h(n), where

•	 n is the node identifier.

•	 g(n) is the cost of reaching the node so far.

•	 h(n) is the estimated cost to reach the goal from the node.

•	 f(n) is the estimated cost of the path from n to the goal.

The idea is to search the most promising paths first and avoid expensive 
paths.

»» Greedy best-first search: The algorithm always chooses the path that is 
closest to the goal using the equation: f(n) = h(n). This particular algorithm can 
find solutions quite quickly, but it can also get stuck in loops, so many people 
don’t consider it an optimal approach to finding a solution.

Evaluating Algorithms
Gaining insights into precisely how algorithms work is important because other-
wise you can’t determine whether an algorithm actually performs in the way you 
need it to. In addition, without good measurements, you can’t perform accurate 
comparisons to know whether you really do need to discover a new method of 
solving a problem when an older solution works too slowly or uses too many 
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resources. The reality is that you’ll use algorithms made by others most of the 
time, potentially devising a few of your own. Knowing the basis to use to compare 
different solutions and deciding between them is an essential skill when dealing 
with algorithms.

The issue of efficiency has been part of discovering and designing new algorithms 
since the concept of algorithms first came into being, which is why you see so 
many different algorithms competing to solve the same problem (sometimes a 
real embarrassment of riches). The concept of measuring the size of the functions 
within an algorithm and analyzing how the algorithm works isn’t new; both Ada 
Lovelace and Charles Babbage considered the problems of algorithm efficiency in 
reference to computers as early as 1843 (see a short history of the Babbage engine 
at http://www.computerhistory.org/babbage/adalovelace/).

Donald Knuth (http://www-cs-faculty.stanford.edu/~uno/), computer scien-
tist, mathematician, professor emeritus at Stanford University, and author of the 
milestone, multivolume book The Art of Computer Programming (Addison-Wesley), 
devoted much of his research and studies to comparing algorithms. He strived to 
formalize how to estimate the resource needs of algorithms in a mathematical 
way and to allow a correct comparison between alternative solutions. He coined 
the term analysis of algorithms, which is the branch of computer science devoted to 
understanding how algorithms work in a formal way. The analysis measures 
resources required in terms of the number of operations an algorithm requires to 
reach a solution or by its occupied space (such as the storage an algorithm requires 
in computer memory).

Analysis of algorithms requires some mathematical understanding and some 
computations, but it’s extremely beneficial in your journey to discover, appreci-
ate, and effectively use algorithms. This topic is considerably more abstract than 
other topics in this book. To make the discussion less theoretical, later chapters 
present more practicalities of such measurement by examining algorithms 
together in detail. The following sections provide you with the basics.

Simulating using abstract machines
The more operations an algorithm requires, the more complex it is. Complexity is 
a measure of algorithm efficiency in terms of time usage because each operation 
takes some time. Given the same problem, complex algorithms are generally less 
favorable than simple algorithms because complex algorithms require more time. 
Think about those times when speed of execution makes the difference, such as in 
the medical or financial sector, or when flying on automatic pilot on an airplane 
or space rocket. Measuring algorithm complexity is a challenging task, though a 

http://www.computerhistory.org/babbage/adalovelace/
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necessary one if you want to employ the right solution. The first measurement 
technique uses abstract machines like the Random Access Machine (RAM).

RAM also stands for Random-Access Memory, which is the internal memory that 
your computer uses when running programs. Even though it uses the same acro-
nym, a Random-Access Machine is something completely different.

Abstract machines aren’t real computers, but theoretical ones, computers that are 
imagined in their functioning. You use abstract machines to consider how well an 
algorithm would work on a computer without testing it on the real thing, yet 
bound by the type of hardware you’d use. A RAM computer performs basic arith-
metic operations and interacts with information in memory, that’s all. Every time 
a RAM computer does anything, it takes a time step (a time unit). When you eval-
uate an algorithm in a RAM simulation, you count time steps using the following 
procedure:

1.	 Count each simple operation (arithmetic ones) as a time step.

2.	 Break complex operations into simple arithmetic operations and count time 
steps as defined in Step 1.

3.	 Count every data access from memory as one time step.

To perform this accounting, you write a pseudocode version of your algorithm (as 
mentioned in Chapter 1) and perform these steps using paper and pencil. In the 
end, it’s a simple approach based on a basic idea of how computers work, a useful 
approximation that you can use to compare solutions regardless of the power and 
speed of your hardware or the programming language you use.

Using a simulation is different from running the algorithm on a computer because 
you use a standard and predefined input. Real computer measurements require 
that you run the code and verify the time required to run it. Running code on a 
computer is actually a benchmark, another form of efficiency measurement, in 
which you also account for the application environment (such as the type of hard-
ware used and the software implementation). A benchmark is useful but lacks 
generalization. Consider, for instance, how newer hardware can quickly execute 
an algorithm that took ages on your previous computer.

Getting even more abstract
Measuring a series of steps devised to achieve a solution to a problem poses quite 
a few challenges. The previous section discusses counting time steps (number of 
operations), but sometimes you also need to compute space (such as the memory 
an algorithm consumes). You consider space when your problem is greedy for 
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resources. Depending on the problem, you may consider an algorithm better when 
it works efficiently with regard to one of these resource consumption aspects:

»» Running time

»» Computer memory requirements

»» Hard-disk usage

»» Power consumption

»» Data-transmission speed in a network

Some of these aspects relate to others in an inverse manner, so if, for instance, 
you want speedier execution time, you can increase memory or power consump-
tion to get it. Not only can you have different efficiency configurations when run-
ning an algorithm, you can also change the hardware characteristics and software 
implementation to accomplish your goals. In terms of hardware, using a super-
computer or a general-purpose computer does matter, and the software, or lan-
guage used to write the algorithm, is definitely a game changer. In addition, the 
quantity and kind of data you feed the algorithm could result in better or worse 
performance measurements.

RAM simulations count time because when you can employ a solution in so many 
environments and its resource usage depends on so many factors, you have to find 
a way to simplify comparisons so that they become standard. Otherwise, you can’t 
compare possible alternatives. The solution is, as so often happens with many 
other problems, to use a single measure and say that one size fits all. In this case, 
the measure is time, which you make equal to the number of operations, that is, 
the complexity of the algorithm.

A RAM simulation places the algorithm in a situation that’s both language and 
machine agnostic (it’s independent of programming language and computer type). 
However, explaining how a RAM simulation works to others requires quite an 
effort. The analysis of algorithms proposes to use the number of operations you 
get from a RAM simulation and turn them into a mathematical function expressing 
how your algorithm behaves in terms of time, which is a quantification of the steps 
or operations required when the number of data inputs grows. For instance, if your 
algorithm sorts objects, you can express complexity using a function that reports 
how many operations it needs depending on the number of objects it receives.

Working with functions
A function in mathematics is simply a way to map some inputs to a response. 
Expressed in a different way, a function is a transformation (based on math 
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operations) that transforms (maps) your input to an answer. For certain values of 
input (usually denoted by the letters x or n), you have a corresponding answer 
using the math that defines the function. For instance, a function like f(n) = 2n 
tells you that when your input is a number n, your answer is the number n multi-
plied by 2.

Using the size of the input does make sense given that this is a time-critical age 
and people’s lives are crammed with a growing quantity of data. Making every-
thing a mathematical function is a little less intuitive, but a function describing 
how an algorithm relates its solution to the quantity of data it receives is some-
thing you can analyze without specific hardware or software support. It’s also 
easy to compare with other solutions, given the size of your problem. Analysis of 
algorithms is really a mind-blowing concept because it reduces a complex series 
of steps into a mathematical formula.

Moreover, most of the time, an analysis of algorithms isn’t even interested in 
defining the function exactly. What you really want to do is compare a target 
function with another function. These comparison functions appear within a set 
of proposed functions that perform poorly when contrasted to the target algo-
rithm. In this way, you don’t have to plug numbers into functions of greater or 
lesser complexity; instead, you deal with simple, premade, and well-known func-
tions. It may sound rough, but it’s more effective and is similar to classifying the 
performance of algorithms into categories, rather than obtaining an exact perfor-
mance measurement.

The set of generalized functions is called Big O notation, and in this book, you 
often encounter this small set of functions (put into parentheses and preceded by 
a capital O) used to represent the performance of algorithms. Figure 2-1 shows the 
analysis of an algorithm. A Cartesian coordinate system can represent its function 
as measured by RAM simulation, where the abscissa (the x coordinate) is the size 
of the input and the ordinate (the y coordinate) is its resulting number of opera-
tions. You can see three curves represented. Input size matters. However, quality 
also matters (for instance, when ordering problems, it’s faster to order an input 
which is already almost ordered). Consequently, the analysis shows a worst case, 
f1(n), an average case, f2(n), and a best case, f3(n). Even though the average case 
might give you a general idea, what you really care about is the worst case, because 
problems may arise when your algorithm struggles to reach a solution. The Big O 
function is the one that, after a certain n0 value (the threshold for considering an 
input big), always results in a larger number of operations given the same input 
than the worst-case function f1. Thus, the Big O function is even more pessimistic 
than the one representing your algorithm, so that no matter the quality of input, 
you can be sure that things cannot get worse than that.
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Many possible functions can result in worse results, but the choice of functions 
offered by the Big O notation that you can use is restricted because its purpose is 
to simplify complexity measurement by proposing a standard. Consequently, this 
section contains just the few functions that are part of the Big O notation. The fol-
lowing list describes them in growing order of complexity:

»» Constant complexity O(1): The same time, no matter how much input you 
provide. In the end, it is a constant number of operations, no matter how long 
the input data is. This level of complexity is quite rare in practice.

»» Logarithmic complexity O(log n): The number of operations grows at a 
slower rate than the input, making the algorithm less efficient with small 
inputs and more efficient with larger ones. A typical algorithm of this class is 
the binary search, as described in Chapter 7 on arranging and searching data.

»» Linear complexity O(n): Operations grow with the input in a 1:1 ratio. A 
typical algorithm is iteration, which is when you scan input once and apply an 
operation to each element of it. Chapter 5 discusses iterations.

»» Linearithmic complexity O(n log n): Complexity is a mix between logarith-
mic and linear complexity. It is typical of some smart algorithms used to order 
data, such as Mergesort, Heapsort, and Quicksort. Chapter 7 tells you about 
most of them.

FIGURE 2-1: 
Complexity of an 
algorithm in case 
of best, average, 

and worst  
input case.
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»» Quadratic complexity O(n2): Operations grow as a square of the number of 
inputs. When you have one iteration inside another iteration (nested itera-
tions, in computer science), you have quadratic complexity. For instance, you 
have a list of names and, in order to find the most similar ones, you compare 
each name against all the other names. Some less efficient ordering algo-
rithms present such complexity: bubble sort, selection sort, and insertion sort. 
This level of complexity means that your algorithms may run for hours or 
even days before reaching a solution.

»» Cubic complexity O(n3): Operations grow even faster than quadratic 
complexity because now you have multiple nested iterations. When an 
algorithm has this order of complexity and you need to process a modest 
amount of data (100,000 elements), your algorithm may run for years. When 
you have a number of operations that is a power of the input, it is common to 
refer to the algorithm as running in polynomial time.

»» Exponential complexity O(2n): The algorithm takes twice the number of 
previous operations for every new element added. When an algorithm has 
this complexity, even small problems may take forever. Many algorithms 
doing exhaustive searches have exponential complexity. However, the classic 
example for this level of complexity is the calculation of Fibonacci numbers 
(which, being a recursive algorithm, is dealt with in Chapter 5).

»» Factorial complexity O(n!): A real nightmare of complexity because of the 
large number of possible combinations between the elements. Just imagine:  
If your input is 100 objects and an operation on your computer takes 10-6 
seconds (a reasonable speed for every computer, nowadays), you will need 
about 10140 years to complete the task successfully (an impossible amount of 
time since the age of the universe is estimated as being 1014 years). A famous 
factorial complexity problem is the traveling salesman problem, in which a 
salesman has to find the shortest route for visiting many cities and coming 
back to the starting city (presented in Chapter 18).
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IN THIS CHAPTER

»» Using Python to discover how 
algorithms work

»» Considering the various Python 
distributions

»» Performing a Python installation on 
Linux

»» Performing a Python installation on 
OS X

»» Performing a Python installation on 
Windows

»» Obtaining and installing the datasets 
used in this book

Using Python to Work 
with Algorithms

You have many good choices when it comes to using computer assistance to 
discover the wonders of algorithms. For example, apart from Python, many 
people rely on MATLAB and many others use R. In fact, some people use all 

three and then compare the sorts of outputs they get (see one such comparison at 
https://www.r-bloggers.com/evaluating-optimization-algorithms-in- 
matlab-python-and-r/). If you just had the three choices, you’d still need to 
think about them for a while and might choose to learn more than one language, 
but you actually have more than three choices, and this book can’t begin to cover 
them all. If you get deep into the world of algorithms, you discover that you can 
use all programming languages to write algorithms and that some are appreciated 
because they boil everything down to simple operations, such as the RAM simula-
tion described in Chapter 2. For instance, Donald Knuth, winner of the Turing 
Award, wrote examples in Assembly language in his book The Art of Computer 
Programming (Addison-Wesley). Assembly language is a programming language 

Chapter 3

https://www.r-bloggers.com/evaluating-optimization-algorithms-in-matlab-python-and-r/
https://www.r-bloggers.com/evaluating-optimization-algorithms-in-matlab-python-and-r/
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that resembles machine code, the language used natively by computers (but not 
understandable by most humans).

This book uses Python for a number of good reasons, including the community 
support it enjoys and the fact that it’s full featured, yet easy to learn. Python is 
also a verbose language, resembling how a human creates instructions rather than 
how a computer interprets them. The first section of this chapter fills in the details 
of why this book uses Python for the examples, but also tells you why other 
options are useful and why you may need to consider them as your journey 
continues.

When you speak a human language, you add nuances of meaning by employing 
specific word combinations that others in your community understand. The use of 
nuanced meaning comes naturally and represents a dialect. In some cases, dia-
lects also form because one group wants to demonstrate a difference with another 
group. For example, Noah Webster wrote and published A Grammatical Institute of 
the English Language, in part to remove the influence of the British aristocracy 
from the American public (see http://connecticuthistory.org/noah-webster- 
and-the-dream-of-a-common-language/ for details). Likewise, computer lan-
guages often come with flavors, and vendors purposely add extensions that make 
their product unique to provide a reason to buy their product over another 
offering.

The second section of the chapter introduces you to various Python distributions, 
each of which provides a Python dialect. This book uses Analytics Anaconda, which 
is the product you should use to obtain the best results from your learning experi-
ence. Using another product, essentially another dialect, can cause problems in 
making the examples work — the same sort of thing that happens sometimes 
when someone who speaks British English talks to someone who speaks American 
English. However, knowing about other distributions can be helpful when you 
need to obtain access to features that Anaconda may not provide.

The next three sections of this chapter help you install Anaconda on your plat-
form. The examples in this book are tested on the Linux, Mac OS X, and Windows 
platforms. They may also work with other platforms, but the examples aren’t 
tested on these platforms, so you have no guarantee that they’ll work. By install-
ing Anaconda using the procedures found in this chapter, you reduce the chance 
of getting an installation that won’t work with the example code. To use the 
examples in this book, you must install Anaconda 4.2.0 with support for Python 3.5. 
Other versions of Anaconda and Python may not work with the example code 
because, as with human language dialects, they could misunderstand the instruc-
tions that the code provides.

Algorithms work with data in specific ways. To see particular output from an 
algorithm, you need consistent data. Fortunately, the Python community is busy 

http://connecticuthistory.org/noah-webster-and-the-dream-of-a-common-language/
http://connecticuthistory.org/noah-webster-and-the-dream-of-a-common-language/
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creating datasets that anyone can use for testing purposes. This allows the com-
munity to repeat results that others get without having to download custom data-
sets from an unknown source. The final section of this chapter helps you get and 
install the datasets needed for the examples.

Considering the Benefits of Python
To work with algorithms on a computer, you need some means of communicating 
with the computer. If this were Star Trek, you could probably just tell the computer 
what you want and it would dutifully perform the task for you. In fact, Scotty seems 
quite confused about the lack of a voice computer interface in Star Trek IV (see 
http://www.davidalison.com/2008/07/keyboard-vs-mouse.html for details). 
The point is that you still need to use the mouse and keyboard, along with a special 
language, to communicate your ideas to the computer because the computer isn’t 
going to make an effort to communicate with you. Python is one of a number of 
languages that is especially adept at making it easy for nondevelopers to commu-
nicate ideas to the computer, but it isn’t the only choice. The following paragraphs 
help you understand why this book uses Python and what your other choices are.

Understanding why this book uses Python
Every computer language available today translates algorithms into a form that 
the computer can process. In fact, languages like ALGOL (ALGOrithmic Language) 
and FORTRAN (FORmula TRANslation) make this focus clear. Remember the defi-
nition of an algorithm from Chapter 1 as being a sequence of steps used to solve a 
problem. The method used to perform this translation differs by language, and the 
techniques used by some languages are quite arcane, requiring specialized knowl-
edge even to make an attempt.

Computers speak only one language, machine code (the 0s and 1s that a computer 
interprets to perform tasks), which is so incredibly hard for humans to speak that 
early developers created a huge array of alternatives. Computer languages exist to 
make human communication with computers easier. Consequently, if you find 
yourself struggling to make anything work, perhaps you have the wrong lan-
guage. It’s always best to have more than one language at your fingertips so that 
you can perform computer communications with ease. Python happens to be one 
of the languages that works exceptionally well for people who work in disciplines 
outside application development.

Python is the vision of a single person, Guido van Rossum (see his home page at 
https://gvanrossum.github.io/). You might be surprised to learn that Python 

http://www.davidalison.com/2008/07/keyboard-vs-mouse.html
https://gvanrossum.github.io/
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has been around for a long time — Guido started the language in December 1989 
as a replacement for the ABC language. Not much information is available as to the 
precise goals for Python, but it does retain ABC’s capability to create applications 
using less code. However, it far exceeds the capability of ABC to create applica-
tions of all types, and in contrast to ABC, boasts four programming styles. In 
short, Guido took ABC as a starting point, found it limited, and created a new 
language without those limitations. It’s an example of creating a new language 
that really is better than its predecessor.

Python has gone through a number of iterations and currently has two develop-
ment paths. The 2.x path is backward compatible with previous versions of Python; 
the 3.x path isn’t. The compatibility issue is one that figures into how you use 
Python to perform algorithm-related tasks because at least some of the packages 
won’t work with 3.x. In addition, some versions use different licensing because 
Guido was working at various companies during Python’s development. You can 
see a listing of the versions and their respective licenses at https://docs.python.
org/3/license.html. The Python Software Foundation (PSF) owns all current 
versions of Python, so unless you use an older version, you really don’t need to 
worry about the licensing issue.

Guido actually started Python as a skunkworks project (a project developed by a small 
and loosely structured group of people). The core concept was to create Python as 
quickly as possible, yet create a language that is flexible, runs on any platform, and 
provides significant potential for extension. Python provides all these features and 
many more. Of course, there are always bumps in the road, such as figuring out just 
how much of the underlying system to expose. You can read more about the Python 
design philosophy at http://python-history.blogspot.com/2009/01/pythons- 
design-philosophy.html. The history of Python at http://python-history.
blogspot.com/2009/01/introduction-and-overview.html also provides some 
useful information.

The original development (or design) goals for Python don’t quite match what has 
happened to the language since that time. Guido originally intended Python as a 
second language for developers who needed to create one-off code but who 
couldn’t quite achieve their goals using a scripting language. The original target 
audience for Python was the C developer. You can read about these original goals 
in the interview at http://www.artima.com/intv/pyscale.html.

You can find a number of applications written in Python today, so the idea of using 
it solely for scripting didn’t come to fruition. In fact, you can find listings of 
Python applications at https://www.python.org/about/apps/ and https://
www.python.org/about/success/.

https://docs.python.org/3/license.html
https://docs.python.org/3/license.html
http://python-history.blogspot.com/2009/01/pythons-design-philosophy.html
http://python-history.blogspot.com/2009/01/pythons-design-philosophy.html
http://python-history.blogspot.com/2009/01/introduction-and-overview.html
http://python-history.blogspot.com/2009/01/introduction-and-overview.html
http://www.artima.com/intv/pyscale.html
https://www.python.org/about/apps/
https://www.python.org/about/success/
https://www.python.org/about/success/
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Naturally, with all these success stories to go on, people are enthusiastic about 
adding to Python. You can find lists of Python Enhancement Proposals (PEPs) at 
http://legacy.python.org/dev/peps/. These PEPs may or may not see the light 
of day, but they prove that Python is a living, growing language that will continue 
to provide features that developers truly need to create great applications of all 
types.

Working with MATLAB
Python has advantages over many other languages by offering multiple coding 
styles, fantastic flexibility, and great extensibility, but it’s still a programming 
language. If you honestly don’t want to use a programming language, you do 
have other options, such as MATLAB (https://www.mathworks.com/products/
matlab/), which focuses more on algorithms. MATLAB is still a scripting language 
of a sort, and to perform any significant tasks with it, you still need to know a 
little about coding, but not as much as with Python.

One of the major issues with using MATLAB is the price you pay. Unlike Python, 
MATLAB requires a monetary investment on your part (see https://www. 
mathworks.com/pricing-licensing/ for licensing costs). The environment is 
indeed easier to use, but as with most things, there is no free lunch, and you must 
consider the cost differential as part of determining which product to use.

Many people are curious about MATLAB, that is, its strengths and weaknesses 
when compared to Python. This book doesn’t have room to provide a full compari-
son, but you can find a great overview at http://www.pyzo.org/python_vs_ 
matlab.html. In addition, you can call Python packages from MATLAB using the 
techniques found at https://www.mathworks.com/help/matlab/call-python- 
libraries.html. In fact, MATLAB also works with the following:

»» MEX (https://www.mathworks.com/help/matlab/call-mex-file- 
functions.html)

»» C (https://www.mathworks.com/help/matlab/using-c-shared-library- 
functions-in-matlab-.html)

»» Java (https://www.mathworks.com/help/matlab/using-java-libraries- 
in-matlab.html)

»» .NET (https://www.mathworks.com/help/matlab/using-net-libraries- 
in-matlab.html)

»» COM (https://www.mathworks.com/help/matlab/using-com-objects- 
in-matlab.html)

http://legacy.python.org/dev/peps/
https://www.mathworks.com/products/matlab/
https://www.mathworks.com/products/matlab/
https://www.mathworks.com/pricing-licensing/
https://www.mathworks.com/pricing-licensing/
http://www.pyzo.org/python_vs_matlab.html
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48      PART 1  Getting Started

Therefore, you don’t necessarily have to choose between MATLAB and Python (or 
other language), but the more Python features you use, the easier it becomes to 
simply work with Python and skip MATLAB.  You can discover more about  
MATLAB in MATLAB For Dummies, by Jim Sizemore and John Paul Mueller (Wiley).

Considering other algorithm  
testing environments
A third major contender for algorithm-related work is R.  The R programming 
language, like Python, is free of charge. It also supports a large number of packages 
and offers great flexibility. Some of the programming constructs are different, 
however, and some people find R harder to use than Python. Most people view R 
as the winner when it comes to performing statistics, but they see the general- 
purpose nature of Python as having major benefits (see the articles at https://
www.datacamp.com/community/tutorials/r-or-python-for-data-analysis 
and http://www.kdnuggets.com/2015/05/r-vs-python-data-science.html). 
The stronger community support for Python is also a major advantage.

As previously mentioned, you can use any computer programming language to 
perform algorithm-related work, but most languages have a specific purpose in 
mind. For example, you can perform algorithm-related tasks using a language 
such as Structured Query Language (SQL), but this language focuses on data man-
agement, so some algorithm-related tasks might become convoluted and difficult 
to perform. A significant lack in SQL is the ability to plot data with ease and to 
perform some of the translations and transformations that algorithm-specific 
work requires. In short, you need to consider what you plan to do when choosing 
a language. This book uses Python because it truly is the best overall language to 
perform the tasks at hand, but it’s important to realize that you may need another 
language at some point.

Looking at the Python Distributions
You can quite possibly obtain a generic copy of Python and add all the packages 
required to work with algorithms to it. The process can be difficult because you 
need to ensure that you have all the required packages in the correct versions to 
guarantee success. In addition, you need to perform the configuration required to 
make sure that the packages are accessible when you need them. Fortunately, 
going through the required work is not necessary because numerous Python prod-
ucts that work well with algorithms are available for you to use. These products 
provide everything needed to get started with algorithm-related projects.

https://www.datacamp.com/community/tutorials/r-or-python-for-data-analysis
https://www.datacamp.com/community/tutorials/r-or-python-for-data-analysis
http://www.kdnuggets.com/2015/05/r-vs-python-data-science.html
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You can use any of the packages mentioned in the following sections to work with 
the examples in this book. However, the book’s source code and downloadable 
source code rely on Continuum Analytics Anaconda 4.2.0 because this particular 
package works on every platform this book supports: Linux, Mac OS X, and Win-
dows. The book doesn’t mention a specific package in the chapters that follow, but 
any screenshots reflect how things look when using Anaconda on Windows. You 
may need to tweak the code to use another package, and the screens will look dif-
ferent if you use Anaconda on some other platform.

Windows 10 presents some serious installation issues when working with Python. 
You can read about these issues on my (John’s) blog at http://blog.john 
muellerbooks.com/2015/10/30/python-and-windows-10/. Given that so many 
readers of my other Python books have sent feedback saying that Windows 10 
doesn’t provide a good environment, I can’t recommend Windows 10 as a Python 
platform for this book. If you’re working with Windows 10, simply be aware that 
your road to a Python installation will be a rocky one.

Obtaining Analytics Anaconda
The basic Anaconda package is a free download that you obtain at https://store.
continuum.io/cshop/anaconda/. Simply click Download Anaconda to obtain 
access to the free product. You do need to provide an email address to get a copy 
of Anaconda. After you provide your email address, you go to another page, where 
you can choose your platform and the installer for that platform. Anaconda sup-
ports the following platforms:

»» Windows 32-bit and 64-bit (the installer may offer you only the 64-bit or 32-bit 
version, depending on which version of Windows it detects)

»» Linux 32-bit and 64-bit

»» Mac OS X 64-bit

Because package support for Python 3.5 has gotten better than previous 3.x ver-
sions, you see both Python 3.x and 2.x equally supported on the Analytics site. This 
book uses Python 3.5 because the package support is now substantial enough and 
stable enough to support all the programming examples, and because Python 3.x 
represents the future direction of Python.

You can obtain Anaconda with older versions of Python. If you want to use an 
older version of Python, click the installer archive link near the bottom of the 
page. You should use an older version of Python only when you have a pressing 
need to do so.

http://blog.johnmuellerbooks.com/2015/10/30/python-and-windows-10/
http://blog.johnmuellerbooks.com/2015/10/30/python-and-windows-10/
https://store.continuum.io/cshop/anaconda/
https://store.continuum.io/cshop/anaconda/
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The Miniconda installer can potentially save time by limiting the number of fea-
tures you install. However, trying to figure out precisely which packages you do 
need is an error-prone and time-consuming process. In general, you want to per-
form a full installation to ensure that you have everything needed for your proj-
ects. Even a full install doesn’t require much time or effort to download and install 
on most systems.

The free product is all you need for this book. However, when you look on the site, 
you see that many other add-on products are available. These products can help 
you create robust applications. For example, when you add Accelerate to the mix, 
you obtain the capability to perform multicore and GPU-enabled operations. The 
use of these add-on products is outside the scope of this book, but the Anaconda 
site provides details on using them.

Considering Enthought Canopy Express
Enthought Canopy Express is a free product for producing both technical and sci-
entific applications using Python. You can obtain it at https://www.enthought.
com/canopy-express/. Click Download Free on the main page to see a listing of 
the versions that you can download. Only Canopy Express is free; the full Canopy 
product comes at a cost. However, you can use Canopy Express to work with the 
examples in this book. Canopy Express supports the following platforms:

»» Windows 32-bit and 64-bit

»» Linux 32-bit and 64-bit

»» Mac OS X 32-bit and 64-bit

Choose the platform and version you want to download. When you click Download 
Canopy Express, you see an optional form for providing information about your-
self. The download starts automatically, even if you don’t provide personal infor-
mation to the company.

One of the advantages of Canopy Express is that Enthought is heavily involved in 
providing support for both students and teachers. People also can take classes, 
including online classes, that teach the use of Canopy Express in various ways (see 
https://training.enthought.com/courses).

Considering pythonxy
The pythonxy Integrated Development Environment (IDE) is a community project 
hosted on Google at http://python-xy.github.io/. It’s a Windows-only prod-
uct, so you can’t easily use it for cross-platform needs. (In fact, it supports only 

https://www.enthought.com/canopy-express/
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Windows Vista, Windows 7, and Windows 8.) However, it does come with a full set 
of packages, and you can easily use it for this book if you want.

Because pythonxy uses the GNU General Public License (GPL) v3 (see http://www.
gnu.org/licenses/gpl.html), you have no add-ons, training, or other paid fea-
tures to worry about. No one will come calling at your door hoping to sell you 
something. In addition, you have access to all the source code for pythonxy, so you 
can make modifications if you want.

Considering WinPython
The name tells you that WinPython is a Windows-only product that you can find 
at http://winpython.sourceforge.net/. This product is actually a spin-off of 
pythonxy and isn’t meant to replace it. Quite the contrary: WinPython is simply a 
more flexible way to work with pythonxy. You can read about the motivation for 
creating WinPython at http://sourceforge.net/p/winpython/wiki/Roadmap/.

The bottom line for this product is that you gain flexibility at the cost of friendli-
ness and a little platform integration. However, for developers who need to main-
tain multiple versions of an IDE, WinPython may make a significant difference. 
When using WinPython with this book, make sure to pay particular attention to 
configuration issues or you’ll find that even the downloadable code has little 
chance of working.

Installing Python on Linux
You use the command line to install Anaconda on Linux — you’re given no graph-
ical installation option. Before you can perform the install, you must download a 
copy of the Linux software from the Continuum Analytics site. You can find the 
required download information in the “Obtaining Analytics Anaconda” section, 
earlier in this chapter. The following procedure should work fine on any Linux 
system, whether you use the 32-bit or 64-bit version of Anaconda:

1.	 Open a copy of Terminal.

The Terminal window appears.

2.	 Change directories to the downloaded copy of Anaconda on your system.

The name of this file varies, but normally it appears as Anaconda3-4.2.0- 
Linux-x86.sh for 32-bit systems and Anaconda3-4.2.0-Linux-x86_64.sh 
for 64-bit systems. The version number is embedded as part of the filename. 
In this case, the filename refers to version 4.2.0, which is the version used for 

http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
http://winpython.sourceforge.net/
http://sourceforge.net/p/winpython/wiki/Roadmap/


52      PART 1  Getting Started

this book. If you use some other version, you may experience problems with 
the source code and need to make adjustments when working with it.

3.	 Type bash Anaconda3-4.2.0-Linux-x86.sh (for the 32-bit version) or bash 
Anaconda3-4.2.0-Linux-x86_64.sh (for the 64-bit version) and press Enter.

An installation wizard starts that asks you to accept the licensing terms for 
using Anaconda.

4.	 Read the licensing agreement and accept the terms using the method 
required for your version of Linux.

The wizard asks you to provide an installation location for Anaconda. The book 
assumes that you use the default location of ~/anaconda. If you choose some 
other location, you may have to modify some procedures later in the book to 
work with your setup.

5.	 Provide an installation location (if necessary) and press Enter (or click 
Next).

The application extraction process begins. After the extraction is complete, you 
see a completion message.

6.	 Add the installation path to your PATH statement using the method 
required for your version of Linux.

You’re ready to begin using Anaconda.

Installing Python on MacOS
The Mac OS X installation comes in only one form: 64-bit. Before you can perform 
the install, you must download a copy of the Mac software from the Continuum 
Analytics site. You can find the required download information in the “Obtaining 
Analytics Anaconda” section, earlier in this chapter.

The installation files come in two forms. The first depends on a graphical installer; 
the second relies on the command line. The command-line version works much 
like the Linux version described in the “Installing Python on Linux” section of 
this chapter. The following steps help you install Anaconda 64-bit on a Mac sys-
tem using the graphical installer:

1.	 Locate the downloaded copy of Anaconda on your system.

The name of this file varies, but normally it appears as Anaconda3-4.2.0- 
MacOSX-x86_64.pkg. The version number is embedded as part of the 
filename. In this case, the filename refers to version 4.2.0, which is the 
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version used for this book. If you use some other version, you may experience 
problems with the source code and need to make adjustments when working 
with it.

2.	 Double-click the installation file.

An introduction dialog box appears.

3.	 Click Continue.

The wizard asks whether you want to review the Read Me materials. You can 
read these materials later. For now, you can safely skip the information.

4.	 Click Continue.

The wizard displays a licensing agreement. Be sure to read through the 
licensing agreement so that you know the terms of usage.

5.	 Click I Agree if you agree to the licensing agreement.

The wizard asks you to provide a destination for the installation. The destina-
tion controls whether the installation is for an individual user or a group.

You may see an error message stating that you can’t install Anaconda on the 
system. The error message occurs because of a bug in the installer and has 
nothing to do with your system. To get rid of the error message, choose the 
Install Only for Me option. You can’t install Anaconda for a group of users on a 
Mac system.

6.	 Click Continue.

The installer displays a dialog box containing options for changing the installa-
tion type. Click Change Install Location if you want to modify where Anaconda 
is installed on your system. (The book assumes that you use the default path of 
~/anaconda.) Click Customize if you want to modify how the installer works. 
For example, you can choose not to add Anaconda to your PATH statement. 
However, the book assumes that you have chosen the default install options, 
and no good reason exists to change them unless you have another copy of 
Python 3.5 installed somewhere else.

7.	 Click Install.

The installation begins. A progress bar tells you how the installation process 
is progressing. When the installation is complete, you see a completion 
dialog box.

8.	 Click Continue.

You’re ready to begin using Anaconda.
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Installing Python on Windows
Anaconda comes with a graphical installation application for Windows, so getting 
a good install means using a wizard, as you would for any other installation. Of 
course, you need a copy of the installation file before you begin, and you can find 
the required download information in the “Obtaining Analytics Anaconda” sec-
tion, earlier in this chapter. The following procedure should work fine on any 
Windows system, whether you use the 32-bit or the 64-bit version of Anaconda:

1.	 Locate the downloaded copy of Anaconda on your system.

The name of this file varies, but normally it appears as Anaconda3-4.2.0- 
Windows-x86.exe for 32-bit systems and Anaconda3-4.2.0-Windows-x86_64.
exe for 64-bit systems. The version number is embedded as part of the filename. 
In this case, the filename refers to version 4.2.0, which is the version used for this 
book. If you use some other version, you may experience problems with the 
source code and need to make adjustments when working with it.

2.	 Double-click the installation file.

(You may see an Open File – Security Warning dialog box that asks whether 
you want to run this file. Click Run if you see this dialog box pop up.) You see 
an Anaconda 4.2.0 Setup dialog box similar to the one shown in Figure 3-1. 
The exact dialog box that you see depends on which version of the Anaconda 
installation program you download. If you have a 64-bit operating system, 
using the 64-bit version of Anaconda is always best so that you obtain the best 
possible performance. This first dialog box tells you when you have the 64-bit 
version of the product.

3.	 Click Next.

The wizard displays a licensing agreement. Be sure to read through the 
licensing agreement so that you know the terms of usage.

4.	 Click I Agree if you agree to the licensing agreement.

You’re asked what sort of installation type to perform, as shown in Figure 3-2. 
In most cases, you want to install the product just for yourself. The exception 
is if you have multiple people using your system and they all need access to 
Anaconda.

5.	 Choose one of the installation types and then click Next.

The wizard asks where to install Anaconda on disk, as shown in Figure 3-3. The 
book assumes that you use the default location. If you choose some other 
location, you may have to modify some procedures later in the book to work 
with your setup.
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FIGURE 3-1: 
The setup 

process begins by 
telling you 

whether you have 
the 64-bit version.

FIGURE 3-2: 
Tell the wizard 
how to install 
Anaconda on 
your system.
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6.	 Choose an installation location (if necessary) and then click Next.

You see the Advanced Installation Options, shown in Figure 3-4. These options 
are selected by default, and no good reason exists to change them in most 
cases. You might need to change them if Anaconda won’t provide your default 
Python 3.5 (or Python 2.7) setup. However, the book assumes that you’ve set 
up Anaconda using the default options.

7.	 Change the advanced installation options (if necessary) and then click 
Install.

You see an Installing dialog box with a progress bar. The installation process 
can take a few minutes, so get yourself a cup of coffee and read the comics 
for a while. When the installation process is over, you see a Next button 
enabled.

8.	 Click Next.

The wizard tells you that the installation is complete.

9.	 Click Finish.

You’re ready to begin using Anaconda.

FIGURE 3-3: 
Specify an 

installation 
location.
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FIGURE 3-4: 
Configure the 

advanced 
installation 

options.

A WORD ABOUT THE SCREENSHOTS
As you work your way through the book, you use an IDE of your choice to open the 
Python and Jupyter Notebook files containing the book’s source code. Every screenshot 
that contains IDE-specific information relies on Anaconda because Anaconda runs on all 
three platforms supported by the book. The use of Anaconda doesn’t imply that it’s the 
best IDE or that the authors are making any sort of recommendation for it; Anaconda 
simply works well as a demonstration product.

When you work with Anaconda, the name of the graphical (GUI) environment, Jupyter 
Notebook, is precisely the same across all three platforms, and you won’t even see any 
significant difference in the presentation. (Jupyter Notebook is an evolution of IPython, 
so you may see online resources refer to IPython Notebook.) The differences that you 
do see are minor, and you should ignore them as you work through the book. With this 
in mind, the book does rely heavily on Windows 7 screenshots. When working on a 
Linux, Mac OS X, or other Windows version platform, you should expect to see some 
differences in presentation, but these differences shouldn’t reduce your ability to work 
with the examples.
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Downloading the Datasets  
and Example Code

This book is about using Python to perform machine learning tasks. Of course, you 
can spend all your time creating the example code from scratch, debugging it, and 
only then discovering how it relates to machine learning, or you can take the easy 
way and download the prewritten code from the Dummies site (see the Introduc-
tion of this book for details) so that you can get right to work. Likewise, creating 
datasets large enough for algorithm learning purposes would take quite a while. 
Fortunately, you can access standardized, precreated data sets quite easily by 
using features provided in some of the data science packages (which also work 
just fine for all sorts of purposes, including learning to work with algorithms). 
The following sections help you download and use the example code and datasets 
so that you can save time and get right to work with algorithm-specific tasks.

Using Jupyter Notebook
To make working with the relatively complex code in this book easier, you use 
Jupyter Notebook. This interface lets you easily create Python notebook files that 
can contain any number of examples, each of which can run individually. The 
program runs in your browser, so which platform you use for development doesn’t 
matter; as long as it has a browser, you should be okay.

Starting Jupyter Notebook
Most platforms provide an icon to access Jupyter Notebook. Just click this icon to 
access Jupyter Notebook. For example, on a Windows system, you choose Start ➪   All 
Programs ➪   Anaconda 3 ➪   Jupyter Notebook. Figure 3-5 shows how the interface 
looks when viewed in a Firefox browser. The precise appearance on your system 
depends on the browser you use and the kind of platform you have installed.

If you have a platform that doesn’t offer easy access through an icon, you can use 
these steps to access Jupyter Notebook:

1.	 Open a Command Prompt or Terminal Window on your system.

The window opens so that you can type commands.

2.	 Change directories to the \Anaconda3\Scripts directory on your machine.

Most systems let you use the CD command for this task.

3.	 Type python jupyter-notebook-script.py and press Enter.

The Jupyter Notebook page opens in your browser.
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Stopping the Jupyter Notebook server
No matter how you start Jupyter Notebook (or just Notebook, as it appears in the 
remainder of the book), the system generally opens a command prompt or termi-
nal window to host Jupyter Notebook. This window contains a server that makes 
the application work. After you close the browser window when a session is com-
plete, select the server window and press Ctrl+C or Ctrl+Break to stop the server.

Defining the code repository
The code you create and use in this book will reside in a repository on your hard 
drive. Think of a repository as a kind of filing cabinet where you put your code. 
Notebook opens a drawer, takes out the folder, and shows the code to you. You can 
modify it, run individual examples within the folder, add new examples, and 
simply interact with your code in a natural manner. The following sections get you 
started with Notebook so that you can see how this whole repository concept works.

Defining the book’s folder
It pays to organize your files so that you can access them easier later. This book 
keeps its files in the A4D (Algorithms For Dummies) folder. Use these steps within 
Notebook to create a new folder.

FIGURE 3-5: 
Jupyter Notebook 
provides an easy 
method to create 
machine learning 

examples.
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1.	 Choose New ➪   Folder.

Notebook creates a new folder named Untitled Folder, as shown in Figure 3-6. 
The file appears in alphanumeric order, so you may not initially see it. You 
must scroll down to the correct location.

2.	 Select the box next to the Untitled Folder entry.

3.	 Click Rename at the top of the page.

You see a Rename Directory dialog box like the one shown in Figure 3-7.

4.	 Type A4D and click OK.

Notebook changes the name of the folder for you.

5.	 Click the new A4D entry in the list.

Notebook changes the location to the A4D folder in which you perform tasks 
related to the exercises in this book.

FIGURE 3-6: 
New folders 

appear with a 
name of Untitled 

Folder.

FIGURE 3-7: 
Rename the 

folder so that you 
remember the 

kinds of entries it 
contains.
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Creating a new notebook
Every new notebook is like a file folder. You can place individual examples within 
the file folder, just as you would sheets of paper into a physical file folder. Each 
example appears in a cell. You can put other sorts of things in the file folder, 
too, but you see how these things work as the book progresses. Use these steps to 
create a new notebook:

1.	 Click New ➪   Python (default).

A new tab opens in the browser with the new notebook, as shown in Figure 3-8. 
Notice that the notebook contains a cell and that Notebook has highlighted the 
cell so that you can begin typing code in it. The title of the notebook is Untitled 
right now. That’s not a particularly helpful title, so you need to change it.

2.	 Click Untitled on the page.

Notebook asks what you want to use as a new name, as shown in Figure 3-9.

3.	 Type A4D; 03; Sample and press Enter.

The new name tells you that this is a file for Algorithms For Dummies, Chapter 3, 
Sample.ipynb. Using this naming convention lets you easily differentiate these 
files from other files in your repository.

FIGURE 3-8: 
A notebook 

contains cells 
that you use to 

hold code.
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Of course, the Sample notebook doesn’t contain anything just yet. Place the cursor 
in the cell, type print('Python is really cool!'), and then click the Run button (the 
button with the right-pointing arrow on the toolbar). You see the output shown in 
Figure 3-10. The output is part of the same cell as the code. (The code resides in a 
square box and the output resides outside that square box, but both are within the 
cell.) However, Notebook visually separates the output from the code so that you 
can tell them apart. Notebook automatically creates a new cell for you.

FIGURE 3-10: 
Notebook uses 

cells to store 
your code.

FIGURE 3-9: 
Provide a new 
name for your 

notebook.
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When you finish working with a notebook, shutting it down is important. To close a 
notebook, choose File ➪   Close and Halt. You return to the Home page, where you can 
see that the notebook you just created is added to the list, as shown in Figure 3-11.

Exporting a notebook
Creating notebooks and keeping them all to yourself isn’t much fun. At some 
point, you want to share them with other people. To perform this task, you must 
export your notebook from the repository to a file. You can then send the file to 
someone else, who will import it into his or her repository.

The previous section shows how to create a notebook named A4D; 03; Sample. You 
can open this notebook by clicking its entry in the repository list. The file reopens 
so that you can see your code again. To export this code, choose File ➪   Download 
As ➪   Notebook (.ipynb). What you see next depends on your browser, but you gen-
erally see some sort of dialog box for saving the notebook as a file. Use the same 
method for saving the IPython Notebook file as you use for any other file you save 
using your browser.

Removing a notebook
Sometimes notebooks get outdated or you simply don’t need to work with them 
any longer. Rather than allow your repository to get clogged with files you don’t 
need, you can remove these unwanted notebooks from the list. Use these steps to 
remove the file:

1.	 Select the box next to the A4D; 03; Sample.ipynb entry.

2.	 Click the trash can icon (Delete) at the top of the page.

You see a Delete notebook warning message like the one shown in Figure 3-12.

FIGURE 3-11: 
Any notebooks 

you create 
appear in the 

repository list.
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3.	 Click Delete.

The file gets removed from the list.

Importing a notebook
To use the source code from this book, you must import the downloaded files into 
your repository. The source code comes in an archive file that you extract to a 
location on your hard drive. The archive contains a list of .ipynb (IPython Note-
book) files containing the source code for this book (see the Introduction for 
details on downloading the source code). The following steps tell how to import 
these files into your repository:

1.	 Click Upload at the top of the page.

What you see depends on your browser. In most cases, you see some type of 
File Upload dialog box that provides access to the files on your hard drive.

2.	 Navigate to the directory containing the files that you want to import 
into Notebook.

3.	 Highlight one or more files to import and click the Open (or other, 
similar) button to begin the upload process.

You see the file added to an upload list, as shown in Figure 3-13. The file isn’t 
part of the repository yet — you’ve simply selected it for upload.

FIGURE 3-12: 
Notebook warns 

you before 
removing any 
files from the 

repository.
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When you export a file, Notebook converts any special characters to a form 
that your system will accept with greater ease. Figure 3-13 shows this conver-
sion in action. The semicolons appear as %3B, and spaces appear as a + (plus 
sign). You must change these characters to their Notebook form to see the title 
as you expect it.

4.	 Click Upload.

Notebook places the file in the repository so that you can begin using it.

Understanding the datasets  
used in this book
This book uses a number of datasets, all of which appear in the scikit-learn package. 
These datasets demonstrate various ways in which you can interact with data, and 
you use them in the examples to perform a variety of tasks. The following list 
provides a quick overview of the function used to import each of the datasets into 
your Python code:

»» load_boston(): Regression analysis with the Boston house-prices dataset

»» load_iris(): Classification with the iris dataset

»» load_diabetes(): Regression with the diabetes dataset

»» load_digits([n_class]): Classification with the digits dataset

»» fetch_20newsgroups(subset='train'): Data from 20 newsgroups

»» fetch_olivetti_faces():Olivetti faces dataset from AT&T

FIGURE 3-13: 
The files that you 

want to add to 
the repository 

appear as part of 
an upload list 

consisting of one 
or more 

filenames.
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The technique for loading each of these datasets is the same across examples. The 
following example shows how to load the Boston house-prices dataset. You can 
find the code in the A4D; 03; Dataset Load.ipynb notebook.

from sklearn.datasets import load_boston
Boston = load_boston()
print(Boston.data.shape)
  
(506, 13)

To see how the code works, click Run Cell. The output from the print() call is 
(506, 13). You can see the output shown in Figure 3-14.

FIGURE 3-14: 
The Boston object 

contains the 
loaded dataset.
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IN THIS CHAPTER

»» Performing numeric and logic-based 
tasks

»» Working with strings

»» Performing tasks with dates

»» Packaging code by using functions

»» Making decisions and repeating steps

»» Managing data in memory

»» Reading data in storage objects

»» Finding data faster by using 
dictionaries

Introducing Python for 
Algorithm Programming

A recipe is a kind of algorithm because it helps you cook tasty food by using 
a series of steps (and thereby get rid of your hunger). You can devise many 
ways to create a sequence of steps that solve a problem. Procedures of 

every variety and description abound, all of which describe a sequence of steps 
used to solve a problem. Not every sequence of steps is concrete. Mathematical 
notations present a series of steps to solve a numeric problem, but many people 
view them as so many oddly shaped symbols in an arcane language that few can 
understand. A computer language can turn the arcane language into a concrete 
form of English-like statements that solve the problem in a manner that works 
for most humans.

The previous chapter in this book, Chapter 3, helps you install a copy of Python 
to work with the examples in this book. You use Python throughout the book to 
solve numeric problems using algorithms that you can also express in 

Chapter 4
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mathematical notation. The reason that this book uses a programming language 
is to turn those oddly shaped abstract symbols into something that most people 
can understand and use to solve real-world problems.

Before you can use Python to perform tasks with algorithms, you need at least a 
passing knowledge of how Python works. This chapter isn’t designed to make you 
a Python expert. However, it does provide you with enough information to make 
sense of the example code with the commentary provided. The various sections 
help you understand how Python performs tasks in a concrete manner. For exam-
ple, you need to know how Python works with various kinds of data in order to 
determine what the example code is doing with that data. You find the essentials 
of working with numeric, logical, string, and date data in the first three sections.

Imagine a cookbook, or any book for that matter, that provided steps for 
performing every task that the book tells you how to perform as one long narrative 
without any breaks. Trying to find a specific recipe (or other procedure) would 
become impossible and the book would be useless. In fact, no one would write 
such a book. The fourth section of the chapter discusses functions, which are akin 
to the individual recipes in a cookbook. You can combine functions to create an 
entire program, much as you would combine recipes to create an entire dinner.

The next four sections discuss various ways to manage data, which means read-
ing, writing, modifying, and erasing it as needed. You also need to know how to 
make decisions and what to do when you need to perform the same set of steps 
more than one time. Data is a resource, just as flour, sugar, and other ingredients 
are resources you use when working with a recipe. The different kinds of data 
require different techniques to make them into an application that solves the 
problem proposed by an algorithm. These sections tell you about the various ways 
to manipulate data and work with it to solve problems.

Working with Numbers and Logic
Interacting with algorithms involves working with data of various sorts, but much 
of the work involves numbers. In addition, you use logical values to make deci-
sions about the data you use. For example, you might need to know whether two 
values are equal or whether one value is greater than another value. Python sup-
ports these number and logic value types:

»» Any whole number is an integer. For example, the value 1 is a whole number, so 
it’s an integer. On the other hand, 1.0 isn’t a whole number; it has a decimal part 
to it, so it’s not an integer. Integers are represented by the int data type. On 
most platforms, you can store numbers between –9,223,372,036,854,775,808 
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and 9,223,372,036,854,775,807 within an int (which is the maximum value that 
fits in a 64-bit variable).

»» Any number that includes a decimal portion is a floating-point value. For exam-
ple, 1.0 has a decimal part, so it’s a floating-point value. Many people get 
confused about whole numbers and floating-point numbers, but the difference 
is easy to remember. If you see a decimal in the number, it’s a floating-point 
value. Python stores floating-point values in the float data type. The maximum 
value that a floating point variable can contain is ±1.7976931348623157 × 10308 
and the minimum value that a floating point variable can contain is 
±2.2250738585072014 × 10–308 on most platforms.

»» A complex number consists of a real number and an imaginary number that 
are paired together. In case you’ve completely forgotten about complex 
numbers, you can read about them at http://www.mathsisfun.com/
numbers/complex-numbers.html. The imaginary part of a complex number 
always appears with a j after it. So if you want to create a complex number 
with 3 as the real part and 4 as the imaginary part, you make an assignment 
like this: myComplex = 3 + 4j.

»» Logical arguments require Boolean values, which are named after George 
Bool. When using a Boolean value in Python, you rely on the bool type. 
A variable of this type can contain only two values: True or False. You can 
assign a value by using the True or False keywords, or you can create an 
expression that defines a logical idea that equates to true or false. For 
example, you could say myBool = 1 > 2, which would equate to False 
because 1 is most definitely not greater than 2.

Now that you have the basics down, it’s time to see the data types in action. The 
following paragraphs provide a quick overview of how you can work with both 
numeric and logical data in Python.

Performing variable assignments
When working with applications, you store information in variables. A variable is 
a kind of storage box. Whenever you want to work with the information, you 
access it using the variable. If you have new information that you want to store, 
you put it in a variable. Changing information means accessing the variable first 
and then storing the new value in the variable. Just as you store things in boxes in 
the real world, so you store things in variables (a kind of storage box) when work-
ing with applications. To store data in a variable, you assign the data to it using 
any of a number of assignment operators (special symbols that tell how to store the 
data). Table 4-1 shows the assignment operators that Python supports.

http://www.mathsisfun.com/numbers/complex-numbers.html
http://www.mathsisfun.com/numbers/complex-numbers.html
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Doing arithmetic
Storing information in variables makes it easily accessible. However, to perform 
any useful work with the variable, you usually perform some type of arithmetic 
operation on it. Python supports the common arithmetic operators you use to 
perform tasks by hand. They appear in Table 4-2.

TABLE 4-1	 Python Assignment Operators
Operator Description Example

= Assigns the value found in the right operand to the left operand MyVar = 5 results in 
MyVar containing 5

+= Adds the value found in the right operand to the value found in the left 
operand and places the result in the left operand

MyVar += 2 results in 
MyVar containing 7

-= Subtracts the value found in the right operand from the value found in 
the left operand and places the result in the left operand

MyVar -= 2 results in 
MyVar containing 3

*= Multiplies the value found in the right operand by the value found in the 
left operand and places the result in the left operand

MyVar *= 2 results in 
MyVar containing 10

/= Divides the value found in the left operand by the value found in the 
right operand and places the result in the left operand

MyVar /= 2 results in 
MyVar containing 2.5

%= Divides the value found in the left operand by the value found in the 
right operand and places the remainder in the left operand

MyVar %= 2 results in 
MyVar containing 1

**= Determines the exponential value found in the left operand when raised 
to the power of the value found in the right operand and places the 
result in the left operand

MyVar ** 2 results in 
MyVar containing 25

//= Divides the value found in the left operand by the value found in the right 
operand and places the integer (whole number) result in the left operand

MyVar //= 2 results in 
MyVar containing 2

TABLE 4-2	 Python Arithmetic Operators
Operator Description Example

+ Adds two values together 5 + 2 = 7

- Subtracts the right operand from the left operand 5 – 2 = 3

* Multiplies the right operand by the left operand 5 * 2 = 10

/ Divides the left operand by the right operand 5 / 2 = 2.5

% Divides the left operand by the right operand and returns the remainder 5 % 2 = 1

** Calculates the exponential value of the right operand by the left operand 5 ** 2 = 25

// Performs integer division, in which the left operand is divided by the right 
operand and only the whole number is returned (also called floor division)

5 // 2 = 2
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Sometimes you need to interact with just one variable. Python supports a number 
of unary operators, those that work with just one variable, as shown in Table 4-3.

Computers can perform other sorts of math tasks because of the way in which the 
processor works. It’s important to remember that computers store data as a series 
of individual bits. Python lets you access these individual bits by using bitwise 
operators, as shown in Table 4-4.

TABLE 4-3	 Python Unary Operators
Operator Description Example

~ Inverts the bits in a number so that all the 0 bits 
become 1 bits and vice versa

~4 results in a value of –5

- Negates the original value so that positive becomes 
negative and vice versa

–(–4) results in 4 and –4 results in –4

+ Is provided purely for the sake of completeness; returns 
the same value that you provide as input

+4 results in a value of 4

TABLE 4-4	 Python Bitwise Operators
Operator Description Example

& (And) Determines whether both individual bits within two operators 
are true and sets the resulting bit to true when they are.

0b1100 & 0b0110 =  
0b0100

| (Or) Determines whether either of the individual bits within two 
operators are true and sets the resulting bit to true when  
they are.

0b1100 | 0b0110 =  
0b1110

^ (Exclusive or) Determines whether just one of the individual bits within two 
operators is true and sets the resulting bit to true when one is. 
When both bits are true or both bits are false, the result is false.

0b1100 ^ 0b0110 =  
0b1010

~ (One’s 
complement)

Calculates the one’s complement value of a number. ~0b1100 = –0b1101

~0b0110 = –0b0111

<< (Left shift) Shifts the bits in the left operand left by the value of the right 
operand. All new bits are set to 0 and all bits that flow off the 
end are lost.

0b00110011 << 2 = 
0b11001100

>> (Right shift) Shifts the bits in the left operand right by the value of the right 
operand. All new bits are set to 0 and all bits that flow off the 
end are lost.

0b00110011 >> 2 = 
0b00001100
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Comparing data by using  
Boolean expressions
Using arithmetic to modify the content of variables is a kind of data manipulation. 
To determine the effect of data manipulation, a computer must compare the cur-
rent state of the variable against its original state or the state of a known value. In 
some cases, detecting the status of one input against another is also necessary. All 
these operations check the relationship between two variables, so the resulting 
operators are relational operators, as shown in Table 4-5.

Sometimes a relational operator can’t tell the whole story of the comparison of 
two values. For example, you might need to check a condition in which two sepa-
rate comparisons are needed, such as MyAge > 40 and MyHeight < 74. The need 
to add conditions to the comparison requires a logical operator of the sort shown 
in Table 4-6.

TABLE 4-5	 Python Relational Operators
Operator Description Example

== Determines whether two values are equal. Notice that the relational 
operator uses two equals signs. A mistake many developers make is 
using just one equals sign, which results in one value being assigned 
to another.

1 == 2 is False

!= Determines whether two values are not equal. Some older versions 
of Python allowed you to use the <> operator in place of the != 
operator. Using the <> operator results in an error in current 
versions of Python.

1 != 2 is True

> Verifies that the left operand value is greater than the right 
operand value.

1 > 2 is False

< Verifies that the left operand value is less than the right 
operand value.

1 < 2 is True

>= Verifies that the left operand value is greater than or equal to the 
right operand value.

1 >= 2 is False

<= Verifies that the left operand value is less than or equal to the right 
operand value.

1 <= 2 is True
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TABLE 4-6	 Python Logical Operators
Operator Description Example

and Determines whether both operands are true. True and True is True

True and False is False

False and True is False

False and False is False

or Determines when one of two operands is true. True or True is True

True or False is True

False or True is True

False or False is False

not Negates the truth value of a single operand. A true 
value becomes false and a false value becomes true.

not True is False

not False is True

Computers provide order to comparisons by making some operators more signifi-
cant than others. The ordering of operators is operator precedence. Table 4-7 shows 
the operator precedence of all the common Python operators, including a few you 
haven’t seen as part of a discussion yet. When making comparisons, always con-
sider operator precedence because otherwise, the assumptions you make about a 
comparison outcome will likely be wrong.

TABLE 4-7	 Python Operator Precedence
Operator Description

() You use parentheses to group expressions and to override the default precedence 
so that you can force an operation of lower precedence (such as addition) to take 
precedence over an operation of higher precedence (such as multiplication).

** Exponentiation raises the value of the left operand to the power of the 
right operand.

~ + - Unary operators interact with a single variable or expression.

* / % // Multiply, divide, modulo, and floor division.

+ - Addition and subtraction.

>> << Right and left bitwise shift.

& Bitwise AND.

^ | Bitwise exclusive OR and standard OR.

<= < > >= Comparison operators.

(continued)
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Creating and Using Strings
Of all the data types, strings are the most easily understood by humans and not 
understood at all by computers. A string is simply any grouping of characters you 
place within double quotation marks. For example, myString = "Python is a 
great language." assigns a string of characters to myString.

The main reason to use strings when working with algorithms is to provide user 
interaction — either as requests for input or as a means of making output easier 
to understand. You can also perform analysis of string data as part of working 
with algorithms, but the computer doesn’t actually require strings as part of its 
sequence of steps to obtain a solution to a problem. In fact, the computer doesn’t 
see letters at all. Every letter you use is represented by a number in memory. For 
example, the letter A is actually the number 65. To see this for yourself, type 
ord("A") at the Python prompt and press Enter. You see 65 as output. You can 
convert any single letter to its numeric equivalent using the ord() command.

Operator Description

== != Equality operators.

= %= /= //= -= += *= **= Assignment operators.

is

is not

Identity operators.

in

not in

Membership operators.

not or and Logical operators.

TABLE 4-7 (continued)

STARTING IPython
Most of the book relies on Jupyter Notebook (see Chapter 3) because it provides meth-
ods for creating, managing, and interacting with complex coding examples. However, 
sometimes you need a simple interactive environment to use for quick tests, which is 
the route this chapter uses. Anaconda comes with two such environments, IPython and 
Jupyter QT Console. Of the two, IPython is the simplest to use, but both environments 
provide similar functionality. To start IPython, simply click its entry in the Anaconda3 
folder on your system. For example, when working with Windows, you choose 
Start ➪   All Programs ➪   Anaconda3 ➪   IPython. You can also start IPython in a console or 
terminal window by typing IPython and pressing Enter.
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Because the computer doesn’t really understand strings, but strings are so useful 
in writing applications, you sometimes need to convert a string to a number. You 
can use the int() and float() commands to perform this conversion. For exam-
ple, if you type myInt = int("123") and press Enter at the Python prompt, you 
create an int named myInt that contains the value 123.

You can convert numbers to a string as well by using the str() command. For 
example, if you type myStr = str(1234.56) and press Enter, you create a string 
containing the value "1234.56" and assign it to myStr. The point is that you can 
go back and forth between strings and numbers with great ease. Later chapters 
demonstrate how these conversions make many seemingly impossible tasks quite 
doable.

As with numbers, you can use some special operators with strings (and many 
objects). The member operators enable you to determine when a string contains 
specific content. Table 4-8 shows these operators.

The discussion in this section also makes it obvious that you need to know the 
kind of data that variables contain. You use the identity operators to perform this 
task, as shown in Table 4-9.

TABLE 4-8	 Python Membership Operators
Operator Description Example

in Determines whether the value in the left operand 
appears in the sequence found in the right operand

“Hello” in “Hello Goodbye”  
is True

not in Determines whether the value in the left operand is 
missing from the sequence found in the right operand

“Hello” not in “Hello Goodbye”  
is False

TABLE 4-9	 Python Identity Operators
Operator Description Example

is Evaluates to true when the type of the value or 
expression in the right operand points to the same 
type in the left operand

type(2) is int is True

is not Evaluates to true when the type of the value or 
expression in the right operand points to a different 
type than the value or expression in the left operand

type(2) is not int is False
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Interacting with Dates
Dates and times are items that most people work with quite a bit. Society bases 
almost everything on the date and time that a task needs to be or was completed. 
We make appointments and plan events for specific dates and times. Most of our 
day revolves around the clock. When working with algorithms, the date or time at 
which a particular step in a sequence occurs can be just as important as how the 
step occurs and what happens as a result of performing the step. Algorithms rely 
on date and time to organize data so that humans can better understand the data 
and the resulting output of the algorithm.

Because of the time-oriented nature of humans, it’s a good idea to look at how 
Python deals with interacting with date and time (especially storing these values 
for later use). As with everything else, computers understand only numbers — 
date and time don’t really exist. The algorithm, not the computer, relies on date 
and time to help organize the series of steps performed to solve a problem.

To work with dates and times, you must issue a special import datetime com-
mand. Technically, this act is called importing a module. Don’t worry about how the 
command works right now — just use it whenever you want to do something with 
date and time.

Computers do have clocks inside them, but the clocks are for the humans using 
the computer. Yes, some software also depends on the clock, but again, the 
emphasis is on human needs rather than anything the computer might require. To 
get the current time, you can simply type datetime.datetime.now() and press 
Enter. You see the full date and time information as found on your computer’s 
clock, such as datetime.datetime(2016, 12, 20, 10, 37, 24, 460099).

You may have noticed that the date and time are a little hard to read in the existing 
format. Say that you want to get just the current date, and in a readable format. To 
accomplish this task, you access just the date portion of the output and convert it 
into a string. Type str(datetime.datetime.now().date()) and press Enter. You now 
have something a little more usable, such as '2016-12-20'.

Interestingly enough, Python also has a time() command, which you can use to 
obtain the current time. You can obtain separate values for each of the components 
that make up date and time using the day, month, year, hour, minute, second, and 
microsecond values. Later chapters help you understand how to use these various 
date and time features to make working with algorithms easier.
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Creating and Using Functions
Every step in an algorithm normally requires a single line of Python code — an 
English-like instruction that tells the computer how to move the problem solution 
one step closer to completion. You combine these lines of code to achieve a desired 
result. Sometimes you need to repeat the instructions with different data, and in 
some cases your code becomes so long that it’s hard to keep track of what each 
part does. Functions serve as organization tools that keep your code neat and tidy. 
In addition, functions make it easy to reuse the instructions you’ve created as 
needed with different data. This section of the chapter tells you all about func-
tions. More important, in this section you start creating your first serious applica-
tions in the same way that professional developers do.

Creating reusable functions
You go to your closet, take out pants and shirt, remove the labels, and put them 
on. At the end of the day, you take everything off and throw it in the trash. 
Hmmm . . . that really isn’t what most people do. Most people take the clothes 
off, wash them, and then put them back into the closet for reuse. Functions are 
reusable, too. No one wants to keep repeating the same task; it becomes monoto-
nous and boring. When you create a function, you define a package of code that 
you can use over and over to perform the same task. All you need to do is tell the 
computer to perform a specific task by telling it which function to use. The com-
puter faithfully executes each instruction in the function absolutely every time 
you ask it to do so.

When you work with functions, the code that needs services from the function is 
named the caller, and it calls upon the function to perform tasks for it. Much of the 
information you see about functions refers to the caller. The caller must supply 
information to the function, and the function returns information to the caller.

At one time, computer programs didn’t include the concept of code reusability. As 
a result, developers had to keep reinventing the same code. It didn’t take long for 
someone to come up with the idea of functions, though, and the concept has 
evolved over the years until functions have become quite flexible. You can make 
functions do anything you want. Code reusability is a necessary part of applica-
tions to

»» Reduce development time

»» Reduce programmer error

»» Increase application reliability
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»» Allow entire groups to benefit from the work of one programmer

»» Make code easier to understand

»» Improve application efficiency

In fact, functions do a whole list of things for applications in the form of reus-
ability. As you work through the examples in this book, you see how reusability 
makes your life significantly easier. If not for reusability, you’d still be program-
ming by plugging 0s and 1s into the computer by hand.

Creating a function doesn’t require much work. To see how functions work, open 
a copy of IPython and type in the following code (pressing Enter at the end of  
each line):

def SayHello():
    print('Hello There!')

To end the function, you press Enter a second time after the last line. A function 
begins with the keyword def (for define). You provide a function name, parenthe-
ses that can contain function arguments (data used in the function), and a colon. 
The editor automatically indents the next line for you. Python relies on whitespace 
to define code blocks (statements that are associated with each other in a 
function).

You can now use the function. Simply type SayHello() and press Enter. The paren-
theses after the function name are important because they tell Python to execute 
the function rather than tell you that you are accessing a function as an object (to 
determine what it is). You see Hello There! as the output.

Calling functions
Functions can accept arguments (additional bits of data) and return values. The 
capability to exchange data makes functions far more useful than they otherwise 
might be. The following sections describe how to call functions in a variety of 
ways to both send and receive data.

Sending requirement arguments
A function can require the caller to provide arguments to it. A required argument 
is a variable that must contain data for the function to work. Open a copy of IPy-
thon and type the following code:

def DoSum(Value1, Value2):
    return Value1 + Value2
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You have a new function, DoSum(). This function requires that you provide two 
arguments to use it. At least, that’s what you’ve heard so far. Type DoSum() and 
press Enter. You see an error message like this one:

TypeError
    Traceback (most recent call last)
<ipython-input-2-a37c1b30cd89> in <module>()
----> 1 DoSum()
  
TypeError: DoSum() missing 2 required positional
    arguments: 'Value1' and 'Value2'

Trying DoSum() with just one argument would result in another error message. To 
use DoSum() ,you must provide two arguments. To see how this works, type 
DoSum(1, 2) and press Enter. You see the expected result of 3.

Notice that DoSum() provides an output value of 3 when you supply 1 and 2 as 
inputs. The return statement provides the output value. Whenever you see return 
in a function, you know that the function provides an output value.

Sending arguments by keyword
As your functions become more complex and the methods to use them do as well, 
you may want to provide a little more control over precisely how you call the func-
tion and provide arguments to it. Until now, you have positional arguments, which 
means that you have supplied values in the order in which they appear in the 
argument list for the function definition. However, Python also has a method for 
sending arguments by keyword. In this case, you supply the name of the argument 
followed by an equals sign (=) and the argument value. To see how this works, 
open a copy of IPython and type the following code:

def DisplaySum(Value1, Value2):
    print(str(Value1) + ' + ' + str(Value2) + ' = ' +
    str((Value1 + Value2)))

Notice that the print() function argument includes a list of items to print and 
that those items are separated by plus signs (+). In addition, the arguments are of 
different types, so you must convert them using the str() function. Python makes 
it easy to mix and match arguments in this manner. This function also introduces 
the concept of automatic line continuation. The print() function actually appears 
on two lines, and Python automatically continues the function from the first line 
to the second.
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Next, it’s time to test DisplaySum(). Of course, you want to try the function using 
positional arguments first, so type DisplaySum(2, 3) and press Enter. You see the 
expected output of 2 + 3 = 5. Now type DisplaySum(Value2 = 3, Value1 = 2) and 
press Enter. Again, you receive the output 2 + 3 = 5 even though the position of 
the arguments has been reversed.

Giving function arguments a default value
Whether you make the call using positional arguments or keyword arguments, the 
functions to this point have required that you supply a value. Sometimes a func-
tion can use default values when a common value is available. Default values make 
the function easier to use and less likely to cause errors when a developer doesn’t 
provide an input. To create a default value, you simply follow the argument name 
with an equals sign and the default value. To see how this works, open a copy of 
IPython and type the following code:

def SayHello(Greeting = "No Value Supplied"):
    print(Greeting)

The SayHello() function provides an automatic value for Greeting when a caller 
doesn’t provide one. When someone tries to call SayHello() without an 
argument, it doesn’t raise an error. Type SayHello() and press Enter to see for 
yourself — you see the default message. Type SayHello("Howdy!") to see a nor-
mal response.

Creating functions with a variable  
number of arguments
In most cases, you know precisely how many arguments to provide with your 
function. It pays to work toward this goal whenever you can because functions 
with a fixed number of arguments are easier to troubleshoot later. However, 
sometimes you simply can’t determine how many arguments the function will 
receive at the outset. For example, when you create a Python application that 
works at the command line, the user might provide no arguments, the maximum 
number of arguments (assuming there is one), or any number of arguments in 
between.

Fortunately, Python provides a technique for sending a variable number of argu-
ments to a function. You simply create an argument that has an asterisk in front 
of it, such as *VarArgs. The usual technique is to provide a second argument that 
contains the number of arguments passed as an input. To see how this works, 
open a copy of IPython and type the following code:
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def DisplayMulti(ArgCount = 0, *VarArgs):
    print('You passed ' + str(ArgCount) + ' arguments.',
    VarArgs)

Notice that the print() function displays a string and then the list of arguments. 
Because of the way this function is designed, you can type DisplayMulti() and 
press Enter to see that you can pass zero arguments. To see multiple arguments at 
work, type DisplayMulti(3, 'Hello', 1, True) and press Enter. The output of ('You 
passed 3 arguments.', ('Hello', 1, True)) shows that you need not pass 
values of any particular type.

Using Conditional and Loop Statements
Algorithms often require steps that make decisions or perform some steps more 
than one time. For example, you might need to throw out a value that doesn’t fit 
with the rest of the data, which requires making a decision, or you might need to 
process the data more than once to obtain a desired result, such as when you filter 
the data. Python accommodates this need by providing special statements that 
make decisions or let you perform steps more than once, as described in the sec-
tions that follow.

Making decisions using the if statement
You use if statements regularly in everyday life. For example, you may say to 
yourself, “If it’s Wednesday, I’ll eat tuna salad for lunch.” The Python if state-
ment is a little less verbose, but it follows precisely the same pattern. To see how 
this works, open a copy of IPython and type the following code:

def TestValue(Value):
    if Value == 5:
        print('Value equals 5!')
    elif Value == 6:
        print('Value equals 6!')
    else:
        print('Value is something else.')
        print('It equals ' + str(Value))

Every Python if statement begins, oddly enough, with the word if. When Python 
sees if, it knows that you want it to make a decision. After the word if comes a 
condition. A condition simply states what sort of comparison you want Python to 
make. In this case, you want Python to determine whether Value contains the 
value 5.
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Notice that the condition uses the relational equality operator, ==, and not the 
assignment operator, =. A common mistake that developers make is to use the 
assignment operator rather than the equality operator. Using the assignment 
operator in place of the equality operator will cause your code to malfunction.

The condition always ends with a colon (:). If you don’t provide a colon, Python 
doesn’t know that the condition has ended and will continue to look for additional 
conditions on which to base its decision. After the colon comes any tasks you want 
Python to perform.

You may need to perform multiple tasks using a single if statement. The elif 
clause makes it possible to add an additional condition and associated tasks. A 
clause is an addendum to a previous condition, which is an if statement in this 
case. The elif clause always provides a condition, just as the if statement does, 
and it has its own associated set of tasks to perform.

Sometimes you need to do something no matter what the condition might be. In 
this case, you add the else clause. The else clause tells Python to do something 
in particular when the conditions of the if statement aren’t met.

Notice how indenting is becoming more important as the functions become more 
complex. The function contains an if statement. The if statement contains just 
one print() statement. The else clause contains two print() statements.

To see this function in action, type TestValue(1) and press Enter. You see the out-
put from the else clause. Type TestValue(5) and press Enter. The output now 
reflects the if statement output. Type TestValue(6) and press Enter. The output 
now shows the results of the elif clause. The result is that this function is more 
flexible than previous functions in the chapter because it can make decisions.

Choosing between multiple options  
using nested decisions
Nesting is the process of placing a subordinate statement within another state-
ment. You can nest any statement within any other statement, in most cases. To 
see how this works, open a copy of IPython and type the following code:

def SecretNumber():
   One = int(input("Type a number between 1 and 10: "))
   Two = int(input("Type a number between 1 and 10: "))
  
   if (One >= 1) and (One <= 10):
      if (Two >= 1) and (Two <= 10):
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         print('Your secret number is: ' + str(One * Two))
      else:
         print("Incorrect second value!")
   else:
      print("Incorrect first value!")

In this case, SecretNumber() asks you to provide two inputs. Yes, you can get 
inputs from a user when needed by using the input() function. The int() func-
tion converts the inputs to a number.

There are two levels of if statement this time. The first level checks for the valid-
ity of the number in One. The second level checks for the validity of the number in 
Two. When both One and Two have values between 1 and 10, .SecretNumber() out-
puts a secret number for the user.

To see SecretNumber() in action, type SecretNumber() and press Enter. Type 20 
and press Enter when asked for the first input value, and type 10 and press Enter 
when asked for the second. You see an error message telling you that the first 
value is incorrect. Type SecretNumber() and press Enter again. This time, use 
values of 10 and 20. The function will tell you that the second input is incorrect. 
Try the same sequence again using input values of 10 and 10.

Performing repetitive tasks  
using the for loop
Sometimes you need to perform a task more than one time. You use the for loop 
statement when you need to perform a task a specific number of times. The for 
loop has a definite beginning and a definite end. The number of times that this 
loop executes depends on the number of elements in the variable you provide. To 
see how this works, open a copy of IPython and type the following code:

def DisplayMulti(*VarArgs):
    for Arg in VarArgs:
        if Arg.upper() == 'CONT':
            continue
            print('Continue Argument: ' + Arg)
        elif Arg.upper() == 'BREAK':
            break
            print('Break Argument: ' + Arg)
        print('Good Argument: ' + Arg)

In this case, the for loop attempts to process each element in VarArgs. Notice that 
there is a nested if statement in the loop and it tests for two ending conditions. 
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In most cases, the code skips the if statement and simply prints the argument. 
However, when the if statement finds the words CONT or BREAK in the input val-
ues, it performs one of these two tasks:

»» continue: Forces the loop to continue from the current point of execution 
with the next entry in VarArgs.

»» break: Stops the loop from executing.

The keywords can appear using any combination of uppercase and lowercase let-
ters, such as ConT, because the upper() function converts them to uppercase. The 
DisplayMulti() function can process any number of input strings. To see it in 
action, type DisplayMulti('Hello', 'Goodbye', 'First', 'Last') and press Enter. You 
see each of the input strings presented on a separate line in the output. Now type 
DisplayMulti('Hello', 'Cont', 'Goodbye', 'Break', 'Last') and press Enter. Notice 
that the words Cont and Break don’t appear in the output because they’re key-
words. In addition, the word Last doesn’t appear in the output because the for 
loop ends before this word is processed.

Using the while statement
The while loop statement continues to perform tasks until such time that a con-
dition is no longer true. As with the for statement, the while statement supports 
both the continue and break keywords for ending the loop prematurely. To see 
how this works, open a copy of IPython and type the following code:

def SecretNumber():
   GotIt = False
   while GotIt == False:
      One = int(input("Type a number between 1 and 10: "))
      Two = int(input("Type a number between 1 and 10: "))
  
      if (One >= 1) and (One <= 10):
         if (Two >= 1) and (Two <= 10):
            print('Secret number is: ' + str(One * Two))
            GotIt = True
            continue
         else:
            print("Incorrect second value!")
      else:
         print("Incorrect first value!")
      print("Try again!")



CHAPTER 4  Introducing Python for Algorithm Programming      85

This is an expansion of the SecretNumber() function first described in the 
“Choosing between multiple options using nested decisions” section, earlier in 
this chapter. However, in this case, the addition of a while loop statement means 
that the function continues to ask for input until it receives a valid response.

To see how the while statement works, type SecretNumber() and press Enter. 
Type 20 and press Enter for the first prompt. Type 10 and press Enter for the sec-
ond prompt. The example tells you that the first number is wrong and then tells 
you to try again. Try a second time using values of 10 and 20. This time, the second 
number is wrong and you still need to try again. On the third try, use values of 10 
and 10. This time, you get a secret number. Notice that the use of a continue 
clause means that the application doesn’t tell you to try again.

Storing Data Using Sets, Lists, and Tuples
When working with algorithms, it’s all about the data. Python provides a host of 
methods for storing data in memory. Each method has advantages and 
disadvantages. Choosing the most appropriate method for your particular need is 
important. The following sections discuss three common techniques used for 
storing data for data science needs.

Creating sets
Most people have used sets at one time or another in school to create lists of items 
that belong together. These lists then became the topic of manipulation using 
math operations such as intersection, union, difference, and symmetric differ-
ence. Sets are the best option to choose when you need to perform membership 
testing and remove duplicates from a list. You can’t perform sequence-related 
tasks using sets, such as indexing or slicing. To see how you can work with sets, 
start a copy of IPython and type the following code:

SetA = set(['Red', 'Blue', 'Green', 'Black'])
SetB = set(['Black', 'Green', 'Yellow', 'Orange'])
SetX = SetA.union(SetB)
SetY = SetA.intersection(SetB)
SetZ = SetA.difference(SetB)

You now have five different sets to play with, each of which has some common 
elements. To see the results of each math operation, type print(‘{0}\n{1}\n{2}’.
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format(SetX, SetY, SetZ)) and press Enter. You see one set printed on each line, 
like this:

{'Blue', 'Orange', 'Red', 'Green', 'Black', 'Yellow'}
{'Green', 'Black'}
{'Blue', 'Red'}

The outputs show the results of the math operations: union(), intersection(), 
and difference(). Python’s fancier print formatting can be useful in working 
with collections such as sets. The format() function tells Python which objects to 
place within each of the placeholders in the string. A placeholder is a set of curly 
brackets ({}) with an optional number in it. The escape character (essentially a kind 
of control or special character), /n, provides a newline character between entries. 
You can read more about fancy formatting at https://docs.python.org/3/ 
tutorial/inputoutput.html.

You can also test relationships between the various sets. For example, type SetA.
issuperset(SetY) and press Enter. The output value of True tells you that SetA is a 
superset of SetY. Likewise, if you type SetA.issubset(SetX) and press Enter, you 
find that SetA is a subset of SetX.

It’s important to understand that sets are either mutable or immutable. All the 
sets in this example are mutable, which means that you can add or remove ele-
ments from them. For example, if you type SetA.add('Purple') and press Enter, 
SetA receives a new element. If you type SetA.issubset(SetX) and press Enter now, 
you find that SetA is no longer a subset of SetX because SetA has the 'Purple' 
element in it.

Creating lists
The Python specification defines a list as a kind of sequence. Sequences simply 
provide some means of allowing multiple data items to exist together in a single 
storage unit, but as separate entities. Think about one of those large mail holders 
you see in apartment buildings. A single mail holder contains a number of small 
mailboxes, each of which can contain mail. Python supports other kinds of 
sequences as well:

»» Tuples: A tuple is a collection that’s used to create complex, list-like sequences. 
An advantage of tuples is that you can nest the content of a tuple. This feature 
lets you create structures that can hold employee records or x-y coordinate  
pairs.

»» Dictionaries: As with the real dictionaries, you create key/value pairs when 
using the dictionary collection (think of a word and its associated definition). 

https://docs.python.org/3/tutorial/inputoutput.html
https://docs.python.org/3/tutorial/inputoutput.html
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A dictionary provides incredibly fast search times and makes ordering data 
significantly easier.

»» Stacks: Most programming languages support stacks directly. However, 
Python doesn’t support the stack, although a workaround exists for that. 
A stack is a last in/first out (LIFO) sequence. Think of a pile of pancakes: You 
can add new pancakes to the top and also take them off the top. A stack is an 
important collection that you can simulate in Python by using a list.

»» Queues: A queue is a first in/first out (FIFO) collection. You use it to track 
items that need to be processed in some way. Think of a queue as a line at the 
bank. You go into the line, wait your turn, and are eventually called to talk with 
a teller.

»» Deques: A double-ended queue (deque) is a queue-like structure that lets you 
add or remove items from either end, but not from the middle. You can use a 
deque as a queue or a stack or any other kind of collection to which you’re 
adding and from which you’re removing items in an orderly manner (in 
contrast to lists, tuples, and dictionaries, which allow randomized access and 
management).

Of all the sequences, lists are the easiest to understand and are the most directly 
related to a real-world object. Working with lists helps you become better able to 
work with other kinds of sequences that provide greater functionality and 
improved flexibility. The point is that the data is stored in a list much as you 
would write it on a piece of paper: One item comes after another. The list has a 
beginning, a middle, and an end. Python numbers the items in the list. (Even if 
you might not normally number the list items in real life, using a numbered list 
makes the items easy to access.) To see how you can work with lists, start a copy 
of IPython and type the following code:

ListA = [0, 1, 2, 3]
ListB = [4, 5, 6, 7]
ListA.extend(ListB)
ListA

When you type the last line of code, you see the output of [0, 1, 2, 3, 4, 5, 
6, 7]. The extend() function adds the members of ListB to ListA. Besides extend-
ing lists, you can also add to them by using the append() function. Type ListA.
append(-5) and press Enter. When you type ListA and press Enter again, you see 
that Python has added –5 to the end of the list. You may find that you need to 
remove items again, and you do that by using the remove() function. For example, 
type ListA.remove(-5) and press Enter. When you list ListA again by typing ListA 
and pressing Enter, you see that the added entry is gone.
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Lists also support concatenation by using the plus (+) sign to add one list to another. 
For example, if you type ListX = ListA + ListB and press Enter, you find that the 
newly created ListX contains both ListA and ListB in it, with the elements of 
ListA coming first.

Creating and using tuples
A tuple is a collection used to create complex lists, in which you can embed one 
tuple within another. This embedding lets you create hierarchies with tuples. A 
hierarchy can be something as simple as the directory listing of your hard drive or 
an organizational chart for your company. The idea is that you can create complex 
data structures using a tuple.

Tuples are immutable, which means that you can’t change them. You can create a 
new tuple with the same name and modify it in some way, but you can’t modify 
an existing tuple. Lists are mutable, which means that you can change them. So a 
tuple can seem at first to be at a disadvantage, but immutability has all sorts of 
advantages, such as being more secure as well as faster. In addition, immutable 
objects are easier to use with multiple processors. To see how you can work with 
tuples, start a copy of IPython and type the following code:

MyTuple = (1, 2, 3, (4, 5, 6, (7, 8, 9)))

MyTuple is nested three levels deep. The first level consists of the values 1, 2, 3, 
and a tuple. The second level consists of the values 4, 5, 6, and yet another tuple. 
The third level consists of the values 7, 8, and 9. To see how this works, type the 
following code into IPython:

for Value1 in MyTuple:
    if type(Value1) == int:
        print(Value1)
    else:
        for Value2 in Value1:
            if type(Value2) == int:
                print("\t", Value2)
            else:
                for Value3 in Value2:
                   print("\t\t", Value3)

When you run this code, you find that the values really are at three different levels. 
You can see the indentations showing the level:
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1
2
3
        4
        5
        6
                7
                8
                9

It is possible to perform tasks such as adding new values, but you must do it by 
adding the original entries and the new values to a new tuple. In addition, you can 
add tuples to an existing tuple only. To see how this works, type MyNewTuple = 
MyTuple.__add__((10, 11, 12, (13, 14, 15))) and press Enter. MyNewTuple con-
tains new entries at both the first and second levels, like this: (1, 2, 3, (4, 5, 
6, (7, 8, 9)), 10, 11, 12, (13, 14, 15)).

Defining Useful Iterators
The chapters that follow use all kinds of techniques to access individual values in 
various types of data structures. For this section, you use two simple lists, defined 
as the following:

ListA = ['Orange', 'Yellow', 'Green', 'Brown']
ListB = [1, 2, 3, 4]

The simplest method of accessing a particular value is to use an index. For exam-
ple, if you type ListA[1] and press Enter, you see 'Yellow' as the output. All 
indexes in Python are zero based, which means that the first entry is 0, not 1.

Ranges present another simple method of accessing values. For example, if you 
type ListB[1:3] and press Enter, the output is [2, 3]. You could use the range as 
input to a for loop, such as

for Value in ListB[1:3]:
    print(Value)

Instead of the entire list, you see just 2 and 3 as outputs, printed on separate lines. 
The range has two values separated by a colon. However, the values are optional. 
For example, ListB[:3] would output [1, 2, 3]. When you leave out a value, the 
range starts at the beginning or the end of the list, as appropriate.
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Sometimes you need to process two lists in parallel. The simplest method of doing 
this is to use the zip() function. Here’s an example of the zip() function in 
action:

for Value1, Value2 in zip(ListA, ListB):
    print(Value1, '\t', Value2)

This code processes both ListA and ListB at the same time. The processing ends 
when the for loop reaches the shortest of the two lists. In this case, you see the 
following:

Orange  1
Yellow  2
Green   3
Brown   4

This is the tip of the iceberg. You see a host of iterator types used throughout the 
book. The idea is to enable you to list just the items you want, rather than all the 
items in a list or other data structure. Some of the iterators used in upcoming 
chapters are a little more complicated than what you see here, but this is an 
important start.

Indexing Data Using Dictionaries
A dictionary is a special kind of sequence that uses a name and value pair. The use 
of a name makes it easy to access particular values with something other than a 
numeric index. To create a dictionary, you enclose name and value pairs in curly 
brackets. Create a test dictionary by typing MyDict = {'Orange':1, 'Blue':2, 
'Pink':3} and pressing Enter.

To access a particular value, you use the name as an index. For example, type 
MyDict[‘Pink’] and press Enter to see the output value of 3. The use of dictionar-
ies as data structures makes it easy to access incredibly complex data sets using 
terms that everyone can understand. In many other respects, working with a 
dictionary is the same as working with any other sequence.

Dictionaries do have some special features. For example, type MyDict.keys() and 
press Enter to see a list of the keys. You can use the values() function to see the 
list of values in the dictionary.
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IN THIS CHAPTER

»» Using matrixes and vectors to 
perform calculations

»» Obtaining the correct combinations

»» Employing recursive techniques to 
obtain specific results

»» Considering ways to speed 
calculations

Performing Essential 
Data Manipulations 
Using Python

Chapter 4 discusses the use of Python as a means for expressing in concrete 
terms those arcane symbols often used in mathematical representations of 
algorithms. In that chapter, you discover the various language constructs 

used to perform tasks in Python. However, simply knowing how to control a 
language by using its constructs to perform tasks isn’t enough. The goal of 
mathematical algorithms is to turn one kind of data into another kind of data. 
Manipulating data means taking raw input and doing something with it to achieve 
a desired result. (As with data science, this is a topic covered in Python for Data 
Science For Dummies, by John Paul Mueller and Luca Massaron [Wiley].) For 
example, until you do something with traffic data, you can’t see the patterns that 
emerge that tell you where to spend additional money in improvements. The 
traffic data in its raw form does nothing to inform you — you must manipulate it 
to see the pattern in a useful manner. Therefore, those arcane symbols are useful 
after all. You use them as a sort of machine to turn raw data into something 
helpful, which is what you discover in this chapter.

Chapter 5
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In times past, people actually had to perform the various manipulations to make 
data useful by hand, which required advanced knowledge of math. Fortunately, 
you can find Python packages to perform most of these manipulations using a 
little code. You don’t have to memorize arcane manipulations anymore — just 
know which Python features to use. That’s what this chapter helps you achieve. 
You discover the means to perform various kinds of data manipulations using 
easily accessed Python packages designed especially for the purpose. The chapter 
begins with vector and matrix manipulations. Later sections discuss techniques 
such as recursion that can make the tasks even simpler and perform some tasks 
that are nearly impossible using other means. You also discover how to speed up 
the calculations so that you spend less time manipulating the data and more time 
doing something really interesting with it, such as discovering just how to keep 
quite so many traffic jams from occurring.

Performing Calculations Using  
Vectors and Matrixes

To perform useful work with Python, you often need to work with larger amounts 
of data that comes in specific forms. These forms have odd-sounding names, but 
the names are quite important. The three terms you need to know for this chapter 
are as follows:

»» Scalar: A single base data item. For example, the number 2 shown by itself 
is a scalar.

»» Vector: A one-dimensional array (essentially a list) of data items. For example, 
an array containing the numbers 2, 3, 4, and 5 would be a vector. You access 
items in a vector using a zero-based index, a pointer to the item you want. The 
item at index 0 is the first item in the vector, which is 2 in this case.

»» Matrix: A two-or-more-dimensional array (essentially a table) of data items. 
For example, an array containing the numbers 2, 3, 4, and 5 in the first row 
and 6, 7, 8, and 9 in the second row is a matrix. You access items in a matrix 
using a zero-based row-and-column index. The item at row 0, column 0 is the 
first item in the matrix, which is 2 in this case.

Python provides an interesting assortment of features on its own, as described in 
Chapter 4, but you’d still need to do a lot of work to perform some tasks. To reduce 
the amount of work you do, you can rely on code written by other people and 
found in packages. The following sections describe how to use the NumPy package 
to perform various tasks on scalars, vectors, and matrixes.
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Understanding scalar and vector  
operations
The NumPy package provides essential functionality for scientific computing in 
Python. To use numpy, you import it using a command such as import numpy 
as np. Now you can access numpy using the common two-letter abbreviation np.

Python provides access to just one data type in any particular category. For exam-
ple, if you need to create a variable that represents a number without a decimal 
portion, you use the integer data type. Using a generic designation like this is use-
ful because it simplifies code and gives the developer a lot less to worry about. 
However, in scientific calculations, you often need better control over how data 
appears in memory, which means having more data types, something that numpy 
provides for you. For example, you might need to define a particular scalar as a 
short (a value that is 16 bits long). Using numpy, you could define it as myShort = 
np.short(15). You could define a variable of precisely the same size using the np.
int16 function. The NumPy package provides access to a side assortment of data 
types described at https://docs.scipy.org/doc/numpy/reference/arrays.
scalars.html.

Use the numpy array function to create a vector. For example, myVect = np. 
array([1, 2, 3, 4]) creates a vector with four elements. In this case, the vector 
contains standard Python integers. You can also use the arange function to pro-
duce vectors, such as myVect = np.arange(1, 10, 2), which fills myVect with 
array([1, 3, 5, 7, 9]). The first input tells the starting point, the second the 
stopping point, and the third the step between each number. A fourth argument 
lets you define the data type for the vector. You can also create a vector with a 
specific data type. All you need to do is specify the data type like this: myVect = 
np.array(np.int16([1, 2, 3, 4])) to fill myVect with a vector like this: 
array([1, 2, 3, 4], dtype=int16).

In some cases, you need special numpy functions to create a vector (or a matrix) of 
a specific type. For example, some math tasks require that you fill the vector with 
ones. In this case, you use the ones function like this: myVect = np.ones(4, 
dtype=np.int16) to fill myVect with ones of specific data types like this: 
array([1, 1, 1, 1], dtype=int16). You can also use a zeros function to fill a 
vector with zeros.

You can perform basic math functions on vectors as a whole, which makes this 
incredibly useful and less prone to errors that can occur when using programming 
constructs such as loops to perform the same task. For example, myVect + 1 pro-
duces an output of array([2, 3, 4, 5]) when working with standard Python 
integers. If you choose to work with the numpy int16 data type, myVect + 1  
produces array([2, 3, 4, 5], dtype=int16). Note that the output tells you 
specifically which data type is in use. As you might expect, myVect - 1 produces 

https://docs.scipy.org/doc/numpy/reference/arrays.scalars.html
https://docs.scipy.org/doc/numpy/reference/arrays.scalars.html
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an output of array([0, 1, 2, 3]). You can even use vectors in more complex 
math scenarios, such as 2 ** myVect, where the output is array([ 2,  4,  8, 
16], dtype=int32). When used in this manner, however, numpy often assigns a 
specific type to the output, even when you define a vector using standard Python 
integers.

As a final thought on scalar and vector operations, you can also perform both logi-
cal and comparison tasks. For example, the following code performs comparison 
operations on two arrays:

a = np.array([1, 2, 3, 4])
b = np.array([2, 2, 4, 4])
  
a == b
array([False,  True, False,  True], dtype=bool)
  
a < b
array([ True, False,  True, False], dtype=bool)

Starting with two vectors, a and b, the code checks whether the individual ele-
ments in a equal those in b. In this case, a[0] doesn’t equal b[0]. However, a[1] 
does equal b[1]. The output is a vector of type bool that contains true or 
false  values based on the individual comparisons. Likewise, you can check for 
instances when a < b and produce another vector containing the truth-values in 
this instance.

Logical operations rely on special functions. You check the logical output of the 
Boolean operators AND, OR, XOR, and NOT.  Here is an example of the logical 
functions:

a = np.array([True, False, True, False])
b = np.array([True, True, False, False])
  
np.logical_or(a, b)
array([ True,  True,  True, False], dtype=bool)
  
np.logical_and(a, b)
array([ True, False, False, False], dtype=bool)
  
np.logical_not(a)
array([False,  True, False,  True], dtype=bool)
  
np.logical_xor(a, b)
array([False,  True,  True, False], dtype=bool)
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You can also use numeric input to these functions. When using numeric input, a 0 
is false and a 1 is true. As with comparisons, the functions work on an element- 
by-element basis even though you make just one call. You can read more about the 
logic functions at https://docs.scipy.org/doc/numpy-1.10.0/reference/
routines.logic.html.

Performing vector multiplication
Adding, subtracting, or dividing vectors occurs on an element-by-element basis, 
as described in the previous section. However, when it comes to multiplication, 
things get a little odd. In fact, depending on what you really want to do, things can 
become quite odd indeed. Consider the sort of multiplication discussed in the pre-
vious section. Both myVect * myVect and np.multiply(myVect, myVect) pro-
duce an element-by-element output of array([ 1,  4,  9, 16]).

Unfortunately, an element-by-element multiplication can produce incorrect 
results when working with algorithms. In many cases, what you really need is a dot 
product, which is the sum of the products of two number sequences. When working 
with vectors, the dot product is always the sum of the individual element-by- 
element multiplications and results in a single number. For example, myVect.
dot(myVect) results in an output of 30. If you sum the values from the element- 
by-element multiplication, you find that they do indeed add up to 30. The discussion 
at https://www.mathsisfun.com/algebra/vectors-dot-product.html tells you 
about dot products and helps you understand where they might fit in with algorithms. 
You can learn more about the linear algebra manipulation functions for numpy at 
https://docs.scipy.org/doc/numpy/reference/routines.linalg.html.

Creating a matrix is the right way to start
Many of the same techniques you use with vectors also work with matrixes. To 
create a basic matrix, you simply use the array function as you would with a vec-
tor, but you define additional dimensions. A dimension is a direction in the matrix. 
For example, a two-dimensional matrix contains rows (one direction) and col-
umns (a second direction). The array call myMatrix = np.array([[1,2,3], 
[4,5,6], [7,8,9]]) produces a matrix containing three rows and three columns, 
like this:

array([[1, 2, 3],
       [4, 5, 6],
       [7, 8, 9]])

https://docs.scipy.org/doc/numpy-1.10.0/reference/routines.logic.html
https://docs.scipy.org/doc/numpy-1.10.0/reference/routines.logic.html
https://www.mathsisfun.com/algebra/vectors-dot-product.html
https://docs.scipy.org/doc/numpy/reference/routines.linalg.html
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Note how you embed three lists within a container list to create the two dimen-
sions. To access a particular array element, you provide a row and column index 
value, such as myMatrix[0, 0] to access the first value of 1. You can produce 
matrixes with any number of dimensions using a similar technique. For example, 
myMatrix = np.array([[[1,2], [3,4]], [[5,6], [7,8]]]) produces a three-
dimensional matrix with an x, y, and z axis that looks like this:

array([[[1, 2],
        [3, 4]],
  
       [[5, 6],
        [7, 8]]])

In this case, you embed two lists, within two container lists, within a single con-
tainer list that holds everything together. In this case, you must provide an x, y, 
and z index value to access a particular value. For example, myMatrix[0, 1, 1] 
accesses the value 4.

In some cases, you need to create a matrix that has certain start values. For 
example, if you need a matrix filled with ones at the outset, you can use the ones 
function. The call to myMatrix = np.ones([4,4], dtype=np.int32) produces a 
matrix containing four rows and four columns filled with int32 values, like this:

array([[1, 1, 1, 1],
       [1, 1, 1, 1],
       [1, 1, 1, 1],
       [1, 1, 1, 1]])

Likewise, a call to myMatrix = np.ones([4,4,4], dtype=np.bool) will create a 
three-dimensional array. This time, the matrix will contain Boolean values of 
True. There are also functions for creating a matrix filled with zeros, the identity 
matrix, and for meeting other needs. You can find a full listing of vector  
and matrix array-creation functions at https://docs.scipy.org/doc/numpy/ 
reference/routines.array-creation.html.

The NumPy package supports an actual matrix class. The matrix class supports 
special features that make it easier to perform matrix-specific tasks. You discover 
these features later in the chapter. For now, all you really need to know is how to 
create a matrix of the matrix data type. The easiest method is to make a call simi-
lar to the one you use for the array function, but using the mat function instead, 
such as myMatrix = np.mat([[1,2,3], [4,5,6], [7,8,9]]), which produces 
the following matrix:

https://docs.scipy.org/doc/numpy/reference/routines.array-creation.html
https://docs.scipy.org/doc/numpy/reference/routines.array-creation.html
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matrix([[1, 2, 3],
        [4, 5, 6],
        [7, 8, 9]])

You can also convert an existing array to a matrix using the asmatrix function. 
Use the asarray function to convert a matrix object back to an array form.

The only problem with the matrix class is that it works on only two-dimensional 
matrixes. If you attempt to convert a three-dimensional matrix to the matrix 
class, you see an error message telling you that the shape is too large to be a 
matrix.

Multiplying matrixes
Multiplying two matrixes involves the same concerns as multiplying two vectors 
(as discussed in the “Performing vector multiplication” section, earlier in this 
chapter). The following code produces an element-by-element multiplication of 
two matrixes.

a = np.array([[1,2,3],[4,5,6]])
b = np.array([[1,2,3],[4,5,6]])

a*b
array([[ 1,  4,  9],
       [16, 25, 36]])

Note that a and b are the same shape, two rows and three columns. To perform an 
element-by-element multiplication, the two matrixes must be the same shape. 
Otherwise, you see an error message telling you that the shapes are wrong. As 
with vectors, the multiply function also produces an element-by-element result.

Dot products work completely differently with matrixes. In this case, the number 
of columns in matrix a must match the number of rows in matrix b. However, the 
number of rows in matrix a can be any number, and the number of columns in 
matrix b can be any number as long as you multiply a by b. For example, the fol-
lowing code produces a correct dot product:

a = np.array([[1,2,3],[4,5,6]])
b = np.array([[1,2,3],[3,4,5],[5,6,7]])
  
a.dot(b)
array([[22, 28, 34],
       [49, 64, 79]])
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Note that the output contains the number of rows found in matrix a and the num-
ber of columns found in matrix b. So how does this all work? To obtain the value 
found in the output array at index [0,0] of 22, you sum the values of a[0,0]*b[0,0] 
(which is 1), a[0,1]*b[1,0] (which is 6), and a[0,2]*b[2,0] (which is 15) to obtain 
the value of 22. The other entries work precisely the same way.

An advantage of using the NumPy matrix class is that some tasks become more 
straightforward. For example, multiplication works precisely as you expect it 
should. The following code produces a dot product using the matrix class:

a = np.mat([[1,2,3],[4,5,6]])
b = np.mat([[1,2,3],[3,4,5],[5,6,7]])
  
a*b
matrix([[22, 28, 34],
        [49, 64, 79]])

The output with the * operator is the same as using the dot function with an 
array. This example also points out that you must know whether you’re using an 
array or a matrix object when performing tasks such as multiplying two matrixes.

To perform an element-by-element multiplication using two matrix objects, you 
must use the numpy multiply function.

Defining advanced matrix operations
This book takes you through all sorts of interesting matrix operations, but you use 
some of them commonly, which is why they appear in this chapter. When working 
with arrays, you sometimes get data in a shape that doesn’t work with the algo-
rithm. Fortunately, numpy comes with a special reshape function that lets you put 
the data into any shape needed. In fact, you can use it to reshape a vector into a 
matrix, as shown in the following code:

changeIt = np.array([1,2,3,4,5,6,7,8])
  
changeIt
array([1, 2, 3, 4, 5, 6, 7, 8])
  
changeIt.reshape(2,4)
array([[1, 2, 3, 4],
       [5, 6, 7, 8]])
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changeIt.reshape(2,2,2)
array([[[1, 2],
        [3, 4]],
  
       [[5, 6],
        [7, 8]]])

The starting shape of changeIt is a vector, but using the reshape function turns 
it into a matrix. In addition, you can shape the matrix into any number of dimen-
sions that work with the data. However, you must provide a shape that fits with 
the required number of elements. For example, calling changeIt.reshape(2,3,2) 
will fail because there aren’t enough elements to provide a matrix of that size.

You may encounter two important matrix operations in some algorithm formula-
tions. They are the transpose and inverse of a matrix. Transposition occurs when a 
matrix of shape n x m is transformed into a matrix m x n by exchanging the rows 
with the columns. Most texts indicate this operation by using the superscript T, as 
in AT. You see this operation used most often for multiplication in order to obtain 
the right dimensions. When working with numpy, you use the transpose function 
to perform the required work. For example, when starting with a matrix that has 
two rows and four columns, you can transpose it to contain four rows with two 
columns each, as shown in this example:

changeIt
array([[1, 2, 3, 4],
       [5, 6, 7, 8]])
  
np.transpose(changeIt)
array([[1, 5],
       [2, 6],
       [3, 7],
       [4, 8]])

You apply matrix inversion to matrixes of shape m x m, which are square matrixes 
that have the same number of rows and columns. This operation is quite important 
because it allows the immediate resolution of equations involving matrix 
multiplication, such as y=bX, where you have to discover the values in the vector b.  
Because most scalar numbers (exceptions include zero) have a number whose 
multiplication results in a value of 1, the idea is to find a matrix inverse whose 
multiplication will result in a special matrix called the identity matrix. To see an 
identity matrix in numpy, use the identity function like this:

np.identity(4)
array([[ 1.,  0.,  0.,  0.],
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       [ 0.,  1.,  0.,  0.],
       [ 0.,  0.,  1.,  0.],
       [ 0.,  0.,  0.,  1.]])

Note that an identity matrix contains all ones on the diagonal. Finding the inverse 
of a scalar is quite easy (the scalar number n has an inverse of n–1 that is 1/n). It’s 
a different story for a matrix. Matrix inversion involves quite a large number of 
computations. The inverse of a matrix A is indicated as A–1. When working with 
numpy, you use the linalg.inv function to create an inverse. The following exam-
ple shows how to create an inverse, use it to obtain a dot product, and then com-
pare that dot product to the identity matrix by using the allclose function.

a = np.array([[1,2], [3,4]])
b = np.linalg.inv(a)
  
np.allclose(np.dot(a,b), np.identity(2))
True

Sometimes, finding the inverse of a matrix is impossible. When a matrix cannot 
be inverted, it is referred to as a singular matrix or a degenerate matrix. Singular 
matrixes aren’t the norm; they’re quite rare.

Creating Combinations the Right Way
Shaping data often involves viewing the data in multiple ways. Data isn’t simply a 
sequence of numbers — it presents a meaningful sequence that, when ordered the 
proper way, conveys information to the viewer. Creating the right data combina-
tions by manipulating data sequences is an essential part of making algorithms do 
what you want them to do. The following sections look at three data-shaping 
techniques: permutations, combinations, and repetitions.

Distinguishing permutations
When you receive raw data, it appears in a specific order. The order can represent 
just about anything, such as the log of a data input device that monitors some-
thing like a production line. Perhaps the data is a series of numbers representing 
the number of products made at any particular moment in time. The reason that 
you receive the data in a particular order is important, but perhaps that order 
doesn’t lend itself to obtaining the output you need from an algorithm. Perhaps 
creating a data permutation, a reordering of the data so that it presents a different 
view, will help achieve a desired result.



CHAPTER 5  Performing Essential Data Manipulations Using Python      101

You can view permutations in a number of ways. One method of viewing a permu-
tation is as a random presentation of the sequence order. In this case, you can use 
the numpy random.permutation function, as shown here:

a = np.array([1,2,3])
np.random.permutation(a)
array([2, 3, 1])

The output on your system will likely vary from the output shown. Each time you 
run this code, you receive a different random ordering of the data sequence, which 
comes in handy with algorithms that require you to randomize the dataset to 
obtain the desired results. For example, sampling is an essential part of data ana-
lytics, and the technique shown is an efficient way to perform this task.

Another way to view the issue is the need to obtain all the permutations for a 
dataset so that you can try each one in turn. To perform this task, you need to 
import the itertools package. The following code shows a technique you can use 
to obtain a list of all the permutations of a particular vector:

from itertools import permutations
  
a = np.array([1,2,3])
  
for p in permutations(a):
    print(p)
  
(1, 2, 3)
(1, 3, 2)
(2, 1, 3)
(2, 3, 1)
(3, 1, 2)
(3, 2, 1)

To save the list of sets, you could always create a blank list and rely on the append 
function to add each set to the list instead of printing the items one at a time, as 
shown in the code. The resulting list could serve as input to an algorithm designed 
to work with multiple sets. You can read more about itertools at https://docs.
python.org/3/library/itertools.html.

Shuffling combinations
In some cases, you don’t need an entire dataset; all you really need are a few of the 
members in combinations of a specific length. For example, you might have a 
dataset containing four numbers and want only two number combinations from it.  

https://docs.python.org/3/library/itertools.html
https://docs.python.org/3/library/itertools.html
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(The ability to obtain parts of a dataset is a key function for generating a fully con-
nected graph, which is described in Part 3 of the book.) The following code shows 
how to obtain such combinations:

from itertools import combinations
  
a = np.array([1,2,3,4])
  
for comb in combinations(a, 2):
    print(comb)
  
(1, 2)
(1, 3)
(1, 4)
(2, 3)
(2, 4)
(3, 4)

The output contains all the possible two-number combinations of a. Note that this 
example uses the itertools combinations function (the permutations function 
appears in the previous section). Of course, you might not need all those combina-
tions; perhaps a random subset of them would work better. In this case, you can 
rely on the random.sample function to come to your aid, as shown here:

pool = []
  
for comb in combinations(a, 2):
    pool.append(comb)
  
  
random.sample(pool, 3)
[(1, 4), (3, 4), (1, 2)]

The precise combinations you see as output will vary. However, the idea is that 
you’ve limited your dataset in two ways. First, you’re not using all the data ele-
ments all the time, and second, you’re not using all the possible combinations of 
those data elements. The effect is to create a relatively random-looking set of data 
elements that you can use as input to an algorithm.

Another variation of this theme is to create a complete list but randomize the 
order of the elements. The act of randomizing the list order is shuffling, and you 
use the random.shuffle function to do it. In fact, Python provides a whole host of 
randomizing methods that you can see at https://docs.python.org/3/library/
random.html. Many of the later examples in this book also rely on randomization 
to help obtain the correct output from algorithms.

https://docs.python.org/3/library/random.html
https://docs.python.org/3/library/random.html
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Facing repetitions
Repeated data can unfairly weight the output of an algorithm so that you get inac-
curate results. Sometimes you need unique values to determine the outcome of a 
data manipulation. Fortunately, Python makes it easy to remove certain types of 
repeated data. Consider this example:

a = np.array([1,2,3,4,5,6,6,7,7,1,2,3])
b = np.array(list(set(a)))
  
b
array([1, 2, 3, 4, 5, 6, 7])

In this case, a begins with an assortment of numbers in no particular order and 
with plenty of repetitions. In Python, a set never contains repeated data. Conse-
quently, by converting the list in a to a set and then back to a list, and then 
placing that list in an array, you obtain a vector that has no repeats.

Getting the Desired Results  
Using Recursion

Recursion is an elegant method of solving many computer problems that relies on 
the capability of a function to continue calling itself until it satisfies a particular 
condition. The term recursion actually comes from the Latin verb recurrere, which 
means to run back.

When you use recursion, you solve a problem by calling the same function multiple 
times but modifying the terms under which you call it. The main reason for using 
recursion is that it provides an easier way to solve problems when working with 
some algorithms because it mimics the way a human would solve it. Unfortunately, 
recursion is not an easy tool because it requires some effort to understand how to 
build a recursive routine and it can cause out-of-memory problems on your 
computer if you don’t set some memory settings. The following sections detail 
how recursion works and give you an example of how recursion works in Python.

Explaining recursion
Many people have a problem using recursion because they can’t easily visualize 
how it works. In most cases, you call a Python function, it does something, and 
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then it stops. However, in recursion, you call a Python function, it does some-
thing, and then it calls itself repeatedly until the task reaches a specific 
condition — but all those previous calls are still active. The calls unwind them-
selves one at a time until the first call finally ends with the correct answer, and 
this unwinding process is where most people encounter a problem. Figure  5-1 
shows how recursion looks when using a flow chart.

Notice the conditional in the center. To make recursion work, the function must 
have such a conditional or it could become an endless loop. The conditional deter-
mines one of two things:

»» The conditions for ending recursion haven’t been met, so the function must 
call itself again.

»» The conditions for ending recursion have been met, so the function returns a 
final value that is used to calculate the ending result.

FIGURE 5-1: 
In the recursion 

process, a 
function 

continuously calls 
itself until it 

meets a 
condition.
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When a function calls itself, it doesn’t use the same arguments that were passed 
to it. If it continuously used the same arguments, the condition would never 
change and the recursion would never end. Consequently, recursion requires that 
subsequent calls to the function must change the call arguments in order to bring 
the function closer to an ending solution.

One of the most common examples of recursion for all programming languages is 
the calculation of a factorial. A factorial is the multiplication of a series of numbers 
between a starting point and an ending point in which each number in the series 
is one less than the number before it. For example, to calculate 5! (read as five 
factorial) you multiple 5 * 4 * 3 * 2 * 1. The calculation represents a perfect and 
simple example of recursion. Here’s the Python code you can use to perform the 
calculation. (You can find this code in the A4D; 05; Recursion.ipynb file on the 
Dummies site as part of the downloadable code; see the Introduction for details.)

def factorial(n):
    print("factorial called with n = ", str(n))
    if n == 1 or n == 0:
        print("Ending condition met.")
        return 1
    else:
        return n * factorial(n-1)
  
print(factorial(5))
  
factorial called with n =  5
factorial called with n =  4
factorial called with n =  3
factorial called with n =  2
factorial called with n =  1
Ending condition met.
120

The code meets the ending condition when n == 1. Each successive call to 
factorial uses factorial(n-1), which reduces the starting argument by 1. The 
output shows each successive call to factorial and the meeting of the final 
condition. The result, 120, equals 5! (five factorial).

It’s important to realize that there isn’t just one method for using recursion to solve 
a problem. As with any other programming technique, you can find all sorts of ways 
to accomplish the same thing. For example, here’s another version of the factorial 
recursion that uses fewer lines of code but effectively performs the same task:

def factorial(n):
    print("factorial called with n = ", str(n))
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    if n > 1:
        return n * factorial(n-1)
    print("Ending condition met.")
    return 1
  
print(factorial(5))
  
factorial called with n =  5
factorial called with n =  4
factorial called with n =  3
factorial called with n =  2
factorial called with n =  1
Ending condition met.
120

Note the difference. Instead of checking the ending condition, this version checks 
the continuation condition. As long as n is greater than 1, the code will continue 
to make recursive calls. Even though this code is shorter than the previous ver-
sion, it’s also less clear because now you must think about what condition will end 
the recursion.

Eliminating tail call recursion
Many forms of recursion rely on a tail call. In fact, the example in the previous 
section does. A tail call occurs any time the recursion makes a call to the function 
as the last thing before it returns. In the previous section, the line return n * 
factorial(n-1) is the tail call.

Tail calls aren’t necessarily bad, and they represent the manner in which most 
people write recursive routines. However, using a tail call forces Python to keep 
track of the individual call values until the recursion rewinds. Each call consumes 
memory. At some point, the system will run out of memory and the call will fail, 
causing your algorithm to fail as well. Given the complexity and huge datasets 
used by some algorithms today, tail calls can cause considerable woe to anyone 
using them.

With a little fancy programming, you can potentially eliminate tail calls from your 
recursive routines. You can find a host of truly amazing techniques online, such as 
the use of a trampoline, as explained at http://blog.moertel.com/posts/2013- 
06-12-recursion-to-iteration-4-trampolines.html. However, the simplest 
approach to take when you want to eliminate recursion is to create an iterative 
alternative that performs the same task. For example, here is a factorial func-
tion that uses iteration instead of recursion to eliminate the potential for memory 
issues:

http://blog.moertel.com/posts/2013-06-12-recursion-to-iteration-4-trampolines.html
http://blog.moertel.com/posts/2013-06-12-recursion-to-iteration-4-trampolines.html
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def factorial(n):
    print("factorial called with n = ", str(n))
    result = 1
    while n > 1:
        result = result * n
        n = n - 1
        print("Current value of n is ", str(n))
    print("Ending condition met.")
    return result
  
print(factorial(5))
  
factorial called with n =  5
Current value of n is  4
Current value of n is  3
Current value of n is  2
Current value of n is  1
Ending condition met.
120

The basic flow of this function is the same as the recursive function. A while loop 
replaces the recursive call, but you still need to check for the same condition and 
continue looping until the data meets the condition. The result is the same. How-
ever, replacing recursion with iteration is nontrivial in some cases, as explored in 
the example at http://blog.moertel.com/posts/2013-06-03-recursion-to- 
iteration-3.html.

Performing Tasks More Quickly
Obviously, getting tasks done as quickly as possible is always ideal. However, you 
always need to carefully weigh the techniques you use to achieve this. Trading a 
little memory to perform a task faster is great as long as you have the memory to 
spare. Later chapters in the book explore all sorts of ways to perform tasks faster, 
but you can try some essential techniques no matter what sort of algorithm you’re 
working with at any given time. The following sections explore some of these 
techniques.

Considering divide and conquer
Some problems look overwhelming when you start them. Take, for example, writ-
ing a book. If you consider the entire book, writing it is an overwhelming task. 
However, if you break the book into chapters and consider just one chapter, the 

http://blog.moertel.com/posts/2013-06-03-recursion-to-iteration-3.html
http://blog.moertel.com/posts/2013-06-03-recursion-to-iteration-3.html
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problem seems a little more doable. Of course, an entire chapter can seem a bit 
daunting, too, so you break the task down into first-level headings, which seems 
even more doable, but still not quite doable enough. The first-level headings could 
contain second-level headings and so on until you have broken down the problem 
of writing about a topic into short articles as much as you can. Even a short article 
can seem too hard, so you break it down into paragraphs, then into sentences, and 
finally into individual words. Writing a single word isn’t too hard. So, writing a 
book comes down to writing individuals words —lots of them. This is how divide 
and conquer works. You break a problem down into smaller problems until you 
find a problem that you can solve without too much trouble.

Computers can use the divide-and-conquer approach as well. Trying to solve a 
huge problem with an enormous dataset could take days — assuming that the 
task is even doable. However, by breaking the big problem down into smaller 
pieces, you can solve the problem much faster and with fewer resources. For 
example, when searching for an entry in a database, searching the entire database 
isn’t necessary if you use a sorted database. Say that you’re looking for the word 
Hello in the database. You can begin by splitting the database in half (letters A 
through M and letters N through Z). The numeric value of the H in Hello (a value of 
72 when using a standard ASCII table) is less than M (a value of 77) in the alpha-
bet, so you look at the first half of the database rather than the second. Splitting 
the remaining half again (letters A through G and letters H through M), you now 
find that you need the second half of the remainder, which is now only a quarter 
of the database. Further splits eventually help you find precisely what you want by 
searching only a small fraction of the entire database. You call this search approach 
a binary search. The problem becomes one of following these steps:

1.	 Split the content in question in half.

2.	 Compare the keys for the content with the search term.

3.	 Choose the half that contains the key.

4.	 Repeat Steps 1 through 3 until you find the key.

Most divide-and-conquer problems follow a similar approach, even though some 
of these approaches become quite convoluted. For example, instead of just split-
ting the database in half, you might split it into thirds in some cases. However, the 
goal is the same in all cases: Divide the problem into a smaller piece and deter-
mine whether you can solve the problem using just that piece as a generalized 
case. After you find the generalized case that you know how to solve, you can use 
that piece to solve any other piece as well. The following code shows an extremely 
simple version of a binary search that assumes that you have the list sorted. (You 
can find this code in the A4D; 05; Binary Search.ipynb file on the Dummies site 
as part of the downloadable code; see the Introduction for details.)
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def search(searchList, key):
    mid = int(len(searchList) / 2)
    print("Searching midpoint at ", str(searchList[mid]))
  
    if mid == 0:
        print("Key Not Found!")
        return key
  
    elif key == searchList[mid]:
        print("Key Found!")
        return searchList[mid]
  
    elif key > searchList[mid]:
        print("searchList now contains ",
              searchList[mid:len(searchList)])
        search(searchList[mid:len(searchList)], key)
  
    else:
        print("searchList now contains ",
              searchList[0:mid])
        search(searchList[0:mid], key)
  
aList = list(range(1, 21))
search(aList, 5)
  
Searching midpoint at  11
searchList now contains  [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
Searching midpoint at  6
searchList now contains  [1, 2, 3, 4, 5]
Searching midpoint at  3
searchList now contains  [3, 4, 5]
Searching midpoint at  4
searchList now contains  [4, 5]
Searching midpoint at  5
Key Found!

This recursive approach to the binary search begins with aList containing the 
numbers 1 through 20. It searches for a value of 5 in aList. Each iteration of the 
recursion begins by looking for the list’s midpoint, mid, and then using that mid-
point to determine the next step. When the key matches the midpoint, the value 
is found in the list and the recursion ends.
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Note that this example makes one of two recursive calls. When key is greater than 
the midpoint value of the existing list, searchList[mid], the code calls search 
again with just the right side of the remaining list. In other words, every call to 
search uses just half the list found in the previous call. When key is less than or 
equal to searchList[mid], search receives the left half of the existing list.

The list may not contain a search value, so you must always provide an escape 
method for the recursion or the stack will fill, resulting in an error message. In 
this case, the escape occurs when mid == 0, which means that there is no more 
searchList to search. For example, if you change search(aList, 5) to 
search(aList, 22), you obtain the following output instead:

Searching midpoint at  11
searchList now contains  [11, 12, 13, 14, 15, 16, 17, 18,
 19, 20]
Searching midpoint at  16
searchList now contains  [16, 17, 18, 19, 20]
Searching midpoint at  18
searchList now contains  [18, 19, 20]
Searching midpoint at  19
searchList now contains  [19, 20]
Searching midpoint at  20
searchList now contains  [20]
Searching midpoint at  20
Key Not Found!

Note also that the code looks for the escape condition before performing any other 
work to ensure that the code doesn’t inadvertently cause an error because of the 
lack of searchList content. When working with recursion, you must remain pro-
active or endure the consequences later.

Distinguishing between different  
possible solutions
Recursion is part of many different algorithmic programming solutions, as you 
see in the upcoming chapters. In fact, it’s hard to get away from recursion in 
many cases because an iterative approach proves nonintuitive, cumbersome, and 
time consuming. However, you can create a number of different versions of the 
same solution, each of which has its own characteristics, flaws, and virtues.
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The solution that this chapter doesn’t consider is sequential search, because a 
sequential search generally takes longer than any other solution you can employ. 
In a best-case scenario, a sequential search requires just one comparison to com-
plete the search, but in a worst-case scenario, you find the item you want as the 
last check. As an average, sequential search requires (n+1)/2 checks or O(n) time 
to complete.

The binary search in the previous section does a much better job than a sequential 
search does. It works on logarithmic time or O(log n). In a best-case scenario, it 
takes only one check, as with a sequential search, but the output from the example 
shows that even a worst-case scenario, where the value doesn’t even appear in the 
list, takes only six checks rather than the 21 checks that a sequential search would 
require.

This book covers a wide variety of search and sort algorithms because searching 
and sorting represent two major categories of computer processing. Think about 
how much time you spend Googling data each day. In theory, you might spend 
entire days doing nothing but searching for data. Search routines work best with 
sorted data, so you see the need for efficient search and sort routines. Fortunately, 
you don’t have to spend hours trying to figure out which search and sort routines 
work best. Sites such as Big-O Cheat Sheet, http://bigocheatsheet.com/, pro-
vide you with the data needed to determine which solution performs best.

If you look at performance times alone, however, the data you receive can mislead 
you into thinking that a particular solution will work incredibly well for your 
application when in fact it won’t. You must also consider the kind of data you 
work with, the complexity of creating the solution, and a host of other factors. 
That’s why later examples in this book also consider the pros and cons of each 
approach — the hidden dangers of choosing a solution that seems to have poten-
tial and then fails to produce the desired result.

http://bigocheatsheet.com/
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Use various Python data structures.

Work with trees and graphs.

Sort data to make algorithms work faster.

Search data to locate precisely the right information 
quickly.

Employ hashing techniques to create smaller data 
indexes.



CHAPTER 6  Structuring Data      115

IN THIS CHAPTER

»» Defining why data requires structure

»» Working with stacks, queues, lists, 
and dictionaries

»» Using trees to organize data

»» Using graphs to represent data with 
relations

Structuring Data

Raw data is just that: raw. It’s not structured or cleaned in any way. You 
might find some parts of it missing or damaged in some way, or simply that 
it won’t work for your problem. In fact, you’re not entirely sure just what 

you’re getting because it’s raw.

Before you can do anything with most data, you must structure it in some manner 
so that you can begin to see what the data contains (and, sometimes, what it 
doesn’t). Structuring data entails organizing it in some way so that all the data 
has the same attributes, appearance, and components. For example, you might get 
data from one source that contains dates in string form and another source that 
uses date objects. To use the information, you must make the kinds of data match. 
Data sources might also structure the data differently. One source might have the 
last and first name in a single field; another source might use individual fields for 
the same information. An important part of structuring data is organization. You 
aren’t changing the data in any way  — simply making the data more useful. 
(Structuring data contrasts with remediating or shaping the data where you 
sometimes do change values to convert one data type to another or experience a 
loss of accuracy, such as with dates, when moving between data sources.)

Python provides access to a number of organizational structures for data. The 
book uses these structures, especially stacks, queues, and dictionaries, for many 
of the examples. Each data structure provides a different means of working with 
the data and a different set of tools for performing tasks such as sorting the data 
into a particular order. This chapter presents you with the most common 
organizational methods, including both trees and graphs (both of which are so 
important that they appear in their own sections).

Chapter 6
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Determining the Need for Structure
Structure is an essential element in making algorithms work. As shown in the 
binary search example in Chapter 5, implementing an algorithm using structured 
data is much easier than trying to figure out how to interpret the data in code. For 
example, the binary search example relies on having the data in sorted order. Try-
ing to perform the required comparisons with unsorted data would require a lot 
more effort and potentially prove impossible to implement. With all this in mind, 
you need to consider the structural requirements for the data you use with your 
algorithms, as discussed in the following sections.

Making it easier to see the content
An essential need to meet as part of working with data is to understand the data 
content. A search algorithm works only when you understand the dataset so that 
you know what to search for using the algorithm. Looking for words when the 
dataset contains numbers is an impossible task that always results in errors. Yet, 
search errors due to a lack of understanding of dataset content are a common 
occurrence even with the best search engines. Humans make assumptions about 
dataset content that cause algorithms to fail. Consequently, the better you can see 
and understand the content through structured formatting, the easier it becomes 
to perform algorithm-based tasks successfully.

However, even looking at the content is often error prone when dealing with 
humans and computers. For example, if you attempt to search for a number for-
matted as a string when the dataset contains the numbers formatted as integers, 
the search will fail. Computers don’t automatically translate between strings and 
integers as humans do. In fact, computers see everything as numbers, and strings 
are only an interpretation imposed on the numbers by a programmer. Therefore, 
when searching for "1" (the string), the computer sees it as a request for the 
number 49 when using ASCII characters. To find the numeric value 1, you must 
search for a 1 as an integer value.

Structure also enables you to discover nuanced data details. For example, a tele-
phone number can appear in the form (555)555-1212. If you perform a search or 
other algorithm task using the form 1(555)555-1212, the search might fail because 
of the addition of a 1 at the beginning of the search term. These sorts of issues 
cause significant problems because most people see the two forms as equal, but 
the computer doesn’t. The computer sees two completely different forms and 
even sees them as being two different lengths. Trying to impose form on humans 
rarely works and generally results in frustration that makes using the algorithm 
even harder, so structure imposed through data manipulation becomes even more 
important.
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Matching data from various sources
Interacting with data from a single source is one problem; interacting with data 
from several sources is quite another. However, datasets today generally come 
from more than one source, so you need to understand the complications that 
using multiple data sources can cause. When working with multiple data sources, 
you must do the following:

»» Determine whether both datasets contain all the required data. Two design-
ers are unlikely to create datasets that contain precisely the same data, in the 
same format, of the same type, and in the same order. Consequently, you 
need to consider whether the datasets provide the data you need or whether 
you need to remediate the data in some way to obtain the desired result, as 
discussed in the next section.

»» Check both datasets for data type issues. One dataset could have dates input 
as strings, and another could have the dates input as actual date objects. 
Inconsistencies between data types will cause problems for an algorithm that 
expects data in one form and receives it in another.

»» Ensure that all datasets place the same meaning on data elements. Data 
created by one source might have a different meaning than data created by 
another source. For example, the size of an integer can vary across sources, 
so you might see a 16-bit integer from one source and a 32-bit integer from 
another. Lower values have the same meaning, but the 32-bit integer can 
contain larger values, which can cause problems with the algorithm. Dates can 
also cause problems because they often rely on storing so many milliseconds 
since a given date (such as JavaScript, which stores the number of milliseconds 
since 01 January, 1970 UTC). The computer sees only numbers; humans add 
meaning to these numbers so that applications interpret them in specific ways.

»» Verify the data attributes. Data items have specific attributes, which is why 
Chapter 4 tells you all about how Python interprets various data types. 
Chapter 5 points out that this interpretation can change when using numpy. 
In fact, you find that data attributes change between environments, and 
developers can change them even more by creating custom data types. To 
combine data from various sources, you must understand these attributes to 
ensure that you interpret the data correctly.

The more time you spend verifying the compatibility of data from each of the 
sources you want to use for a dataset, the less likely you are to encounter problems 
when working with an algorithm. Data incompatibility issues don’t always appear 
as outright errors. In some cases, an incompatibility can cause other issues, such 
as errant results that look correct but provide misleading information.
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Combining data from multiple sources may not always mean creating a new data-
set that looks precisely like the source datasets, either. In some cases, you create 
data aggregates or perform other forms of manipulation to create new data from 
the existing data. Analysis takes all sorts of forms, and some of the more exotic 
forms can produce terrible errors when used incorrectly. For example, one data 
source could provide general customer information and a second data source could 
provide customer-buying habits. Mismatches between the two sources might 
match customers with incorrect buying habit information and cause problems 
when you try to market new products to these customers. As an extreme example, 
consider what would happen when combining patient information from several 
sources and creating combined patient entries in a new data source with all sorts 
of mismatches. A patient without a history of a particular disease could end up 
with records showing diagnosis and care of the disease.

Considering the need for remediation
After you find problems with your dataset, you need to remediate it so that the 
dataset works properly with the algorithms you use. For example, when working 
with conflicting data types, you must change the data types of each data source so 
that they match and then create the single data source used with the algorithm. 
Most of this remediation, although time consuming, is straightforward. You sim-
ply need to ensure that you understand the data before making changes, which 
means being able to see the content in the context of what you plan to do with it. 
However, you need to consider what to do in two special cases: data duplication 
and missing data. The following sections show how to deal with these issues.

Dealing with data duplication
Duplicated data occurs for a number of reasons. Some of them are obvious. A user 
could enter the same data more than once. Distractions cause people to lose their 
place in a list or sometimes two users enter the same record. Some of the sources 
are less obvious. Combining two or more datasets could create multiple records 
when the data appears in more than one location. You could also create data dupli-
cations when using various data-shaping techniques to create new data from 
existing data sources. Fortunately, packages such as Pandas let you remove dupli-
cate data, as shown in the following example. (You can find this code in the A4D; 
06; Remediation.ipynb file on the Dummies site as part of the downloadable 
code; see the Introduction for details.)

import pandas as pd
  
df = pd.DataFrame({'A': [0,0,0,0,0,1,0],
                   'B': [0,2,3,5,0,2,0],
                   'C': [0,3,4,1,0,2,0]})
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print(df, "\n")
  
df = df.drop_duplicates()
print(df)
  
   A  B  C
0  0  0  0
1  0  2  3
2  0  3  4
3  0  5  1
4  0  0  0
5  1  2  2
6  0  0  0
  
   A  B  C
0  0  0  0
1  0  2  3
2  0  3  4
3  0  5  1
5  1  2  2

The drop_duplicates function removes the duplicate records found in rows 4 and 
6 in this example. By reading your data from a source into a pandas DataFrame, 
you can quickly remove the extra entries so that the duplicates don’t unfairly 
weight the output of any algorithms you use.

Dealing with missing values
Missing values can also skew the results of an algorithm’s output. In fact, they can 
cause some algorithms to react oddly or even raise an error. The point is that 
missing values cause problems with your data, so you need to remove them. You 
do have many options when working with missing values. For example, you could 
simply set them to a standard value, such as 0 for integers. Of course, using a 
standard setting could also skew the results. Another approach is to use the mean 
of all the values, which tends to make the missing values not count. Using a mean 
is the approach taken in the following example

import pandas as pd
import numpy as np
  
df = pd.DataFrame({'A': [0,0,1,None],
                   'B': [1,2,3,4],
                   'C': [np.NAN,3,4,1]},
                 dtype=int)
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print(df, "\n")
  
values = pd.Series(df.mean(), dtype=int)
print(values, "\n")
  
df = df.fillna(values)
print(df)
  
      A  B    C
0     0  1  NaN
1     0  2    3
2     1  3    4
3  None  4    1
  
A    0
B    2
C    2
dtype: int32
  
   A  B  C
0  0  1  2
1  0  2  3
2  1  3  4
3  0  4  1

The fillna function enables you to get rid of the missing values whether they’re 
not a number (NAN) or simply missing (None). You can supply the missing data 
values in a number of forms. This example relies on a series that contains the 
mean for each separate column of data (much as you would do when working with 
a database).

Note that the code is careful not to introduce errors into the output by ensuring 
that values is of the right data type. Normally, the mean function outputs 
floating-point values, but you can force the series it fills into the right type. 
Consequently, the output not only lacks missing values but also does contain val-
ues of the correct type.

Understanding other remediation issues
Remediation can take a number of other forms. Sometimes a user provides incon-
sistent or incorrect input. Applications don’t always enforce data input rules, so 
users can enter incorrect state or region names. Misspellings also occur. Some-
times values are out of range or are simply impossible in a given situation. You 
may not always be able to clean your data completely on the first try. Often, you 
become aware of a problem by running the algorithm and noting that the results 
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are skewed in some way or that the algorithm doesn’t work at all (even if it did 
work on a subset of the data). When in doubt, check your data for potential reme-
diation needs.

Stacking and Piling Data in Order
Python provides a number of storage methodologies, as discussed in Chapter 4. As 
you’ve already seen in Chapter 5, and this chapter, packages often offer additional 
storage methods. Both NumPy and Pandas provide storage alternatives that you 
might consider when working through various data structuring problems.

A common problem of data storage isn’t just the fact that you need to store the 
data, but that you must store it in a particular order so that you can access it when 
necessary. For example, you may want to ensure that the first item you place on a 
stack of items to process is also the first item you actually do process. With this 
data-ordering issue in mind, the following sections describe the standard Python 
methods for ensuring orderly data storage that let you have a specific processing 
arrangement.

Ordering in stacks
A stack provides last in/first out (LIFO) data storage. The NumPy package provides 
an actual stack implementation. In addition, Pandas associates stacks with objects 
such as the DataFrame. However, both packages hide the stack implementation 
details, and seeing how a stack works really does help. Consequently, the follow-
ing example implements a stack using a standard Python list. (You can find this 
code in the A4D; 06; Stacks, Queues, and Dictionaries.ipynb file on the 
Dummies site as part of the downloadable code; see the Introduction for details.)

MyStack = []
StackSize = 3
  
def DisplayStack():
   print("Stack currently contains:")
   for Item in MyStack:
      print(Item)
  
def Push(Value):
   if len(MyStack) < StackSize:
      MyStack.append(Value)
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   else:
      print("Stack is full!")
  
def Pop():
   if len(MyStack) > 0:
      print("Popping: ", MyStack.pop())
   else:
      print("Stack is empty.")
  
Push(1)
Push(2)
Push(3)
DisplayStack()
  
Push(4)
  
Pop()
DisplayStack()
  
Pop()
Pop()
Pop()
  
Stack currently contains:
1
2
3
Stack is full!
Popping:  3
Stack currently contains:
1
2
Popping:  2
Popping:  1
Stack is empty.

The example ensures that the stack maintains the integrity of the data and works 
with it in the order you expect. The code relies on simple list manipulation, but 
it’s effective in providing a stack representation that you can use for any need.

Python lists are ordered lists of data values that are easy and intuitive to use. From 
an algorithm perspective, they often don’t perform well because they store the list 
elements in computer memory and access them using an index and memory pointers 
(a number that provides the memory address of the data). They work exactly the 
way a book index or a package does. Lists don’t have knowledge of their content. 
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When your application makes a data request, the list scans through all its items, 
which is even slower. When data is scattered across your computer’s memory, lists 
must gather the data from each location individually and slowing access more.

Using queues
Unlike stacks, queues are first in/first out (FIFO) data structures. As with stacks, 
you can find predefined implementations in many packages, including both NumPy 
and Pandas. Fortunately, you can also find a specific queue implementation in 
Python, which you find demonstrated in the following code:

import queue
  
MyQueue = queue.Queue(3)
  
print("Queue empty: ", MyQueue.empty())
  
MyQueue.put(1)
MyQueue.put(2)
MyQueue.put(3)
print("Queue full: ", MyQueue.full())
  
print("Popping: ", MyQueue.get())
print("Queue full: ", MyQueue.full())
  
print("Popping: ", MyQueue.get())
print("Popping: ", MyQueue.get())
print("Queue empty: ", MyQueue.empty())
  
Queue empty:  True
Queue full:  True
Popping:  1
Queue full:  False
Popping:  2
Popping:  3
Queue empty:  True

Using the built-in queue requires a lot less code than building a stack from scratch 
using a list, but notice how the two differ in output. The stack example pushes 
1, 2, and 3 onto the stack, so the first value popped from the stack is 3. However, in 
this example, pushing 1, 2, and 3 onto the queue results in a first popped value of 1.
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Finding data using dictionaries
Creating and using a dictionary is much like working with a list except that you 
must now define a key and value pair. The great advantage of this data structure 
is that dictionaries can quickly provide access to specific data items using the key. 
There are limits to the kinds of keys you can use. Here are the special rules for 
creating a key:

»» The key must be unique. When you enter a duplicate key, the information 
found in the second entry wins; the first entry replaces the second.

»» The key must be immutable. This rule means that you can use strings, 
numbers, or tuples for the key. You can’t, however, use a list for a key.

The difference between mutable and immutable values is that immutable 
values can’t change. To change the value of a string, for example, Python 
actually creates a new string that contains the new value and gives the new 
string the same name as the old one. It then destroys the old string.

Python dictionaries are the software implementation of a data structure called a 
hash table, an array that maps keys to values. Chapter 7 explains hashes in detail 
and how using hashes can help dictionaries perform faster. You have no restric-
tions on the values you provide. A value can be any Python object, so you can use 
a dictionary to access an employee record or other complex data. The following 
example helps you understand how to use dictionaries better:

Colors = {"Sam": "Blue", "Amy": "Red", "Sarah": "Yellow"}
  
print(Colors["Sarah"])
print(Colors.keys())
  
for Item in Colors.keys():
   print("{0} likes the color {1}."
      .format(Item, Colors[Item]))
  
Colors["Sarah"] = "Purple"
Colors.update({"Harry": "Orange"})
del Colors["Sam"]
  
print(Colors)
  
Yellow
dict_keys(['Sarah', 'Amy', 'Sam'])
Sarah likes the color Yellow.
Amy likes the color Red.
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Sam likes the color Blue.
{'Harry': 'Orange', 'Sarah': 'Purple', 'Amy': 'Red'}

As you can see, a dictionary always has a key and value pair separated from each 
other by a colon (:). Instead of using an index to access individual values, you use 
the key. The special keys function lets you obtain a list of keys that you can 
manipulate in various ways. For example, you can use the keys to perform itera-
tive processing of the data values that the dictionary contains.

Dictionaries are a bit like individual tables within a database. You can update, add, 
and delete records to a dictionary as shown. The update function can overwrite or 
add new entries to the dictionary.

Working with Trees
A tree structure looks much like the physical object in the natural world. Using 
trees helps you organize data quickly and find it in a shorter time than using other 
data-storage techniques. You commonly find trees used for search and sort rou-
tines, but they have many other purposes as well. The following sections help you 
understand trees at a basic level. You find trees used in many of the examples in 
upcoming chapters.

Understanding the basics of trees
Building a tree works much like building a tree in the physical world. Each item 
you add to the tree is a node. Nodes connect to each other using links. The combi-
nation of nodes and links forms a structure that looks much like a tree, as shown 
in Figure 6-1.

Note that the tree has just one root node— just as with a physical tree. The root 
node provides the starting point for the various kinds of processing you perform. 
Connected to the root node are either branches or leaves. A leaf node is always an 
ending point for the tree. Branch nodes support either other branches or leaves. 
The type of tree shown in Figure 6-1 is a binary tree because each node has, at 
most, two connections.

In looking at the tree, Branch B is the child of the Root node. That’s because the 
Root node appears first in the list. Leaf E and Leaf F are both children of Branch B, 
making Branch B the parent of Leaf E and Leaf F. The relationship between nodes 
is important because discussions about trees often consider the child/parent rela-
tionship between nodes. Without these terms, discussions of trees could become 
quite confusing.
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Building a tree
Python doesn’t come with a built-in tree object. You must either create your own 
implementation or use a tree supplied with a package. A basic tree implementa-
tion requires that you create a class to hold the tree data object. The following code 
shows how you can create a basic tree class. (You can find this code in the A4D; 
06; Trees.ipynb file on the Dummies site as part of the downloadable code; see 
the Introduction for details.)

class binaryTree:
    def __init__(self, nodeData, left=None, right=None):
        self.nodeData = nodeData
        self.left  = left
        self.right = right
  
    def __str__(self):
        return str(self.nodeData)

All this code does is create a basic tree object that defines the three elements that 
a node must include: data storage, left connection, and right connection. Because 
leaf nodes have no connection, the default value for left and right is None. The 
class also includes a method for printing the content of nodeData so that you can 
see what data the node stores.

Using this simple tree requires that you not try to store anything in left or right 
other than a reference to another node. Otherwise, the code will fail because there 

FIGURE 6-1: 
A tree in Python 
looks much like 

the physical 
alternative.
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isn’t any error trapping. The nodeData entry can contain any value. The following 
code shows how to use the binaryTree class to build the tree shown in 
Figure 6-1:

tree = binaryTree("Root")
BranchA = binaryTree("Branch A")
BranchB = binaryTree("Branch B")
tree.left = BranchA
tree.right = BranchB
  
LeafC = binaryTree("Leaf C")
LeafD = binaryTree("Leaf D")
LeafE = binaryTree("Leaf E")
LeafF = binaryTree("Leaf F")
BranchA.left = LeafC
BranchA.right = LeafD
BranchB.left = LeafE
BranchB.right = LeafF

You have many options when building a tree, but building it from the top down (as 
shown in this code) or the bottom up (in which you build the leaves first) are two 
common methods. Of course, you don’t really know whether the tree actually 
works at this point. Traversing the tree means checking the links and verifying that 
they actually do connect as you think they should. The following code shows how 
to use recursion (as described in Chapter 5) to traverse the tree you just built.

def traverse(tree):
    if tree.left != None:
        traverse(tree.left)
    if tree.right != None:
        traverse(tree.right)
    print(tree.nodeData)
  
traverse(tree)
  
Leaf C
Leaf D
Branch A
Leaf E
Leaf F
Branch B
Root
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As the output shows, the traverse function doesn’t print anything until it gets to 
the first leaf. It then prints both leaves and the parent of those leaves. The traversal 
follows the left branch first, and then the right branch. The root node comes last.

There are different kinds of data storage structures. Here is a quick list of the 
kinds of structures you commonly find:

»» Balanced trees: A kind of tree that maintains a balanced structure through 
reorganization so that it can provide reduced access times. The number of 
elements on the left size differs from the number on the right side by 
at most one.

»» Unbalanced trees: A tree that places new data items wherever necessary in 
the tree without regard to balance. This method of adding items makes 
building the tree faster but reduces access speed when searching or sorting.

»» Heaps: A sophisticated tree that allows data insertions into the tree structure. 
The use of data insertion makes sorting faster. You can further classify these 
trees as max heaps and min heaps, depending on the tree’s capability to 
immediately provide the maximum or minimum value present in the tree.

Later in the book, you find algorithms that use balanced trees, unbalanced 
trees, and heaps. For instance, Chapter 9 discusses the Dijkstra algorithm and 
Chapter 14 discusses Huffman encoding. As part of these discussions, the book 
provides pictures and code to explain how each data structure functions and its 
role in making the algorithm work.

Representing Relations in a Graph
Graphs are another form of common data structure used in algorithms. You see 
graphs used in places like maps for GPS and all sorts of other places where the top 
down approach of a tree won’t work. The following sections describe graphs in 
more detail.

Going beyond trees
A graph is a sort of a tree extension. As with trees, you have nodes that connect to 
each other to create relationships. However, unlike binary trees, a graph can 
have more than one or two connections. In fact, graph nodes often have a multi-
tude of connections. To keep things simple, though, consider the graph shown in 
Figure 6-2.
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In this case, the graph creates a ring where A connects to both B and F. However, 
it need not be that way. A could be a disconnected node or could also connect 
to C. A graph shows connectivity between nodes in a way that is useful for defining 
complex relationships.

Graphs also add a few new twists that you might not have thought about before. 
For example, a graph can include the concept of directionality. Unlike a tree, 
which has parent/child relationships, a graph node can connect to any other 
node with a specific direction in mind. Think about streets in a city. Most streets 
are bidirectional, but some are one-way streets that allow movement in only one 
direction.

The presentation of a graph connection might not actually reflect the realities of 
the graph. A graph can designate a weight to a particular connection. The weight 
could define the distance between two points, define the time required to traverse 
the route, or provide other sorts of information.

FIGURE 6-2: 
Graph nodes 

can connect to 
each other in 
myriad ways.
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Building graphs
Most developers use dictionaries (or sometimes lists) to build graphs. Using a 
dictionary makes building the graph easy because the key is the node name and 
the values are the connections for that node. For example, here is a dictionary that 
creates the graph shown in Figure 6-2. (You can find this code in the A4D; 06; 
Graphs.ipynb file on the Dummies site as part of the downloadable code; see the 
Introduction for details.)

graph = {'A': ['B', 'F'],
         'B': ['A', 'C'],
         'C': ['B', 'D'],
         'D': ['C', 'E'],
         'E': ['D', 'F'],
         'F': ['E', 'A']}

This dictionary reflects the bidirectional nature of the graph in Figure  6-2. It 
could just as easily define unidirectional connections or provide nodes without 
any connections at all. However, the dictionary works quite well for this purpose, 
and you see it used in other areas of the book. Now it’s time to traverse the graph 
using the following code:

def find_path(graph, start, end, path=[]):
        path = path + [start]
  
        if start == end:
            print("Ending")
            return path
  
        for node in graph[start]:
            print("Checking Node ", node)
  
            if node not in path:
                print("Path so far ", path)
  
                newp = find_path(graph, node, end, path)
                if newp:
                    return newp
  
find_path(graph, 'B', 'E')
  
Checking Node  A
Path so far  ['B']
Checking Node  B
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Checking Node  F
Path so far  ['B', 'A']
Checking Node  E
Path so far  ['B', 'A', 'F']
Ending
  
['B', 'A', 'F', 'E']

Later chapters discuss how to find the shortest path. For now, the code finds only 
a path. It begins by building the path node by node. As with all recursive routines, 
this one requires an exit strategy, which is that when the start value matches the 
end value, the path ends.

Because each node in the graph can connect to multiple nodes, you need a for loop 
to check each of the potential connections. When the node in question already 
appears in the path, the code skips it. Otherwise, the code tracks the current path 
and recursively calls find_path to locate the next node in the path.
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IN THIS CHAPTER

»» Performing sorts using Mergesort 
and Quicksort

»» Conducting searches using trees and 
the heap

»» Considering the uses for hashing and 
dictionaries

Arranging and 
Searching Data

Data surrounds you all the time. In fact, you really can’t get away from it. 
Everything from the data needed to make business work to the nutritional 
guide on the side of your box of cereal relies on data. The four data opera-

tions are create, read, update, and delete (CRUD), which focus on the need to 
access the data you need to perform just about every task in life quickly and easily. 
That’s why having the means to arrange and search data in a number of ways is 
essential. Unless you can access the data when you want in the manner you want, 
the CRUD required to make your business work will become quite cruddy indeed. 
Consequently, this is an especially important chapter for everyone who wants to 
make an application shine.

The first section of this chapter focuses on sorting data. Placing data in an order 
that makes it easy to perform CRUD operations is important because the less code 
you need to make data access work, the better. In addition, even though sorting 
data might not seem particularly important, sorted data makes searches consid-
erably faster, as long as the sort matches the search. Sorting and searching go 
together: You sort the data in a way that makes searching faster.

The second section of the chapter discusses searching. You won’t be surprised 
to  learn that many different ways are available to search for data. Some of 
these  techniques are slower than others; some have attributes that make them 

Chapter 7
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attractive to developers. The fact is that no perfect search strategy exists, but the 
exploration for such a method continues.

The final section of the chapter looks at hashing and dictionaries. The use of 
indexing makes sorting and searching significantly faster but also comes with 
trade-offs that you need to consider (such as the use of additional resources). An 
index is a kind of pointer or an address. It’s not the data, but it points to the data, 
much as your address points to your home. A block-by-block manual search for 
your home in the city would be time consuming because the person looking for 
you would need to ask each person at each address whether you’re there, but find-
ing your address in the phone book and then using that address to locate your 
home is much faster.

Sorting Data Using Mergesort  
and Quicksort

Sorting is one of the essentials of working with data. Consequently, a lot of people 
have come up with a lot of different ways in which to sort data over the years. All 
these techniques result in ordered data, but some work better than others do, and 
some work exceptionally well for specific tasks. The following sections help you 
understand the need for searching as well as consider the various search options.

Defining why sorting data is important
A case can be made for not sorting data. After all, the data is still accessible, even 
if you don’t sort it — and sorting takes time. Of course, the problem with unsorted 
data is the same problem as that junk drawer in your kitchen (or wherever you 
have your junk drawer — assuming that you can find it at all). Looking for any-
thing in the junk drawer is time consuming because you can’t even begin to guess 
where to find something. Rather than just reach in and take what you want, you 
must take out myriad other items that you don’t want in an effort to find the one 
item you need. Unfortunately, the item you need might not be in the junk drawer 
in the first place—you might have thrown it out or put it in a different drawer.

The junk drawer in your home is just like unsorted data on your system. When the 
data is unsorted, you need to search one item at a time, and you don’t even know 
whether you’ll find what you need without searching every item in the dataset 
first. It’s a frustrating way to work with data. The binary search example in the 
“Considering divide and conquer” section of Chapter 5 points out the need for 
sorting quite well. Imagine trying to find an item in a list without sorting it first. 
Every search becomes a time-consuming sequential search.
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Of course, simply sorting the data isn’t enough. If you have an employee database 
sorted by last name, yet need to look up an employee by birth date, the sorting 
isn’t useful. (Say you want to find all of the employees who have a birthday on a 
certain day.) To find the birth date you need, you must still search the entire data-
set one item at a time. Consequently, sorting must focus on a particular need. Yes, 
you needed the employee database sorted by department at one point and by last 
name at another time, but now you need it sorted by birth date in order to use the 
dataset effectively.

The need to maintain several sorted orders for the same data is the reason that 
developers created indexes. Sorting a small index is faster than sorting the entire 
dataset. The index maintains a specific data order and points to the full dataset so 
that you can find what you need extremely fast. By maintaining an index for each 
sort requirement, you can effectively cut data access time and allow several people 
to access the data at the same time in the order in which they need to access it. The 
“Relying on Hashing” section, later in this chapter, gives you an idea of how 
indexing works and why you really need it in some cases, despite the additional 
time and resources needed to maintain the indexes.

Many ways are available to categorize sorting algorithms. One of these ways is the 
speed of the sort. When considering how effective a particular sort algorithm is at 
arranging the data, timing benchmarks typically look at two factors:

»» Comparisons: To move data from one location in a dataset to another, you 
need to know where to move it, which means comparing the target data to 
other data in the dataset. Having fewer comparisons means better performance.

»» Exchanges: Depending on how you write an algorithm, the data may not get 
to its final location in the dataset on the first try. The data might actually move 
several times. The number of exchanges affects speed considerably because 
now you’re actually moving data from one location to another in memory. 
Fewer and smaller exchanges (such as when using indexes) means better 
performance.

Ordering data naïvely
Ordering data naively means to order it using brute-force methods — without any 
regard whatsoever to making any kind of guess as to where the data should appear 
in the list. In addition, these techniques tend to work with the entire dataset 
instead of applying approaches that would likely reduce sorting time (such as the 
divide and conquer technique described in Chapter 5). However, these searches are 
also relatively easy to understand, and they use resources efficiently. Conse-
quently, you shouldn’t rule them out completely. Even though many searches fall 
into this category, the following sections look at the two most popular approaches.



136      PART 2  Understanding the Need to Sort and Search

Using a selection sort
The selection sort replaced a predecessor, the bubble sort, because it tends to pro-
vide better performance than the bubble sort. Even though both sorts have a 
worst-case sort speed of O(n2), the selection sort performs fewer exchanges. A 
selection sort works in one of two ways: It either looks for the smallest item in the 
list and places it in the front of the list (ensuring that the item is in its correct 
location) or looks for the largest item and places it in the back of the list. Either 
way, the sort is exceptionally easy to implement and guarantees that items imme-
diately appear in the final location once moved (which is why some people call it 
an in-place comparison sort). Here’s an example of a selection sort. (You can find 
this code in the A4D; 07; Sorting Techniques.ipynb file on the Dummies site 
as part of the downloadable code; see the Introduction for details.)

data = [9, 5, 7, 4, 2, 8, 1, 10, 6, 3]
  
for scanIndex in range(0, len(data)):
    minIndex = scanIndex
  
    for compIndex in range(scanIndex + 1, len(data)):
        if data[compIndex] < data[minIndex]:
            minIndex = compIndex
  
    if minIndex != scanIndex:
        data[scanIndex], data[minIndex] = \
            data[minIndex], data[scanIndex]
        print(data)
  
[1, 5, 7, 4, 2, 8, 9, 10, 6, 3]
[1, 2, 7, 4, 5, 8, 9, 10, 6, 3]
[1, 2, 3, 4, 5, 8, 9, 10, 6, 7]
[1, 2, 3, 4, 5, 6, 9, 10, 8, 7]
[1, 2, 3, 4, 5, 6, 7, 10, 8, 9]
[1, 2, 3, 4, 5, 6, 7, 8, 10, 9]
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

Switching to an insertion sort
An insertion sort works by using a single item as a starting point and adding items 
to the left or right of it based on whether these items are less than or greater than 
the selected item. As the number of sorted items builds, the algorithm checks new 
items against the sorted items and inserts the new item into the right position in 
the list. An insertion sort has a best-case sort speed of O(n) and a worst case sort 
speed of O(n2).



CHAPTER 7  Arranging and Searching Data      137

An example of best-case sort speed is when the entire dataset is already sorted 
because the insertion sort won’t have to move any values. An example of the 
worst-case sort speed is when the entire dataset is sorted in reverse order because 
every insertion will require moving every value that already appears in the out-
put. You can read more about the math involved in this sort at https://www.
khanacademy.org/computing/computer-science/algorithms/insertion- 
sort/a/analysis-of-insertion-sort.

The insertion sort is still a brute-force method of sorting items, but it can require 
fewer comparisons than a selection sort. Here’s an example of an insertion sort:

data = [9, 5, 7, 4, 2, 8, 1, 10, 6, 3]
  
for scanIndex in range(1, len(data)):
    temp = data[scanIndex]
  
    minIndex = scanIndex
  
    while minIndex > 0 and temp < data[minIndex - 1]:
        data[minIndex] = data[minIndex - 1]
        minIndex -= 1

    data[minIndex] = temp
    print(data)
  
[5, 9, 7, 4, 2, 8, 1, 10, 6, 3]
[5, 7, 9, 4, 2, 8, 1, 10, 6, 3]
[4, 5, 7, 9, 2, 8, 1, 10, 6, 3]
[2, 4, 5, 7, 9, 8, 1, 10, 6, 3]
[2, 4, 5, 7, 8, 9, 1, 10, 6, 3]
[1, 2, 4, 5, 7, 8, 9, 10, 6, 3]
[1, 2, 4, 5, 7, 8, 9, 10, 6, 3]
[1, 2, 4, 5, 6, 7, 8, 9, 10, 3]
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

Employing better sort techniques
As sort technology improves, the sort algorithms begin taking a more intelligent 
approach to getting data into the right order. The idea is to make the problem 
smaller and easier to manage. Rather than work with an entire dataset, 
smart sorting algorithms work with individual items, reducing the work required 
to perform the task. The following sections discuss two such smart sorting 
techniques.

https://www.khanacademy.org/computing/computer-science/algorithms/insertion-sort/a/analysis-of-insertion-sort
https://www.khanacademy.org/computing/computer-science/algorithms/insertion-sort/a/analysis-of-insertion-sort
https://www.khanacademy.org/computing/computer-science/algorithms/insertion-sort/a/analysis-of-insertion-sort
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Rearranging data with Mergesort
A Mergesort works by applying the divide and conquer approach. The sort begins 
by breaking the dataset into individual pieces and sorting the pieces. It then 
merges the pieces in a manner that ensures that it has sorted the merged piece. 
The sorting and merging continues until the entire dataset is again a single piece. 
The worst-case sort speed of the Mergesort is O(n log n), which makes it consid-
erably faster than the techniques used in the previous section (because log n is 
always smaller than n). This sort actually requires the use of two functions. The 
first function works recursively to split the pieces apart and put them back 
together again.

data = [9, 5, 7, 4, 2, 8, 1, 10, 6, 3]
  
def mergeSort(list):
    # Determine whether the list is broken into
    # individual pieces.
    if len(list) < 2:
        return list
  
    # Find the middle of the list.
    middle = len(list)//2

    # Break the list into two pieces.
    left = mergeSort(list[:middle])
    right = mergeSort(list[middle:])
  
    # Merge the two sorted pieces into a larger piece.
    print("Left side: ", left)
    print("Right side: ", right)
    merged = merge(left, right)
    print("Merged ", merged)
    return merged

The second function performs the actual task of merging the two sides using an 
iterative process. Here’s the code used to merge the two pieces:

def merge(left, right):
    # When the left side or the right side is empty,
    # it means that this is an individual item and is
    # already sorted.
    if not len(left):
        return left
    if not len(right):
        return right
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    # Define variables used to merge the two pieces.
    result = []
    leftIndex = 0
    rightIndex = 0
    totalLen = len(left) + len(right)
  
    # Keep working until all of the items are merged.
    while (len(result) < totalLen):
  
        # Perform the required comparisons and merge
        # the pieces according to value.
        if left[leftIndex] < right[rightIndex]:
            result.append(left[leftIndex])
            leftIndex+= 1
        else:
            result.append(right[rightIndex])
            rightIndex+= 1
  
        # When the left side or the right side is longer,
        # add the remaining elements to the result.
        if leftIndex == len(left) or \
            rightIndex == len(right):
                result.extend(left[leftIndex:]
                              or right[rightIndex:])
                break
  
    return result
  
mergeSort(data)

The print statements in the code help you see how the merging process works. 
Even though the process seems quite complex, it really is relatively straight
forward when you work through the merging process shown here.

Left side:  [9]
Right side:  [5]
Merged  [5, 9]
Left side:  [4]
Right side:  [2]
Merged  [2, 4]
Left side:  [7]
Right side:  [2, 4]
Merged  [2, 4, 7]
Left side:  [5, 9]
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Right side:  [2, 4, 7]
Merged  [2, 4, 5, 7, 9]
Left side:  [8]
Right side:  [1]
Merged  [1, 8]
Left side:  [6]
Right side:  [3]
Merged  [3, 6]
Left side:  [10]
Right side:  [3, 6]
Merged  [3, 6, 10]
Left side:  [1, 8]
Right side:  [3, 6, 10]
Merged  [1, 3, 6, 8, 10]
Left side:  [2, 4, 5, 7, 9]
Right side:  [1, 3, 6, 8, 10]
Merged  [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

Solving sorting issues the best  
way using Quicksort
The Quicksort is one of the fastest methods of sorting data. In reading about 
Mergesort and Quicksort online, you find that some people prefer to use one 
over the other in a given situation. For example, most people feel that a Quick-
sort works best for sorting arrays, and Mergesort works best for sorting linked 
lists (see the discussion at http://www.geeksforgeeks.org/why-quick-sort- 
preferred-for-arrays-and-merge-sort-for-linked-lists/). Tony Hoare 
wrote the first version of Quicksort in 1959, but since that time, developers have 
written many other versions of Quicksort. The average sort time of a Quicksort 
is O(n log n), but the worst-case sort time is O(n2).

The first part of the task is to partition the data. The code chooses a pivot point 
that determines the left and right side of the sort. Here is the partitioning code for 
this example:

data = [9, 5, 7, 4, 2, 8, 1, 10, 6, 3]
  
def partition(data, left, right):
    pivot = data[left]
    lIndex = left + 1
    rIndex = right
  

http://www.geeksforgeeks.org/why-quick-sort-preferred-for-arrays-and-merge-sort-for-linked-lists/
http://www.geeksforgeeks.org/why-quick-sort-preferred-for-arrays-and-merge-sort-for-linked-lists/
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    while True:
        while lIndex <= rIndex and data[lIndex] <= pivot:
            lIndex += 1
        while rIndex >= lIndex and data[rIndex] >= pivot:
            rIndex -= 1
        if rIndex <= lIndex:
            break
        data[lIndex], data[rIndex] = \
            data[rIndex], data[lIndex]
        print(data)
  
    data[left], data[rIndex] = data[rIndex], data[left]
    print(data)
    return rIndex

UNDERSTANDING QUICKSORT WORST-
CASE PERFORMANCE
Quicksort seldom incurs the worst-case sort time. However, even modified versions 
of the Quicksort can have a worst-case sort time of O(n2) when one of these events 
occurs:

•	 The dataset is already sorted in the desired order.

•	 The dataset is sorted in reverse order.

•	All the elements in the dataset are the same.

All these problems occur because of the pivot point that a less intelligent sort function 
uses. Fortunately, using the right programming technique can mitigate these problems 
by defining something other than the leftmost or rightmost index as the pivot point. The 
techniques that modern Quicksort versions rely on include:

•	Choosing a random index

•	Choosing the middle index of the partition

•	Choosing the median of the first, middle, and last element of the partition for the 
pivot (especially for longer partitions)
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The inner loop of this example continuously searches for elements that are in the 
wrong place and swaps them. When the code can no longer swap items, it breaks 
out of the loop and sets a new pivot point, which it returns to the caller. This is the 
iterative part of the process. The recursive part of the process handles the left and 
right side of the dataset, as shown here:

def quickSort(data, left, right):
    if right <= left:
        return
    else:
        pivot = partition(data, left, right)
        quickSort(data, left, pivot-1)
        quickSort(data, pivot+1, right)

    return data
  
quickSort(data, 0, len(data)-1)

The amount of comparisons and exchanges for this example are relatively small 
compared to the other examples. Here is the output from this example:

[9, 5, 7, 4, 2, 8, 1, 3, 6, 10]
[6, 5, 7, 4, 2, 8, 1, 3, 9, 10]
[6, 5, 3, 4, 2, 8, 1, 7, 9, 10]
[6, 5, 3, 4, 2, 1, 8, 7, 9, 10]
[1, 5, 3, 4, 2, 6, 8, 7, 9, 10]
[1, 5, 3, 4, 2, 6, 8, 7, 9, 10]
[1, 2, 3, 4, 5, 6, 8, 7, 9, 10]
[1, 2, 3, 4, 5, 6, 8, 7, 9, 10]
[1, 2, 3, 4, 5, 6, 8, 7, 9, 10]
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

Using Search Trees and the Heap
Search trees enable you to look for data quickly. Chapter 5 introduces you to the 
idea of a binary search, and the “Working with Trees” section of Chapter 6 helps 
you understand trees to some extent. Obtaining data items, placing them in sorted 
order in a tree, and then searching that tree is one of the faster ways to find 
information.

A special kind of tree structure is the binary heap, which places each of the node 
elements in a special order. The root node always contains the smallest value. 
When viewing the branches, you see that upper-level branches are always a 
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smaller value than lower-level branches and leaves. The effect is to keep the tree 
balanced and in a predictable order so that searching becomes extremely efficient. 
The cost is in keeping the tree balanced. The following sections describe how 
search trees and the heap work in detail.

Considering the need to search effectively
Of all the tasks that applications do, searching is the more time consuming and 
also the one required most. Even though adding data (and sorting it later) does 
require some amount of time, the benefit to creating and maintaining a dataset 
comes from using it to perform useful work, which means searching it for impor-
tant information. Consequently, you can sometimes get by with less efficient 
CRUD functionality and even a less-than-optimal sort routine, but searches must 
proceed as efficiently as possible. The only problem is that no one search performs 
every task with absolute efficiency, so you must weigh your options based on what 
you expect to do as part of the search routines.

Two of the more efficient methods of searching involve the use of the binary 
search tree (BST) and binary heap. Both of the search techniques rely on a tree-
like structure to hold the keys used to access data elements. However, the arrange-
ment of the two methods is different, which is why one has advantages over the 
other when performing certain tasks. Figure 7-1 shows the arrangement for a BST.

Note how the keys follow an order in which lesser numbers appear to the left and 
greater numbers appear to the right. The root node contains a value that is in the 
middle of the range of keys, giving the BST an easily understood balanced approach to 
storing the keys. Contrast this arrangement to the binary heap shown in Figure 7-2.

FIGURE 7-1: 
The arrangement 

of keys when 
using a BST.
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Each level contains values that are less than the previous level, and the root con-
tains the maximum key value for the tree. In addition, in this particular case, the 
lesser values appear on the left and the greater on the right (although this order 
isn’t strictly enforced). The figure actually depicts a binary max heap. You can also 
create a binary min heap in which the root contains the lowest key value and each 
level builds to higher values, with the highest values appearing as part of the 
leaves.

As previously noted, BST has some advantages over binary heap when used 
to perform a search. The following list provides some of the highlights of these 
advantages:

»» Searching for an element requires O(log n) time, contrasted to O(n) time for a 
binary heap.

»» Printing the elements in order requires only O(log n) time, contrasted to O(n 
log n) time for a binary heap.

»» Finding the floor and ceiling requires O(log n) time.

»» Locating Kth smallest/largest element requires O(log n) time when the tree is 
properly configured.

Whether these times are important depends on your application. BST tends to 
work best in situations in which you spend more time searching and less time 
building the tree. A binary heap tends to work best in dynamic situations in which 
keys change regularly. The binary heap also offers advantages, as described in the 
following list:

FIGURE 7-2: 
The arrangement 

of keys when 
using a binary 

heap.
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»» Creating the required structures requires fewer resources because binary 
heaps rely on arrays, making them cache friendlier as well.

»» Building a binary heap requires O(n) time, contrasted to BST, which requires 
O(n log n) time.

»» Using pointers to implement the tree isn’t necessary.

»» Relying on binary heap variations (for example, the Fibonacci Heap) offers 
advantages such as increase and decrease key times of O(1) time.

Building a binary search tree
You can build a BST using a variety of methods. Some people simply use a diction-
ary; others use custom code (see the article at https://interactivepython.
org/courselib/static/pythonds/Trees/SearchTreeImplementation.html 
and http://code.activestate.com/recipes/577540-python-binary-search- 
tree/ as examples). However, most developers don’t want to reinvent the wheel 
when it comes to BST. With this in mind, you need a package, such as bintrees, 
which provides all the required functionality to create and interact with BST using 
a minimum of code. To download and install bintrees, open a command prompt, 
type pip install bintrees, and press Enter. You see bintrees installed on your 
system. The documentation for this package appears at https://pypi.python.
org/pypi/bintrees/2.0.6.

You can use bintrees for all sorts of needs, but the example in this section looks 
specifically at a BST. In this case, the tree is unbalanced. The following code shows 
how to build and display a BST using bintrees. (You can find this code in the A4D; 
07; Search Techniques.ipynb file on the Dummies site as part of the download-
able code; see the Introduction for details.)

from bintrees import BinaryTree
  
data = {3:'White', 2:'Red', 1:'Green', 5:'Orange',
        4:'Yellow', 7:'Purple', 0:'Magenta'}
  
tree = BinaryTree(data)
tree.update({6:'Teal'})
  
def displayKeyValue(key, value):
    print('Key: ', key, 'Value: ', value)
  
tree.foreach(displayKeyValue)
print('Item 3 contains: ', tree.get(3))
print('The maximum item is: ', tree.max_item())
  

https://interactivepython.org/courselib/static/pythonds/Trees/SearchTreeImplementation.html
https://interactivepython.org/courselib/static/pythonds/Trees/SearchTreeImplementation.html
http://code.activestate.com/recipes/577540-python-binary-search-tree/
http://code.activestate.com/recipes/577540-python-binary-search-tree/
https://pypi.python.org/pypi/bintrees/2.0.6
https://pypi.python.org/pypi/bintrees/2.0.6
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Key:  0 Value:  Magenta
Key:  1 Value:  Green
Key:  2 Value:  Red
Key:  3 Value:  White
Key:  4 Value:  Yellow
Key:  5 Value:  Orange
Key:  6 Value:  Teal
Key:  7 Value:  Purple
Item 3 contains:  White
The maximum item is:  (7, 'Purple')

To create a binary tree, you must supply key and value pairs. One way to perform 
this task is to create a dictionary as shown. After you create the tree, you can use 
the update function to add new entries. The entries must include a key and value 
pair as shown.

This example uses a function to perform a task with the data in tree. In this case, 
the function merely prints the key and value pairs, but you could use the tree as 
input to an algorithm for analysis (among other tasks). The function, display 
KeyValue, acts as input to the foreach function, which displays the key and value 
pairs as output. You also have access to myriad other features, such as using get 
to obtain a single item or max_item to obtain the maximum item stored in tree.

Performing specialized searches  
using a binary heap
As with BST, you have many ways to implement a binary heap. Writing one by 
hand or using a dictionary does work well, but relying on a package makes things 
considerably faster and more reliable. The heapq package comes with Python, so 
you don’t even need to install it. You can find the documentation for this package 
at https://docs.python.org/3/library/heapq.html. The following example 
shows how to build and search a binary heap using heapq:

import heapq
  
data = {3:'White', 2:'Red', 1:'Green', 5:'Orange',
        4:'Yellow', 7:'Purple', 0:'Magenta'}
  
heap = []
for key, value in data.items():
    heapq.heappush(heap, (key, value))
heapq.heappush(heap, (6, 'Teal'))
heap.sort()
  

https://docs.python.org/3/library/heapq.html
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for item in heap:
    print('Key: ', item[0], 'Value: ', item[1])
print('Item 3 contains: ', heap[3][1])
print('The maximum item is: ', heapq.nlargest(1, heap))
  
Key:  0 Value:  Magenta
Key:  1 Value:  Green
Key:  2 Value:  Red
Key:  3 Value:  White
Key:  4 Value:  Yellow
Key:  5 Value:  Orange
Key:  6 Value:  Teal
Key:  7 Value:  Purple
Item 3 contains:  White
The maximum item is:  [(7, 'Purple')]

The example code performs the same tasks and provides the same output as the 
example in the previous section, except that it relies on a binary heap in this case. 
The dataset is the same as before. However, note the difference in the way you add 
the data to the heap using heappush. In addition, after adding a new item, you 
must call sort to ensure that the items appear in sorted order. Manipulating the 
data is much like manipulating a list, as contrasted to the dictionary approach 
used for bintrees. Whichever approach you use, it pays to choose an option that 
works well with the application you want to create and provides the fastest pos-
sible search times for the tasks you perform.

Relying on Hashing
A major problem with most sort routines is that they sort all the data in a dataset. 
When the dataset is small, you hardly notice the amount of data that the sort rou-
tine attempts to move. However, as the dataset gets larger, the data movement 
becomes noticeable as you sit staring at the screen for hours on end. A way around 
this problem is to sort just the key information. A key is the identifying data for a 
particular data record. When you interact with an employee record, the employee 
name or number usually serves as a key for accessing all the other information 
you have about the employee. It’s senseless to sort all the employee information 
when you really need only the keys sorted, which is what using hashing is all 
about. When working with these data structures, you gain a major speed advan-
tage by sorting the smaller amount of data presented by the keys, rather than the 
records as a whole.
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Putting everything into buckets
Until now, the search and sort routines in the book work by performing a series of 
comparisons until the algorithm finds the correct value. The act of performing 
comparisons slows the algorithms because each comparison takes some amount 
of time to complete.

A smarter way to perform the task involves predicting the location of a particular 
data item in the data structure (whatever that structure might be) before actually 
looking for it. That’s what a hash table does —provides the means to create an 
index of keys that points to individual items in a data structure so that an algo-
rithm can easily predict the location of the data. Placing keys into the index 
involves using a hash function that turns the key into a numeric value. The numeric 
value acts as an index into the hash table, and the hash table provides a pointer to 
the full record in the dataset. Because the hash function produces repeatable 
results, you can predict the location of the required data. In many cases, a hash 
table provides a search time of O(1). In other words, you need only one comparison 
to find the data.

A hash table contains a specific number of slots that you can view as buckets for 
holding data. Each slot can hold one data item. The number of filled slots when 
compared to the number of available slots is the load factor. When the load factor 
is high, the potential for collisions (where two data entries have the same hash 
value) becomes greater as well. The next section of the chapter discusses how to 
avoid collisions, but all you really need to know for now is that they can occur.

One of the more typical methods for calculating the hash value for an input is to 
obtain the modulus of the value divided by the number of slots. For example, if 
you want to store the number 54 into a hash table containing 15 slots, the hash 
value is 9. Consequently, the value 54 goes into slot 9 of the hash table when the 
slots are numbers from 0 through 14 (given that the table has 15 slots). A real hash 
table will contain a considerably greater number of slots, but 15 works fine for the 
purposes of this section. After placing the item into the hash slot, you can use the 
hash function a second time to find its location.

Theoretically, if you have a perfect hash function and an infinite number of slots, 
every value you present to the hash function will produce a unique value. In some 
cases, the hash calculation can become quite complex to ensure unique values 
most of the time. However, the more complex the hash calculation, the less ben-
efit you receive from hashing, so keeping things simple is the best way to go.

Hashing can work with all sorts of data structures. However, for the purposes of 
demonstration, the following example uses a simple list to hold the original data 
and a second list to hold the resulting hash. (You can find this code in the A4D; 
07; Hashing.ipynb file on the Dummies site as part of the downloadable code; 
see the Introduction for details.)
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data = [22, 40, 102, 105, 23, 31, 6, 5]
hash_table = [None] * 15
tblLen = len(hash_table)
  
def hash_function(value, table_size):
    return value % table_size
  
for value in data:
    hash_table[hash_function(value, tblLen)] = value
  
print(hash_table)
  
[105, 31, None, None, None, 5, 6, 22, 23, None, 40, None,
 102, None, None]

To find a particular value again, you just run it through hash_function. For 
example, print(hash_table[hash_function(102, tblLen)]) displays 102 as 
output after locating its entry in hash_table. Because the hash values are unique 
in this particular case, hash_function can locate the needed data every time.

Avoiding collisions
A problem occurs when two data entries have the same hash value. If you simply 
write the value into the hash table, the second entry will overwrite the first, 
resulting in a loss of data. Collisions, the use of the same hash value by two values, 
require you to have some sort of strategy in mind for handling them. Of course, 
the best strategy is to avoid the collision in the first place.

One of the methods for avoiding collisions is to ensure that you have a large 
enough hash table. Keeping the load factor low is your first line of defense against 
having to become creative in the use of your hash table. However, even with a 
large table, you can’t always avoid collisions. Sometimes the potential dataset is 
so large, but the used dataset is so small, that avoiding the problem becomes 
impossible. For example, if you have a school with 400 children and rely on their 
social security number for identification, collisions are inevitable because no one 
is going to create a hash table with a billion entries for that many children. The 
waste of memory would be enormous. Consequently, a hash function may have to 
use more than just a simple modulus output to create the hash value. Here are 
some techniques you can use to avoid collisions:

»» Partial values: When working with some types of information, part of that 
information repeats, which can create collisions. For example, the first three 
digits of a telephone number can repeat for a given area, so removing those 
numbers and using just the remaining four may help solve a collision problem.
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»» Folding: Creating a unique number might be as easy as dividing the original 
number into pieces, adding the pieces together, and using the result for the 
hash value. For example, using the telephone number 555-1234, the hash 
could begin by breaking it into pieces: 55 51 234, and then adding the result 
together to obtain 340 as the number used to generate the hash.

»» Mid-square: The hash squares the value in question, uses some number of 
digits from the center of the resulting number, and discards the rest of those 
digits. For example, consider the value 120. When squared, you get 14,400. 
The hash could use 440 to generate the hash value and discard the 1 from the 
left and the 0 from the right.

Obviously, there are as many ways to generate the hash as someone has imagina-
tion to create them. Unfortunately, no amount of creativity is going to solve every 
collision problem, and collisions are still likely to occur. Therefore, you need 
another plan. When a collision does occur, you can use one of the following meth-
ods to address it:

»» Open addressing: The code stores the value in the next open slot by looking 
through the slots sequentially until it finds an open slot to use. The problem 
with this approach is that it assumes an open slot for each potential value, 
which may not be the case. In addition, open addressing means that the 
search slows considerably after the load factor increases. You can no longer 
find the needed value on the first comparison.

»» Rehashing: The code hashes the hash value plus a constant. For example, 
consider the value 1,020 when working with a hash table containing 30 slots 
and a constant of 100. The hash value in this case is 22. However, if slot 22 
already contains a value, rehashing ((22 + 100) % 30) produces a new hash 
value of 2. In this case, you don’t need to search the hash table sequentially 
for a value. When implemented correctly, a search might still include a low 
number of comparisons to find the target value.

»» Chaining: Each slot in the hash table can hold multiple values. You can 
implement this approach by using a list within a list. Every time a collision 
occurs, the code simply appends the value to the list in the target slot. This 
approach offers the benefit of knowing that the hash will always produce the 
correct slot, but the list within that slot will still require some sort of sequential 
(or other) search to find the specific value.

Creating your own hash function
You may at times need to create custom hash functions in order to meet the needs 
of the algorithm you use or to improve its performance. Apart from cryptographic 
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uses (which deserve a book alone), Chapter 12 presents common algorithms that 
leverage different hash functions, such as the Bloom Filter, the HyperLogLog, and 
the Count-Min Sketch, that leverage the properties of custom hash functions to 
extract information from huge amounts of data.

You can find many examples of different hash functions in the Python hashlib 
package. The hashlib package contains algorithms such as these:

»» Secure Hash Algorithms (SHA): These algorithms include SHA1, SHA224, 
SHA256, SHA384, and SHA512. Released by the National Institute of Standards 
and Technology (NIST) as a U.S. Federal Information Processing Standard 
(FIPS), SHA algorithms provide support for security applications and protocols.

»» RSA’s MD5 algorithm: Initially designed for security applications, this hash 
turned into a popular way to checksum files. Checksums reduce files to a 
single number that enables you to determine whether the file was modified 
since hash creation (it lets you determine whether the file you downloaded 
wasn’t corrupted and hasn’t been altered by a hacker). To ensure file integrity, 
just check whether the MD5 checksum of your copy corresponds to the 
original one communicated by the author of the file.

If hashlib isn’t available on your Python installation, you can install the package 
using the pip install hashlib command from a command shell. The algorithms 
in hashlib work well for simple applications when used alone.

DISCOVERING UNEXPECTED  
USES OF HASHES
Apart from the algorithms detailed in this book, other important algorithms are based 
on hashes. For instance, the Locality-sensitive Hashing (LSH) algorithm relies on a large 
number of hash functions to stitch apparently separated information together. If you 
wonder how marketing companies and intelligence services put different chunks of 
information together based on names and addresses that aren’t identical (for example, 
guessing that “Los Angels,” “Los Angles,” and “Los Angleles” all refer to Los Angeles) the 
answer is LSH. LSH chunks the information to check into parts and digests it using many 
hash functions, resulting in the production of a special hash result, which is an address 
for a bucket used to hold similar words. LSH is quite complex in its implementation, but 
check out this material from the Massachusetts Institute of Technology (MIT): http://
www.mit.edu/~andoni/LSH/.

http://www.mit.edu/~andoni/LSH/
http://www.mit.edu/~andoni/LSH/
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However, you can combine the output of multiple hash functions when working 
with complex applications that rely on a large dataset. Simply sum the results of 
the various outputs after having done a multiplication on one or more of them. 
The sum of two hash functions treated in this way retains the qualities of the 
original hash functions even though the result is different and impossible to 
recover as the original elements of the sum. Using this approach means that you 
have a brand-new hash function to use as your secret hash recipe for algorithms 
and applications.

The following code snippet relies on the hashlib package and the md5 and sha1 
hash algorithms. You just provide a number to use for the multiplication inside 
the hash sum. (Because numbers are infinite, you have a function that can pro-
duce infinite hashes.)

from hashlib import md5, sha1
  
def hash_f(element, i, length):
    """ Function to create many hash functions """
    h1 = int(md5(element.encode('ascii')).hexdigest(),16)
    h2 = int(sha1(element.encode('ascii')).hexdigest(),16)
    return (h1 + i*h2) % length
  
print (hash_f("CAT", 1, 10**5))
64018
  
print (hash_f("CAT", 2, 10**5))
43738

If you wonder where to find other uses of hash tables around you, check out 
Python’s dictionaries. Dictionaries are, in fact, hash tables, even though they have 
a smart way to deal with collisions and you won’t lose your data because two 
hashed keys casually have the same result. The fact that the dictionary index uses 
a hash is also the reason for its speed in checking whether a key is present. In 
addition, the use of a hash explains why you can’t use every data type as a key. The 
key you choose must be something that Python can turn into a hash result. Lists, 
for instance, are unhashable because they are mutable; you can change them by 
adding or removing elements. Nevertheless, if you transform your list into a 
string, you can use it as a key for a dictionary in Python.
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Discover graph essentials that help you draw, measure, 
and analyze graphs.

Interact with graphs to locate nodes, sort graph 
elements, and find the shortest path.

Work with social media in graph form.

Explore graphs to find patterns and make decisions 
based on those patterns.

Use the PageRank algorithm to rate web pages.
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IN THIS CHAPTER

»» Defining why networks are important

»» Demonstrating graph drawing 
techniques

»» Considering graph functionality

»» Using numeric formats to represent 
graphs

Understanding 
Graph Basics

Graphs are structures that present a number of nodes (or vertexes) con-
nected by a number of edges or arcs (depending on the representation). 
When you think about a graph, think about a structure like a map, where 

each location on the map is a node and the streets are the edges. This presentation 
differs from a tree where each path ends up in a leaf node. Remember from 
Chapter 7 that a tree could look like an organizational chart or a family hierarchy. 
Most important, tree structures actually do look like trees and have a definite start 
and a definite end. This chapter begins by helping you understand the importance 
of networks, which are a kind of graph commonly used for all sorts of purposes.

You can represent graphs in all sorts of ways, most of them abstract. Unless you’re 
really good at visualizing things in your mind (most people aren’t), you need to 
know how to draw a graph so you can actually see it. People rely on their vision to 
understand how things work. The act of turning the numbers that represent a 
graph into a graphic visualization is plotting. Languages like Python excel at plot-
ting because it’s such an incredibly important feature. In fact, it’s one of the rea-
sons that this book uses Python rather than another language, such as C (which is 
good at performing a completely different set of tasks).

After you can visualize a graph, it’s important to know what to do with the graphic 
representation. This chapter starts you off by measuring graph functionality. 

Chapter 8
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You do things like count the edges and vertexes to determine things like graph 
complexity. Seeing a graph also enables you to perform tasks like computing cen-
trality with greater ease. Of course, you build on what you discover in this chapter 
in Chapter 9.

The numeric presentation of a graph is important, even if it makes understanding 
the graph hard. The plot is for you, but the computer doesn’t really understand the 
plot (despite having drawn it for you). Think of the computer as more of an 
abstract thinker. With the need to present a graph in a form that the computer can 
understand in mind, this chapter discusses three techniques for putting a graph 
into numeric format: matrixes, sparse representations, and lists. All these tech-
niques have advantages and disadvantages, and you use them in specific ways in 
future chapters (beginning with Chapter 9). Other ways are also available to put a 
graph in numeric format, but these three methods will serve you well in commu-
nicating with the computer.

Explaining the Importance of Networks
A network is a kind of graph that associates names with the vertexes (nodes or 
points), edges (arcs or lines), or both. Associating names with the graph features 
reduces the level of abstraction and makes understanding the graph easier. The 
data that the graph models becomes real in the mind of the person viewing it, 
even though the graph truly is an abstraction of the real world put into a form that 
both humans and computers can understand in different ways. The following sec-
tions help you understand the importance of networks better so that you can see 
how their use in this book simplifies the task of discovering how algorithms work 
and how you can benefit from their use.

Considering the essence of a graph
Graphs appear as ordered pairs in the form G = (V,E), where G is the graph, V is a 
list of vertexes, and E is a list of edges that connect the vertexes. An edge is actu-
ally a numeric pair that expresses the two vertexes that it connects. Consequently, 
if you have two vertexes that represent cities, Houston (which equals 1) and Dallas 
(which equals 2), and you want to connect them with a road, then you create an 
edge, Highway, that contains a pair of vertex references, Highway = [Houston, 
Dallas]. The graph would appear as G = [(Houston, Dallas)], which simply 
says that there is a first vertex, Houston, with a connection to Dallas, the second 
vertex. Using the order of presentation of the vertexes, Houston is adjacent to 
Dallas; in other words, a car would leave Houston and enter Dallas.
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Graphs come in several forms. An undirected graph (as shown in Figure 8-1) is one 
in which the order of the edge entries doesn’t matter. A road map would represent 
an undirected graph in most cases because traffic can travel along the road in both 
directions.

A directed graph, like the one shown in Figure 8-2, is one in which the order of the 
edge entries does matter because the flow is from the first entry to the second. In 
this case, most people call the edges arcs to differentiate them from undirected 
entries. Consider a graph representation of a traffic light sequence where Red 
equals 1, Yellow equals 2, and Green equals 3. The three arcs required to express 
the sequence are: Go = [Red, Green], Caution = [Green, Yellow], and Stop = 
[Yellow, Red]. The order of the entries is important because the flow from Go, to 
Caution, to Stop is important. Imagine the chaos that would result if the signal 
light chose to ignore the directed graph nature of the sequence.

A third essential kind of graph that you must consider is the mixed graph. Think 
about the road map again. It isn’t always true that traffic flows both ways on all 
roads. When creating some maps, you must consider the presence of one-way 
streets. Consequently, you need both undirected and directed subgraphs in the 
same graph, which is what you get with a mixed graph.

Another graph type for your consideration is the weighted graph (shown in 
Figure 8-3), which is a graph that has values assigned to each of the edges or arcs. 
Think about the road map again. Some people want to know more than simply the 
direction to travel; they also want to know how far away the next destination is or 
how much time to allocate for getting there. A weighted graph provides this sort 
of information, and you use the weights in many different ways when performing 
calculations using graphs.

FIGURE 8-1: 
Presenting a 

simple undirected 
graph.
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Along with the weighted graph, you might also need a vertex-labeled graph when 
creating a road map. When working with a vertex-labeled graph, each vertex has a 
name associated with it. Consider looking at a road map where the mapmaker 
hasn’t labeled the towns. Yes, you can see the towns, but you don’t know which 
one is which without labels. You can find additional graph types described at 
http://web.cecs.pdx.edu/~sheard/course/Cs163/Doc/Graphs.html.

Finding graphs everywhere
Graphs might seem like one of those esoteric math features that you found boring 
in school, but graphs are actually quite exciting because you use them all the time 

FIGURE 8-3: 
Using a weighted 

graph to make 
things more 

realistic.

FIGURE 8-2: 
Creating the 

directed version 
of the same 

graph.

http://web.cecs.pdx.edu/~sheard/course/Cs163/Doc/Graphs.html
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without really thinking about it. Of course, it helps to know that you won’t nor-
mally deal with the numbers behind the graphs. Think about a map. What you see 
is a graph, but you see it in graphic format, with cities, roads, and all sorts of other 
features. The thing is, when you see a map, you think about a map, not a graph 
(but your GPS does see a graph, which is why it can always suggest the shortest 
route to your destination). If you were to start looking around, you’d find many 
common items that are graphs but are called something else.

Some graphs aren’t visual in nature, but you still don’t see them as graphs. For 
example, telephone menu systems are a form of directional graph. In fact, for 
their seeming simplicity, telephone graphs are actually somewhat complex. They 
can include loops and all sorts of other interesting structures. Something you 
might try is to map out the graph for a menu system at some point. You might be 
surprised at just how complex some of them can be.

Another form of menu system appears as part of applications. To perform tasks, 
most applications take you through a series of steps in a special kind of 
subapplication called a wizard. The use of wizards make seemingly complex 
applications much easier to use, but to make the wizards work, the application 
developer must create a graph depicting the series of steps.

It may surprise you to find that even recipes in cookbooks are a kind of graph (and 
creating a pictorial representation of the relationships between ingredients can 
prove interesting). Each ingredient in the recipe is a node. The nodes connect 
using the edges created by the instructions for mixing the ingredients. Of course, 
a recipe is just a kind of chemistry, and chemical graphics show the relationship 
between elements in a molecule. (Yes, people actually are having this discussion; 
you can see one such thread at http://stackoverflow.com/questions/7749073/
representing-a-cooking-recipe-in-a-graph-database.)

The point is that you see these graphs all the time, but you don’t see them as 
graphs — you see them as something else, such as a recipe or a chemical formula. 
Graphs can represent many kinds of relationships between objects, implying an 
order sequence, time dependence, or causality.

Showing the social side of graphs
Graphs have social implications because they often reflect relationships between 
people in various settings. One of the most obvious uses of graphs is the 
organizational chart. Think about it. Each node is a different person in the 
organization, with edges connecting the nodes to show the various relationships 
between individuals. The same holds true for all sorts of graphs, such as those 
that show family history. However, in the first case, the graph is undirected 
because communication flows both ways between managers and subordinates 
(although the nature of the conversation differs based on direction). In the second 

http://stackoverflow.com/questions/7749073/representing-a-cooking-recipe-in-a-graph-database
http://stackoverflow.com/questions/7749073/representing-a-cooking-recipe-in-a-graph-database
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case, the graph is directed because two parents bear children. The flow shows the 
direction of heredity from a founding member to the current children.

Social media benefits from the use of graphs as well. For example, a whole indus-
try exists for analyzing the relationships between tweets on Twitter (see http://
twittertoolsbook.com/10-awesome-twitter-analytics-visualization- 
tools/ for an example of just some of these tools). The analysis relies on the use 
of graphs to discover the relationships between individual tweets.

However, you don’t have to look at anything more arcane than email to see graphs 
used for social needs. The Enron corpus includes the 200,399 email messages of 
158 senior executives, dumped onto the Internet by the Federal Energy Regulatory 
Commission (FERC). Scientists and scholars have used this corpus to create many 
social graphs to disclose how the seventh largest company in the United States 
needed to file bankruptcy in 2001 (see https://www.technologyreview.com/s/ 
515801/the-immortal-life-of-the-enron-e-mails/ to learn how this corpus 
has helped and is actually helping advance the analysis of complex graphs).

Even your computer has social graphs on it. No matter which email application 
you use, you can group emails in various ways, and these grouping methods nor-
mally rely on graphs to provide a structure. After all, trying to follow the flow of 
discussion without knowing which messages are responses to other messages is a 
lost cause. Yes, you could do it, but as the number of messages increases, the 
effort requires more and more time until it’s wasted because of time constraints 
most people have.

Understanding subgraphs
Relationships depicted by graphs can become quite complex. For example, when 
depicting city streets, most streets allow traffic in both directions, making an 
undirected graph perfect for representation purposes. However, some streets 
allow traffic in only one direction, which means that you need a directed graph in 
this case. The combination of two-way and one-way streets makes representation 
using a single graph type impossible (or at least inconvenient). Mixing undirected 
and directed graphs in a single graph means that you must create subgraphs to 
depict each graph type and then connect the subgraphs in a larger graph. Some 
graphs that contain subgraphs are so common that they have specific names, 
which is a mixed graph in this case.

Subgraphs are useful for other purposes as well. For example, you might want to 
analyze a loop within a graph, which means describing that loop as a subgraph. 
You don’t need the entire graph, just the nodes and edges required to perform the 
analysis. All sorts of disciplines use this approach. Yes, developers use it to ensure 
that parts of an application work as expected, but city engineers also use it to 
understand the nature of traffic flow in a particularly busy section of the city. 

http://twittertoolsbook.com/10-awesome-twitter-analytics-visualization-tools/
http://twittertoolsbook.com/10-awesome-twitter-analytics-visualization-tools/
http://twittertoolsbook.com/10-awesome-twitter-analytics-visualization-tools/
https://www.technologyreview.com/s/515801/the-immortal-life-of-the-enron-e-mails/
https://www.technologyreview.com/s/515801/the-immortal-life-of-the-enron-e-mails/
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Medical professionals also use subgraphs to understand the flow of blood or other 
liquids between organs in the body. The organs are the nodes and the blood ves-
sels are the edges. In fact, many of these graphs are weighted — it’s essential to 
know how much blood is flowing, not just that it’s flowing.

Complex graphs can also hide patterns that you need to know about. For example, 
the same cycle can appear in multiple parts of the graph, or you might see the 
same cycle within different graphs. By creating a subgraph from the cycle, you can 
easily perform comparisons within the same graph or between graphs to see how 
they compare. For example, a biologist might want to compare the cycle of muta-
tion for one animal against the cycle of mutation for another animal. To make this 
comparison, the biologist would need to create the representation as a subgraph 
of the processes for the entire animal. (You can see an interesting view of this 
particular use of graphs at http://www.sciencedirect.com/science/article/
pii/S1359027896000569.). The graph appears near the beginning of the article as 
Figure 1.

Defining How to Draw a Graph
A few people can visualize data directly in their minds. However, most people 
really do need a graphic presentation of the data in order to understand it. This 
point is made clear by the use of graphics in business presentations. You could tell 
others about last year’s sales by presenting tables of numbers. After a while, most 
of your audience would nod off and you’d never get your point across. The reason 
is simple: The tables of numbers are precise and present a lot of information, but 
they don’t do it in a way that people understand.

Plotting the data and showing the sales numbers as a bar chart helps people see 
the relationships between the numbers with greater ease. If you want to point out 
that sales are increasing each year, a bar chart with bars of increasing length 
makes this point quickly. Interestingly enough, using the plot actually presents 
the data in a less accurate way. Trying to see that the company made $3,400,026.15 
last year and $3,552,215.82 this year when looking at a bar chart is nearly impos-
sible. Yes, the table would show this information, but people don’t really need to 
know that level of detail — they simply need to see the annual increase, the con-
trast in earnings from year to year. However, your computer is interested in 
details, which is why plots are for humans and matrixes are for computers.

The following sections help you discover the wonders of plotting. You get a quick 
overview of how plots work with Python. Of course, these principles appear in 
later chapters in a more detailed form. These sections provide a start so that you 
can more easily understand the plots presented later.

http://www.sciencedirect.com/science/article/pii/S1359027896000569
http://www.sciencedirect.com/science/article/pii/S1359027896000569
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Distinguishing the key attributes
Before you can draw a graph, you need to know about graph attributes. As previ-
ously mentioned, graphs consist of nodes (or vertexes) and either edges (for undi-
rected graphs) or arcs (for directed graphs). Any graph that you want to draw will 
contain these elements. However, how you represent these elements depends 
partly upon the package you choose to use. For the sake of simplicity, the book 
relies on a combination of two packages:

»» NetworkX (https://networkx.github.io/): Contains code for draw-
ing graphs.

»» matplotlib (http://matplotlib.org/): Provides access to all sorts of 
drawing routines, some of which can display graphs created by NetworkX.

To use packages in Python, you must import them. When you need to use external 
packages, you must add special code, such as the following lines of code that pro-
vide access to matplotlib and networkx. (You can find this code in the A4D; 08; 
Draw Graph.ipynb file on the Dummies site as part of the downloadable code; see 
the Introduction for details.)

import networkx as nx
import matplotlib.pyplot as plt
%matplotlib inline

The special %matplotlib inline entry lets you see your plots directly in the 
Notebook rather than as an external graphic. Using this entry means that you can 
create a Notebook with graphics already included so that you don’t have to run the 
code again to see the results you received in the past.

Now that you have access to the packages, you create a graph. In this case, a graph 
is a sort of container that holds the key attributes that define the graph. Creating 
a container lets you draw the graph so that you can see it later. The following code 
creates a NetworkX Graph object.

AGraph = nx.Graph()

Adding the key attributes to AGraph comes next. You must add both nodes and 
edges using the following code.

Nodes = range(1,5)
Edges = [(1,2), (2,3), (3,4), (4,5), (1,3), (1,5)]

As previously mentioned, Edges describe connections between Nodes. In this case, 
Nodes contains values from 1 through 5, so Edges contains connections between 
those values.

https://networkx.github.io/
http://matplotlib.org/
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Of course, the Nodes and Edges are just sitting there now and won’t appear as part 
of AGraph. You must put them into the container to see them. Use the following 
code to add the Nodes and Edges to AGraph.

AGraph.add_nodes_from(Nodes)
AGraph.add_edges_from(Edges)

The NetworkX package contains all sorts of functions you can use to interact with 
individual nodes and edges, but the approach shown here is the fastest way to do 
things. Even so, you might find that you want to add additional edges later. For 
example, you might want to add an edge between 2 and 4, in which case you would 
call the AGraph.add_edge(2, 4) function.

Drawing the graph
You can interact in all sorts of ways with the AGraph container object that you cre-
ated in the previous section, but many of those ways to interact are abstract and 
not very satisfying if you’re a visually oriented person. Sometimes it’s just nice to 
see what an object contains by looking at it. The following code displays the graph 
contained in AGraph:

nx.draw(AGraph, with_labels=True)

The draw() function provides various arguments that you can use to dress up the 
display, such as modifying the node color using the node_color argument and the 
edge color using the edge_color argument. Figure 8-4 shows the graph contained 
in AGraph.

FIGURE 8-4: 
Seeing what a 

graph contains 
makes it easier to 

understand.
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Measuring Graph Functionality
After you can visualize and understand a graph, you need to consider the question 
of which parts of the graph are important. After all, you don’t want to spend your 
time performing analysis on data that doesn’t really matter in the grand scheme 
of things. Think about someone who is analyzing traffic flow to improve the street 
system. The intersections represent vertexes and the streets represent edges 
along which the traffic flows. By knowing how the traffic flows, that is, which 
vertexes and edges see the most traffic, you can start thinking about which roads 
to widen and which need more repair because more traffic uses them.

However, just looking at individual streets isn’t enough. A new skyscraper may 
bring with it a lot of traffic that affects an entire area. The skyscraper represents 
a central point around which traffic flow becomes more important. The most 
important vertexes are those central to the new skyscraper. Calculating centrality, 
the most important vertexes in a graph, can help you understand which parts of 
the graph require more attention. The following sections discuss the basic issues 
you must consider when measuring graph functionality, which is the capability of 
the graph to model a specific problem.

Counting edges and vertexes
As graphs become more complex, they convey more information, but they also 
become harder to understand and manipulate. The number of edges and vertexes 
in a graph determines graph complexity. However, you use the combination of 
edges and vertexes to tell the full story. For example, you can have a node that 
isn’t connected to the other nodes in any way. It’s legal to create such a node in a 
graph to represent a value that lacks connections to the others. Using the following 
code, you can easily determine that node 6 has no connections to the others 

DIFFERENCES IN FIGURE OUTPUT
Figure 8-4 shows typical output. However, your graph might appear to be slightly differ-
ent from the one shown. For example, the triangle could appear at the bottom instead 
of the top, or the angles between the nodes could vary. The connections between the 
nodes matter most, so slight differences in actual appearance aren’t important. Running 
the code several times would demonstrate that the orientation of the graph changes, 
along with the angles between edges. You see this same difference in other screenshots 
in the book. Always view the image with node connections in mind, rather than expect-
ing a precise match between your output and the book’s output.
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because it lacks any edge information. (You can find this code in the A4D; 08; 
Graph Measurements.ipynb file.)

import networkx as nx
import matplotlib.pyplot as plt
%matplotlib inline

AGraph = nx.Graph()

Nodes = range(1,5)
Edges = [(1,2), (2,3), (3,4), (4,5), (1,3), (1,5)]

AGraph.add_nodes_from(Nodes)
AGraph.add_edges_from(Edges)

AGraph.add_node(6)
sorted(nx.connected_components(AGraph))

[{1, 2, 3, 4, 5}, {6}]

The output from this code shows that nodes 1 through 5 are connected and that 
node 6 lacks a connection. Of course, you can remedy this situation by adding 
another edge by using the following code and then checking again:

AGraph.add_edge(1,6)
sorted(nx.connected_components(AGraph))

[{1, 2, 3, 4, 5, 6}]

The output now shows that every one of the nodes connects to at least one other 
node. However, you don’t know which nodes have the most connections. The 
count of edges to a particular node is the degree. The higher the degree, the more 
complex the node becomes. By knowing the degree, you can develop an idea of 
which nodes are most important. The following code shows how to obtain the 
degree for the example graph.

nx.degree(AGraph).values()

dict_values([4, 2, 3, 2, 2, 1])

The degree values appear in node order, so node 1 has four connections and node 6 
has only one connection. Consequently, node 1 is the most important, followed by 
node 3, which has three connections.
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When modeling real-world data, such as the tweets about a particular topic, the 
nodes also tend to cluster. You might think of this tendency as a kind of trending — 
what people feel is important now. The fancy math term for this tendency is  
clustering, and measuring this tendency helps you understand which group of 
nodes is most important in a graph. Here is the code you use to measure clustering 
for the example graph:

nx.clustering(AGraph)

{1: 0.16666666666666666, 2: 1.0, 3: 0.3333333333333333,
 4: 0.0, 5: 0.0, 6: 0.0}

The output shows that the nodes are most likely to cluster around node 2 even 
though node 1 has the highest degree. That’s because both nodes 1 and 3 have high 
degrees and node 2 is between them.

Clustering graphs helps aid understanding data. The technique helps show that 
there are nodes in the graph that are better connected and nodes that risk isola-
tion. When you understand how elements connect in a graph, you can determine 
how to strengthen its structure or, on the contrary, destroy it. During the Cold 
war, military scientists from both the United States and the Soviet bloc studied 
graph clustering to better understand how to disrupt the other side’s supply chain 
in case of a conflict.

Computing centrality
Centrality comes in a number of different forms because importance often depends 
on different factors. The important elements of a graph when analyzing tweets 
will differ from the important elements when analyzing traffic flow. Fortunately, 
NetworkX provides you with a number of methods for calculating centrality. For 
example, you can calculate centrality based on node degrees. The following code 
uses the modified graph from the previous section of the chapter. (You can find 
this code in the A4D; 08; Graph Centrality.ipynb file.)

USE OF WHITESPACE IN OUTPUT
The output for this example appears on two lines in the book, even though it appears 
on just one line in Jupyter Notebook. The addition of whitespace helps the output 
appear in a readable size on the page — it doesn’t affect the actual information. Other 
examples in the book also show output on multiple lines, even when it appears on a 
single line in Jupyter Notebook.
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import networkx as nx
import matplotlib.pyplot as plt
%matplotlib inline

AGraph = nx.Graph()

Nodes = range(1,6)
Edges = [(1,2), (2,3), (3,4), (4,5), (1,3), (1,5), (1,6)]

AGraph.add_nodes_from(Nodes)
AGraph.add_edges_from(Edges)

nx.degree_centrality(AGraph)

{1: 0.8, 2: 0.4, 3: 0.6000000000000001, 4: 0.4, 5: 0.4,
 6: 0.2}

The values differ by the number of connections for each node. Because node 1 has 
four connections (it has the highest degree), it also has the highest centrality. You 
can see how this works by plotting the graph using a call to nx.draw(AGraph, 
with_labels=True), as shown in Figure 8-5.

FIGURE 8-5: 
Plotting the graph 

can help you see 
degree centrality 

with greater ease.
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Node 1 is indeed in the center of the graph with the most connections. The node 1 
degree ensures that it’s the most important based on the number of connections. 
When working with directed graphs, you can also use the in_degree_centrality() 
and out_degree_centrality() functions to determine degree centrality based on 
connection type rather than just the number of connections.

When working with traffic analysis, you might need to determine which locations 
are central based on their distance to other nodes. Even though a shopping center 
in the suburbs may have all sorts of connections to it, the fact that it is in the 
suburbs may reduce its impact on traffic. Yet, a supermarket in the center of the 
city with few connections might have a great impact on traffic because it’s close 
to so many other nodes. To see how this works, add another node, 7, that is dis-
connected to the graph. The centrality of that node is infinite because no other 
node can reach it. The following code shows how to calculate the closeness cen-
trality for the various nodes in the example graph:

AGraph.add_node(7)
nx.closeness_centrality(AGraph)

{1: 0.6944444444444445,
 2: 0.5208333333333334,
 3: 0.5952380952380952,
 4: 0.462962962962963,
 5: 0.5208333333333334,
 6: 0.4166666666666667,
 7: 0.0}

The output shows the centrality of each node in the graph based on its closeness 
to every other node. Notice that node 7 has a value of 0, which means that it’s an 
infinite distance to every other node. On the other hand, node 1 has a high value 
because it’s close to every node to which it has a connection. By calculating the 
closeness centrality, you can determine which nodes are the most important based 
on their location.

Another form of distance centrality is betweenness. Say that you’re running a 
company that transfers goods throughout the city. You’d like to know which nodes 
have the greatest effect on these transfers. Perhaps you can route some traffic 
around this node to make your operation more specific. When calculating between-
ness centrality, you determine the node that has the highest number of short 
paths coming to it. Here’s the code used to perform this calculation (with the 
disconnected node 7 still in place):

nx.betweenness_centrality(AGraph)

{1: 0.36666666666666664,



CHAPTER 8  Understanding Graph Basics      169

 2: 0.0,
 3: 0.13333333333333333,
 4: 0.03333333333333333,
 5: 0.06666666666666667,
 6: 0.0,
 7: 0.0}

As you might expect, node 7 has no effect on transfer between other nodes because 
it has no connections to the other nodes. Likewise, because node 6 is a leaf node 
with only one connection to another node, it has no effect on transfers. Look again 
at Figure 8-5. The subgraph consisting of nodes 1, 3, 4, and 5 have the greatest 
effect on the transfer of items in this case. No connection exists between nodes 1 
and 4, so nodes 3 and 5 act as intermediaries. In this case, node 2 acts like a  
leaf node.

NetworkX provides you with a number of other centrality functions. You find  
a complete list of these functions at http://networkx.readthedocs.io/en/ 
stable/reference/algorithms.centrality.html. The important consideration 
is determining how you want to calculate importance. Considering centrality in 
light of the kind of importance you want to attach to the vertexes and edges in a 
graph is essential.

Putting a Graph in Numeric Format
Precision is an important part of using algorithms. Even though too much preci-
sion hides the overall pictures from humans, computers thrive on detail. Often, 
the more detail you can provide, the better the results you receive. However, the 
form of that detail is important. To use certain algorithms, the data you provide 
must appear in certain forms or the result you receive won’t make sense (it will 
contain errors or have other issues).

Fortunately, NetworkX provides a number of functions to convert your graph into 
forms that other packages and environments can use. These functions appear at 
http://networkx.readthedocs.io/en/stable/reference/convert.html. The 
following sections show how to present graph data as a NumPy (http://www.
numpy.org/) matrix, SciPy (https://www.scipy.org/) sparse representation, 
and a standard Python list. You use these presentations as the book progresses to 
work with the various algorithms. (The code in the following sections appears in 
the A4D; 08; Graph Conversion.ipynb file and relies on the graph you created 
in the “Counting edges and vertexes” section of the chapter.)

http://networkx.readthedocs.io/en/stable/reference/algorithms.centrality.html
http://networkx.readthedocs.io/en/stable/reference/algorithms.centrality.html
http://networkx.readthedocs.io/en/stable/reference/convert.html
http://www.numpy.org/
http://www.numpy.org/
https://www.scipy.org/
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Adding a graph to a matrix
Using NetworkX, you can easily move your graph to a NumPy matrix and back 
again as needed to perform various tasks. You use NumPy to perform all sorts of 
data manipulation tasks. By analyzing the data in a graph, you might see patterns 
that wouldn’t ordinarily be visible. Here’s the code used to convert the graph into 
a matrix that NumPy can understand:

import networkx as nx
import matplotlib.pyplot as plt
%matplotlib inline

AGraph = nx.Graph()

Nodes = range(1,6)
Edges = [(1,2), (2,3), (3,4), (4,5), (1,3), (1,5), (1,6)]

AGraph.add_nodes_from(Nodes)
AGraph.add_edges_from(Edges)

nx.to_numpy_matrix(AGraph)

matrix([[ 0.,  1.,  1.,  0.,  1.,  1.],
        [ 1.,  0.,  1.,  0.,  0.,  0.],
        [ 1.,  1.,  0.,  1.,  0.,  0.],
        [ 0.,  0.,  1.,  0.,  1.,  0.],
        [ 1.,  0.,  0.,  1.,  0.,  0.],
        [ 1.,  0.,  0.,  0.,  0.,  0.]])

The resulting rows and columns show where connections exist. For example, 
there is no connection between node 1 and itself, so row 1, column 1, has a 0 in it. 
However, there is a connection between node 1 and node 2, so you see a 1 in row 1, 
column 2, and row 2, column 1 (which means that the connection goes both ways 
as an undirected connection).

The size of this matrix is affected by the number of nodes (the marix has as many 
rows and columns as nodes), and when it grows huge, it has many nodes to rep-
resent because the total number of cells is the square of the number of nodes. For 
instance, you can’t represent the Internet using such a matrix because a conser-
vative estimate calculates that at 10^10 websites, you’d need a matrix with 10^20 
cells to store its structure, something impossible with the present computing 
capacity.
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In addition, the number of nodes affects its content. If n is number of nodes, you 
find a minimum of (n−1) ones and a maximum of n(n−1) ones. The fact that the 
number of ones is few or large makes the graph dense or sparse, and that’s rele-
vant because if the connection between nodes are few, such as in the case of web-
sites, more efficient solutions exist for storing graph data.

Using sparse representations
The SciPy package also performs various math, scientific, and engineering tasks. 
When using this package, you can rely on a sparse matrix to hold the data. A 
sparse matrix is one in which only the actual connections appear in the matrix; all 
other entries don’t exist. Using a sparse matrix saves resources because the mem-
ory requirements for a sparse matrix are small. Here is the code you use to create 
a SciPy sparse matrix from a NetworkX graph:

print(nx.to_scipy_sparse_matrix(AGraph))

  (0, 1)    1
  (0, 2)    1
  (0, 4)    1
  (0, 5)    1
  (1, 0)    1
  (1, 2)    1
  (2, 0)    1
  (2, 1)    1
  (2, 3)    1
  (3, 2)    1
  (3, 4)    1
  (4, 0)    1
  (4, 3)    1
  (5, 0)    1

As you can see, the entries show the various edge coordinates. Each active 
coordinate has a 1 associated with it. The coordinates are 0 based. This means that 
(0, 1) actually refers to a connection between nodes 1 and 2.

Using a list to hold a graph
Depending on your needs, you might find that you also require the ability to create 
a dictionary of lists. Many developers use this approach to create code that 
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performs various analysis tasks on graphs. You can see one such example at 
https://www.python.org/doc/essays/graphs/. The following code shows how 
to create a dictionary of lists for the example graph:

nx.to_dict_of_lists(AGraph)

{1: [2, 3, 5, 6], 2: [1, 3], 3: [1, 2, 4], 4: [3, 5],
 5: [1, 4], 6: [1]}

Notice that each node represents a dictionary entry, followed by a list of the nodes 
to which it connects. For example, node 1 connects to nodes 2, 3, 5, and 6.

https://www.python.org/doc/essays/graphs/
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IN THIS CHAPTER

»» Working with graphs

»» Performing sorting tasks

»» Reducing the tree size

»» Locating the shortest route between 
two points

Reconnecting the Dots

This chapter is about working with graphs. You use graphs every day to per-
form a range of tasks. A graph is simply a set of vertexes, nodes, or points 
connected by edges, arcs, or lines. Putting this definition in simpler terms, 

every time you use a map, you use a graph. The starting point, intermediate 
points, and destination are all nodes. These nodes connect to each other with 
streets, which represent the lines. Using graphs enables you to describe relation-
ships of various sorts. The reason that Global Positioning System (GPS) setups 
work is that you can use math to describe the relationships between points on the 
map and the streets that connect them. In fact, by the time you finish this chapter, 
you understand the basis used to create a GPS (but not necessarily the mechanics 
of making it happen). Of course, the fundamental requirement for using a graph 
to create a GPS is the capability to search for connections between points on the 
map, as discussed in the first section of the chapter.

To make sense of a graph, you need to sort the nodes, as described in the second 
section of the chapter, to create a specific organization. Without organization, 
making any sort of decision becomes impossible. An algorithm might end up 
going in circles or giving inconvenient output. For example, some early GPS set-
ups didn’t correctly find the shortest distance between two points, or sometimes 
ended up sending someone to the wrong place. Part of the reason for these prob-
lems is the need to sort the data so that you can view it in the same manner each 
time the algorithm traverses the nodes (providing you with a route between your 
home and your business).

When you view a map, you don’t look at the information in the lower-right corner 
when you actually need to work with locations and roads in the upper-left corner. 

Chapter 9
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A computer doesn’t know that it needs to look in a specific place until you tell it to 
do so. To focus attention in a specific location, you need to reduce the graph size, 
as described in the third section of the chapter.

Now that the problem is simplified, an algorithm can find the shortest route 
between two points, as described in the fourth section of the chapter. After all, you 
don’t want to spend any more time than is necessary in traffic fighting your way 
from home to the office (and back again). The concept of finding the shortest 
route is a bit more convoluted than you might think, so the fourth section looks at 
some of the specific requirements for performing routing tasks in detail.

Traversing a Graph Efficiently
Traversing a graph means to search (visit) each vertex (node) in a specific order. 
The process of visiting a vertex can include both reading and updating it. As you 
traverse a graph, an unvisited vertex is undiscovered. After a visit, the vertex 
becomes discovered (because you just visited it) or processed (because the algorithm 
tried all the edges departing from it). The order of the search determines the kind 
of search performed, and many algorithms are available to perform this task. The 
following sections discuss two such algorithms.

CONSIDERING REDUNDANCY
When traversing a tree, every path ends in a leaf node so that you know that you have 
reached the end of that path. However, when working with a graph, the nodes intercon-
nect such that you might have to traverse some nodes more than once to explore the 
entire graph. As the graph becomes denser, the possibility of visiting the same node 
more than once increases. Dense graphs can greatly increase both computational and 
storage requirements.

To reduce the negative effects of visiting a node more than once, it’s common to mark 
each visited node in some manner to show that the algorithm has visited it. When the 
algorithm detects that it has visited a particular node, it can simply skip that node and 
move onto the next node in the path. Marking visited nodes decreases the performance 
penalties inherent in redundancy.

Marking visited nodes also enables verification that the search is complete. Otherwise, 
an algorithm can end up in a loop and continue to make the rounds through the graph 
indefinitely.
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Creating the graph
To see how traversing a graph might work, you need a graph. The examples in this 
section rely on a common graph so that you can see how the two techniques work. 
The following code shows the adjacency list found at the end of Chapter 8. (You 
can find this code in the A4D; 09; Graph Traversing.ipynb file on the Dummies 
site as part of the downloadable code; see the Introduction for details.)

graph = {'A': ['B', 'C'],
         'B': ['A', 'C', 'D'],
         'C': ['A', 'B', 'D', 'E'],
         'D': ['B', 'C', 'E', 'F'],
         'E': ['C', 'D', 'F'],
         'F': ['D', 'E']}

The graph features a bidirectional path that goes from A, B, D, and F on one side 
(starting at the root) and A, C, E, and F along the second side (again, starting at 
the root). There are also connections (that act as possible shortcuts) going from B 
to C, from C to D, and from D to E. Using the NetworkX package presented in 
Chapter 8 lets you display the adjacency as a picture so that you can see how the 
vertexes and edges appear (see Figure 9-1) by using the following code:

import numpy as np
import networkx as nx
import matplotlib.pyplot as plt
%matplotlib inline

Graph = nx.Graph()
for node in graph:
    Graph.add_nodes_from(node)
    for edge in graph[node]:
        Graph.add_edge(node,edge)

pos = { 'A': [0.00, 0.50], 'B': [0.25, 0.75],
        'C': [0.25, 0.25], 'D': [0.75, 0.75],
        'E': [0.75, 0.25], 'F': [1.00, 0.50]}

nx.draw(Graph, pos, with_labels=True)
nx.draw_networkx(Graph, pos)
plt.show()
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Applying breadth-first search
A breadth-first search (BFS) begins at the graph root and explores every node that 
attaches to the root. It then searches the next level — exploring each level in turn 
until it reaches the end. Consequently, in the example graph, the search explores 
from A to B and C before it moves on to explore D. BFS explores the graph in a 
systematic way, exploring vertexes all around the starting vertex in a circular 
fashion. It begins by visiting all the vertexes a single step from the starting vertex; 
it then moves two steps out, then three steps out, and so on. The following code 
demonstrates how to perform a breadth-first search.

def bfs(graph, start):
    queue = [start]
    queued = list()
    path = list()
    while queue:
        print ('Queue is: %s' % queue)
        vertex = queue.pop(0)
        print ('Processing %s' % vertex)
        for candidate in graph[vertex]:
            if candidate not in queued:
                queued.append(candidate)
                queue.append(candidate)
                path.append(vertex+'>'+candidate)
                print ('Adding %s to the queue'
                       % candidate)
    return path

FIGURE 9-1: 
Representing the 

example graph by 
NetworkX.
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steps = bfs(graph, 'A')
print ('\nBFS:', steps)

Queue is: ['A']
Processing A
Adding B to the queue
Adding C to the queue
Queue is: ['B', 'C']
Processing B
Adding A to the queue
Adding D to the queue
Queue is: ['C', 'A', 'D']
Processing C
Adding E to the queue
Queue is: ['A', 'D', 'E']
Processing A
Queue is: ['D', 'E']
Processing D
Adding F to the queue
Queue is: ['E', 'F']
Processing E
Queue is: ['F']
Processing F

BFS: ['A>B', 'A>C', 'B>A', 'B>D', 'C>E', 'D>F']

The output shows how the algorithm searches. It’s in the order that you expect — 
one level at a time. The biggest advantage of using BFS is that it’s guaranteed 
to return the shortest path between two points as the first output when used to 
find paths.

The example code uses a simple list as a queue. As described in Chapter 4, a queue 
is a first in/first out (FIFO) data structure that works like a line at a bank, where 
the first item put into the queue is also the first item that comes out. For this pur-
pose, Python provides an even better data structure called a deque (pronounced 
deck). You create it using the deque function from the collections package. It 
performs insertions and extractions in linear time, and you can use it as both a 
queue and a stack. You can discover more about the deque function at https://
pymotw.com/2/collections/deque.html.

Applying depth-first search
In addition to BFS, you can use a depth-first search (DFS) to discover the vertexes 
in a graph. When performing a DFS, the algorithm begins at the graph root and 

https://pymotw.com/2/collections/deque.html
https://pymotw.com/2/collections/deque.html
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then explores every node from that root down a single path to the end. It then 
backtracks and begins exploring the paths not taken in the current search path 
until it reaches the root again. At that point, if other paths to take from the root 
are available, the algorithm chooses one and begins the same search again. The 
idea is to explore each path completely before exploring any other path. To make 
this search technique work, the algorithm must mark each vertex it visits. In this 
way, it knows which vertexes require a visit and can determine which path to take 
next. Using BFS or DFS can make a difference according to the way in which you 
need to traverse a graph. From a programming point of view, the difference 
between the two algorithms is how each one stores the vertexes to explore the 
following:

»» A queue for BFS, a list that works according to the FIFO principle. Newly 
discovered vertexes don’t wait long for processing.

»» A stack for DFS, a list that works according to the last in/first out (LIFO) 
principle.

The following code shows how to create a DFS:

def dfs(graph, start):
    stack = [start]
    parents = {start: start}
    path = list()
    while stack:
        print ('Stack is: %s' % stack)
        vertex = stack.pop(-1)
        print ('Processing %s' % vertex)
        for candidate in graph[vertex]:
            if candidate not in parents:
                parents[candidate] = vertex
                stack.append(candidate)
                print ('Adding %s to the stack'
                       % candidate)
        path.append(parents[vertex]+'>'+vertex)
    return path[1:]

steps = dfs(graph, 'A')
print ('\nDFS:', steps)

Stack is: ['A']
Processing A
Adding B to the stack
Adding C to the stack
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Stack is: ['B', 'C']
Processing C
Adding D to the stack
Adding E to the stack
Stack is: ['B', 'D', 'E']
Processing E
Adding F to the stack
Stack is: ['B', 'D', 'F']
Processing F
Stack is: ['B', 'D']
Processing D
Stack is: ['B']
Processing B

DFS: ['A>C', 'C>E', 'E>F', 'C>D', 'A>B']

The first line of output shows the actual search order. Note that the search begins 
at the root, as expected, but then follows down the left side of the graph around to 
the beginning. The final step is to search the only branch off the loop that creates 
the graph in this case, which is D.

Note that the output is not the same as for the BFS. In this case, the processing 
route begins with node A and moves to the opposite side of the graph, to node F. 
The code then retraces back to look for overlooked paths. As discussed, this behav-
ior depends on the use of a stack structure in place of a queue. Reliance on a stack 
means that you could also implement this kind of search using recursion. The use 
of recursion would make the algorithm faster, so you could obtain results faster 
than when using a BFS. The trade-off is that you use more memory when using 
recursion.

When your algorithm uses a stack, it’s using the last result available (as contrasted 
to a queue, where it would use the first result placed in the queue). Recursive 
functions produce a result and then apply themselves using that same result.  
A stack does exactly the same thing in an iteration: The algorithm produces a 
result, the result is put on a stack, and then the result is immediately taken from 
the stack and processed again.

Determining which application to use
The choice between BFS and DFS depends on how you plan to apply the output 
from the search. Developers often employ BFS to locate the shortest route between 
two points as quickly as possible. This means that you commonly find BFS used in 
applications such as GPS, where finding the shortest route is paramount. For the 
purposes of this book, you also see BFS used for spanning tree, shortest path, and 
many other minimization algorithms.
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A DFS focuses on finding an entire path before exploring any other path. You use 
it when you need to search in detail, rather than generally. For this reason, you 
often see DFS used in games, where finding a complete path is important. It’s also 
an optimal approach to perform tasks such as finding a solution to a maze.

Sometimes you have to decide between BFS and DFS based on the limitations of 
each technique. BFS needs lots of memory because it systematically stores all the 
paths before finding a solution. On the other hand, DFS needs less memory, but 
you have no guarantee that it’ll find the shortest and most direct solution.

Sorting the Graph Elements
The ability to search graphs efficiently relies on sorting. After all, imagine going 
to a library and finding the books placed in any order the library felt like put
ting them on the shelves. Locating a single book would take hours. A library  
works because the individual books appear in specific locations that make them 
easy to find.

Libraries also exhibit another property that’s important when working with cer-
tain kinds of graphs. When performing a book search, you begin with a specific 
category, then a row of books, then a shelf in that row, and finally the book. You 
move from less specific to more specific when performing the search, which 
means that you don’t revisit the previous levels. Therefore, you don’t end up in 
odd parts of the library that have nothing to do with the topic at hand.

GRAPHS WITH LOOPS
Sometimes you need to express a process in such a manner that a set of steps repeats. 
For example, when washing your car, you rinse, soap down, and then rinse again. 
However, you find a dirty spot, an area that the soap didn’t clean the first time. To clean 
that spot, you soap it again and rinse it again to verify that the spot is gone. 
Unfortunately, it’s a really stubborn spot, so you repeat the process again. In fact, you 
repeat the soap and rinse steps until the spot is clean. That’s what a loop does; it creates 
a situation in which a set of steps repeats in one of two ways:

•	Meets a specific condition: The spot on the car is gone.

•	Performs a specific number of times: This is the number of repetitions you 
perform during the exercise.
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The following sections review Directed Acyclic Graphs (DAGs), which are finite 
directed graphs that don’t have any loops in them. In other words, you start from 
a particular location and follow a specific route to an ending location without ever 
going back to the starting location. When using topological sorting, a DAG always 
directs earlier vertexes to later vertexes. This kind of graph has all sorts of practical 
uses, such as schedules, with each milestone representing a particular milestone.

Working on Directed Acyclic Graphs (DAGs)
DAGs are one of the most important kinds of graphs because they see so many 
practical uses. The basic principles of DAGs are that they

»» Follow a particular order so that you can’t get from one vertex to another and 
back to the beginning vertex using any route.

»» Provide a specific path from one vertex to another so that you can create a 
predictable set of routes.

You see DAGs used for many organizational needs. For example, a family tree is an 
example of a DAG. Even when the activity doesn’t follow a chronological or other 
overriding order, the DAG enables you to create predictable routes, which makes 
DAGs easier to process than many other kinds of graphs you work with.

However, DAGs can use optional routes. Imagine that you’re building a burger. 
The menu system starts with a bun bottom. You can optionally add condiments to 
the bun bottom, or you can move directly to the burger on the bun. The route 
always ends up with a burger, but you have multiple paths for getting to the 
burger. After you have the burger in place, you can choose to add cheese or bacon 
before adding the bun top. The point is that you take a specific path, but each path 
can connect to the next level in several different ways.

So far, the chapter has shown you a few different kinds of graph configura-
tions,  some of which can appear in combination, such as a directed, weighted, 
dense graph:

»» Directed: Edges have a single direction and can have these additional 
properties:

•	 Cyclic: The edges form a cycle that take you back to the initial vertex after 
having visited the intermediary vertexes.

•	 A-cyclic: This graph lacks cycles.

»» Undirected: Edges connect vertexes in both directions.
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»» Weighted: Each edge has a cost associated with it, such as time, money, or 
energy, which you must pay to pass through it.

»» Unweighted: All the edges have no cost or the same cost.

»» Dense: A graph that has a large number of edges when compared to the 
number of vertexes.

»» Sparse: A graph that has a small number of edges when compared to the 
number of vertexes.

Relying on topological sorting
An important element of DAGs is that you can represent a myriad of activities 
using them. However, some activities require that you approach tasks in a specific 
order. This is where topological sorting comes into play. Topological sorting orders 
all the vertexes of a graph on a line with the direct edges pointing from left to 
right. Arranged in such a fashion, the code can easily traverse the graph and pro-
cess the vertexes one after the other, in order.

When you use topological sorting, you organize the graph so that every graph ver-
tex leads to a later vertex in the sequence. For example, when creating a schedule 
for building a skyscraper, you don’t start at the top and work your way down. You 
begin with the foundation and work your way up. Each floor can represent a mile-
stone. When you complete the second floor, you don’t go to the third and then redo 
the second floor. Instead, you move on from the third floor to the fourth floor, and 
so on. Any sort of scheduling that requires you to move from a specific starting 
point to a specific ending point can rely on a DAG with topological sorting.

Topological sorting can help you determine that your graph has no cycles (because 
otherwise, you can’t order the edges connecting the vertexes from left to right; at 
least one node will refer to a previous node). In addition, topological sorting also 
proves helpful in algorithms that process complex graphs because it shows the 
best order for processing them.

You can obtain topological sorting using the DFS traversal algorithm. Simply note 
the processing order of the vertexes by the algorithm. In the previous example, the 
output appears in this order: A, C, E, F, D, and B. Follow the sequence in Figure 9-1 
and you notice that the topological sorting follows the edges on the external 
perimeter of graph. It then makes a complete tour: After reaching the last node of 
the topological sort, you’re just a step away from A, the start of the sequence.
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Reducing to a Minimum Spanning Tree
Many problems that algorithms solve rely on defining a minimum of resources to 
use, such as defining an economical way to reach all the points on a map. This 
problem was paramount in the late nineteenth and early twentieth centuries when 
railway and electricity networks started appearing in many countries, revolution-
izing transportation and ways of living. Using private companies to build such 
networks was expensive (it took a lot of time and workers). Using less material 
and a smaller workforce offered savings by reducing redundant connections.

Some redundancy is desirable in critical transportation or energy networks even 
when striving for economical solutions. Otherwise, if only one method connects 
the network, it’s easily disrupted accidentally or by a voluntary act (such as an act 
of war), interrupting services to many customers.

In Moravia, the eastern part of Czech Republic, the Czech mathematician Otakar 
Borůvka found a solution in 1926 that allows constructing an electrical network 
using the least amount of wire possible. His solution is quite efficient because it 
not only allows finding a way to connect all the towns in Moravia in the most 
economical way possible, but it had a time complexity of O(m*log n), where m is 
the number of edges (the electrical cable) and n the number of vertexes (the 
towns). Others have improved Borůvka’s solution since then. (In fact, algorithm 
experts partially forgot and then rediscovered it.) Even though the algorithms you 
find in books are better designed and easier to grasp (those from Prim and Krus-
kal), they don’t achieve better results in terms of time complexity.

A minimal spanning tree defines the problem of finding the most economical way 
to accomplish a task. A spanning tree is the list of edges required to connect all the 
vertexes in an undirected graph. A single graph could contain multiple spanning 
trees, depending on the graph arrangement, and determining how many trees it 
contains is a complex issue. Each path you can take from start to completion in a 
graph is another spanning tree. The spanning tree visits each vertex only once; it 
doesn’t loop or do anything to repeat path elements.

When you work on an unweighted graph, the spanning trees are the same length. 
In unweighted graphs, all edges have the same length, and the order you visit 
them in doesn’t matter because the run path is always the same. All possible 
spanning trees have the same number of edges, n-1 edges (n is the number of 
vertexes), of the same exact length. Moreover, any graph traversal algorithm, 
such as BFS or DFS, suffices to find one of the possible spanning trees.

Things become tricky when working with a weighted graph with edges of differ-
ent lengths. In this case, of the many possible spanning trees, a few, or just one, 
have the minimum length possible. A minimum spanning tree is the one spanning 
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tree that guarantees a path with the least possible edge weight. An undirected 
graph generally contains just one minimum spanning tree, but, again, it depends 
on the configuration. Think about minimum spanning trees this way: When look-
ing at a map, you see a number of paths to get from point A to point B. Each path 
has places where you must turn or change roads, and each of these junctions is a 
vertex. The distance between vertexes represents the edge weight. Generally, one 
path between point A and point B provides the shortest route.

However, minimum spanning trees need not always consider the obvious. For 
example, when considering maps, you might not be interested in distance; you 
might instead want to consider time, fuel consumption, or myriad other needs. 
Each of these needs could have a completely different minimum spanning tree. 
With this in mind, the following sections help you understand minimum spanning 
trees better and demonstrate how to solve the problem of figuring out the smallest 
edge weight for any given problem. To demonstrate a minimum spanning tree 
solution using Python, the following code updates the previous graph by adding 
edge weights. (You can find this code in the A4D; 09; Minimum Spanning Tree.
ipynb file on the Dummies site as part of the downloadable code; see the Intro-
duction for details.)

import numpy as np
import networkx as nx
import matplotlib.pyplot as plt
%matplotlib inline

graph = {'A': {'B':2, 'C':3},
         'B': {'A':2, 'C':2, 'D':2},
         'C': {'A':3, 'B':2, 'D':3, 'E':2},
         'D': {'B':2, 'C':3, 'E':1, 'F':3},
         'E': {'C':2, 'D':1, 'F':1},
         'F': {'D':3, 'E':1}}

Graph = nx.Graph()
for node in graph:
    Graph.add_nodes_from(node)
    for edge, weight in graph[node].items():
        Graph.add_edge(node,edge, weight=weight)

pos = { 'A': [0.00, 0.50], 'B': [0.25, 0.75],
        'C': [0.25, 0.25], 'D': [0.75, 0.75],
        'E': [0.75, 0.25], 'F': [1.00, 0.50]}

labels = nx.get_edge_attributes(Graph,'weight')
nx.draw(Graph, pos, with_labels=True)
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nx.draw_networkx_edge_labels(Graph, pos,
                             edge_labels=labels)
nx.draw_networkx(Graph,pos)
plt.show()

Figure 9-2 shows that all edges have a value now. This value can represent some-
thing like time, fuel, or money. Weighted graphs can represent many possible 
optimization problems that occur in geographical space (such as movement 
between cities) because they represent situations in which you can come and go 
from a vertex.

Interestingly, all edges have positive weights in this example. However, weighted 
graphs can have negative weights on some edges. Many situations take advantage 
of negative edges. For instance, they’re useful when you can both gain and lose 
from moving between vertexes, such as gaining or losing money when transport-
ing or trading goods, or releasing energy in a chemical process.

Not all algorithms are well suited for handling negative edges. It’s important to 
note those that can work with only positive weights.

Discovering the correct algorithms to use
You can find many different algorithms to use to create a minimum spanning tree. 
The most common are greedy algorithms, which run in polynomial time. Poly­
nomial time is a power of the number of edges, such as O(n2) or O(n3) (see Part 5 for 
additional information about polynomial time). The major factors that affect the 
running speed of such algorithms involve the decision-making process — that is, 

FIGURE 9-2: 
The example 

graph becomes 
weighted.
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whether a particular edge belongs in the minimum spanning tree or whether the 
minimum total weight of the resulting tree exceeds a certain value. With this 
in mind, here are some of the algorithms available for solving a minimum span-
ning tree:

»» Borůvka’s: Invented by Otakar Borůvka in 1926 to solve the problem of 
finding the optimal way to supply electricity in Moravia. The algorithm relies 
on a series of stages in which it identifies the edges with the smallest weight in 
each stage. The calculations begin by looking at individual vertexes, finding 
the smallest weight for that vertex, and then combining paths to form forests 
of individual trees until it creates a path that combines all the forests with the 
smallest weight.

»» Prim’s: Originally invented by Jarnik in 1930, Prim rediscovered it in 1957. This 
algorithm starts with an arbitrary vertex and grows the minimum spanning 
tree one edge at a time by always choosing the edge with the least weight.

»» Kruskal’s: Developed by Joseph Kruskal in 1956, it uses an approach that 
combines Borůvka’s algorithm (creating forests of individual trees) and Prim’s 
algorithm (looking for the minimum edge for each vertex and building the 
forests one edge at a time).

»» Reverse-delete: This is actually a reversal of Kruskal’s algorithm. It isn’t 
commonly used.

These algorithms use a greedy approach. Greedy algorithms appear in Chapter 2 
among the families of algorithms, and you see them in detail in Chapter 15. In a 
greedy approach, the algorithm gradually arrives at a solution by taking, in an irre-
versible way, the best decision available at each step. For instance, if you need the 
shortest path between many vertexes, a greedy algorithm takes the shortest edges 
among those available between all vertexes.

Introducing priority queues
Later in this chapter, you see how to implement Prim’s and Kruskal’s algorithm 
for a minimum spanning tree, and Dijkstra’s algorithm for the shortest path in a 
graph using Python. However, before you can do that, you need a method to find 
the edges with the minimum weight among a set of edges. Such an operation 
implies ordering, and ordering elements costs time. It’s a complex operation, as 
described in Chapter  7. Because the examples repeatedly reorder edges, a data 
structure called the priority queue comes in handy.

Priority queues rely on heap tree-based data structures that allow fast element 
ordering when you insert them inside the heap. Like the magician’s magic hat, 
priority heaps store edges with their weights and are immediately ready to provide 
you with the inserted edge whose weight is the minimum among those stores.
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This example uses a class that allows it to perform priority-queue comparisons 
that determine whether the queue contains elements and when those elements 
contain a certain edge (avoiding double insertions). The priority queue has another 
useful characteristic (whose usefulness is explained when working on Dijkstra’s 
algorithm): If you insert an edge with a different weight than previously stored, 
the code updates the edge weight and rearranges the edge position in the heap.

from heapq import heapify, heappop, heappush

class priority_queue():
    def __init__(self):
        self.queue = list()
        heapify(self.queue)
        self.index = dict()
    def push(self, priority, label):
        if label in self.index:
            self.queue = [(w,l)
                for w,l in self.queue if l!=label]
            heapify(self.queue)
        heappush(self.queue, (priority, label))
        self.index[label] = priority
    def pop(self):
        if self.queue:
            return heappop(self.queue)
    def __contains__(self, label):
        return label in self.index
    def __len__(self):
        return len(self.queue)

Leveraging Prim’s algorithm
Prim’s algorithm generates the minimum spanning tree for a graph by traversing 
the graph vertex by vertex. Starting from any chosen vertex, the algorithm adds 
edges using a constraint in which, if one vertex is currently part of the spanning 
tree and the second vertex isn’t part of it, the edge weight between the two must be 
the least possible among those available. By proceeding in this fashion, creating 
cycles in the spanning tree is impossible (it could happen only if you add an edge 
whose vertexes are already both in the spanning tree) and you’re guaranteed to 
obtain a minimal tree because you add the edges with the least weight. In terms of 
steps, the algorithm includes these three phases, with the last one being iterative:

1.	 Track both the edges of the minimum spanning tree and the used vertexes as 
they become part of the solution.
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2.	 Start from any vertex in the graph and place it into the solution.

3.	 Determine whether there are still vertexes that aren’t part of the solution:

•	 Enumerate the edges that touch the vertexes in the solution.

•	 Insert the edge with the minimum weight into the spanning tree. (This is 
the greedy principle at work in the algorithm: Always choose the minimum 
at each step to obtain an overall minimum result.)

By translating these steps into Python code, you can test the algorithm on the 
example weighted graph using the following code:

def prim(graph, start):
    treepath = {}
    total = 0
    queue = priority_queue()
    queue.push(0 , (start, start))
    while queue:
        weight, (node_start, node_end) = queue.pop()
        if node_end not in treepath:
            treepath[node_end] = node_start
            if weight:
                print("Added edge from %s" \
                      " to %s weighting %i"
                      % (node_start, node_end, weight))
                total += weight
            for next_node, weight \
            in graph[node_end].items():
                queue.push(weight , (node_end, next_node))
    print ("Total spanning tree length: %i" % total)
    return treepath

treepath = prim(graph, 'A')

Added edge from A to B weighting 2
Added edge from B to C weighting 2
Added edge from B to D weighting 2
Added edge from D to E weighting 1
Added edge from E to F weighting 1
Total spanning tree length: 8

The algorithm prints the processing steps, showing the edge it adds at each stage 
and the weight the edge adds to the total. The example displays the total sum of 
weights and the algorithm returns a Python dictionary containing the ending 
vertex as key and the starting vertex as value for each edge of the resulting 
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spanning tree. Another function, represent_tree, turns the key and value pairs 
of the dictionary into a tuple and then sorts each of the resulting tuples for better 
readability of the tree path:

def represent_tree(treepath):
    progression = list()
    for node in treepath:
        if node != treepath[node]:
            progression.append((treepath[node], node))
    return sorted(progression, key=lambda x:x[0])

print (represent_tree(treepath))

[('A','B'), ('B','C'), ('B','D'), ('D','E'), ('E','F')]

The represent_tree function reorders the output of Prim’s algorithm for better 
readability. However, the algorithm works on an undirected graph, which means 
that you can traverse the edges in both directions. The algorithm incorporates this 
assumption because there is no edge directionality check to add to the priority 
queue for later processing.

Testing Kruskal’s algorithm
Kruskal’s algorithm uses a greedy strategy, just as Prim’s does, but it picks the 
shortest edges from a global pool containing all the edges (whereas Prim’s evalu-
ates the edges according to the vertexes in the spanning tree). To determine 
whether an edge is a suitable part of the solution, the algorithm relies on an 
aggregative process in which it gathers vertexes together. When an edge involves 
vertexes already in the solution, the algorithm discards it to avoid creating a cycle. 
The algorithm proceeds in the following fashion:

1.	 Put all the edges into a heap and sort them so that the shortest edges are on top.

2.	 Create a set of trees, each one containing only one vertex (so that the number 
of trees is the same number as the vertexes). You connect trees as an aggre-
gate until the trees converge into a unique tree of minimal length that spans all 
the vertexes.

3.	 Repeat the following operations until the solution doesn’t contain as many 
edges as the number of vertexes in the graph:

a.	 Choose the shortest edge from the heap.

b.	 Determine whether the two vertexes connected by the edge appear in 
different trees from among the set of connected trees.
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c.	 When the trees differ, connect the trees using the edge (defining an 
aggregation).

d.	 When the vertexes appear in the same tree, discard the edge.

e.	 Repeat steps a through d for the remaining edges on the heap.

The following example demonstrates how to turn these steps into Python code:

def kruskal(graph):
    priority = priority_queue()
    print ("Pushing all edges into the priority queue")
    treepath = list()
    connected = dict()
    for node in graph:
        connected[node] = [node]
        for dest, weight in graph[node].items():
            priority.push(weight, (node,dest))
    print ("Totally %i edges" % len(priority))
    print ("Connected components: %s"
           % connected.values())

    total = 0
    while len(treepath) < (len(graph)-1):
        (weight, (start, end)) = priority.pop()
        if end not in connected[start]:
            treepath.append((start, end))
            print ("Summing %s and %s components:"
                   % (connected[start],connected[end]))
            print ("\tadded edge from %s " \
                   "to %s weighting %i"
                   % (start, end, weight))
            total += weight
            connected[start] += connected[end][:]
            for element in connected[end]:
                connected[element]= connected[start]
    print ("Total spanning tree length: %i" % total)
    return sorted(treepath, key=lambda x:x[0])

print ('\nMinimum spanning tree: %s' % kruskal(graph))

Pushing all edges into the priority queue
Totally 9 edges
Connected components: dict_values([['A'], ['E'], ['F'],
                                  ['B'], ['D'], ['C']])



CHAPTER 9  Reconnecting the Dots      191

Summing ['E'] and ['D'] components:
        added edge from E to D weighting 1
Summing ['E', 'D'] and ['F'] components:
        added edge from E to F weighting 1
Summing ['A'] and ['B'] components:
        added edge from A to B weighting 2
Summing ['A', 'B'] and ['C'] components:
        added edge from B to C weighting 2
Summing ['A', 'B', 'C'] and ['E', 'D', 'F'] components:
        added edge from B to D weighting 2
Total spanning tree length: 8

Minimum spanning tree:
[('A','B'), ('B','C'), ('B','D'), ('E','D'), ('E','F')]

Kruskal’s algorithm offers a solution that’s similar to the one proposed by Prim’s 
algorithm. However, different graphs may provide different solutions for the 
minimum spanning tree when using Prim’s and Kruskal’s algorithms because 
each algorithm proceeds in different ways to reach its conclusions. Different 
approaches often imply different minimal spanning trees as output.

Determining which algorithm works best
Both Prim’s and Kruskal’s algorithms output a single connected component, join-
ing all the vertexes in the graph by using the least (or one of the least) long 
sequences of edges (a minimum spanning tree). By summing the edge weights, 
you can determine the length of the resulting spanning tree. Because both algo-
rithms always provide you with a working solution, you must rely on running 
time and decide whether they can take on any kind of weighted graph to deter-
mine which is best.

As for running time, both algorithms provide similar results with Big-O complex-
ity rating of O(E*log(V)), where E is the number of edges and V the number of 
vertexes. However, you must account for how they solve the problem because 
there are differences in the average expected running time.

Prim’s algorithm incrementally builds a single solution by adding edges, whereas 
Kruskal’s algorithm creates an ensemble of partial solutions and aggregates them. 
In creating its solution, Prim’s algorithm relies on data structures that are more 
complex than Kruskal’s because it continuously adds potential edges as candi-
dates and keeps picking the shortest edge to proceed toward its solution. When 
operating on a dense graph, Prim’s algorithm is preferred over Kruskal’s because 
its priority queue based on heaps does all the sorting jobs quickly and efficiently.
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The example uses a priority queue based on a binary heap for the heavy job of 
picking up the shortest edges, but there are even faster data structures, such as 
the Fibonacci heap, which can produce faster results when the heap contains many 
edges. Using a Fibonacci heap, the running complexity of Prim’s algorithm can 
mutate to O(E +V*log(V)), which is clearly advantageous if you have a lot of edges 
(the E component is now summed instead of multiplied) compared to the previous 
reported running time O(E*log(V)).

Kruskal’s algorithm doesn’t much need a priority queue (even though one of the 
examples uses one) because the enumeration and sorting of edges happens just 
once at the beginning of the process. Being based on simpler data structures that 
work through the sorted edges, it’s the ideal candidate for regular, sparse graphs 
with fewer edges.

Finding the Shortest Route
The shortest route between two points isn’t necessarily a straight line, especially 
when a straight line doesn’t exist in your graph. Say that you need to run electrical 
lines in a community. The shortest route would involve running the lines as 
needed between each location without regard to where those lines go. However, 
real life tends not to allow a simple solution. You may need to run the cables 
beside roads and not across private property, which means finding routes that 
reduce the distances as much as possible.

Defining what it means to  
find the shortest path
Many applications exist for shortest-route algorithms. The idea is to find the path 
that offers the smallest distance between point A and point B. Finding the shortest 
path is useful for both transportation (how to arrive at a destination consuming 
the least fuel) and communication (how to route information to allow it to arrive 
earlier). Nevertheless, unexpected applications of the shortest-path problem may 
also arise in image processing (for separating contours of images), gaming (how 
to achieve certain game goals using the fewest moves), and many other fields in 
which you can reduce the problem to an undirected or directed weighted graph.

The Dijkstra algorithm can solve the shortest-path problem and has found the 
most uses. Edsger W. Dijkstra, a Dutch computer scientist, devised the algorithm 
as a demonstration of the processing power of a new computer called ARMAC 
(http://www-set.win.tue.nl/UnsungHeroes/machines/armac.html) in 1959. 
The algorithm initially solved the shortest distance between 64 cities in the 
Netherlands based on a simple graph map.

http://www-set.win.tue.nl/UnsungHeroes/machines/armac.html
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Other algorithms can solve the shortest-path problem. The Bellman-Ford and 
Floyd-Warshall are more complex but can handle graphs with negative weights. 
(Negative weights can represent some problems better.) Both algorithms are 
beyond the scope of this book, but the site at https://www.hackerearth.com/ 
ja/practice/algorithms/graphs/shortest-path-algorithms/tutorial/ pro-
vides additional information about them. Because the shortest-path problem 
involves graphs that are both weighted and directed, the example graph requires 
another update before proceeding (you can see the result in Figure 9-3). (You can 
find this code in the A4D; 09; Shortest Path.ipynb file on the Dummies site 
as part of the downloadable code; see the Introduction for details.)

import numpy as np
import networkx as nx
import matplotlib.pyplot as plt
%matplotlib inline

graph = {'A': {'B':2, 'C':3},
         'B': {'C':2, 'D':2},
         'C': {'D':3, 'E':2},
         'D': {'F':3},
         'E': {'D':1,'F':1},
         'F': {}}

Graph = nx.DiGraph()
for node in graph:
    Graph.add_nodes_from(node)
    for edge, weight in graph[node].items():
        Graph.add_edge(node,edge, weight=weight)

pos = { 'A': [0.00, 0.50], 'B': [0.25, 0.75],
        'C': [0.25, 0.25], 'D': [0.75, 0.75],
        'E': [0.75, 0.25], 'F': [1.00, 0.50]}

labels = nx.get_edge_attributes(Graph,'weight')
nx.draw(Graph, pos, with_labels=True)
nx.draw_networkx_edge_labels(Graph, pos,
                             edge_labels=labels)
nx.draw_networkx(Graph,pos)
plt.show()

https://www.hackerearth.com/ja/practice/algorithms/graphs/shortest-path-algorithms/tutorial/
https://www.hackerearth.com/ja/practice/algorithms/graphs/shortest-path-algorithms/tutorial/
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Explaining Dijkstra’s algorithm
Dijkstra’s algorithm requires a starting and (optionally) ending vertex as input. If 
you don’t provide an ending vertex, the algorithm computes the shortest distance 
between the starting vertex and any other vertexes in the graph. When you define 
an ending vertex, the algorithm stops upon reading that vertex and returns the 
result up to that point, no matter how much of the graph remains unexplored.

The algorithm starts by estimating the distance of the other vertexes from the 
starting point. This is the starting belief it records in the priority queue and is set 
to infinity by convention. Then the algorithm proceeds to explore the neighboring 
nodes, similar to a BFS. This allows the algorithm to determine which nodes are 
near and that their distance is the weight of the connecting edges. It stores this 
information in the priority queue by an appropriate weight update.

Naturally, the algorithm explores the neighbors because a directed edge connects 
them with the starting vertex. Dijkstra’s algorithm accounts for the edge direction.

At this point, the algorithm moves to the nearest vertex on the graph based on the 
shortest edge in the priority queue. Technically, the algorithm visits a new vertex. 
It starts exploring the neighboring vertexes, excluding the vertexes that it has 
already visited, determines how much it costs to visit each of the unvisited ver-
texes, and evaluates whether the distance to visit them is less than the distance it 
recorded in the priority queue.

When the distance in the priority queue is infinite, this means that it’s the algo-
rithm’s first visit to that vertex, and the algorithm records the shorter distance. 

FIGURE 9-3: 
The example 

graph becomes 
weighted and 

directed.
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When the distance recorded in the priority queue isn’t infinite, but it’s more than 
the distance that the algorithm has just calculated, it means that the algorithm 
has found a shortcut, a shorter way to reach that vertex from the starting point, 
and it stores the information in the priority queue. Of course, if the distance 
recorded in the priority queue is shorter than the one just evaluated by the algo-
rithm, the algorithm discards the information because the new route is longer. 
After updating all the distances to the neighboring vertexes, the algorithm deter-
mines whether it has reached the end vertex. If not, it picks the shortest edge 
present in the priority queue, visits it, and starts evaluating the distance to the 
new neighboring vertexes.

As the narrative of the algorithm explained, Dijikstra’s algorithm keeps a precise 
accounting of the cost to reach every vertex that it encounters, and it updates its 
information only when it finds a shorter way. The running complexity of the algo-
rithm in Big-O notation is O(E*log(V)), where E is the number of edges and V the 
number of vertexes in the graph. The following code shows how to implement 
Dijikstra’s algorithm using Python:

def dijkstra(graph, start, end):
    inf = float('inf')
    known = set()
    priority = priority_queue()
    path = {start: start}

    for vertex in graph:
        if vertex == start:
            priority.push(0, vertex)
        else:
            priority.push(inf, vertex)
    last = start

    while last != end:
        (weight, actual_node) = priority.pop()
        if actual_node not in known:
            for next_node in graph[actual_node]:
                upto_actual = priority.index[actual_node]
                upto_next = priority.index[next_node]
                to_next = upto_actual + \
                graph[actual_node][next_node]
                if to_next < upto_next:
                    priority.push(to_next, next_node)
                    print("Found shortcut from %s to %s"
                          % (actual_node, next_node))
                    print ("\tTotal length up so far: %i"
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                           % to_next)
                    path[next_node] = actual_node

            last = actual_node
            known.add(actual_node)

    return priority.index, path

dist, path = dijkstra(graph, 'A', 'F')

Found shortcut from A to C
   Total length up so far: 3
Found shortcut from A to B
   Total length up so far: 2
Found shortcut from B to D
   Total length up so far: 4
Found shortcut from C to E
   Total length up so far: 5
Found shortcut from D to F
   Total length up so far: 7
Found shortcut from E to F
   Total length up so far: 6

The algorithm returns a couple of useful pieces of information: the shortest path 
to destination and the minimum recorded distances for the visited vertexes. To 
visualize the shortest path, you need a reverse_path function that rearranges the 
path to make it readable:

def reverse_path(path, start, end):
    progression = [end]
    while progression[-1] != start:
        progression.append(path[progression[-1]])
    return progression[::-1]

print (reverse_path(path, 'A', 'F'))

['A', 'C', 'E', 'F']

You can also know the shortest distance to every node encountered by querying 
the dist dictionary:

print (dist)

{'D': 4, 'A': 0, 'B': 2, 'F': 6, 'C': 3, 'E': 5}
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IN THIS CHAPTER

»» Seeing social networks in graph form

»» Interacting with graph content

Discovering Graph 
Secrets

Chapter 8 helps you understand the foundations of graphs as they apply to 
mathematics. Chapter 9 increases your knowledge by helping you see the 
relationship of graphs to algorithms. This chapter helps you focus on 

applying the theories of these previous two chapters to interact with graphs in 
practical ways.

The first section conveys the character of social networks by using graphs. 
Considering the connections created by social networks is important. For example, 
conversation analysis can reveal patterns that help you understand the underlying 
topic better than simply reading the conversations would do. A particular 
conversation branch might attract greater attention because it’s more important 
than another conversation branch. Of course, you must perform this analysis 
while dealing with issues such as spam. Analysis of this sort can lead to all sorts 
of interesting conclusions, such as where to spend more advertising money in 
order to attract the most attention and, therefore, sales.

The second section looks at navigating graphs to achieve specific results. For 
example, when driving, you might need to know the best route to take between two 
points given that, even though one route is shorter, it also has construction that 
makes a second route better. Sometimes you need to randomize your search to 
discover a best route or a best conclusion. This section of the chapter also dis-
cusses that issue.

Chapter 10
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Envisioning Social Networks as Graphs
Every social interaction necessarily connects with every other social interaction of 
the same type. For example, consider a social network such as Facebook. The links 
on your page connect with family members, but they also connect with outside 
sources that in turn connect with other outside sources. Each of your family mem-
bers also has external links. Direct and indirect connections between various pages 
eventually link every other page together, even though the process of getting from 
one page to another may require the use of myriad links. Connectivity occurs in all 
sorts of other ways as well. The point is that studying social networks simply by 
viewing a Facebook page or other source of information is hard. Social  Network 
Analysis (SNA) is the process of studying the interactions in social networks using 
graphs called sociograms, in which nodes (such as a Facebook page) appear as 
points, and ties (such as external page links) appear as lines. The following sec-
tions discuss some of the issues surrounding the study of social networks as graphs.

Clustering networks in groups
People tend to form communities — clusters of other people who have like ideas 
and sentiments. By studying these clusters, attributing certain behaviors to the 
group as a whole becomes easier (although attributing the behavior to an indi-
vidual is both dangerous and unreliable). The idea behind the study of clusters is 
that if a connection exists between people, they often have a common set of ideas 
and goals. By finding clusters, you can determine these ideas by inspecting group 
membership. For instance, it’s common to try to find clusters of people in insur-
ance fraud detection and tax inspection. Unexpected groups of people might raise 
suspicion that they’re part of a group of fraudsters or tax evaders because they 
lack the usual reasons for people to gather in such circumstances.

Friendship graphs can represent how people connect with each other. The vertexes 
represent individuals and the edges represent their connections, such as family 
relationships, business contacts, or friendship ties. Typically, friendship graphs 
are undirected because they represent mutual relationships, and sometimes 
they’re weighted to represent the strength of the bond between two persons.

Many studies focus on undirected graphs that concentrate solely on associations. 
You can also use directed graphs to show that Person A knows about Person B, but 
Person B doesn’t even know that Person A exists. In this case, you actually have 16 
different kinds of triads to consider. For the sake of simplicity, this chapter focuses 
solely on these four types: closed, open, connected pair, and unconnected.

When looking for clusters in a friendship graph, the connections between nodes in 
these clusters depend on triads — essentially, special kinds of triangles. Connec-
tions between three people can fall into these categories:
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»» Closed: All three people know each other. Think about a family setting in this 
case, in which everyone knows everyone else.

»» Open: One person knows two other people, but the two other people don’t 
know each other. Think about a person who knows an individual at work and 
another individual at home, but the individual at work doesn’t know anything 
about the individual at home.

»» Connected pair: One person knows one of the other people in a triad but 
doesn’t know the third person. This situation involves two people who know 
something about each other meeting someone new — someone who 
potentially wants to be part of the group.

»» Unconnected: The triad forms a group, but no one in the group knows each 
other. This last one might seem a bit odd, but think about a convention or 
seminar. The people at these events form a group, but they may not know 
anything about each other. However, because they have similar interests, you 
can use clustering to understand the behavior of the group.

Triads occur naturally in relationships, and many Internet social networks have 
leveraged this idea to accelerate the connections between participants. The density 
of connections is important for any kind of social network because a connected 
network can spread information and share content more easily. For instance, when 
LinkedIn, the professional social network (https://www.linkedin.com/), decided 
to increase the connection density of its network, it started by looking for open 
triads and trying to close them by inviting people to connect. Closing triads is at 
the foundation of LinkedIn’s Connection Suggestion algorithm. You can discover 
more about how it works by reading the Quora’s answer at: https://www.quora.
com/How-does-LinkedIns-People-You-May-Know-work.

The example in this section relies on the Zachary’s Karate Club sample graph 
described at https://networkdata.ics.uci.edu/data.php?id=105. It’s a small 
graph that lets you see how networks work without spending a lot of time loading 
a large dataset. Fortunately, this dataset appears as part of the networkx package 
introduced in Chapter 8. The Zachary’s Karate Club network represents the friend-
ship relationships between 34 members of a karate club from 1970 to 1972. 
Sociologist Wayne W. Zachary used it as a topic of study. He wrote a paper on it 
entitled “An Information Flow Model for Conflict and Fission in Small Groups.” 
The interesting fact about this graph and its paper is that in those years, a conflict 
arose in the club between one of the karate instructors (node number 0) and the 
president of the club (node number 33). By clustering the graph, you can almost 
perfectly predict the split of the club into two groups shortly after the occurrence.

Because this example also draws a graph showing the groups (so that you can 
visualize them easier), you also need to use the matplotlib package. The following 
code shows how to graph the nodes and edges of the dataset. (You can find this 

https://www.linkedin.com/
https://www.quora.com/How-does-LinkedIns-People-You-May-Know-work
https://www.quora.com/How-does-LinkedIns-People-You-May-Know-work
https://networkdata.ics.uci.edu/data.php?id=105
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code in the A4D; 10; Social Networks.ipynb file on the Dummies site as part of 
the downloadable code; see the Introduction for details.)

import networkx as nx
import matplotlib.pyplot as plt
%matplotlib inline

graph = nx.karate_club_graph()

pos=nx.spring_layout(graph)
nx.draw(graph, pos, with_labels=True)
plt.show()

To display the graphic onscreen, you also need to provide a layout that determines 
how to position the nodes onscreen. This example uses the Fruchterman-Reingold 
force-directed algorithm (the call to nx.spring_layout). However, you can 
choose one of the other layouts described in the Graph Layout section at https://
networkx.github.io/documentation/networkx-1.9/reference/drawing.
html. Figure  10-1 shows the output from the example. (Your output may look 
slightly different.)

The Fruchterman-Reingold force-directed algorithm for generating automatic 
layouts of graphs creates understandable layouts with separated nodes and edges 
that tend not to cross by mimicking what happens in physics between electrically 
charged particles or magnets bearing the same sign. In looking at the graph 

FIGURE 10-1: 
A graph showing 

the network 
clusters of 

relationships 
between friends.

https://networkx.github.io/documentation/networkx-1.9/reference/drawing.html
https://networkx.github.io/documentation/networkx-1.9/reference/drawing.html
https://networkx.github.io/documentation/networkx-1.9/reference/drawing.html
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output, you can see that some nodes have just one connection, some two, and 
some more than two. The edges form triads, as previously mentioned. However, 
the most important consideration is that Figure 10-1 clearly shows the clustering 
that occurs in a social network.

Discovering communities
A group of tightly associated people often defines a community. In fact, the term 
clique applies to a group whose membership to the group is exclusive and everyone 
knows everyone else quite well. Most people have childhood memories of a tight 
group of friends at school or in the neighborhood who always spent their time 
together. That’s a clique.

You can find cliques in undirected graphs. Directed graphs distinguish strongly 
between connected components when a direct connection exists between all the 
node pairs in the component itself. A city is an example of a strongly connected 
component because you can reach any destination from any starting point by 
following one-way and two-way streets.

Mathematically, a clique is even more rigorous because it implies a subgraph (a 
part of a network graph that you can separate from other parts as a complete ele-
ment in its own right) that has maximum connectivity. In looking at various kinds 
of social networks, picking out the clusters is easy, but what can prove difficult is 
finding the cliques — the groups with maximum connectivity — within the clus-
ters. By knowing where cliques exist, you can begin to understand the cohesive 
nature of a community better. In addition, the exclusive nature of cliques tends to 
create a group that has its own rules outside of those that might exist in the social 
network as a whole. The following example shows how to extract cliques and 
communities from the karate club graph used in the previous section:

graph = nx.karate_club_graph()
# Finding and printing all cliques of four
cliques = nx.find_cliques(graph)
print ('All cliques of four: %s'
       % [c for c in cliques if len(c)>=4])

# Joining cliques of four into communities
communities = nx.k_clique_communities(graph, k=4)
communities_list = [list(c) for c in communities]
nodes_list = [node for community in communities_list for
              node in community]
print ('Found these communities: %s' % communities_list)
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# Printing the subgraph of communities
subgraph = graph.subgraph(nodes_list)
nx.draw(subgraph, with_labels=True)
plt.show()

All cliques of four: [[0, 1, 2, 3, 13], [0, 1, 2, 3, 7],
                      [33, 32, 8, 30], [33, 32, 23, 29]]
Found these communities: [[0, 1, 2, 3, 7, 13],
                        [32, 33, 29, 23], [32, 33, 8, 30]]

The example begins by extracting just the nodes in the karate club dataset that 
have four or more connections, and then prints the cliques with a minimum size 
of four. Of course, you can set any level of connections needed to obtain the desired 
resource. Perhaps you consider a clique a community in which each node has 
twenty connections, but other people might see a clique as a community where 
each node has just three connections.

The list of cliques doesn’t really help you much, though, if you want to see the 
communities. To see them, you need to rely on specialized and complex 
algorithms  to merge overlapping cliques and find clusters, such as the clique 
percolation method described at https://gaplogs.net/2012/04/01/simple- 
community-detection-algorithms/. The NetworkX package offers k_clique_ 
communities, an implementation of the clique percolation algorithm, which 
results in the union of all the cliques of a certain size (the k parameter). These 
cliques of a certain size share k-1 elements (that is, they differ by just one 
component, a truly strict rule).

Clique percolation provides you with a list of all the communities found. In this 
example, one clique revolves around the karate instructor and another revolves 
around the president of the club. In addition, you can extract all the nodes that are 
part of a community into a single set, which helps you create a subgraph made of 
just communities.

Finally, you can draw the subgraph and display it. Figure 10-2 shows the output  
of this example, which displays the ensemble of cliques with four or more 
connections.

Finding cliques in graphs is a complex problem requiring many computations (it’s 
a difficult problem) that an algorithm solves using a brute-force search, which 
means trying all possible subsets of vertexes to determine whether they’re cliques. 
With some luck, because some randomization is needed for the algorithm to 
succeed, you can find a large clique using a simple approach whose complexity is 
O(n+m), where n is the number of vertexes and m the edges. The following steps 
describe this process.

https://gaplogs.net/2012/04/01/simple-community-detection-algorithms/
https://gaplogs.net/2012/04/01/simple-community-detection-algorithms/
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1.	 Sort the vertexes by degree (which is the number of vertex connections), from 
the highest to the lowest.

2.	 Place the vertex with the highest degree into the clique (or as an alternative, 
randomly choose from one of the highest-degree vertexes).

3.	 Repeat Steps 1 and 2 until you have no more vertexes to test.

4.	 Verify the next vertex as being part of the clique:

•	 If it’s part of the clique, add it to the clique.

•	 If it isn’t part of the clique, repeat the test on the remaining vertexes.

At the end, after a few algorithm trials, you should have a list of vertexes that 
constitutes the largest clique present in the graph.

Navigating a Graph
Navigating or traversing a graph means visiting each of the graph nodes. The pur-
pose of navigating a graph can include determining node content or updating it as 
needed. When navigating a graph, it’s entirely possible that you visit particular 
nodes more than once because of the connectivity that graphs provide. Conse-
quently, you also need to consider marking nodes as visited after you see their 
content. The act of navigating a graph is important in determining how the nodes 
connect so that you can perform various tasks. Previous chapters discuss basic 
graph navigation techniques. The following sections help you understand a few of 
the more advanced graph navigation techniques.

FIGURE 10-2: 
Communities 
often contain 

cliques that can 
prove useful 

for SNA.
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Counting the degrees of separation
The term degrees of separation defines the distance between nodes in a graph. 
When working with an undirected graph without weighted edges, each edge 
counts for a value of one degree of separation. However, when working with other 
sorts of graphs, such as maps, where each edge can represent a distance or time 
value, the degrees of separation can become quite different. The point is that 
degrees of separation indicate some sort of distance. The example in this section 
(and the one that follows) relies on the following graph data. (You can find this 
code in the A4D; 10; Graph Navigation.ipynb file on the Dummies site as part 
of the downloadable code; see the Introduction for details.)

import networkx as nx
import matplotlib.pyplot as plt
%matplotlib inline

data  = {'A': ['B', 'F', 'H'],
         'B': ['A', 'C'],
         'C': ['B', 'D'],
         'D': ['C', 'E'],
         'E': ['D', 'F', 'G'],
         'F': ['E', 'A'],
         'G': ['E', 'H'],
         'H': ['G', 'A']}

graph = nx.DiGraph(data)
pos=nx.spring_layout(graph)
nx.draw_networkx_labels(graph, pos)
nx.draw_networkx_nodes(graph, pos)
nx.draw_networkx_edges(graph, pos)
plt.show()

This is an expansion of the graph used in Chapter 6. Figure 10-3 shows how this 
graph appears so that you can visualize what the function call is doing. Note that 
this is a directed graph (networkx DiGraph) because using a directed graph has 
certain advantages when determining degrees of separation (and performing a 
wealth of other calculations).

To discover the degrees of separation between two items, you must have a starting 
point. For the purpose of this example, you can use node ’A’. The following code 
shows the required networkx package function call and output:

nx.shortest_path_length(graph, 'A')

{'A': 0, 'B': 1, 'C': 2, 'D': 3, 'E': 2, 'F': 1, 'G': 2,
 'H': 1}
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The distance between node A and node A is 0, of course. The greatest degree of 
separation comes from node A to node D, which is 3. You can use this kind of infor-
mation to determine which route to take or to perform an analysis of the cost in 
gas versus the cost in time of various paths. The point is that knowing the short
est distance between two points can be quite important. The networkx package 
used for this example comes in a wide array of distance-measuring algorithms,  
as described at https://networkx.github.io/documentation/development/
reference/algorithms.shortest_paths.html.

To see how using a directed graph can make a big difference when performing 
degrees-of-separation calculations, try removing the connection between nodes 
A and F. Change the data so that it looks like this:

data  = {'A': ['B', 'H'],
         'B': ['A', 'C'],
         'C': ['B', 'D'],
         'D': ['C', 'E'],
         'E': ['D', 'F', 'G'],
         'F': ['E', 'A'],
         'G': ['E', 'H'],
         'H': ['G', 'A']}

When you perform the call to nx.shortest_path_length this time, the output 
becomes quite different because you can no longer go from A to F directly. Here’s 
the new output from the call:

{'A': 0, 'B': 1, 'C': 2, 'D': 3, 'E': 3, 'F': 4, 'G': 2,
 'H': 1}

FIGURE 10-3: 
A sample graph 

used for 
navigation 
purposes.

https://networkx.github.io/documentation/development/reference/algorithms.shortest_paths.html
https://networkx.github.io/documentation/development/reference/algorithms.shortest_paths.html
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Notice that the loss of the path has changed some of the degrees of separation. 
The distance to node F is now the longest at 4.

Walking a graph randomly
You might find a need to walk a graph randomly. The act of walking the graph 
randomly, rather than look for a specific path, can simulate natural activities, 
such as an animal foraging for food. It also plays in to all sorts of other interesting 
activities, such as playing games. However, random graph walking can have prac-
tical aspects. For example, a car is held up in traffic because of an accident, so the 
shortest path is no longer available. In some cases, choosing a random alternative 
might work best because traffic along the second shortest route could be heavy as 
a result of the traffic jam along the shortest route.

The networkx package doesn’t provide the means for obtaining a random path 
directly. However, it does provide the means for finding all available paths, after 
which you can select a path from the list randomly. The following code shows how 
this process might work using the graph from the previous section.

import random
random.seed(0)

paths = nx.all_simple_paths(graph, 'A', 'H')

path_list = []
for path in paths:
    path_list.append(path)
    print("Path Candidate: ", path)

sel_path = random.randint(0, len(path_list) - 1)

print("The selected path is: ", path_list[sel_path])

Path Candidate:  ['A', 'B', 'C', 'D', 'E', 'G', 'H']
Path Candidate:  ['A', 'H']
Path Candidate:  ['A', 'F', 'E', 'G', 'H']
The selected path is:  ['A', 'H']

The code sets the seed to a specific value to ensure that you get the same result 
every time. However, by changing the seed value, you can see different results 
from the example code. The point is that even the simple graph shown in 
Figure 10-3 offers three ways to get from node A to node H (two of which are 
definitely longer than the selected path in this case). Choosing just one of them 
ensures that you get from one node to the other, albeit by a potentially round-
about way.
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IN THIS CHAPTER

»» Understanding why finding what you 
want on the web is hard

»» Reviewing problems that PageRank 
solves

»» Implementing the PageRank 
algorithm with teleporting

»» Learning how PageRank usage is 
evolving

Getting the Right 
Web page

The last few chapters review graphs at length. The web is one of the most 
interesting examples because of its extent and complexity. After providing 
an understanding of the basic algorithms that allow graph traversal and 

extraction of useful structures (such as the presence of clusters or communities), 
this chapter concludes the discussion of graphs by presenting the PageRank algo-
rithm that has revolutionized people’s lives as much as the web and Internet did 
because it makes the web usable. PageRank isn’t only the engine behind Google 
and many other search engines, but it’s also a smart way to derive latent informa-
tion, such as relevance, importance, and reputation, from a graph structure.

Libraries rely on catalogues and librarians to offer an easy way to find particular 
texts or explore certain subjects. Books aren’t all the same: Some are good at pre-
senting certain kinds of information; some are better. Scholar recommendations 
make a book an authoritative source because these recommendations often appear 
in other books as quotes and citations. This sort of cross-reference didn’t exist on 
the web initially. The presence of certain words in the title or in the text of the 
body recommended a particular web page. This approach is practically like judg-
ing a book by its title and the number of words it contains.

Chapter 11
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The PageRank algorithm changes all that by transforming the presence of the 
links on pages and turning them into recommendations, akin to the input of 
expert scholars. The growing scale of the web also plays a role in the success of the 
algorithm. Good signals are easy to find and distinguished from noise because 
they appear regularly. Noise, though confounding, is naturally casual. The larger 
the web, the more likely you are to get good signals for a smart algorithm like 
PageRank.

Finding the World in a Search Engine
For many people, their personal and professional lives are unthinkable without 
the Internet and the web. The Internet network is composed of interconnected 
pages (among other things). The web is composed of sites that are reachable by 
domains, each one composed of pages and hyperlinks that connect sites internally 
and with other sites externally. Service and knowledge resources are available 
through the web if you know exactly where to look. Accessing the web is unthink-
able without search engines, those sites that allow you to find anything on the 
web using a simple query.

Searching the Internet for data
With an estimated size of almost 50 billion pages (http://www.worldwide 
websize.com/), the web isn’t easy to represent. Studies describe the web as a 
bowtie shaped graph (see http://www.immorlica.com/socNet/broder.pdf and 
http://vigna.di.unimi.it/ftp/papers/GraphStructureRevisited.pdf). The 
web mainly consists of an interconnected core and other parts that link to that 
core. However, some parts are completely unreachable. By taking any road in the 
real world, you can go anywhere (you may have to cross the oceans to do it). On 
the web, you can’t touch all the sites just by following its structure; some parts 
aren’t easily accessible (they are disconnected or you’re on the wrong side to 
reach them). If you want to find something on the web, even when time isn’t a 
problem, you still need an index.

Considering how to find the right data
Finding the right data has been a problem since the early years of the web, but the 
first search engines didn’t appear until the 1990s. Search engines weren’t thought 
of earlier because other solutions, such as simple domain listings or specialized 
site catalogues, worked fine. Only when these solutions stopped scaling well 
because of the rapidly growing size of the web did search engines such as Lycos, 
Magellan, Yahoo, Excite, Inktomi, and Altavista appear.

http://www.worldwidewebsize.com/
http://www.worldwidewebsize.com/
http://www.immorlica.com/socNet/broder.pdf
http://vigna.di.unimi.it/ftp/papers/GraphStructureRevisited.pdf
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All these search engines worked by having specialized software autonomously 
visit the web, using domain lists and testing hyperlinks found on the visited pages. 
These spiders explored each new link in a process called crawling. Spiders are pieces 
of software that read the pages as plain text (they can’t understand images or 
other nontextual content).

Early search engines worked by crawling the web, collecting the information from 
spiders, and processing it in order to create inverted indexes. The indexes allowed 
retracing pages based on the words they contained. When you made a query, such 
inverted indexes reported all the pages containing the terms and helped score the 
pages, thus creating a ranking that turned into a search result (a list of ordered 
pages, ranging from the anticipated most useful page to the least useful page).

The scoring was quite naive because it often counted how frequently the keywords 
appeared on pages or whether they appeared in the titles or in the header of the 
page itself. Sometimes keywords were even scored more if they mixed or clustered 
together. Clearly, such simple indexing and scoring techniques allowed some web 
users to take advantage by using various tricks:

»» Web spammers: Used their ability to fill the search results with pages 
containing poor content and a lot of advertising.

»» Black Hat search engine optimization (Black Hat SEO): Used by people who 
employ their knowledge of search engines to make the search engine ranking 
higher for pages they manipulated despite their poor quality. Unfortunately, 
these issues still persist because every search engine, even the most evolved 
ones, aren’t immune to people who want to game the system to obtain a 
higher search engine ranking. The PageRank algorithm may eliminate many of 
the older spammers and Black Hat SEO people, but it’s not a panacea.

URLs WITH .PDF EXTENSIONS
Many of the resource URLs found in this book have a .pdf extension. When you attempt 
to open the link, you may see a warning from your browser indicating that the .pdf file 
could contain a virus. It’s entirely possible for a .pdf file to contain a virus (see http://
security.stackexchange.com/questions/64052/can-a-pdf-file-contain-a- 
virus for a discussion of the topic). However, the research .pdf file links provided in this 
book are unlikely to contain viruses, so you can download them safely and then use a 
scanner to verify the content. As with any online content, you’re always better off to be 
safe than sorry when it comes to files. Please do let us know if any of the .pdfs referenced 
in the book actually do contain viruses by writing to John@JohnMuellerBooks.com. 
In addition, please contact the webmaster for the site hosting the file.

http://security.stackexchange.com/questions/64052/can-a-pdf-file-contain-a-virus
http://security.stackexchange.com/questions/64052/can-a-pdf-file-contain-a-virus
http://security.stackexchange.com/questions/64052/can-a-pdf-file-contain-a-virus
mailto:John@JohnMuellerBooks.com
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It’s essential to distinguish Black Hat SEO from White Hat SEO (usually simply 
SEO). People who use White Hat SEO are professionals who employ their 
knowledge of search engines to better promote valid and useful pages in a 
legal and ethical way.

The emergence of such actors and the possibility of manipulating search engines’ 
results created the need for better ranking algorithms in search engines. One such 
result is the PageRank algorithm.

Explaining the PageRank Algorithm
The PageRank algorithm is named after Google cofounder Larry Page. It made its 
first public appearance in a 1998 paper entitled “The Anatomy of a LargeScale 
Hypertextual Web Search Engine,” by Sergey Brin and Larry Page, published by 
the journal Computer Networks and ISDN Systems (http://ilpubs.stanford.
edu:8090/361/1/1998-8.pdf). At that time, both Brin and Page were PhD candi-
dates, and the algorithm, the very foundation of Google’s search technology, was 
initially a research project at Stanford University.

Simply stated, PageRank scores the importance of each node in a graph in such a 
way that the higher the score the more important the node in a graph. Determin-
ing the node importance in a graph like the web means computing whether a page 
is relevant as part of a query’s results, thus better servicing users looking for good 
web content.

A page is a good response to a query when it matches the query’s criteria and has 
prominence in the system of hyperlinks that ties pages together. The logic behind 
prominence is that because users build the web, a page has importance in the 
network for good reason (the quality and authority of the page’s content is 
assessed by its importance in the web’s network of hyperlinks).

Understanding the reasoning behind  
the PageRank algorithm
In 1998, when both Brin and Page were still students at Stanford, the quality of 
search results was an issue for anyone using the web. Mainstream search engines 
of the time struggled both with an ever-growing web structure (the next part of 
the book discusses algorithm scaling issues and how to make them work with big 
data) and with a myriad of spammers.

http://ilpubs.stanford.edu:8090/361/1/1998-8.pdf
http://ilpubs.stanford.edu:8090/361/1/1998-8.pdf
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The use of spammers in this case doesn’t refer to email spammers (those spam-
mers who send unrequested emails to your Inbox) but rather to web spammers 
(those who know the economic importance of having pages at the top of search 
results). This group devised sophisticated and malicious tricks in order to fool 
search results. Popular hacks by web spammers of the day include:

»» Keyword stuffing: Implies overusing particular keywords in a page to trick the 
search engine into thinking the page seriously discusses the keyword topic.

»» Invisible text: Requires copying the content of a page result on top of a 
query into a different page using the same color for both characters and 
background. The copied content is invisible to users but not to the search 
engine’s spiders (which were, and still are, just scanning textual data) and to 
its algorithms. The trick ranks the page with invisible text as high as the 
originating page in a search.

»» Cloaking: Defines a more sophisticated variant of invisible text where, instead 
of text, scripts or images provide different content to search engine spiders 
than users actually see.

Web spammers use such tricks to trick search engines to rank pages highly, even 
though the page content is poor and, at best, misleading. These tricks have 
consequences. For instance, a user might look for information relating to 
university research and instead be exposed to commercial advertising or inappro-
priate content. Users became disappointed because they often ended up at pages 
unrelated to their needs, requiring them to restate their queries and to spend time 
digging for useful information among pages of results, wasting energy in distin-
guishing good references from bad ones. Scholars and experts, noting the need to 
cope with spam results and fearing that the development of the web could halt 
because users had difficulties finding what they really wanted, started working on 
possible solutions.

As Brin and Page worked on their solving algorithm, other ideas were drafted and 
publicized, or developed in parallel. One such idea is Hyper Search, by Massimo 
Marchiori, who first pointed out the importance of web links in determining the 
prominence of a web page as a factor to consider during a search: https://www. 
w3.org/People/Massimo/papers/WWW6/). Another interesting solution is a web 
search engine project called HITS (Hypertext-Induced Topic Search), also based 
on the web links structure and developed by Jon Kleinberg, a young scientist 
working at IBM Almaden in Silicon Valley. The interesting fact about HITS is that 
it classifies pages into hubs (a page with many links to authoritative pages) and 
authorities (pages considered authoritative by many links from hubs), something 
that PageRank doesn’t do explicitly (but implicitly does in computations) 
(http://www.math.cornell.edu/~mec/Winter2009/RalucaRemus/Lecture4/ 
lecture4.html).

https://www.w3.org/People/Massimo/papers/WWW6/
https://www.w3.org/People/Massimo/papers/WWW6/
http://www.math.cornell.edu/~mec/Winter2009/RalucaRemus/Lecture4/lecture4.html
http://www.math.cornell.edu/~mec/Winter2009/RalucaRemus/Lecture4/lecture4.html
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When the time is ripe, the same idea or something similar often sprouts in differ-
ent places. Sometimes sharing of basic ideas occurs between researchers and 
scientists; sometimes ideas are developed in a completely independent way (see 
the history of Japanese mathematician Takakazu Seki http://www-history.mcs.
st-andrews.ac.uk/history/Biographies/Seki.html, who independently dis-
covered many of the same things as European mathematicians such as Newton, 
Leibniz, and Bernoulli did around the same period). In 1998, only Brin and Page 
took steps to create a search engine company based on their algorithm by taking 
a leave from Stanford University and their doctoral studies to focus on making 
their algorithm work with more than a billion web pages.

Explaining the nuts and bolts of PageRank
The innovation brought about by PageRank is that an inverted index of terms isn’t 
enough to determine whether a page matches a user’s information query. Match-
ing words (or meaning, the semantic query match discussed at the end of the 
chapter) between a query and the page text is a prerequisite, but it isn’t sufficient 
because hyperlinks are necessary to assess whether the page offers quality con-
tent and is authoritative.

When discussing sites, distinguishing between inbound and outbound links is 
important, and you shouldn’t consider internal links that connect within the same 
site. The links you see on a page are outbound when they lead to another page on 
another site. The links that bring someone to your page from another page on 
another site are inbound links (backlinks). As the page creator, you use outbound 
links to provide additional information to the page content. You presumably won’t 
use random links on your page (or links pointing to useless or bad content) 
because that would spoil the page quality. As you point to good content using 
links, other page creators use links on their pages to point to your page when your 
page is interesting and of high quality.

It’s a chain of trust. Hyperlinks are like endorsements or recommendations for 
pages. Inbound links show that other page creators trust you, and you share part 
of that trust by adding outbound links on your pages to point to other pages.

Implementing PageRank
Representing this chain of trust mathematically requires simultaneously deter-
mining how much authority your page has, as measured by inbound links, and 
how much it donates to other pages by outbound links. You can achieve such com-
putations in two ways:

http://www-history.mcs.st-andrews.ac.uk/history/Biographies/Seki.html
http://www-history.mcs.st-andrews.ac.uk/history/Biographies/Seki.html
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»» Simulation: Uses the behavior of a web surfer who browses randomly on the 
web (a random surfer). This approach requires that you recreate the web 
structure and run the simulation.

»» Matrix computation: Replicates the behavior of a random surfer using a 
sparse matrix (a matrix in which most data is zero) replicating the web 
structure. This approach requires some matrix operations, as explained in 
Chapter 5, and a series of computations that reach a result by successive 
approximation.

Even though it’s more abstract, using the matrix computation for PageRank 
requires fewer programming instructions, and you can easily implement it using 
Python. (You can try the PageRank algorithm on real-world sites using an 
automatic PageRank checker, such as http://checkpagerank.net/index.php. 
Unfortunately, the program may produce inaccurate results for newer sites 
because they haven’t been crawled properly yet, it can give you an idea of what 
PageRank is like in practice.)

Implementing a Python script
PageRank is a function that scores the nodes in a graph with a number (the higher 
the number, the more important the node). When scoring a web page, the number 
could represent the probability of a random surfer visit. You express probabilities 
using a number from 0.0 to a maximum 1.0 and, ideally, when representing 
the probability of being on a particular site among all available sites, the sum of 
all the probabilities of the pages on the web should equal 1.0.

Many versions of PageRank exist, each one changing its recipe a little to fit the 
kind of graph it has to score. The example in this section presents you with the 
original version for the web presented in the previously mentioned paper by Brin 
and Page and in the paper “PageRank: Bringing Order to the Web” (http://
ilpubs.stanford.edu:8090/422/1/1999-66.pdf).

The example creates three different web networks made of six nodes (web pages). 
The first one is a good working network, and the other two demonstrate prob-
lems that a random surfer may encounter because of the web structure or a web 
spammer’s actions. This example also uses the NetworkX commands discussed in 
Chapter 8. (You can find this code in the A4D; 11; PageRank.ipynb file on the 
Dummies site as part of the downloadable code; see the Introduction for details.)

import numpy as np
import networkx as nx
import matplotlib.pyplot as plt
%matplotlib inline

http://checkpagerank.net/index.php
http://ilpubs.stanford.edu:8090/422/1/1999-66.pdf
http://ilpubs.stanford.edu:8090/422/1/1999-66.pdf
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Graph_A = nx.DiGraph()
Graph_B = nx.DiGraph()
Graph_C = nx.DiGraph()
Nodes = range(1,6)
Edges_OK = [(1,2),(1,3),(2,3),(3,1),(3,2),(3,4),(4,5),
            (4,6),(5,4),(5,6),(6,5),(6,1)]
Edges_dead_end = [(1,2),(1,3),(3,1),(3,2),(3,4),(4,5),
                  (4,6),(5,4),(5,6),(6,5),(6,1)]
Edges_trap = [(1,2),(1,3),(2,3),(3,1),(3,2),(3,4),(4,5),
              (4,6),(5,4),(5,6),(6,5)]
Graph_A.add_nodes_from(Nodes)
Graph_A.add_edges_from(Edges_OK)
Graph_B.add_nodes_from(Nodes)
Graph_B.add_edges_from(Edges_dead_end)
Graph_C.add_nodes_from(Nodes)
Graph_C.add_edges_from(Edges_trap)

This code displays the first network, the good one, as shown in Figure 11-1.

np.random.seed(2)
pos=nx.shell_layout(Graph_A)
nx.draw(Graph_A, pos, arrows=True, with_labels=True)
plt.show()

All nodes connect with each other. This is an example of a strongly connected 
graph, which contains no isolated nodes or single nodes and enclaves that act as 
dead ends. A random surfer can freely run through it and never stop, and any node 
can reach any other node. In the NetworkX representation of a directed graph, 

FIGURE 11-1: 
A strongly 
connected 

network.
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there are no arrows, but the direction of an edge is represented by a thicker line 
entering a node. For example, a surfer can go from node 4 to node 6 because there 
is a thick line entering node 6 from node 4. However, the surfer can’t go from 
node 6 to node 4 because the line entering node 4 from node 6 is thin.

The second graph isn’t strongly connected. It presents a trap for a random surfer 
because the second node has no outbound links, and a user visiting the page could 
stop there and find no way out. This isn’t an unusual event considering the struc-
ture of the web, but it could also show a spammer artifact, such that the spammer 
created a spam factory with many links that direct to a dead end site in order to 
trap web surfers. Figure 11-2 shows the output of the following code, which was 
used to display this graph.

np.random.seed(2)
pos=nx.shell_layout(Graph_B)
nx.draw(Graph_B, pos, arrows=True, with_labels=True)
plt.show()

Another situation that may be natural or the result of a spammer’s action is a 
spider trap. It’s another dead end for a surfer, this time not on a single page but 
on a closed site that lacks links to an outside network of pages. Figure 11-3 shows 
the output of the following code, which was used to display this graph.

np.random.seed(2)
pos=nx.shell_layout(Graph_C)
nx.draw(Graph_C, pos, arrows=True, with_labels=True)
plt.show()

FIGURE 11-2: 
A dead end.
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It’s called a spider trap because spammers devised it as a way to catch search 
engine software spiders in a loop and let them believe that the only websites were 
the ones inside the closed network.

Struggling with a naive implementation
Given a graph made by using Python and NetworkX, you can extract its structure 
and render it as a transition matrix, a matrix that represents nodes in columns 
and rows:

»» Columns: Contain the node a web surfer is on

»» Rows: Contain the probability that the surfer will visit other nodes because of 
outbound links

In the real web, the transition matrix that feeds the PageRank algorithm is built 
by spiders’ continuous exploration of links.

def initialize_PageRank(graph):
    nodes = len(graph)
    M = nx.to_numpy_matrix(graph)
    outbound = np.squeeze(np.asarray(np.sum(M, axis=1)))
    prob_outbound = np.array(
        [1.0/count
         if count>0 else 0.0 for count in outbound])
    G = np.asarray(np.multiply(M.T, prob_outbound))
    p = np.ones(nodes) / float(nodes)
    if np.min(np.sum(G,axis=0)) < 1.0:
        print ('Warning: G is substochastic')
    return G, p

FIGURE 11-3: 
A spider trap.
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The Python code creates the function initialize_PageRank that extracts both 
the transition matrix and the initial vector of default PageRank scores.

G, p = initialize_PageRank(Graph_A)
print (G)

[[ 0.     0.     0.33333333  0.     0.     0.5 ]
 [ 0.5    0.     0.33333333  0.     0.     0.  ]
 [ 0.5    1.     0.          0.     0.     0.  ]
 [ 0.     0.     0.33333333  0.     0.5    0.  ]
 [ 0.     0.     0.          0.5    0.     0.5 ]
 [ 0.     0.     0.          0.5    0.5    0.  ]]

The printed transition matrix G represents the transition matrix of the network 
described in Figure  11-1. Each column represents a node in the sequence 1 
through 6. For instance, the third column represents node 3. Each row in the col-
umn shows the connections with other nodes (outbound links toward nodes 1, 2, 
and 4) and values that define the probability of a random surfer using any of the 
outbound links (that is, 1/3, 1/3, 1/3).

The diagonal of the matrix is always zero unless a page has an outbound link 
toward itself (it is a possibility).

The matrix contains more zeros than values. This is also true in reality because 
estimates show that each site has only ten outbound links on average. Because 
billions of sites exist, the nonzero values in a transition matrix representing the 
web are minimal. In this case, it’s helpful to use a data structure such as an 
adjacency list (explained in Chapter 8) to represent data without wasting disk or 
memory space with zero values:

from scipy import sparse
sG = sparse.csr_matrix(G)
print (sG)

  (0, 2)   0.333333333333
  (0, 5)   0.5
  (1, 0)   0.5
  (1, 2)   0.333333333333
  (2, 0)   0.5
  (2, 1)   1.0
  (3, 2)   0.333333333333
  (3, 4)   0.5
  (4, 3)   0.5
  (4, 5)   0.5
  (5, 3)   0.5
  (5, 4)   0.5
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This example has just 12 links out of 30 possible (without counting links to self, 
which is the current site). Another particular aspect of the transition matrix to 
note is that if you sum the columns, the result should be 1.0. If it is a value less 
than 1.0, the matrix is substochastic (which means that the matrix data isn’t 
representing probabilities properly because probabilities should sum to 1.0) and 
cannot work perfectly with PageRank estimations.

Accompanying G is a vector p, the initial estimate of the total PageRank score, 
equally distributed among the nodes. In this example, because the total PageRank 
is 1.0 (the probability of a random surfer being in the network, which is 
100 percent), it’s distributed as 1/6 among the six nodes:

print(p)

[ 0.16666667  0.16666667  0.16666667  0.16666667
  0.16666667  0.16666667]

To estimate the PageRank, take the initial estimate for a node in the vector p, 
multiply it by the corresponding column in the transition matrix, and determine 
how much of its PageRank (its authority) transfers to other nodes. Repeat for all 
nodes and you’ll know how PageRank transfers between nodes because of the 
network structure. You can achieve this computation using a matrix-vector 
multiplication:

print(np.dot(G,p))

[ 0.13888889  0.13888889  0.25        0.13888889
  0.16666667  0.16666667]

After the first matrix-vector multiplication, you obtain another estimate of 
PageRank that you use for redistribution among the nodes. By redistributing mul-
tiple times, the PageRank estimate stabilizes (results won’t change), and you’ll 
have the score you need. Using a transition matrix containing probabilities and 
estimation by successive approximation using matrix-vector multiplication 
obtains the same results as a computer simulation with a random surfer:

def PageRank_naive(graph, iters = 50):
    G, p = initialize_PageRank(graph)
    for i in range(iters):
        p = np.dot(G,p)
    return np.round(p,3)

print(PageRank_naive(Graph_A))

[ 0.154  0.154  0.231  0.154  0.154  0.154]
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The new function PageRank_naive wraps all the previously described operations 
and emits a vector of probabilities (the PageRank score) for each node in the 
network. The third node emerges as the one with most importance. Unfortunately, 
the same function doesn’t work with the other two networks:

print(PageRank_naive(Graph_B))
Warning: G is substochastic
[ 0.  0.  0.  0.  0.  0.]

print(PageRank_naive(Graph_C))
[ 0.     0.     0.     0.222  0.444  0.333]

In the first case, the probabilities seem to drain out of the network — the effect of 
a dead-end website and the resulting substochastic transition matrix. In the 
second case, the bottom half of the network unfairly gets all the importance, leav-
ing the top part as insignificant.

Introducing boredom and teleporting
Both dead ends (rank sinks) and spider traps (cycles) are common situations on the 
web because of users’ choices and spammers’ actions. The problem, however, is 
easily solved by making the random surfer randomly jump to another network 
node (teleporting, as in the sci-fi devices that take you instantaneously from one 
place to another). The theory is that a surfer will get bored at one point or another 
and move away from deadlocking situations. Mathematically, you define an alpha 
value representing the probability of continuing the random journey on the graph 
by the surfer. The alpha value redistributes the probability of being on a node 
independently of the transition matrix.

The value originally suggested by Brin and Page for alpha (also called the damping 
factor) is 0.85, but you can change it according to your needs. For the web, it 
works the best between 0.8 and 0.9 and you can read why this is the best value 
range at https://www.cise.ufl.edu/~adobra/DaMn/talks/damn05-santini. 
pdf. The smaller the alpha value, the shorter the trip of the surfer on the network, 
on average, before restarting somewhere else.

def PageRank_teleporting(graph, iters = 50, alpha=0.85,
                         rounding=3):
    G, p = initialize_PageRank(graph)
    u = np.ones(len(p)) / float(len(p))
    for i in range(iters):
        p = alpha * np.dot(G,p) + (1.0 - alpha) * u
    return np.round(p / np.sum(p), rounding)

https://www.cise.ufl.edu/~adobra/DaMn/talks/damn05-santini.pdf
https://www.cise.ufl.edu/~adobra/DaMn/talks/damn05-santini.pdf
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print('Graph A:', PageRank_teleporting(Graph_A,
                                    rounding=8))
print('Graph B:', PageRank_teleporting(Graph_B,
                                    rounding=8))
print('Graph C:', PageRank_teleporting(Graph_C,
                                    rounding=8))

Graph A: [ 0.15477863  0.15346061  0.22122243  0.15477863
           0.15787985  0.15787985]
Warning: G is substochastic
Graph B: [ 0.16502904  0.14922238  0.11627717  0.16502904
           0.20222118  0.20222118]
Graph C: [ 0.0598128   0.08523323  0.12286869  0.18996342
           0.30623677  0.23588508]

After applying the modifications to a new function, PageRank_teleporting, you 
can get similar estimates for the first graph and much more realistic (and useful) 
estimates for both the second and third graphs, without falling into the traps of 
dead ends or rank sinks. Interestingly, the function is equivalent to the one 
provided by NetworkX: http://networkx.readthedocs.io/en/networkx-1.11/ 
reference/generated/networkx.algorithms.link_analysis.pagerank_alg. 
pagerank.html.

nx.pagerank(Graph_A, alpha=0.85)

{1: 0.15477892494151968,
 2: 0.1534602056628941,
 3: 0.2212224378270561,
 4: 0.15477892494151968,
 5: 0.1578797533135051,
 6: 0.15787975331350507}

Looking inside the life of a search engine
Though it only reports on the web hyperlink structure, PageRank reveals 
how authoritative a page can become. However, Google isn’t composed only of 
PageRank. The algorithm provides solid foundations for any query, and it initially 
bootstrapped Google’s fame as a reliable search engine. Today, PageRank is just 
one of the many ranking factors that intervene when processing a query.

Specialized sources in SEO knowledge quote more than 200 factors as contributing 
to the results that Google provides. To see what other sorts of ranking factors 
Google considers, consult the list at https://moz.com/search-ranking-factors 

http://networkx.readthedocs.io/en/networkx-1.11/reference/generated/networkx.algorithms.link_analysis.pagerank_alg.pagerank.html
http://networkx.readthedocs.io/en/networkx-1.11/reference/generated/networkx.algorithms.link_analysis.pagerank_alg.pagerank.html
http://networkx.readthedocs.io/en/networkx-1.11/reference/generated/networkx.algorithms.link_analysis.pagerank_alg.pagerank.html
https://moz.com/search-ranking-factors
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(made by MOZ, a U.S. company). You can also download the yearly reports from 
http://www.searchmetrics.com/knowledge-base/ranking-factors/, 
by Searchmetrics, a German company from Berlin specializing in SEO software.

You must also consider that the Google algorithm has received many updates, and 
at this point, it’s more of an ensemble of different algorithms, each one named 
with a fantasy name (Caffeine, Panda, Penguin, Hummingbird, Pigeon, Mobile 
Update). Many of these updates have caused shake-ups of previous search rank-
ings and were motivated by the need to fix spamming techniques or make the 
surfing the web more useful for users (for instance, the Mobile Update induced 
many sites to render their interfaces mobile-phone friendly).

Considering other uses of PageRank
Although PageRank provides better search results, its applicability isn’t limited to 
Google or search engines. You can use PageRank anywhere you can reduce your 
problem to a graph. Just modify and tune the algorithm to your needs. Cornell 
University has enumerated some other potential uses of PageRank in different 
sectors (https://blogs.cornell.edu/info2040/2014/11/03/more-than-just- 
a-web-search-algorithm-googles-pagerank-in-non-internet-contexts/), 
and surprising reports have emerged of the algorithm being successfully used in 
computational biology (https://www.wired.com/2009/09/googlefoodwebs/). 
By creating a teleportation tied to specific nodes that you want to explore, you see 
the algorithm shining at diverse applications such as the following:

»» Fraud detection: Revealing how certain persons and facts are related in 
unexpected ways

»» Product recommendation: Suggesting products that a person with a certain 
affinity might like

Going Beyond the PageRank Paradigm
In recent years, Google has done more than introduce more ranking factors that 
modify the original PageRank algorithm. It has introduced some radical changes 
that leverage page content better (to avoid being fooled by the presence of certain 
keywords) and has adopted AI algorithms that rank the relevance of a page in a 
search result autonomously. These changes have led some search experts to 
declare that PageRank doesn’t determine the position of a page in a search any 
longer (see https://www.entrepreneur.com/article/269574). They still debate 
the question, but it’s most likely safe to assume that PageRank is still powering 

http://www.searchmetrics.com/knowledge-base/ranking-factors/
https://blogs.cornell.edu/info2040/2014/11/03/more-than-just-a-web-search-algorithm-googles-pagerank-in-non-internet-contexts/
https://blogs.cornell.edu/info2040/2014/11/03/more-than-just-a-web-search-algorithm-googles-pagerank-in-non-internet-contexts/
https://www.wired.com/2009/09/googlefoodwebs/
https://www.entrepreneur.com/article/269574
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the Google engine as a ranking factor, albeit not sufficiently to enlist a page into 
the best results after a query.

Introducing semantic queries
If you currently try to pose questions, not just chains of keywords, to Google, 
you’ll notice that it tends to answer smartly and gets the sense of question. Since 
2012, Google became better able to understand synonyms and concepts. However, 
after August 2013, with the Hummingbird update (http://searchengineland. 
com/google-hummingbird-172816), the search engine became capable of under-
standing conversational searches (queries in which you ask something as you 
would say it to another person) as well as the semantics behind queries and a 
page’s contents.

Since this update, the Google algorithm works by disambiguating both users’ 
intentions and the meanings expressed by pages, not just by the keywords. Now, 
the search engine works more in a semantic way, which means understanding 
what words imply on both sides: the query and resulting web pages. In this sense, 
it can’t be tricked anymore by playing with keywords. Even without much support 
from PageRank, it can look at how a page is written and get a sense of whether the 
page contains good enough content for inclusion in the results of a query.

Using AI for ranking search results
PageRank is still at the core, but the results have less weight because of the intro-
duction of machine learning technology into ranking, the so-called RankBrain. 
According to some sources (see https://www.bloomberg.com/news/articles/ 
2015-10-26/google-turning-its-lucrative-web-search-over-to-ai- 
machines), the machine learning algorithm now examines all Google queries and 
directly handles 15 percent of the volume of search queries it receives every day, 
specializing in

»» Ambiguous and unclear search queries

»» Queries expressed in slang or colloquial terms

»» Queries expressed as though they were occurring in a conversation with the 
search engine

Even though RankBrain is still cloaked in secrecy, the algorithm seems to be capable 
of guessing, with much higher accuracy than performed by a human being, whether 
the contents of a page can appear in search results. It replaces all other ranking fac-
tors in cases that are difficult to judge. This is another example of an additional 
algorithm that limits the role played by the original PageRank algorithm.

http://searchengineland.com/google-hummingbird-172816
http://searchengineland.com/google-hummingbird-172816
https://www.bloomberg.com/news/articles/2015-10-26/google-turning-its-lucrative-web-search-over-to-ai-machines
https://www.bloomberg.com/news/articles/2015-10-26/google-turning-its-lucrative-web-search-over-to-ai-machines
https://www.bloomberg.com/news/articles/2015-10-26/google-turning-its-lucrative-web-search-over-to-ai-machines
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Interact with large datasets.

Work with streamed data to use even larger datasets.

Perform tasks in parallel to perform management and 
analysis tasks faster.

Encode data to reduce redundancies and to keep 
data safe.

Compress and decompress data using the LZW 
algorithm.
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IN THIS CHAPTER

»» Realizing why big data is a driving 
force of our times

»» Becoming familiar with Moore’s Law 
and its implications

»» Understanding big data and its 4 Vs

»» Discovering how to deal with infinite 
streaming data

»» Leveraging sampling, hashing, and 
sketches for stream data

Managing Big Data

More than a buzzword used by vendors to propose innovative ways to store 
data and analyze it, big data is a reality and a driving force of our times. 
You may have heard it mentioned in many specialized scientific and 

business publications and even wondered what big data really means. From a 
technical point of view, big data refers to large and complex amounts of computer 
data, so large (as the name implies) and intricate that the data cannot be dealt 
with by making more storage available on your computers or by making new 
computers more powerful and faster in their computations. Big data implies a 
revolution in the way you store and deal with data.

However, this copious and sophisticated store of data didn’t appear suddenly. It 
took time to develop the technology to store this amount of data. In addition, 
it  took time to spread the technology that generates and delivers data, namely 
computers, sensors, smart mobile phones, the Internet, and its World Wide Web 
services. This chapter discusses what drives this huge data production.

Even though it took time to build this much data, technology changes in recent 
years have finally helped people realize the potential game changer that having 
huge amounts of data (of any nature) at hand represents. For centuries, humans 
have emphasized the power of the human intellect in determining the causes and 
forces driving the natural world using a few accurate observations (small data). 

Chapter 12
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Humans also developed a method, the scientific method, that is at the foundation 
of our modern world based on scientific discovery. Suddenly people have found 
(with a certain surprise) that they can solve problems earlier and more success-
fully by learning the solution from large amounts of data rather than spending 
long years developing and elaborating theories using well-designed tests and 
experiments.

Simply having data won’t find solutions to the many problems still afflicting 
civilization. However, having enough data, which actually equates to incredible 
amounts of it, and the right algorithm enables people to connect the dots between 
thousands and thousands of hints. Big data and algorithms enable access to 
wondrous new scientific (but also practical and business) discoveries.

Transforming Power into Data
In 1965, Gordon Moore, cofounder of Intel and Fairchild Semiconductor (two giant 
companies that produce electronic components for electronics and computers), 
stated in an Electronics magazine paper entitled “Cramming More Components 
Onto Integrated Circuits” that the number of components found in integrated 
circuits would double every year for the next decade. At that time, transistors 
dominated electronics. Being able to stuff more transistors into a circuit using a 
single electronic component that gathered the functionalities of many of them (an 
integrated circuit), meant being able to make electronic devices more capable and 
useful. This process is integration and implies a strong process of electronics min-
iaturization (making the same circuit much smaller, which makes sense because 
the same volume should contain double the circuitry as the previous year).

As miniaturization proceeds, electronic devices, the final product of the process, 
become smaller or simply more powerful. For instance, today’s computers aren’t 
all that much smaller than computers of a decade ago, yet they are decisively more 
powerful. The same goes for mobile phones. Even though they’re the same size as 
their predecessors, they have become able to perform more tasks. Other devices, 
such as sensors, are simply smaller, which means that you can put them 
everywhere.

Understanding Moore’s implications
What Moore stated in that article actually proved true for many years, and the 
semiconductor industry calls it Moore’s Law (see http://www.mooreslaw.org/ 
for details). Doubling did occur for the first ten years, as predicted. In 1975, Moore 
corrected his statement, forecasting a doubling every two years. Figure 12-1 shows 

http://www.mooreslaw.org/
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the effects of this doubling. This rate of doubling is still valid, although now it’s 
common opinion that it won’t hold longer than the end of the present decade (up 
to about 2020). Starting in 2012, a mismatch occurs between the expectation of 
cramming more transistors into a component to make it faster and what 
semiconductor companies can achieve with regard to miniaturization. In truth, 
physical barriers exist to integrating more circuitry into an integrated circuit 
using the present silica components. (However, innovation will continue; you can 
read the article at http://www.nature.com/news/the-chips-are-down-for-moore- 
s-law-1.19338 for more details.) In addition, Moore’s Law isn’t actually a law. 
Physical laws, such as the law of universal gravitation (which explains why things 
are attracted to the ground as discovered by Newton), are based on proofs of 
various sorts that have received peer review for their accuracy. Moore’s Law isn’t 
anything more than mere observation, or even a tentative goal for the industry to 
strive to achieve (a self-fulfilling prophecy, in a certain sense).

In the future, Moore’s Law may not apply anymore because industry will switch 
to new technology (such as making components by using optical lasers instead of 
transistors; see the article at http://www.extremetech.com/extreme/187746- 
by-2020-you-could-have-an-exascale-speed-of-light-optical-computer- 
on-your-desk for details about optical computing). What matters is that since 
1965, about every two years the computer industry experienced great advance-
ments in digital electronics that had consequences.

FIGURE 12-1: 
Stuffing more and 

more transistors 
into a CPU.

http://www.nature.com/news/the-chips-are-down-for-moore-s-law-1.19338
http://www.nature.com/news/the-chips-are-down-for-moore-s-law-1.19338
http://www.extremetech.com/extreme/187746-by-2020-you-could-have-an-exascale-speed-of-light-optical-computer-on-your-desk
http://www.extremetech.com/extreme/187746-by-2020-you-could-have-an-exascale-speed-of-light-optical-computer-on-your-desk
http://www.extremetech.com/extreme/187746-by-2020-you-could-have-an-exascale-speed-of-light-optical-computer-on-your-desk
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Some advocate that Moore’s Law already no longer holds. The chip industry has 
kept up the promise so far, but now it’s lowering expectations. Intel has already 
increased the time between its generations of CPUs, saying that in five years, chip 
miniaturization will hit a wall. You can read this interesting story on the MIT 
Technology Review at https://www.technologyreview.com/s/601441/moores- 
law-is-dead-now-what/.

Moore’s Law has a direct effect on data. It begins with smarter devices. The 
smarter the devices, the more diffusion (electronics are everywhere in our day and 
age). The greater the diffusion, the lower the price becomes, creating an endless 
loop that drove and is driving the use of powerful computing machines and small 
sensors everywhere. With large amounts of computer memory available and larger 
storage disks for data, the consequences are an expansion of the availability of 
data, such as websites, transaction records, a host of various measurements, digi-
tal images, and other sorts of data flooding from everywhere.

Finding data everywhere
Scientists began fighting against impressive amounts of data for years before 
anyone coined the term big data. At this point, the Internet didn’t produce the vast 
sums for data that it does today. It’s useful to remember that big data is not just 
simply a fad created by software and hardware vendors but has a basis in many of 
the following fields:

CONSIDERING THE POLITICAL ASPECTS  
OF VARIOUS LAWS
Depending on whom you talk with, the whole issue of whether a law will stand the test 
of time can look different because that person will have a different perspective. This 
book isn’t here to convince you of one point of view or another, but simply reports the 
prevalent view. For example, it’s possible to argue that Moore’s Law is every bit proven 
as the laws of thermodynamics. If you look into conventional physics more, you can find 
many discrepancies with its laws and many of its assumptions. It’s not a matter of deval-
uing science in any way — just pinpointing the fact that everything in science, including 
its laws, is a work in progress.

As to whether Moore’s Law will cease to exist, generally speaking, laws don’t stop apply-
ing; scientists refurbish them so that they are more general. Moore’s Law may undergo 
the same transformation. Linear or overly simplistic laws rarely apply in a general sense 
because there are no straight lines anywhere in nature, including its temporal models. 
Therefore, the most likely scenario is that Moore’s Law will change into a more sigmoi-
dal function in an attempt to adhere to reality.

https://www.technologyreview.com/s/601441/moores-law-is-dead-now-what/
https://www.technologyreview.com/s/601441/moores-law-is-dead-now-what/
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»» Astronomy: Consider the data received from spacecraft on a mission (such as 
Voyager or Galileo) and all the data received from radio telescopes, which are 
specialized antennas used to receive radio waves from astronomical bodies. 
A common example is the Search for Extraterrestrial Intelligence (SETI) project 
(http://www.seti.org/), which looks for extraterrestrial signals by observ-
ing radio frequencies arriving from space. The amount of data received and 
the computer power used to analyze a portion of the sky for a single hour 
is impressive (http://www.setileague.org/askdr/howmuch.htm). If 
aliens are out there, it’s very hard to spot them. (The movie Contact https:// 
www.amazon.com/exec/obidos/ASIN/B002GHHHKQ/datacservip0f-20/ 
explores what could happen should humans actually intercept a signal.)

»» Meteorology: Think about trying to predict weather for the near term given 
the large number of required measures, such as temperature, atmospheric 
pressure, humidity, winds, and precipitation at different times, locations, and 
altitudes. Weather forecasting is really one of the first problems in big data 
and quite a relevant one. According to Weather Analytics, a company that 
provides climate data, more than 33 percent of Worldwide Gross Domestic 
Product (GDP) is determined by how weather conditions affect agriculture, 
fishing, tourism, and transportation, just to name a few. Dating back to the 
1950s, the first supercomputers of the time were used to crunch as much 
data as possible because, in meteorology, the more data, the more accurate 
the forecast. That’s the reason everyone is amassing more storage and 
processing capacity, as you can read in this story regarding the Korean 
Meteorological Association https://www.wired.com/insights/2013/02/ 
how-big-data-can-boost-weather-forecasting/ for weather forecasting 
and studying climate change.

»» Physics: Consider the large amounts of data produced by experiments using 
particle accelerators in an attempt to determine the structure of matter, space, 
and time. For example, the Large Hadron Collider (https://home.cern/ 
topics/large-hadron-collider), the largest particle accelerator ever 
created, produces 15PB (petabytes) of data every year as a result of particle 
collisions (http://home.web.cern.ch/about/computing).

»» Genomics: Sequencing a single DNA strand, which means determining the 
precise order of the many combinations of the four bases — adenine, guanine, 
cytosine, and thymine — that constitute the structure of the molecule, requires 
quite a lot of data. For instance, a single chromosome, a structure containing 
the DNA in the cell, may require from 50MB to 300MB. A human being has 
46 chromosomes, and the DNA data for just one person consumes an entire 
DVD. Just imagine the massive storage required to document the DNA data of 
a large number of people or to sequence other life forms on earth (https://
www.wired.com/2013/10/big-data-biology/).

http://www.seti.org/
http://www.setileague.org/askdr/howmuch.htm
https://www.amazon.com/exec/obidos/ASIN/B002GHHHKQ/datacservip0f-20/
https://www.amazon.com/exec/obidos/ASIN/B002GHHHKQ/datacservip0f-20/
https://www.wired.com/insights/2013/02/how-big-data-can-boost-weather-forecasting/
https://www.wired.com/insights/2013/02/how-big-data-can-boost-weather-forecasting/
https://home.cern/topics/large-hadron-collider
https://home.cern/topics/large-hadron-collider
http://home.web.cern.ch/about/computing
https://www.wired.com/2013/10/big-data-biology/
https://www.wired.com/2013/10/big-data-biology/


230      PART 4  Struggling with Big Data

»» Oceanography: Because of the many sensors placed in the oceans to 
measure temperature, currents, and, using hydrophones, even sounds for 
acoustic monitoring for scientific purposes (discovering about fish, whales, 
and plankton) and military defense purposes (finding sneaky submarines from 
other countries). You can have a sneak peek at this old surveillance problem, 
which is turning more complex and digital, by reading this article: http://
www.theatlantic.com/technology/archive/2014/08/listening-in- 
the-navy-is-tracking-ocean-sounds-collected-by-scientists/ 
378630/.

»» Satellites: Recording images from the entire globe and sending them back to 
earth in order to monitor the Earth’s surface and its atmosphere isn’t a new 
business (TIROS 1, the first satellite to send back images and data, dates back 
to 1960). Over the years, however, the world has launched more than 1,400 
active satellites that provide earth observation. The amount of data arriving 
on earth is astonishing and serves both military (surveillance) and civilian 
purposes, such as tracking economic development, monitoring agriculture, 
and monitoring changes and risks. A single European Space Agency’s satellite, 
Sentinel 1A, generates 5PB of data during two years of operation, as you 
can read at https://spaceflightnow.com/2016/04/28/europes- 
sentinel-satellites-generating-huge-big-data-archive/).

Accompanying these older data trends, new amounts of data are now generated or 
carried about by the Internet, creating new issues and requiring solutions in terms 
of both data storage and algorithms for processing:

»» As reported by the National Security Agency (NSA), the amount of information 
flowing through the Internet every day from all over the world amounted to 
1,826PB of data in 2013, and 1.6 percent of it consisted of e-mails and tele-
phone calls. To assure national security, the NSA must verify the content of at 
least 0.025 percent of all emails and phone calls (looking for key words that 
could signal something like a terrorist plot). That still amounts to 25PB per year, 
which equates to 37,500 CD-ROMs every year of data stored and analyzed 
(and that’s growing). You can read the full story at http://www.business- 
standard.com/article/news-ani/nsa-claims-analysts-look-at- 
only-0-00004-of-world-s-internet-traffic-for-surveillance- 
113081100075_1.html.

»» The Internet of Things (IoT) is becoming a reality. You may have heard the 
term many times in the last 15 years, but now the growth of the stuff con-
nected to the Internet is going to explode. The idea is to put sensors and 
transmitters on everything and use the data to both better control what 
happens in the world and to make objects smarter. Transmitting devices are 
getting tinier, cheaper and less power demanding; some are already so small 
that they can be put everywhere. (Just look at the ant-sized radio developed by 

http://www.theatlantic.com/technology/archive/2014/08/listening-in-the-navy-is-tracking-ocean-sounds-collected-by-scientists/378630/
http://www.theatlantic.com/technology/archive/2014/08/listening-in-the-navy-is-tracking-ocean-sounds-collected-by-scientists/378630/
http://www.theatlantic.com/technology/archive/2014/08/listening-in-the-navy-is-tracking-ocean-sounds-collected-by-scientists/378630/
http://www.theatlantic.com/technology/archive/2014/08/listening-in-the-navy-is-tracking-ocean-sounds-collected-by-scientists/378630/
https://spaceflightnow.com/2016/04/28/europes-sentinel-satellites-generating-huge-big-data-archive/
https://spaceflightnow.com/2016/04/28/europes-sentinel-satellites-generating-huge-big-data-archive/
http://www.business-standard.com/article/news-ani/nsa-claims-analysts-look-at-only-0-00004-of-world-s-internet-traffic-for-surveillance-113081100075_1.html
http://www.business-standard.com/article/news-ani/nsa-claims-analysts-look-at-only-0-00004-of-world-s-internet-traffic-for-surveillance-113081100075_1.html
http://www.business-standard.com/article/news-ani/nsa-claims-analysts-look-at-only-0-00004-of-world-s-internet-traffic-for-surveillance-113081100075_1.html
http://www.business-standard.com/article/news-ani/nsa-claims-analysts-look-at-only-0-00004-of-world-s-internet-traffic-for-surveillance-113081100075_1.html
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Stanford engineers at http://news.stanford.edu/news/2014/september/ 
ant-radio-arbabian-090914.html.) Experts estimate that by 2020, 
there will be six times as many connected things on earth as there will be 
people, but many research companies and think tanks are already revisiting 
those figures (http://www.gartner.com/newsroom/id/3165317).

Getting algorithms into business
The human race is now at an incredible intersection of unprecedented volumes of 
data, generated by increasingly smaller and powerful hardware, and analyzed by 
algorithms that this same process helped develop. It’s not simply a matter of 
volume, which by itself is a difficult challenge. As formalized by the research 
company Gartner in 2001 and then reprised and expanded by other companies, 
such as IBM, big data can be summarized by four Vs representing its key charac-
teristics (you can read more on this topic at http://www.ibmbigdatahub.com/ 
infographic/four-vs-big-data):

»» Volume: The amount of data

»» Velocity: The speed of data generation

»» Variety: The number and types of data sources

»» Veracity: The quality and authoritative voice of the data (quantifying errors, 
bad data, and noise mixed with signals), a measure of the uncertainty of 
the data

Each big data characteristic offers a challenge and an opportunity. For instance, 
volume considers the amount of useful data. What one organization considers 
big data could be small data for another one. The inability to process the data on 
a  single machine doesn’t make the data big. What differentiates big data from 
the business-as-usual data is that it forces an organization to revise its prevalent 
methods and solutions, and pushes present technologies and algorithms to 
look ahead.

Variety enables the use of big data to challenge the scientific method, as explained 
by this milestone and much discussed article written by Chris Anderson, Wired’s 
editor-in-chief at the time, on how large amounts of data can help scientific dis-
coveries outside the scientific method: https://www.wired.com/2008/06/ 
pb-theory/. The author relies on the example of Google in the advertising and 
translation business sectors, where the company could achieve prominence with-
out using specific models or theories, but by applying algorithms to learn from 
data. As in advertising, science (physics, biology) data can support innovation that 
allows scientists to approach problems without hypotheses but by considering the 
variations found in large amounts of data and by discovery algorithms.

http://news.stanford.edu/news/2014/september/ant-radio-arbabian-090914.html
http://news.stanford.edu/news/2014/september/ant-radio-arbabian-090914.html
http://www.gartner.com/newsroom/id/3165317
http://www.ibmbigdatahub.com/infographic/four-vs-big-data
http://www.ibmbigdatahub.com/infographic/four-vs-big-data
https://www.wired.com/2008/06/pb-theory/
https://www.wired.com/2008/06/pb-theory/


232      PART 4  Struggling with Big Data

The veracity characteristic helps the democratization of data itself. In the past, 
organizations hoarded data because it was precious and difficult to obtain. At this 
point, various sources create data in such growing amounts that hoarding it is 
meaningless (90 percent of the world’s data has been created in the last two 
years), so there is no reason to limit access. Data is turning into such a commodity 
that there are many open data programs going all around the world. (The United 
States has a long tradition of open access; the first open data programs date back 
to the 1970s when the National Oceanic and Atmospheric Administration, NOAA, 
started releasing weather data freely to the public.) However, because data has 
become a commodity, the uncertainty of that data has become an issue. You no 
longer know whether the data is completely true because you may not even know 
its source.

Data has become so ubiquitous that its value is no longer in the actual information 
(such as data stored in a firm’s database). The value of data exists in how you use 
it. Here algorithms come into play and change the game. A company like Google 
feeds itself from freely available data, such as the content of websites or the text 
found in publicly available texts and books. Yet, the value Google extracts from the 
data mostly derives from its algorithms. As an example, data value resides in the 
PageRank algorithm (illustrated in Chapter 11), which is the very foundation of 
Google’s business. The value of algorithms is true for other companies as well. 
Amazon’s recommendation engine contributes a significant part of the compa-
ny’s revenues. Many financial firms use algorithmic trading and robo-advice, 
leveraging freely available stock data and economic information for investments.

Streaming Flows of Data
When data flows in huge amounts, storing it all may be difficult or even impos-
sible. In fact, storing it all might not even be useful. Here are some figures of just 
some of what you can expect to happen within a single minute on the Internet:

»» 150 million e-mails sent

»» 350,000 new tweets sent on Twitter

»» 2.4 million queries requested on Google

»» 700,000 people logged in to their account on Facebook

Given such volumes, accumulating the data all day for incremental analysis might 
not seem efficient. You simply store it away somewhere and analyze it on the fol-
lowing or on a later day (which is the widespread archival strategy that’s typical 
of databases and data warehouses). However, useful data queries tend to ask about 
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the most recent data in the stream, and data becomes less useful when it ages (in 
some sectors, such as financial, a day can be a lot of time).

Moreover, you can expect even more data to arrive tomorrow (the amount of data 
increases daily) and that makes it difficult, if not impossible, to pull data from 
repositories as you push new data in. Pulling old data from repositories as fresh 
data pours in is akin to the punishment of Sisyphus. Sisyphus, as a Greek myth 
narrates, received a terrible punishment from the god Zeus: Being forced to eter-
nally roll an immense boulder up on the top of a hill, only to watch it roll back 
down each time (see http://www.mythweb.com/encyc/entries/sisyphus.html 
for additional details).

Sometimes, rendering things even more impossible to handle, data can arrive so 
fast and in such large quantities that writing it to disk is impossible: New infor-
mation arrives faster than the time required to write it to the hard disk. This is a 
problem typical of particle experiments with particle accelerators such as the 
Large Hadron Collider, requiring scientists to decide what data to keep (http:// 
home.cern/about/computing/processing-what-record). Of course, you may 
queue data for some time, but not for too long, because the queue will quickly 
grow and become impossible to maintain. For instance, if kept in memory, queue 
data will soon lead to an out-of-memory error.

Because new data flows may render the previous processing on old data obsolete, 
and procrastination is not a solution, people have devised multiple strategies to 
deal instantaneously with massive and changeable data amounts. People use three 
ways to deal with large amounts of data:

»» Stored: Some data is stored because it may help answer unclear questions 
later. This method relies on techniques to store it immediately and analyze it 
later very fast, no matter how massive it is.

»» Summarized: Some data is summarized because keeping it all as it is makes 
no sense; only the important data is kept.

»» Consumed: The remaining data is consumed because its usage is predeter-
mined. Algorithms can instantly read, digest, and turn the data into informa-
tion. After that, the system forgets the data forever.

The book deals with the first point in Chapter 13, which is about distributing data 
among multiple computers and understanding the algorithms used to deal with it 
(a divide-and-conquer strategy). The following sections address the second and 
third points, applying them to data that streams in systems.

When talking of massive data arriving into a computer system, you will often hear 
it compared to water: streaming data, data streams, data fire hose.

http://www.mythweb.com/encyc/entries/sisyphus.html
http://home.cern/about/computing/processing-what-record
http://home.cern/about/computing/processing-what-record
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You discover how data streams is like consuming tap water: Opening the tap lets 
you store the water in cups or drinking bottles, or you can use it for cooking, 
scrubbing food, cleaning plates, or washing hands. In any case, most or all of the 
water is gone, yet it proves very useful and indeed vital.

Analyzing streams with the right recipe
Streaming data needs streaming algorithms, and the key thing to know about 
streaming algorithms is that, apart a few measures that it can compute exactly, 
a streaming algorithm necessarily provides approximate results. The algorithm 
output is almost correct, guessing not the precisely right answer, but close to it.

When dealing with streams, you clearly have to concentrate only on the measures 
of interest and leave out many details. You could be interested in a statistical mea-
surement, such as mean, minimum, or maximum. Moreover, you could want to 
count elements in the stream or distinguish old information from new. There are 
many algorithms to use, depending on the problem, yet the recipes always use the 
same ingredients. The trick of cooking the perfect stream is to use one or all of 
these algorithmic tools as ingredients:

»» Sampling: Reduce your stream to a more manageable data size; represent 
the entire stream or the most recent observations using a shifting 
data window.

»» Hashing: Reduce infinite stream variety to a limited set of simple integer 
numbers (as seen in the “Relying on Hashing” section of Chapter 7).

»» Sketching: Create a short summary of the measure you need, removing the 
less useful details. This approach lets you leverage a simple working storage, 
which can be your computer’s main memory or its hard disk.

Another characteristic to keep in mind about algorithms operating on streams is 
their simplicity and low computational complexity. Data streams can be quite fast. 
Algorithms that require too many calculations can miss essential data, which 
means that the data is gone forever. When you view the situation in this light, you 
can appreciate how hash functions prove useful because they’re prompt in trans-
forming inputs into something easier to handle and search because for both oper-
ations, complexity is O(1). You can also appreciate the sketching and sampling 
techniques, which bring about the idea of lossy compression (more on compression 
in Chapter 14). Lossy compression enables you to represent something complex by 
using a simpler form. You lose some detail but save a great deal of computer time 
and storage.
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Sampling means drawing a limited set of examples from your stream and treating 
them as if they represented the entire stream. It is a well-known tool in statistics 
through which you can make inferences on a larger context (technically called the 
universe or the population) by using a small part of it.

Reserving the right data
Statistics was born in a time when obtaining a census was impossible. A census is 
a systematic investigation on a population, counting it, and acquiring useful data 
from it. The government asks all the people in a country about where they live, 
their family, their daily life, and their work. The census has its origins in ancient 
times. In the Bible, a census occurs in the book of Numbers; the Israelite popula-
tion is counted after the exodus from Egypt. For tax purposes, the ancient Romans 
periodically held a census to count the population of their large empire. Historical 
documents provide accounts of similar census activities in ancient Egypt, Greece, 
India, and China.

Statistics, in particular the branch of statistics called inferential statistics, can 
achieve the same outcome as a census, with an acceptable margin of error, by 
interrogating a smaller number of individuals (called a sample). Thus, by querying 
a few people, pollsters can determine the general opinion of a larger population on 
a variety of issues, such as who will win an election. In the United States, for 
instance, the statistician Nate Silver made news by predicting the winner of the 
2012 presidential election in all 50 states, using data from samples (https://www.
cnet.com/news/obamas-win-a-big-vindication-for-nate-silver-king- 
of-the-quants/).

Clearly, holding a census implies huge costs (the larger the population, the greater 
the costs) and requires a lot of organization (which is why censuses are infre-
quent), whereas a statistical sample is faster and cheaper. Reduced costs and 
lower organizational requirements also make statistics ideal for big data stream-
ing: Users of big data streaming don’t need every scrap of information and they 
can summarize the data’s complexity.

However, there’s a problem with using statistical samples. At the core of statistics 
is sampling, and sampling requires randomly picking a few examples from the pool 
of the entire population. The key element of the recipe is that every element from 
the population has exactly the same probability of being part of the sample. If a 
population consists of a million people and your sample size is one, each person’s 
probability of being part of the sample is one out of a million. In mathematical 
terms, if you represent the population using the variable N and the sample size is 
n, the probability of being part of a sample is n/N, as shown in Figure 12-2. The 
represented sample is a simple random sample. (Other sample types have greater 
complexity; this is the simplest sample type and all the others build upon it.)

https://www.cnet.com/news/obamas-win-a-big-vindication-for-nate-silver-king-of-the-quants/
https://www.cnet.com/news/obamas-win-a-big-vindication-for-nate-silver-king-of-the-quants/
https://www.cnet.com/news/obamas-win-a-big-vindication-for-nate-silver-king-of-the-quants/
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Using a simple random sample is just like playing the lottery, but you need to have 
all the numbers inside an urn in order to extract a few to represent the whole. You 
can’t easily put data streams into a repository from which you can extract a 
sample; instead, you have to extract your sample on the fly. What you really need 
is another sample type named reservoir sampling. Just as a reservoir retains water 
for later use, yet its water isn’t still because some enters and some leaves, so this 
algorithm works by randomly choosing elements to keep as samples until other 
elements arrive to replace them.

The reservoir sampling algorithm is more sophisticated than another algorithmic 
strategy, called windowing, in which you create a queue and let new elements enter 
the queue (see Figure 12-3). Older elements leave the queue based on a trigger. 
This method applies when you want reports from the stream at exact time inter-
vals. For instance, you may want to know how many pages users request from an 
Internet server each minute. Using windowing, you start queuing page requests a 
minute of time, count the elements in the queue, report the number, discard the 
content of the queue, and start queuing again.

Another motivation for using windowing is to have a fixed amount of the most 
recent data. In that case, every time you insert an element into the queue, the old-
est element leaves. A queue is a First In, First Out (FIFO) structure discussed in 
Chapter 6.

Windowing looks at samples using a sliding window — it shows the elements 
under the window, which represent a certain time slice or a certain segment of the 
stream. Reservoir sampling represents the entire stream scope instead by offering 
a manageable amount of data, which is a statistical sample of the stream.

FIGURE 12-2: 
How sampling 

from an urn 
works.
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Here is how reservoir sample works: Given a stream of data, containing many ele-
ments, you initialize the reservoir sample with elements taken from the stream 
until the sample is complete. For instance, if the sample contains 1,000 elements, 
a number that usually fits in the computer’s internal memory, you start by pick-
ing the first 1,000 stream elements. The number of elements you want in the 
sample is k, and k implies a sample that fits into the computer’s memory. At the 
point when you reserve the first k stream elements, the algorithm starts making 
its selections:

1.	 From the beginning of the stream, the algorithm counts every new element 
that arrives. It tracks the counting using the variable named as n. When the 
algorithm gets into action, the value of n is equivalent to k.

2.	 Now, new elements arrive, and they increment the value of n. A new element 
arriving from the stream has a probability of being inserted into the reservoir 
sample of k/n and probability of not being inserted equal to (1 – k/n).

3.	 The probability is verified for each new element arriving. It’s like a lottery: If the 
probability is verified, the new element is inserted. On the other hand, if it isn’t 
inserted, the new element is discarded. If it’s inserted, the algorithm discards 
an old element in the sample according to some rule (the easiest being to pick 
an old element at random) and replaces it with the new element.

The following code shows a simple example in Python so that you can see this 
algorithm in action. The example relies on a sequence of alphabet letters (pretend 
that they are a data stream) and creates a sample of five elements. (You can find 
this code in the A4D; 12; Managing Big Data.ipynb file on the Dummies site as 
part of the downloadable code; see the Introduction for details.)

import string
datastream = list(string.ascii_uppercase) + list(
    string.ascii_lowercase)
print(datastream)

FIGURE 12-3: 
An example of 

windowing 
a stream of 

DNA data.
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['A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', 'K', 'L',
 'M', 'N', 'O', 'P', 'Q', 'R', 'S', 'T', 'U', 'V', 'W', 'X',
 'Y', 'Z', 'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j',
 'k', 'l', 'm', 'n', 'o', 'p', 'q', 'r', 's', 't', 'u', 'v',
 'w', 'x', 'y', 'z']

Apart from strings, the example uses functions from the random package to cre-
ate a seed (for stable and replicable solutions) and, drawing a random integer 
number, it checks whether it needs to change an element in the reservoir. Apart 
from the seed value, you can experiment with modifying the sample size or even 
feeding the algorithm a different stream (it should be in a Python list for the 
example to work correctly).

from random import seed, randint
seed(9) # change this value for different results
sample_size = 5
sample = []

for index, element in enumerate(datastream):
        # Until the reservoir is filled, we add elements
        if index < sample_size:
                sample.append(element)
        else:
                # Having filled the reservoir, we test a
                # random replacement based on the elements
                # seen in the data stream
                drawn = randint(0, index)
                # If the drawn number is less or equal the
                # sample size, we replace a previous
                # element with the one arriving from the
                # stream
                if drawn < sample_size:
                        sample[drawn] = element

print (sample)

['y', 'e', 'v', 'F', 'i']

This procedure assures you that, at any time, your reservoir sample is a good 
sample representing the overall data stream. In this implementation, the variable 
index plays the role of n and the variable sample_size acts as k. Note two par-
ticular aspects of this algorithm:
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»» As the variable index grows, because the stream floods with data, the 
probability of being part of the sample decreases. Consequently, at the 
beginning of the stream, many elements enter and leave the sample, but 
the rate of change decreases as the stream continues to flow.

»» If you check the probability at which each element present in the sample 
enters, and you average them all, the average will approximate the probability 
of an element of a population’s being picked into a sample, which is k/n.

Sketching an Answer from Stream Data
Sampling is an excellent strategy for dealing with streams but it doesn’t answer 
all the questions you may have from your data stream. For instance, a sample 
can’t tell you when you’ve already seen a stream element because the sample 
doesn’t contain all the stream information. The same holds true for problems 
such as counting the distinct number of elements in a stream or computing ele-
ment frequency.

To achieve such results, you need hash functions (as seen in Chapter  7) and 
sketches, which are simple and approximate data summaries. The following sec-
tions start with hashes, and you discover how to be correct in finding when an 
arriving stream element has appeared before, even if your stream is infinite and 
you cannot keep exact memory of everything that flowed before.

Filtering stream elements by heart
At the heart of many streaming algorithms are Bloom filters. Created almost 
50 years ago by Burton H. Bloom, at a time when computer science was still quite 
young, the original intent of this algorithm’s creator was to trade space (memory) 
and/or time (complexity) against what he called allowable errors. His original 
paper is entitled Space/Time Trade-offs in Hash Coding with Allowable Errors (see: 
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.20.2080& 
rank=2 for details).

You may wonder about the space and time that Bloom considers motivators for his 
algorithm. Imagine that you need to determine whether an element has already 
appeared in a stream using some previously discussed data structure. Finding 
something in a stream implies recording and searching are fast, thus a hash table 
seems an ideal choice. Hash tables, as discussed in Chapter 7, simply require adding 
the elements that you want to record and storing them. Recovering an element 

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.20.2080&rank=2
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.20.2080&rank=2
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from a hash table is fast because the hash table uses easily manipulated values to 
represent the element, rather than the element itself (which could be quite com-
plex). Yet, storing both elements and an index to those elements has limitations. 
If a hash table faces more elements than it can handle, such as the elements in a 
continuous and potentially infinite stream, you’ll end up incurring memory prob-
lems at some point.

An essential consideration for Bloom filters is that false positives can occur, but 
false negatives can’t. For example, a data stream might contain real-time moni-
toring data for a power plant. When using a Bloom filter, the analysis of the data 
stream would show that expected readings are probably part of the set of allowed 
readings, with some errors allowed. However, when an error occurs in the system, 
the same analysis shows that the readings aren’t part of the set of allowed read-
ings. The false positives are unlikely to cause problems, but the absence of false 
negatives means that everyone remains safe. Because of the potential for false 
positives, filters such as the Bloom filter are probabilistic data structures — they 
don’t provide a certain answer but a probable one.

Hashes, the individual entries in a hash table, are fast because they act like the 
index of a book. You use a hash function to produce the hash; the input is an ele-
ment containing complex data, and the output is a simple number that acts as an 
index to that element. A hash function is deterministic because it produces the 
same number every time you feed it a specific data input. You use the hash to 
locate the complex information you need. Bloom filters are helpful because they 
are a frugal way to record traces of many elements without having to store them 
away as a hash table does. They work in a simple way and use the following as 
main ingredients:

»» A bit vector: A list of bit elements, where each bit in the element can have a 
value of 0 or 1. The list is a long number of bits called m. The greater m is, the 
better, though there are ways of optimally defining its size.

»» A series of hash functions: Each hash function represents a different value. 
The hash functions can quickly crunch data and produce uniformly distributed 
results, which are results equally ranging from the minimum to the maximum 
output values of the hash.

Adding elements to Bloom filters
Generally, you create Bloom filters of a fixed size (recently developed versions 
allow you to resize the filter). You operate them by adding new elements to the 
filter and looking them up when already present. It’s not possible to remove 
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an element from the filter after adding it (the filter has an indelible memory). 
When adding an element to a bit vector, the bit vector has some bits set to 1, as 
shown in Figure 12-4. In this case, the Bloom filter adds X to the bit vector.

You can add as many elements as is necessary to the bit vector. For example, 
Figure  12-5 shows what happens when adding another element, Y, to the bit 
vector. Note that bit 7 is the same for both X and Y. Consequently, bit 7 represents 
a collision between X and Y. These collisions are the source of the potential false 
positives; because of them, the algorithm could say that an element is already 
added to the bit vector when it isn’t. Using a larger bit vector makes collisions 
less likely and improves the performance of the Bloom filter, but does so at the 
cost of both space and time.

Searching a Bloom filter for an element
Searching a Bloom filter lets you determine whether a particular element appears 
in the bit vector. During the search process, the algorithm looks for the presence 
of a 0 in the bit vector. For example, the previous section added elements X and Y 
to the bit vector. In searching for element Z, the algorithm finds a 0 in the second 
bit, as shown in Figure 12-6. The presence of a 0 means that Z isn’t part of the 
bit vector.

FIGURE 12-4: 
Adding a single 

element to a 
bit vector.

FIGURE 12-5: 
Adding a second 

element can 
cause collisions.
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Demonstrating the Bloom filter
This example uses Python to demonstrate a Bloom filter and shows the result with 
a graphical visualization. Say that you’re using a crawler, which is specialized 
software that journeys the web to check whether something has changed in the 
monitored websites (which may imply copying part of the website’s data, an 
activity known as scraping). The example uses a short bit vector and three hash 
functions, which isn’t the best setting for handling a large number of elements 
(the bit vector will get filled quickly), but enough for a working example.

hash_functions = 3
bit_vector_length = 10
bit_vector = [0] * bit_vector_length

from hashlib import md5, sha1

def hash_f(element, i, length):
    """ This is a magic function """
    h1 = int(md5(element.encode('ascii')).hexdigest(),16)
    h2 = int(sha1(element.encode('ascii')).hexdigest(),16)
    return (h1 + i*h2) % length

def insert_filter(website):
    result = list()
    for hash_number in range(hash_functions):
        position = hash_f(website, hash_number,
                          bit_vector_length)
        result.append(position)
        bit_vector[position] = 1
    print ('Inserted in positions: %s' % result)

def check_filter(website):
    result = list()
    for hash_number in range(hash_functions):

FIGURE 12-6: 
Locating an 

element and 
determining that 

it exists means 
searching for 0s 
in the bit vector.
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        position = hash_f(website, hash_number,
                          bit_vector_length)
        result.append((position,bit_vector[position]))
    print ('Bytes in positions: %s' % result)

The code begins by creating a bit vector and some functions that can do the 
following:

»» Generate multiple hash functions (using the double hash trick mentioned in 
Chapter 7) based on the md5 and sha1 hashing algorithms

»» Insert an object into the bit vector

»» Check whether the bytes relative to an object in the bit vector are turned on

All these elements together constitute a Bloom filter (though the bit vector is the 
key part of it). This example has the crawler first visiting the website wikipedia.
org to take some information from a few pages:

insert_filter('wikipedia.org')
print (bit_vector)

Inserted in positions: [0, 8, 6]
[1, 0, 0, 1, 0, 0, 1, 1, 1, 0]

That activity turns on the bits in positions 0, 6, and 8 of the bit vector. The exam-
ple now crawls the youtube.com website (which has some new videos of kittens) 
and so it inserts the information of the visit into the Bloom filter:

insert_filter('youtube.com')
print (bit_vector)

Inserted in positions: [3, 0, 7]
[1, 0, 0, 1, 0, 0, 1, 1, 1, 0]

Here the Bloom filter is activated on positions 0, 3, and 7. Given the short length 
of the bit vector, there is already a collision on position 0, but positions 3 and 7 are 
completely new. At this point, because the algorithm can’t remember what it vis-
ited before (but visited sites can be verified using the Bloom filter), the example 
verifies that it hasn’t visited yahoo.com in order to avoid redoing things, as shown 
in Figure 12-7:

check_filter('yahoo.com')

Bytes in positions: [(7, 1), (5, 0), (3, 1)]
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As graphically represented, in this case you can be sure that the example 
never  visited yahoo.com because the Bloom filter reports at least one position, 
position 5, whose bit was never set on.

A crawler is often concerned with getting new content from websites and not 
copying data that it has already recorded and transmitted. Instead of hashing the 
domain or the address of a single page, you can directly populate a Bloom filter 
using part of the website content, and you can use it to check the same website for 
changes later.

There is a simple and straightforward way of decreasing the probability of having 
a false positive. You just increase the size of the bit vector that is the core of a 
Bloom filter. More addresses equate fewer chances for a collision by the hash 
functions’ results. Ideally, the size m of the bit vector can be calculated estimating 
n, the number of distinct objects that you expect to add by keeping m much larger 
than n. The ideal number k of hash functions to use to minimize collisions can 
then be estimated using the following formula (ln is the natural logarithm):

k = (m/n)*ln(2)

After you have m, n, and k defined, this second formula helps you estimate the 
probability of a collision (a false positive rate) using a Bloom filter:

false positive rate = (1-exp(-kn/m))^k

FIGURE 12-7: 
Testing 

membership  
of a website  

using a 
Bloom filter.
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If you can’t determine n due to the variety of the data in the stream, you have to 
change m, the bit vector size (which equates to memory space), or k, the number 
of hash functions (which equates to time), to adjust the false positive rate. The 
trade-off reflects the relationships that Bloom considers in the original paper 
between space, time, and probability of an error.

Finding the number of  
distinct elements
Even though a Bloom filter can track objects arriving from a stream, it can’t tell 
how many objects are there. A bit vector filled by ones can (depending on the 
number of hashes and the probability of collision) hide the true number of objects 
being hashed at the same address.

Knowing the distinct number of objects is useful in various situations, such as 
when you want to know how many distinct users have seen a certain website page 
or the number of distinct search engine queries. Storing all the elements and find-
ing the duplicates among them can’t work with millions of elements, especially 
coming from a stream. When you want to know the number of distinct objects in 
a stream, you still have to rely on a hash function, but the approach involves tak-
ing a numeric sketch.

Sketching means taking an approximation, that is an inexact yet not completely 
wrong value as an answer. Approximation is acceptable because the real value is 
not too far from it. In this smart algorithm, HyperLogLog, which is based on prob-
ability and approximation, you observe the characteristics of numbers generated 
from the stream. HyperLogLog derives from the studies of computer scientists 
Nigel Martin and Philippe Flajolet. Flajolet improved their initial algorithm, 
Flajolet–Martin (or the LogLog algorithm), into the more robust HyperLogLog 
version, which works like this:

1.	 A hash converts every element received from the stream into a number.

2.	 The algorithm converts the number into binary, the base 2 numeric standard 
that computers use.

3.	 The algorithm counts the number of initial zeros in the binary number and 
tracks of the maximum number it sees, which is n.

4.	 The algorithm estimates the number of distinct elements passed in the stream 
using n. The number of distinct elements is 2^n.
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For instance, the first element in the string is the word dog. The algorithm hashes 
it into an integer value and converts it to binary, with a result of 01101010. Only 
one zero appears at the beginning of the number, so the algorithm records it as 
the maximum number of trailing zeros seen. The algorithm then sees the words 
parrot and wolf, whose binary equivalents are 11101011 and 01101110, leaving n 
unchanged. However, when the word cat passes, the output is 00101110, so n 
becomes 2. To estimate the number of distinct elements, the algorithm computes 
2^n, that is, 2^2=4. Figure 12-8 shows this process.

The trick of the algorithm is that if your hash is producing random results, equally 
distributed (as in a Bloom filter), by looking at the binary representation, you can 
calculate the probability that a sequence of zeros appeared. Because the probabil-
ity of a single binary number to be 0 is one in two, for calculating the probability 
of sequences of zeros, you just multiply that 1/2 probability as many times as the 
length of the sequence of zeros:

»» 50 percent (1/2) probability for numbers starting with 0

»» 25 percent (1/2 * 1/2 ) probability for numbers starting with 00

»» 12.5 percent (1/2 * 1/2 * 1/2) probability for numbers starting with 000

»» (1/2)^k probability for numbers starting with k zeros (you use powers for 
faster calculations of many multiplications of the same number)

FIGURE 12-8: 
Counting only 
leading zeros.
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The fewer the numbers that HyperLogLog sees, the greater the imprecision. 
Accuracy increases when you use the HyperLogLog calculation many times using 
different hash functions and average together the answers from each calculation, 
but hashing many times takes time, and streams are fast. As an alternative, you 
can use the same hash but divide the stream into groups (such as by separating 
the elements into groups as they arrive based on their arrival order) and for each 
group, you keep track of the maximum number of trailing zeros. In the end, you 
compute the distinct element estimate for each group and compute the arithmetic 
average of all the estimates. This approach is stochastic averaging and provides 
more precise estimates than applying the algorithm to the entire stream.

Learning to count objects in a stream
This last algorithm in the chapter also leverages hash functions and approximate 
sketches. It does so after filtering duplicated objects and counting distinct ele-
ments that have appeared in the data stream. Learning to count objects in a stream 
can help you find the most frequent items or rank usual and unusual events. You 
use this technique to solve problems like finding the most frequent queries in a 
search engine, the bestselling items from an online retailer, the highly popular 
pages in a website, or the most volatile stocks (by counting the times a stock is 
sold and bought).

You apply the solution to this problem, Count-Min Sketch, to a data stream. It 
requires just one data pass and stores as little information as possible. This algo-
rithm is applied in many real-world situations (such as analyzing network traffic 
or managing distributed data flows). The recipe requires using a bunch of hash 
functions, each one associated with a bit vector, in a way that resembles a Bloom 
filter, as shown in Figure 12-9:

1.	 Initialize all the bit vectors to zeroes in all positions.

2.	 Apply the hash function for each bit vector when receiving an object from a 
stream. Use the resulting numeric address to increment the value at that 
position.

3.	 Apply the hash function to an object and retrieve the value at the associated 
position when asked to estimate the frequency of an object. Of all the values 
received from the bit vectors, you take the smallest as the frequency of the 
stream.
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Because collisions are always possible when using a hash function, especially if 
the associated bit vector has few slots, having multiple bit vectors at hand 
assures you that at least one of them keeps the correct value. The value of choice 
should be the smallest because it isn’t mixed with false positive counts due to 
collisions.

FIGURE 12-9: 
How values are 

updated in a 
Count-Min 

Sketch.
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IN THIS CHAPTER

»» Understanding why simply bigger, 
larger, and faster isn’t always the 
right solution

»» Looking inside the storage and 
computational approaches of 
Internet companies

»» Figuring out how using clusters of 
commodity hardware reduces costs

»» Reducing complex algorithms into 
separable parallel operations by 
MapReduce

Parallelizing Operations

Managing immense amounts of data using streaming or sampling strate-
gies has clear advantages (as discussed in Chapter 12) when you have to 
deal with massive data processing. Using streaming and sampling algo-

rithms helps you obtain a result even when your computational power is limited 
(for instance, when using your own computer). However, some costs are associ-
ated with these approaches:

»» Streaming: Handles infinite amounts of data. Yet your algorithms perform at 
low speed because they process individual pieces of data and the stream 
speed rules the pace.

»» Sampling: Applies any algorithms on any machine. Yet the obtained result is 
imprecise because you have only a probability, not a certainty, of getting the 
right answer. Most often, you just get something plausible.

Some problems require that you handle great amounts of data in a both precise 
and timely fashion. Examples abound in the digital world, such as making a 
keyword query among billions of websites or processing multiple pieces of 
information (searching for an image in a video repository or a match in multiple 
DNA sequences). Doing such calculations sequentially would take a lifetime. 

Chapter 13
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The solution is using distributed computing, which means interconnecting many 
computers in a network and using their computational capabilities together, 
combined with algorithms running on them in an independent, parallel manner.

Managing Immense Amounts of Data
The use of the Internet to perform a wide range of tasks and the increase in 
popularity of its most successful applications, such as search engines or social 
networking, has required professionals in many fields to rethink how to apply 
algorithms and software solutions to cope with a deluge of data. Searching for 
topics and connecting people drive this revolution.

Just imagine the progression, in terms of available websites and pages, that has 
occurred in the last 15 years. Even if you use a smart algorithm, such as PageRank 
(discussed and explored in Chapter 11), coping with ever larger and changeable 
data is still hard. The same goes for social networking services offered by compa-
nies such as Facebook, Twitter, Pinterest, LinkedIn, and so on. As the number of 
users increases and their reciprocal relationships unfold, the underlying graph 
connecting them turns massive in scale. With large scale, handling nodes and 
links to find groups and connections becomes incredibly difficult. (Part 3 of the 
book discusses graphs in detail.)

In addition to communication-based data, consider online retailers that provide 
virtual warehouses of thousands and thousands of products and services (books, 
films, games, and so on). Even though you understand why you bought something, 
the retailer sees the items in your basket as small pieces of a purchase decision-
making puzzle to solve to understand buying preferences. Solving the puzzle 
enables a retailer to suggest and sell alternative or supplementary products.

Understanding the parallel paradigm
CPU makers found a simple solution when challenged to stuff more computing 
power into microprocessors (as forecasted and partially prescribed by Moore’s 
law, discussed in Chapter 12). Yet, bigger, larger, and faster isn’t always the right 
solution. When they found that power absorption and heat generation limited the 
addition of more CPUs to a single chip, engineers compromised by creating multi-
core processing units, which are CPUs made by stacking two or more CPUs together. 
The use of multicore technology gave raise to parallel computing to a larger 
audience.
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Parallel computing has existed for a long time, but it mainly appeared in high-
performance computers, such as the Cray super-computers created by Seymour 
Cray at Control Data Corporation (CDC) starting in the 1960s. Simply stated, the 
associative and commutative properties in math express the core idea of parallel-
ism. In a math addition, for instance, you can group part of the sums together or 
you can add the parts in a different order than the one shown by the formulas:

Associative property
2 + (3 + 4) = (2 + 3) + 4

Commutative property
2 + 3 + 4 = 4 + 3 + 2

The same concepts apply to computing algorithms, regardless of whether you 
have a series of operations or a mathematical function. Most often, you can reduce 
the algorithm to a simpler form when you apply associative and commutative 
properties, as shown in Figure 13-1. Then you can split the parts and have differ-
ent units perform atomic operations separately, summing the result at the end.

In this example, two CPUs split a simple function with three inputs (x, y, and z) 
by leveraging both associative and commutative properties. The equation solution 
requires sharing common data (CPU1 needs x and y values; CPU2 needs y and 
z values instead), but the processing proceeds in parallel until the two CPUs emit 
their results, which are summed to obtain the answer.

FIGURE 13-1: 
Associative and 

commutative 
properties allow 

parallelism.
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Parallelism allows processing of large numbers of calculations simultaneously. 
The more processes, the higher the speed of computation execution, although 
the time spent is not linearly proportional to the number of parallel executors. (It 
is not completely true that two CPUs imply double speed, three CPUs imply three 
times the speed, and so on.) In fact, you can’t expect the associative or commu-
tative properties to work on every part of your algorithm or computer instruc-
tions. The algorithm simply can’t make some parts parallel as stated by Amdahl’s 
law, which helps determine the parallelism speed advantage of your computation 
(for details, see http://home.wlu.edu/~whaleyt/classes/parallel/topics/ 
amdahl.html). In addition, other aspects can dampen the positive effect of 
parallelism:

»» Overhead: You can’t sum the results in parallel.

»» Housekeeping: The underlying conversion from a human-readable language 
to machine language requires time. Keeping the processors working together 
increases the conversion costs, making it impossible to see a doubling effect 
from two processors even if you can perform every part of the task in parallel.

»» Asynchronous Outputs: Because parallel executors don’t perform tasks at 
the same exact speed, the overall speed is bound to the slowest one. (As with 
a fleet, the speed of the fleet is determined by the slowest boat.)

Even if not always as beneficial as expected, parallelism can potentially address 
the problem of handling a massive number of operations faster than using a single 
processor (if a massive number of executors can process them in parallel). Yet, 
parallelism can’t address the massive amounts of data behind the computations 
without another solution: distributed computing on distributed systems.

When you buy a new computer, the seller likely tells you about cores and threads. 
Cores are the CPUs that are stacked inside the single CPU chip and that work in a 
parallel fashion using multiprocessing. Because each core is independent, the 
tasks occur simultaneously. Threads refer instead to the capability of a single core 
to split its activity between multiple processes, in an almost parallel way. How-
ever, in this case, each thread takes its turn with the processor, so the tasks don’t 
occur simultaneously. This is called multithreading.

Distributing files and operations
Large graphs, huge amounts of text files, images, and videos, and immense adja-
cency relation matrices call forth the parallel approach. Fortunately, you no longer 
need a supercomputer to deal with them, but can instead rely on parallelism by a 
bunch of much less powerful computers. The fact that these large data sources 
keep growing means that you need a different approach than using a single 

http://home.wlu.edu/~whaleyt/classes/parallel/topics/amdahl.html
http://home.wlu.edu/~whaleyt/classes/parallel/topics/amdahl.html
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computer specially designed to handle them. The data grows so fast that when you 
finish designing and producing a supercomputer for crunching the data, it may 
well no longer be suitable because the data has already grown too large.

The solution starts with an online service such as Google, Microsoft Azure, or 
Amazon Web Services (AWS). The first step to solve the problem is deciding where 
to put the data. The second step is to decide how to compute efficiently without 
moving the data around too much (because large data transfers take a lot of time 
to transit from one computer to another over a network or the Internet).

Most of these services work in a similar fashion. Engineers put many existing 
technological ideas together and create a Distributed File System (DFS) of some 
sort. When using a DFS, data isn’t stored in a single powerful computer with a 
giant hard disk; instead, the DFS spreads it among multiple smaller computers, 
similar to a personal computer. The engineers arrange the computers into a 
cluster, a physical system of racks and cable connections. Racks are the true back-
bone of the network, in which multiple computers are stored next to each other. 
In a single rack of the network, you may find a variable number of computers, 
from eight to 64, each one connected to the other. Each rack connects to other 
racks by means of a cable network, created by interconnecting the racks not 
directly between themselves, but to various layers of switches, which are 
computer-networking devices able to efficiently handle and manage the data 
exchange between racks, as shown in Figure 13-2.

You can find all this hardware at any computer store, yet it’s exactly what makes 
the DFS infrastructure viable. Theoretically, you could find a million or more 

FIGURE 13-2: 
A schema 

representing a 
computing 

cluster.
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computers interconnected in a network. (You can read about the Google version of 
this setup at http://www.datacenterknowledge.com/archives/2011/08/01/ 
report-google-uses-about-900000-servers/.) The interesting point is that 
these services increase computational power when needed by adding more 
computers, not by creating new networks.

In this system, as data arrives, the DFS splits it into chunks (each one up to 64MB 
in size). The DFS copies the chunks into multiple duplicates and then distributes 
each copy to a computer part on the network. The action of splitting data into 
chunks, duplicating it, and distributing it is quite fast, no matter how the data is 
structured (tidy and ordered information or messy ensemble). The only require-
ment pertains to the recording of the chunks’ address in the DFS, which is achieved 
by an index for each file (itself replicated and distributed), called the master node. 
The DFS execution speed is due to how the DFS handles the data. Contrary to pre-
vious storage techniques (such as data warehouses), a DFS doesn’t require any 
particular sorting, ordering, or cleaning operation on the data itself; on the con-
trary, it does the following:

»» Handles data of any size because the data is split into manageable chunks

»» Stores new data by piling it next to the old data; a DFS never updates any 
previously received data

»» Replicates data redundantly so that you don’t need to back it up; duplication is 
in itself a backup

Computers fail in a number of ways: hard disk, CPU, power system, or some other 
component. Statistically, you can expect a computer serving in a network to work 
for about 1,000 days (about three years). Consequently, a service with a million 
computers, can expect 1,000 of its computers to fail every day. That is why the DFS 
spreads three or more copies of your data inside multiple computers in the net-
work. Replication reduces the likelihood of losing data because of a failure. The 
probability of having a failure that involves only computers where the same chunk 
of data is stored is about one out of a billion (assuming that the DFS replicates the 
data three times), making this a tiny, acceptable risk.

Employing the MapReduce solution
Even though distributed systems store data quickly, retrieving data is much 
slower, especially when performing analysis and applying algorithms. The same 
sort of problem occurs when you break a jigsaw puzzle into pieces and scatter the 
pieces around (easy). You must then pick the pieces up and recreate the original 
image (hard and time consuming). When working with data in a DFS:

http://www.datacenterknowledge.com/archives/2011/08/01/report-google-uses-about-900000-servers/
http://www.datacenterknowledge.com/archives/2011/08/01/report-google-uses-about-900000-servers/
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1.	 Get the master node and read it to determine the location of the file parts.

2.	 Dispatch a fetch order to the computers in the network to obtain the previ-
ously stored data chunks.

3.	 Gather the data chunks stored on multiple computers onto a single computer 
(if doing so is possible; some files may be too large to store on a single 
machine).

Obviously, this process can become complex, so web service engineers have 
decided that it’s better not to recompose files before processing them. A smarter 
solution is to leave them in chunks on the source computer and let the hosting 
computer process them. Only a reduce version, which is already almost com-
pletely processed, would have to move across the network, limiting the data 
transmission. MapReduce is the solution that provides the means to process algo-
rithms in parallel in a data-distributed system. As an algorithm itself, MapReduce 
consists of just two parts, map and reduce.

Explaining map
The first phase of the MapReduce algorithm is the map part, a function found in 
many functional programming languages (a style of programming that treats com-
puting as a mathematical function).  map is straightforward: You begin with a one-
dimensional array (which, in Python, could be a list) and a function. By applying 
the function on each array element, you obtain an identically shaped array whose 
values are transformed. The following example contains a list of ten numbers that 
the function transforms into their power equivalent:

L = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
m = list(map(lambda x: x**2, L))

USING A PACKAGE SOLUTION  
FOR MAPREDUCE
Even though the book demonstrates how to create a MapReduce solution from scratch, 
you don’t need to reinvent the wheel every time you want to perform this task. 
Packages such as MrJob (https://pythonhosted.org/mrjob/) enable you to per-
form MapReduce tasks quickly and easily. In addition, by using a package, you can make 
it easy to execute the task using cloud-based resources, such as Amazon Web Services 
using Elastic MapReduce (EMR) (https://aws.amazon.com/emr/) or with Hadoop 
(http://hadoop.apache.org/). The point is that you do need to know how the algo-
rithm works, which is the point of this book, but having to write all the required code 
may be unnecessary in the right situation.

https://pythonhosted.org/mrjob/
https://aws.amazon.com/emr/
http://hadoop.apache.org/
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print(m)

[0, 1, 4, 9, 16, 25, 36, 49, 64, 81]

The map function applies the Python lambda function (a lambda function is a func-
tion defined on the fly) to transform each element in the initial list into a resulting 
element. Figure 13-3 shows the result of this mapping process.

Note that each list element transformation is independent of the others. You can 
apply the function to the list elements in any order. (However, you must store the 
result in the right position in the final array.) The capability to process the list 
elements in any order creates a scenario that is naturally parallelized without any 
particular effort.

Not all problems are naturally parallel, and some will never be. However, some-
times you can rethink or redefine your problem in order to achieve a set of com-
putations that the computer can deal with in a parallel way.

Explaining reduce
The second phase of the MapReduce algorithm is the reduce part (there is also an 
intermediate step, Shuffle and Sort, explained later but not important for now). 
When given a list, reduce applies a function in a sequence that cumulates the 
results. Thus, when using a summation function, reduce applies the summation 
to all the input list elements. reduce takes the first two array elements and com-
bines them. Then it combines this partial result with the next array element and 
so on until it completes the array.

You can also supply a starting number. When you supply a starting number, 
reduce starts by combining the starting number with the first list element to 
obtain the first partial result. The following example uses the result from the 
mapping phase and reduces it using a summation function (as displayed in 
Figure 13-4):

FIGURE 13-3: 
Mapping a list of 

numbers by a 
square function.
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from functools import reduce
L = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
m = list(map(lambda x: x**2, L))
r = reduce(lambda x, y: x+y, m)
print(r)

285

The reduce function operates on the input array as if it were a data stream (as 
discussed in Chapter 12). It usually works with one element at a time and tracks 
the intermediate results.

Distributing operations
Between the map and reduce phases is an intermediate phase, shuffling and sort-
ing. As soon as a map task completes, the host redirects the resulting tuples of key 
and value pairs to the right computer on the network to apply the reduce phase. 
This is typically done by grouping matching key pairs into a single list and using 
a hash function on the key in a manner similar to Bloom filters (see Chapter 12). 
The output is an address in the computing cluster for transferring the lists.

On the other end of the transmission, the computer performing the reduce phase 
starts receiving lists of tuples of one or multiple keys. Multiple keys occur when a 
hash collision occurs, which happens when different keys result in the same 
hashed value, so they end up to the same computer. The computer performing the 
reduce phase sorts them into lists containing the same key before feeding each 
list into the reduce phase, as shown in Figure 13-5.

As shown in the figure, MapReduce takes multiple inputs at each computer in the 
computing cluster where they are stored, maps the data, and transforms it into 
tuples of key and value pairs. Arranged into lists, the host transmits these tuples 
to other computers over the network, where the receiving computers operate sort 
and reduce operations that lead to a result.

FIGURE 13-4: 
Reducing a list  
of numbers to  

its sum.
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Working Out Algorithms for MapReduce
Contrary to other examples in this book, you can think of MapReduce as more of a 
style of computing or a Big Data framework than an algorithm. As a framework, it 
enables you to combine different distributed algorithms (parallel algorithms that 
spread computations across different computers) and allow them to work effi-
ciently and successfully with large amounts of data. You can find MapReduce 
algorithms in many applications, and you can read about them at the Apache wiki 
regarding Hadoop, detailing the company that uses it, how it is used, and on what 
kind of computing cluster: http://wiki.apache.org/hadoop/PoweredBy. Even 
though possibilities are many, you most often find MapReduce used to perform 
these tasks:

»» Text algorithms for splitting the text into elements (tokens), creating indexes, 
and searching for relevant words and phrases

»» Graph creation and graph algorithms

»» Data mining and learning new algorithms from data (machine learning)

One of the most common MapReduce algorithm uses is to process text. The exam-
ple in this section demonstrates how to solve a simple task, counting certain 
words in a text passage using a map and reduce approach, and leveraging multi-
threading or multiprocessing (depending on the operating system installed on 
your computer).

FIGURE 13-5: 
An overview of 

the complete 
MapReduce 

computation.

http://wiki.apache.org/hadoop/PoweredBy
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The Python programming language is not the ideal computer language for parallel 
operations. Technically, because of synchronization and shared memory access 
problems, the Python interpreter isn’t thread safe, which means that it can expe-
rience errors when executing applications using multiple processes or threads on 
multiple cores. Consequently, Python limits multithreading to a single thread 
(code is distributed but no performance increase occurs) and multicore parallel-
ism by multiple processes is indeed tricky to achieve, especially on computers 
running on Windows. You can learn more about the difference in threads and 
processes by reading the Microsoft article at https://msdn.microsoft.com/ 
en-us/library/windows/desktop/ms681917(v=vs.85).aspx.

Setting up a MapReduce simulation
This example processes text that is in the public domain, obtained from the 
non-profit Project Gutenberg organization (https://www.gutenberg.org/) site. 
The first text processed is the novel War and Peace, by Leo Tolstoy (who is also 
known by other names in other languages, such as Lev Tolstoj). The following 
code loads the data into memory:

import urllib.request
url = 'http://gutenberg.readingroo.ms/2/6/0/2600/2600.txt'
response = urllib.request.urlopen(url)
data = response.read()
text = data.decode('utf-8')[627:]

print (text[:37])

WAR AND PEACE

By Leo Tolstoy/Tolstoi

Be patient! Loading the book takes time (just try reading it in as short a time as 
the computer does). When complete, the code displays the first few lines with the 
title. The code stores the data in the text variable. Part of the process splits the 
text into words and stores them in a list, as shown in the following code:

words = text.split()
print ('Number of words: %i' % len(words))

Number of words: 566218

https://msdn.microsoft.com/en-us/library/windows/desktop/ms681917(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms681917(v=vs.85).aspx
https://www.gutenberg.org/
http://gutenberg.readingroo.ms/2/6/0/2600/2600.txt
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The words variable now contains individual words from the book. It’s time to 
import the necessary Python packages and the functions for the example using 
the following code:

import os
if os.name == "nt":
    #Safer multithreading on Windows
    from multiprocessing.dummy import Pool
else:
    #Multiprocessing on Linux,Mac
    from multiprocessing import Pool

from multiprocessing import cpu_count
from functools import partial

Depending on your operating system, the example relies on multiprocessing or 
multithreading. Windows uses multithreading, which splits the task into multiple 
threads processed at the same time by the same core. On Linux and Mac systems, 
the code executes in parallel instead, and each operation is taken care of by a dif-
ferent computer core.

The code that comes next counts words from a list that corresponds to a set of 
keywords. After removing any punctuation, the code compares words, and if it 
finds any match with a keyword, the function returns a tuple consisting of a key, 
the matched keyword, and a unit value, which is a count. This output represents 
the core of the MapReduce map:

def remove_punctuation(text):
    return ''.join([l for l in text if l not in ['.',
            ',', '!', '?', '"']])

def count_words(list_of_words, keywords):
    results = list()
    for word in list_of_words:
        for keyword in keywords:
            if keyword == remove_punctuation(
                            word.upper()):
                results.append((keyword,1))
    return results

The functions that follow partition the data. This approach is similar to the way in 
which a distributed system partitions the data. The code distributes the computa-
tion and gathers the results:



CHAPTER 13  Parallelizing Operations      261

def Partition(data, size):
    return [data[x:x+size] for x in range(0, len(data),
                                          size)]

def Distribute(function, data, cores):
    pool = Pool(cores)
    results = pool.map(function, data)
    pool.close()
    return results

Finally, the following functions shuffle and order the data to reduce the results. 
This step represents the last two phases of a MapReduce job:

def Shuffle_Sort(L):
    # Shuffle
    Mapping = dict()
    for sublist in L:
        for key_pair in sublist:
            key, value = key_pair
            if key in Mapping:
                Mapping[key].append(key_pair)
            else:
                Mapping[key] = [key_pair]
    return [Mapping[key] for key in Mapping]

def Reduce(Mapping):
  return (Mapping[0][0], sum([value for (key, value
                                ) in Mapping]))

Inquiring by mapping
The following code simulates a distributed environment using multiple processor 
cores. It begins by requesting the number of available cores from the operating 
system. The number of cores you see will vary by the number of cores available in 
your computer. Most modern computers provide four or eight cores.

n = cpu_count()
print ('You have %i cores available for MapReduce' % n)

You have 4 cores available for MapReduce
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If you’re running the code on Windows, for technical reasons you work with a 
single core, so you won’t take advantage of the total number of available cores. 
The simulation still appears to work, but you won’t see any increase in speed.

In order to start, the code first defines the map operation. It then distributes 
the map function to threads, each of which processes a partition of the initial data 
(the list containing the words from War and Peace). The map operation finds the 
words peace, war (is there more war or peace in War and Peace?), Napoleon, 
and Russia:

Map = partial(count_words,
              keywords=['WAR', 'PEACE', 'RUSSIA',
                        'NAPOLEON'])
map_result = Distribute(Map,
                        Partition(
        words,len(words)//n+1), n)
print ('map_result is a list made of %i elements' %
       len(map_result))
print ('Preview of one element: %s]'% map_result[0][:5])

Map is a list made of 4 elements
Preview of one element: [('WAR', 1), ('PEACE', 1), ('WAR', 1),  

        ('WAR', 1), ('RUSSIA', 1)]]

After a while, the code prints the results. In this case, the resulting list contains 
four elements because the host system has four cores (you may see greater or 
fewer elements, depending on the number of cores on your machine). Each ele-
ment in the list is another list containing the results of the mapping on that part 
of the word data. By previewing one of these lists, you can see that it’s a sequence 
of coupled keys (depending on the keyword found) and unit values. The keys 
aren’t in order; they appear in the order in which the code generated them. 
Consequently, before passing the lists to the reduce phase for summing the total 
results, the code arranges the keys in order and sends them to the appropriate 
core for reducing:

Shuffled = Shuffle_Sort(map_result)
print ('Shuffled is a list made of %i elements' %
       len(Shuffled))
print ('Preview of first element: %s]'% Shuffled[0][:5])
print ('Preview of second element: %s]'% Shuffled[1][:5])
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Shuffled is a list made of 4 elements
Preview of first element: [('RUSSIA', 1), ('RUSSIA', 1),
 ('RUSSIA', 1), ('RUSSIA', 1), ('RUSSIA', 1)]]
Preview of second element: [('NAPOLEON', 1), ('NAPOLEON',
 1), ('NAPOLEON', 1), ('NAPOLEON', 1), ('NAPOLEON', 1)]]

As shown in the example, the Shuffle_Sort function creates a list of four lists, 
each one containing tuples featuring one of the four keywords. In a cluster setting, 
this processing equates to having each mapping node pass through the emitted 
results, and, by using some kind of addressing (for instance, using a hash func-
tion, as seen in the bit vector of a Bloom filter Chapter  12), they send (shuffle 
phase) the tuple data to the appropriate reducing node. The receiving node places 
each key in the appropriate list (order phase):

result = Distribute(Reduce, Shuffled, n)
print ('Emitted results are: %s' % result)

Emitted results are: [('RUSSIA', 156), ('NAPOLEON', 469), 
('WAR', 288), ('PEACE', 111)]

The reduce phase sums the distributed and ordered tuples and reports the total 
summation for each key, as seen in the result printed by the code that replicates a 
MapReduce. Reading the results, you can see that Tolstoy mentions war more 
than peace in War and Peace, but he mentions Napoleon even more often.

You can easily repeat the experiment on other texts or, even hack the map func-
tion in order to apply a different function to the text. For instance, you could 
choose to analyze some of the most famous novels by Sir Arthur Conan Doyle and 
try to discover how many times Sherlock Holmes used the phrase “Elementary, 
Watson”:

import urllib.request
url = "http://gutenberg.pglaf.org/1/6/6/1661/1661.txt"
text = urllib.request.urlopen(url).read().decode(
                                    'utf-8')[723:]
words = text.split()

print (text[:65])
print ('\nTotal words are %i' % len(words))

http://gutenberg.pglaf.org/1/6/6/1661/1661.txt
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Map = partial(count_words,
              keywords=['WATSON', 'ELEMENTARY'])
result = Distribute(Reduce,
                    Shuffle_Sort(Distribute(Map,
                    Partition(words,len(words)//n), n)),
                    1)
print ('Emitted results are: %s' % result)

THE ADVENTURES OF SHERLOCK HOLMES
by
SIR ARTHUR CONAN DOYLE

Total words are 107431
Emitted results are: [('WATSON', 81), ('ELEMENTARY', 1)]

The result may be surprising! You never actually find that phrase in the novels; 
it’s a catchphrase that authors inserted later into the film screenplays: http:// 
www.phrases.org.uk/meanings/elementary-my-dear-watson.html.

http://www.phrases.org.uk/meanings/elementary-my-dear-watson.html
http://www.phrases.org.uk/meanings/elementary-my-dear-watson.html
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IN THIS CHAPTER

»» Understanding how computers can 
store information in order to save 
space

»» Creating efficient and smart 
encodings

»» Leveraging statistics and building 
Huffman trees

»» Compressing and decompressing on 
the fly using the Lempel-Ziv-Welch 
(LZW) algorithm

Compressing Data

The last decade has seen the world flooded by data. In fact, data is the new 
oil, and specialists of all sorts hope to extract new knowledge and richness 
from it. As a result, you find data piled everywhere and often archived as 

soon as it arrives. The sometimes careless storage of data comes from an increased 
capacity to store information; it has become cheap to buy larger drives to store 
everything, useful or not. Chapters 12 and 13 discuss the drivers behind this data 
deluge, how to deal with massive data streams, methods used to distribute it over 
clusters of connected computers, and techniques you can use to process data 
rapidly and efficiently.

Data hasn’t always been readily available, however. In previous decades, storing 
data required large investments in expensive mass-storage devices (hard disk, 
tapes, floppy disks, CDs) that couldn’t store much data. Storing data required a 
certain efficiency (saving disk space meant saving money), and data compression 
algorithms offered the solution of compacting data to store more of it on a single 
device at the cost of computer processing time. Trading disk space for computer 
time reduced costs.

Compression algorithms have long been a topic of study and are now considered 
classics in computer knowledge. Even though storage disks are larger and cheaper 
today, these algorithms still play a role in mobile data transmission and see use 

Chapter 14
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anywhere there is a data stream bottleneck or high memory costs. Compression is 
also handy in situations in which data infrastructure growth doesn’t match data 
growth, which is especially true of both wireless and mobile bandwidth in 
developing countries. In addition, compression helps deliver complex web pages 
faster, stream videos efficiently, store data on a mobile device, or reduce mobile 
phone data transmission costs. This chapter helps you understand how data com-
pression works and when you need to use it.

Making Data Smaller
Computer data is made of bits  — sequences of zeros and ones. This chapter 
explains the use of zeros and ones to create data in more depth than previous 
chapters because compression leverages these zeros and ones in multiple ways. To 
understand compression, you must know how a computer creates and stores 
binary numbers. The following sections discuss the use of binary numbers in 
computers.

Understanding encoding
Zeros and ones are the only numbers in the binary system. They represent the two 
possible states in an electric circuit: absence and presence of electricity. Comput-
ers started as simple circuits made of tubes or transistors; using the binary system 
instead of the human decimal system made things easier. Humans use ten fingers 
to count numbers from 0 to 9. When they have to count more, they add a unit 
number to the left. You may never have thought about it, but you can express 
counting by using powers of ten. Therefore a number such as 199 can be expressed 
as 102*1 + 101*9 +100*9 = 199; that is, you can separate hundreds from tens and 
units by multiplying each figure by the power of ten relative to its position: 100 for 
units, 101 for tens, 102 for hundreds, and so on.

Knowing this information helps you understand binary numbers better because 
they actually work in exactly the same way. However, binary numbers use powers 
of two rather than powers of ten. For instance, the number 11000111 is simply

27*1+26*1+25*0+24*0+23*0+22*1+21*1+20*1 =
128*1+64*1+32*0+16*0+8*0+4*1+2*1+1*1 =
128+64+4+2+1 = 199

You can represent any number as a binary value in a computer. A value occupies 
the memory space required by its total length. For example, binary 199 is 
8 figures, each figure is a bit, and 8 bits are called a byte. The computer hardware 
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knows data only as bits because it has only circuitry to store bits. However, from 
a higher point of view, computer software can interpret bits as letters, ideograms, 
pictures, films, and sounds, which is where encoding comes into play.

Encoding uses a sequence of bits to represent something other than the number 
expressed by the sequence itself. For instance, you can represent a letter using a 
particular sequence of bits. Computer software commonly represents the letter A 
using the number 65, or binary 01000001 when working with the American Stan-
dard Code for Information Interchange (ASCII) encoding standard. You can see 
sequences used by ASCII system at http://www.asciitable.com/. ASCII uses just 
7 bits for its encoding (8 bits, or a byte, in the extended version), which means 
that you can represent 128 different characters (the extended version has 
256 characters). Python can represent the string “Hello World” using bytes:

print (''.join(['{0:08b}'.format(ord(l))
                for l in "Hello World"]))

0100100001100101011011000110110001101111001000000101011101
101111011100100110110001100100

When using extended ASCII, a computer knows that a sequence of exactly 8 bits 
represent a character. It can separate each sequence into 8-bit bytes and, using a 
conversion table called a symbolic table, it can turn these bytes into characters.

ASCII encoding can represent the standard Western alphabet, but it doesn’t sup-
port the variety of accented European characters or the richness of non-European 
alphabets, such as the ideograms used by the Chinese and Japanese languages. 
Chances are that you’re using a robust encoding system such as UTF-8 or another 
form of Unicode encoding (see http://unicode.org/ for more information). 
Unicode encoding is the default encoding in Python 3.

Using a complex encoding system requires that you use longer sequences than 
those required by ASCII.  Depending on the encoding you choose, defining a 
character may require up to 4 bytes (32 bits). When representing textual informa-
tion, a computer creates long bit sequences. It decodes each letter easily because 
encoding uses fixed-length sequences in a single file. Encoding strategies, such as 
Unicode Transformation Format 8 (UTF-8), can use variable numbers of bytes 
(1 to 4 in this case). You can read more about how UTF-8 works at http://www. 
fileformat.info/info/unicode/utf8.htm.

Considering the effects of compression
The use of fixed-sized character sequences leaves a lot of room for improvement. 
You may not use all the letters in an alphabet, or you use some letters more 

http://www.asciitable.com/
http://unicode.org/
http://www.fileformat.info/info/unicode/utf8.htm
http://www.fileformat.info/info/unicode/utf8.htm
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than others. This is where compression comes into play. By using variable-length 
character sequences, you can greatly reduce the size of a file. However, the file 
also requires additional processing to turn it back into an uncompressed format 
that applications understand. Compression removes space in an organized and 
methodical manner; decompression adds the space back into the character strings. 
When it’s possible to compress and decompress data in a manner that doesn’t 
result in any data loss, you’re using lossless compression.

The same idea behind compression goes for images and sounds that involve fram-
ing sequences of bits of a certain size in order to represent video details or to 
reproduce a second of a sound using the computer’s speakers. Videos are simply 
sequences of bits, and each bit sequence is a pixel, which is composed of small 
points that constitute an image. Likewise, audio is composed of sequences of bits 
that represent an individual sample. Audio files store a certain number of samples 
per second to recreate a sound. The discussion at http://kias.dyndns.org/ 
comath/44.html provides more information about both video and audio storage. 
Computers store data in many predefined formats of long sequences of bits (com-
monly called bit streams). Compression algorithms can exploit the way each for-
mat works to obtain the same result using a shorter, custom format.

You can compress data that represents images and sounds further by eliminating 
details that you can’t process. Humans have both visual and aural limits, so they 
aren’t likely to notice the loss of detail imposed by compressing the data in spe-
cific ways. You may have heard of MP3 compression that allows you to store entire 
collections of CDs on your computer or on a portable reader. The MP3 file format 
simplifies the original cumbersome WAV format used by computers. WAV 
files contain all the sound waves received by the computer, but MP3 saves space 
by removing and compacting waves that you can’t hear. (For more more 
about MP3, see the article at http://arstechnica.com/features/2007/10/the- 
audiofile-understanding-mp3-compression/).

Removing details from data creates lossy compression. JPEG, DjVu, MPEG, MP3, 
and WMA are all lossy compression algorithms specialized in a particular kind of 
media data (images, video, sound), and there are many others. Lossy compression 
is fine for data meant for human input; however, by removing the details, you 
can’t revert to the original data structure. Thus, you can get good digital photo 
compression and represent it in a useful way on a computer’s screen. Yet when 
you print the compressed photo on paper, you may notice that the quality, though 
acceptable, is not as good as the original picture. The display provides output at 
96 dots per inch (dpi), but a printer typically provides output at 300 to 1200 dpi (or 
higher). The effects of lossy compression become obvious because a printer is able 
to display them in a manner that humans can see.

http://kias.dyndns.org/comath/44.html
http://kias.dyndns.org/comath/44.html
http://arstechnica.com/features/2007/10/the-audiofile-understanding-mp3-compression/
http://arstechnica.com/features/2007/10/the-audiofile-understanding-mp3-compression/
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Choosing between lossless and lossy compression is important. Discarding details 
is a good strategy for media, but it doesn’t work so well with text, because losing 
words or letters may change the meaning of the text. (Discarding details doesn’t 
work for programming languages or computer instructions for the same reason.) 
Even though lossy compression is an effective compression solution when details 
aren’t as important, it doesn’t work in situations in which precise meaning must 
be retained.

Choosing a particular kind of compression
Lossless algorithms simply compress data to reduce its size and decompress it to 
its original state. Lossless algorithms have more general applications than lossy 
compression because you can use them for any data problem. (Even when using 
lossy compression, you remove some detail and further compress what remains 
using lossless compression.) Just as you can find many lossy algorithms that are 
specialized for use with different media, so can you find many lossless algorithms, 
each one adept at exploiting some data characteristics. (To get an idea of how 
large the lossless algorithm family is, read more details at http://ethw.org/ 
History_of_Lossless_Data_Compression_Algorithms).

It’s essential to remember that the goal of both lossy and lossless compression is 
to reduce the redundancy contained in data. The more redundancies the data 
contains, the more effective the compression.

Chances are that you have many lossless data compression programs installed on 
your computer that output files such as ZIP, LHA, 7-Zip, and RAR, and you aren’t 
sure which one is better. A “best” option may not exist, because you can use bit 
sequences in many different ways to represent information on a computer; also, 

AN EXAMPLE OF LOSSY  
COMPRESSION BENEFITS
An example of the difference that lossy compression can make is in photography. 
A raw formatted picture file contains all the information originally provided by the cam-
era’s sensor, so it doesn’t include any sort of compression. When working with a certain 
camera, you might find that this file consumes 29.8MB of hard drive space. A raw file 
often uses the .raw file extension to show that no processing has occurred. Opening the 
file and saving it as a lossy .jpeg might result in a file size of only 3.7 MB, but with a cor-
responding loss of detail. To save some of the detail but obtain some savings in file size 
as well, you might choose to use the .jpeg file format. In this case, the file size might be 
12.4MB, which represents a good compromise in file size savings to loss of image data.

http://ethw.org/History_of_Lossless_Data_Compression_Algorithms
http://ethw.org/History_of_Lossless_Data_Compression_Algorithms
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different compression strategies work better with different bit sequences. This is 
the no-free-lunch problem discussed in Chapter 1. The option you choose depends 
on the data content you need to compress.

To see how compression varies by the sample you provide, you should try various 
text samples using the same algorithm. The following Python example uses the 
ZIP algorithm to compress the text of The Adventures of Sherlock Holmes, by Arthur 
Conan Doyle, and then to reduce the size of a randomly generated sequence of 
letters. (You can find the complete code for this example in the Compression 
Performances section of the A4D; 14; Compression.ipynb file of the download-
able source code for this book; see the Introduction for details).

import urllib.request
import zlib
from random import randint
url = "http://gutenberg.pglaf.org/1/6/6/1661/1661.txt"
sh = urllib.request.urlopen(url).read().decode('utf-8')
sh_length = len(sh)
rnd = ''.join([chr(randint(0,126)) for k in
               range(sh_length)])

def zipped(text):
    return len(zlib.compress(text.encode("ascii")))

print ("Original size for both texts: %s characters" %
       sh_length)
print ("The Adventures of Sherlock Holmes to %s" %
       zipped(sh))
print ("Random file to %s " % zipped(rnd))

Original size for both texts: 594941 characters
The Adventures of Sherlock Holmes to 226824
Random file to 521448

The output of the example is enlightening. Even though the example application 
can reduce the size of the short story to less than half of its original size, the size 
reduction for the random text is much less (both texts have the same original 
length). The output implies that the ZIP algorithm leverages the characteristics of 
the written text but doesn’t do as well on random text that lacks a predictable 
structure.

When performing data compression, you can measure performance by calculating 
the compression ratio: Just divide the new compressed size of the file by the origi-
nal size of the file. The compression ratio can tell you about algorithm efficiency 
in saving space, but high-performance algorithms also require time to perform 

http://gutenberg.pglaf.org/1/6/6/1661/1661.txt
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the task. In case time is your concern, most algorithms let you trade some com-
pression ratio for speedier compression and decompression. In the preceding 
example for the Sherlock Holmes text, the compression ratio is 226824 / 594941, 
that is, about 0.381. The compress method found in the example has a second 
optional parameter, level, which controls the level of compression. Changing 
this parameter controls the ratio between the time to perform the task and the 
amount of compression achieved.

Choosing your encoding wisely
The example in the preceding section shows what happens when you apply the 
ZIP algorithm to random text. The results help you understand why compression 
works. Boiling down all the available compression algorithms, you discover four 
main reasons:

»» Shrinking character encoding: Compression forces characters to use fewer 
bits by coding them according to some feature, such as commonality of use. 
For example, if you use only some of the characters in a character set, you can 
reduce the number of bits to reflect that level of usage. It’s the same differ-
ence that occurs between ASCII, which uses 7 bits, and extended ASCII, which 
uses 8 bits. This solution is particularly effective with problems like DNA 
encoding, in which you can devise a better encoding than the standard one.

»» Shrinking long sequences of identical bits: Compression uses a special 
code to identify multiple copies of the same bits and replaces those copies 
with just one copy, along with the number of times to repeat it. This option is 
very effective with images (it works fine with fax black and white images) or 
with any data that you can rearrange in order to group similar characters 
together (DNA data is one of this kind).

»» Leveraging statistics: Compression encodes frequently used characters in a 
shorter way. For example, the letter E appears commonly in English, so if the 
letter E uses only 3 bits, rather than a full 8 bits, you save considerable space. 
This is the strategy used by Huffman encoding, in which you recreate the 
symbolic table and save space, on average, because common characters 
are shorter.

»» Encoding frequent long sequences of characters efficiently: This is similar 
to shrinking long sequences of identical bits, but it works with character 
sequences rather than single characters. This is the strategy used by LZW, 
which learns data patterns on the fly and creates a short encoding for long 
sequences of characters.
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To understand how rethinking encoding can help in compression, start with the 
first reason. Scientists working on the Genome Project around 2008 (https://
www.genome.gov/10001772/all-about-the--human-genome-project-hgp/) 
managed to drastically reduce the size of their data using a simple encoding trick. 
Using this trick made the task of mapping the entire human DNA simpler, helping 
the scientists understand more about the life, disease, and death scripted into our 
body cells.

Scientists describe DNA using sequences of the letters A, C, T, and G (representing 
the four nucleotides present in all living beings). The human genome contains six 
billion nucleotides (you find them associated in couples, called bases) that add up 
to more than 50GB using ASCII encoding. In fact, you can represent A, C, T, and G 
in ASCII encoding as follows:

print (' '.join(['{0:08b}'.format(ord(l))
                 for l in "ACTG"]))

01000001 01000011 01010100 01000111

The sum of the preceding line is 32 bits, but because DNA maps just four charac-
ters, you can use 2 bits each, saving 75 percent of the previously used bits:

00 01 10 11

Such a gain demonstrates the reason to choose the right encoding. The encoding 
works fine in this case because the DNA alphabet is made of four letters, and using 
a full ASCII table based on 8 bits is overkill. If a problem requires that you use the 
complete ASCII alphabet, you can’t compress the data by redefining the encoding 
used. Instead, you have to approach the problem using Huffman compression.

If you can’t shrink the character encoding (or you have already done it), you can 
still shrink long sequences, reducing them to a simpler encoding. Observe how 
binary data can repeat long sequences of ones and zeros:

00000000 00000000 01111111 11111111 10000011 11111111

In this case, the sequence starts from zero. You can therefore count the number of 
zeros, and then count the number of ones that follow, and then repeat with the 
next count of zeros, and so on. Because the sequence has only zeros and ones, you 
can count them and obtain sequence of counts to compress the data. In this case, 
the data compresses into values of 17 15 5 10. Translating these counts into bytes 
shortens the initial data in an easily reversible way:

00010001 00001111 00000101 00001010

https://www.genome.gov/10001772/all-about-the--human-genome-project-hgp/
https://www.genome.gov/10001772/all-about-the--human-genome-project-hgp/
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Instead of using 6 bytes to represent the data, you now need only 4 bytes. To use this 
approach, you limit the maximum count to 255 consecutive values, which means:

»» You can encode each sequence in a byte.

»» The first value is a zero when the sequence starts from 1 instead of 0.

»» When a block of values is longer than 255 elements, you insert a 0 value (so 
the decoder switches to the other value for 0 counts and then starts counting 
the first value again).

This algorithm, run-length encoding (RLE), is very effective if your data has many 
long repetitions. This algorithm enjoyed great success in the 1980s because it 
could reduce fax transmission times. Fax machines worked on just black-and- 
white images, and by land-line telephone, shrinking the long sequences of zeros 
and ones that made up images and text proved to be convenient. Though busi-
nesses seldom use fax machines now, scientists still use RLE for DNA compression 
in combination with the Burrows-Wheeler Transform (an advanced algorithm 
that you can read about at http://marknelson.us/1996/09/01/bwt/), which 
rearranges (in a reversible way) the genome sequence in long runs of the same 
nucleotide. You also find RLE used for compression of other data formats, such as 
JPEG and MPEG (see http://motorscript.com/mpeg-jpeg-compression/ for 
additional details).

Data characteristics rule the success of a compression algorithm. By knowing how 
algorithms work and exploring your data characteristics, you can choose the 
best-performing algorithm or combine more algorithms in an effective way. 
Using multiple algorithms together creates an ensemble of algorithms.

Encoding using Huffman compression
Redefining an encoding, such as when mapping nucleotides in DNA, is a smart 
move that works only when you use a part of the alphabet that the encoding rep-
resents. When you use all the symbols in the encoding, you can’t use this solution. 
David A. Huffman discovered another way to encode letters, numbers, and sym-
bols efficiently even when using all of them. He achieved this accomplishment 
when he was a student at MIT in 1952 as part of a term paper required by his 
professor, Prof. Robert M.  Fano. His professor and another famous scientist, 
Claude Shannon (the father of information theory), had struggled with the same 
problem.

In his paper, “A Method for the Construction of Minimum-Redundancy Codes,” 
Huffman describes in just three pages his mind-blowing encoding method. 

http://marknelson.us/1996/09/01/bwt/
http://motorscript.com/mpeg-jpeg-compression/
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It changed the way we stored data until the end of 1990s. You can read the details 
about this incredible algorithm in a September 1991 Scientific American article 
at  http://www.huffmancoding.com/my-uncle/scientific-american. Huffman 
codes have three key ideas:

»» Encode frequent symbols with shorter sequences of bits. For instance, if 
your text uses the letter a often, but rarely uses the letter z, you can encode a 
using a couple of bits and reserve an entire byte (or more) for z. Using shorter 
sequences for common letters means that overall your text requires fewer 
bytes than when you rely on ASCII encoding.

»» Encode shorter sequences using a unique series of bits. When using 
variable length bit sequences, you have to ensure that you can’t misinterpret 
a shorter sequence in place of a longer one because they are similar. For 
instance, if the letter a in binary is 110 and z is 110110, you could misinterpret 
the letter z as a series of two-letter a characters. Huffman encoding avoids 
this problem by using prefix-free codes: The algorithm never reuses shorter 
sequences as initial parts of longer sequences. For example, if a is 110, then z 
will be 101110 and not 110110.

»» Manage prefix-free coding using a specific strategy. Huffman encoding 
manages prefix-free codes by using binary trees in a smart way. Binary trees 
are a data structure discussed in Chapters 6 and 7. The Huffman algorithm uses 
binary trees (called Huffman trees) in an advanced fashion. You can read more 
about the internals of the algorithm in the tutorial at https://www.siggraph.
org/education/materials/HyperGraph/video/mpeg/mpegfaq/huffman_ 
tutorial.html.

The algorithm used to perform Huffman encoding uses an iterative process that 
relies on heaps, which are specialized tree-based data structures (mentioned in 
Chapter 6). A heap is a complex data structure. Because of the manner in which 
you use a heap to arrange data, it’s useful for achieving a greedy strategy. In the 
next chapter, which is devoted to greedy algorithms, you test Huffman encoding 
yourself, using the working examples in the downloadable code accompanying the 
book (the Huffman Compression example in the A4D; 15; Greedy Algorithms.
ipynb file; see the Introduction for details).

For the moment, as an example of a Huffman encoding output, Figure 14-1 shows 
the Huffman encoding binary tree used to encode a long sequence of ABCDE letters 
distributed in a way that A is more frequent than B, B more than C, C more than D, 
and D more than E.

http://www.huffmancoding.com/my-uncle/scientific-american
https://www.siggraph.org/education/materials/HyperGraph/video/mpeg/mpegfaq/huffman_tutorial.html
https://www.siggraph.org/education/materials/HyperGraph/video/mpeg/mpegfaq/huffman_tutorial.html
https://www.siggraph.org/education/materials/HyperGraph/video/mpeg/mpegfaq/huffman_tutorial.html
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The square nodes represent branch nodes, where the algorithm places the number 
of the remaining letters it distributes to the child nodes (those that are below the 
branch nodes in the hierarchy). The round nodes represent leaf nodes, where you 
find the successfully encoded letters. The tree starts at the root with 300 letters 
left to distribute (the length of the text). It distributes the letters by branching the 
0 and 1 bits, respectively, on the left and on the right branches until it reaches all 
the leaves necessary for encoding. By reading from the top of the sequence of 
branches to a specific letter, you determine the binary sequence representing that 
letter. Less frequent letters (D and E) get the longest binary sequences.

Following the Huffman tree from bottom to top lets you compress a symbol into a 
binary sequence. By following the tree from top to bottom, you can decompress 
a  binary sequence into a symbol (as represented by the first leaf node you 
encounter).

For decompression, you need to store both the compressed binary sequence and 
the Huffman tree that made the compression possible. When your text or data 
is  too short, the Huffman tree could require more space than the compressed 
data,  thus making compression ineffective. Huffman code works best on larger 
data files.

Remembering sequences with LZW
Huffman encoding takes advantage of the most frequent characters, numbers, or 
symbols in data and shortens their encoding. The LZW algorithm performs a 
similar task but extends the encoding process to the most frequent sequences of 
characters. The LZW algorithm dates to 1984 and was created by Abraham Lempel, 
Jacob Ziv, and Terry Welch based on an earlier LZ78 algorithm (developed in 1978 
by Lempel and Ziv alone). Both Unix compression and the GIF image format rely 
on this algorithm. LZW leverages repetitions, so it’s also ideal for document and 

FIGURE 14-1: 
A Huffman tree 

and its symbolic 
table of 

conversion.
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book text compression because humans often use the same words when writing. 
In addition, LZW can operate on streaming data, but Huffman can’t; Huffman 
needs the full dataset to build its mapping table.

As the algorithm skims through the data-bit stream, it learns sequences of 
characters from it and assigns each sequence to a short code. Thus, when later 
reencountering the same series of characters, LZW can compress them using a 
simpler encoding. The interesting aspect of this algorithm is that it starts from a 
symbolic table made of single characters (usually the ASCII table) and then it 
enlarges that table using the character sequences it learns from the data it 
compresses.

Moreover, LZW doesn’t need to store the learned sequences in a table for decom-
pression; it can rebuild them easily by reading the compressed data. LZW can 
reconstruct the steps it took when compressing the original data and the sequences 
it encoded. This capability comes at a price; LZW isn’t efficient at first. It works 
best with large pieces of data or text (a characteristic common to other compres-
sion algorithms).

LZW isn’t a complex algorithm, but you need to see a number of examples to 
understand it fully. You can find quite a few good tutorials at http://marknelson. 
us/2011/11/08/lzw-revisited/ and http://www.matthewflickinger.com/lab/ 
whatsinagif/lzw_image_data.asp. The second tutorial explains how to use LZW 
to compress images. The following example shows a Python implementation. (You 
can find the complete code for this example in the LZW section of the A4D; 14; 
Compression.ipynb file of the downloadable source code for this book; see the 
Introduction for details).

def lzw_compress(text):
    dictionary = {chr(k): k for k in range(256)}
    encoded = list()
    s = text[0]
    for c in text[1:]:
        if s+c in dictionary:
            s = s+c
        else:
            print ('> %s' %s)
            encoded.append(dictionary[s])
            print ('found: %s compressed as %s' %
                   (s,dictionary[s]))
            dictionary[s+c] = max(dictionary.values()) + 1
            print ('New sequence %s indexed as %s' %
                   (s+c, dictionary[s+c]))
            s = c

http://marknelson.us/2011/11/08/lzw-revisited/
http://marknelson.us/2011/11/08/lzw-revisited/
http://www.matthewflickinger.com/lab/whatsinagif/lzw_image_data.asp
http://www.matthewflickinger.com/lab/whatsinagif/lzw_image_data.asp
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    encoded.append(dictionary[s])
    print ('found: %s compressed as %s'
           %(s,dictionary[s]))
    return encoded

In this example, the algorithm scans the text by checking the text a character at a 
time. It begins by encoding characters using the initial symbolic table, which is 
actually the ASCII table in this case. The best way to see how this code works is to see 
a series of output messages and then analyze what has taken place, as shown here:

text = "ABABCABCABC"
compressed = lzw_compress(text)
print('\nCompressed: %s \n' % compressed)

> A
found: A compressed as 65
New sequence AB indexed as 256
> B
found: B compressed as 66
New sequence BA indexed as 257
> AB
found: AB compressed as 256
New sequence ABC indexed as 258
> C
found: C compressed as 67
New sequence CA indexed as 259
> ABC
found: ABC compressed as 258
New sequence ABCA indexed as 260
found: ABC compressed as 258

Here is a quick synopsis of what these output messages mean:

1.	 The first letter, A, appears in the initial symbolic table, so the algorithm encodes 
it as 65.

2.	 The second letter, B, is different from A but also appears in the initial symbolic 
table, so the algorithm encodes it as 66.

3.	 The third letter is another A, so the algorithm reads the next letter, which is a B, 
and encodes the two-letter combination, AB, as 256.

4.	 The fourth letter, a C, is different from any of the previous letters and also 
appears in the initial symbolic table, so the algorithm encodes it as 67.
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5.	 The next letter has already appeared before; it’s an A. The next letter is a B, 
which makes the AB letter combination; this also appears in the symbolic table. 
However, the next letter is a C, which makes a new sequence and which the 
algorithm now encodes as 258.

6.	 The final three letters are another set of ABC, so the code for them is 258 again. 
Consequently, the encoded output for ABABCABCABC is

Compressed: [65, 66, 256, 67, 258, 258]

All the learning and encoding operations translated into final compression data 
consisting of just six numeric codes (costing 8 bits each) against the initial 11 test 
letters. The encoding results in a good compression ratio of about half the initial 
data: 6/11 = 0.55.

Retrieving the original text from the compressed data requires a different, inverse 
procedure, which accounts for the only situation when LZW decoding may fail to 
reconstruct the symbolic table when a sequence starts and ends with the 
same character. This particular case is taken care of by Python using an if-then- 
else command block, so you can safely use the algorithm to encode and decode 
anything:

def lzw_decompress(encoded):
    reverse_dictionary = {k:chr(k) for k in range(256)}
    current = encoded[0]
    output = reverse_dictionary[current]
    print ('Decompressed %s ' % output)
    print ('>%s' % output)
    for element in encoded[1:]:
        previous = current
        current = element
        if current in reverse_dictionary:
            s = reverse_dictionary[current]
            print ('Decompressed %s ' % s)
            output += s
            print ('>%s' % output)
            new_index = max(reverse_dictionary.keys()) + 1
            reverse_dictionary[new_index
            ] = reverse_dictionary[previous] + s[0]
            print ('New dictionary entry %s at index %s' %
                    (reverse_dictionary[previous] + s[0],
                     new_index))
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        else:
            print ('Not found:',current,'Output:',
                   reverse_dictionary[previous
                    ] + reverse_dictionary[previous][0])
            s = reverse_dictionary[previous
                    ] + reverse_dictionary[previous][0]
            print ('New dictionary entry %s at index %s' %
                   (s, max(reverse_dictionary.keys())+1))
            reverse_dictionary[
                max(reverse_dictionary.keys())+1] = s
            print ('Decompressed %s' % s)
            output += s
            print ('>%s' % output)
    return output

Running the function on the previously compressed sequence recovers the origi-
nal information by scanning through the symbolic table, as shown here:

print ('\ndecompressed string : %s' %
       lzw_decompress(compressed))
print ('original string was : %s' % text)

Decompressed A
> A
Decompressed B
> AB
New dictionary entry AB at index 256
Decompressed AB
> ABAB
New dictionary entry BA at index 257
Decompressed C
> ABABC
New dictionary entry ABC at index 258
Decompressed ABC
> ABABCABC
New dictionary entry CA at index 259
Decompressed ABC
> ABABCABCABC
New dictionary entry ABCA at index 260

decompressed string : ABABCABCABC
original string was : ABABCABCABC
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IN THIS PART . . .

Use greedy programming techniques to obtain results 
faster.

Perform dynamic programming to perform tasks 
using a smart approach.

Randomize your results to solve problems where a 
straightforward approach doesn’t work well.

Search locally to final solutions that are good enough 
in a short time.

Use linear programming techniques to perform 
scheduling and planning tasks.

Employ heuristics and interact with robots.
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IN THIS CHAPTER

»» Understanding how to design new 
algorithms and use solving paradigms

»» Explaining how an algorithm can act 
greedy and get great results

»» Drafting a greedy algorithm of your 
own

»» Revisiting Huffman coding and 
illustrating some other classical 
examples

Working with Greedy 
Algorithms

After taking your first steps into the world of algorithms by presenting 
what algorithms are and discussing ordering, searching, graphs, and big 
data, it’s time to enter a more general part of the book. In this latter part 

of the book, you deal with some difficult examples and see general algorithmic 
approaches that you can use under different circumstances when solving real-
world problems.

By taking new routes and approaches, this chapter goes well beyond the divide- 
and-conquer recursion approach that dominates in most sorting problems. Some 
of the discussed solutions aren’t completely new; you’ve seen them in previous 
chapters. However, this chapter discusses those previous algorithms in greater 
depth, under the new paradigms (a consideration of application rules and condi-
tions, general approach and steps to the solution of a problem, and analysis of 
problem complexity, limitations, and caveats) that the chapter illustrates.

Making some solutions general and describing them as widely applicable para-
digms is a way to offer hints to solve new practical problems and is part of the 

Chapter 15
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analysis and design of algorithms. The remainder of this book discusses the fol-
lowing general approaches:

»» Greedy algorithms (explained in this chapter)

»» Dynamic programming

»» Randomization, local search, and farsighted heuristics

»» Linear programming and optimization problems

Deciding When It Is Better to Be Greedy
When faced with difficult problems, you quickly discover that no magic potion 
exists for making wishes come true or silver bullets to dispel bad things. Similarly, 
no algorithmic technique saves the day every time. That’s the no-free-lunch 
principle often quoted in the book. The good news is, you can arm yourself with 
different general techniques and test them all on your problem, because you have 
a good chance that something will work well.

Greedy algorithms come in handy for solving a wide array of problems, especially 
when drafting a global solution is difficult. Sometimes, it’s worth giving up com-
plicated plans and simply start looking for low-hanging fruit that resembles the 
solution you need. In algorithms, you can describe a shortsighted approach like 
this as greedy. Looking for easy-to-grasp solutions constitutes the core distin-
guishing characteristic of greedy algorithms. A greedy algorithm reaches a prob-
lem solution using sequential steps where, at each step, it makes a decision based 
on the best solution at that time, without considering future consequences or 
implications.

Two elements are essential for distinguishing a greedy algorithm:

»» At each turn, you always make the best decision you can at that particu-
lar instant.

»» You hope that making a series of best decisions results in the best final 
solution.

Greedy algorithms are simple, intuitive, small, and fast because they usually run 
in linear time (the running time is proportional to the number of inputs provided). 
Unfortunately, they don’t offer the best solution for all problems, but when they 
do, they provide the best results quickly. Even when they don’t offer the top 
answers, they can give a nonoptimal solution that may suffice or that you can use 
as a starting point for further refinement by another algorithmic strategy.
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Interestingly, greedy algorithms resemble how humans solve many simple prob-
lems without using much brainpower or with limited information. For instance, 
when working as cashiers and making change, a human naturally uses a greedy 
approach. You can state the make-change problem as paying a given amount (the 
change) using the least number of bills and coins among the available denomina-
tions. The following Python example demonstrates the make-change problem is 
solvable by a greedy approach. It uses the 1, 5, 10, 20, 50, and 100 USD bills, but 
no coins.

def change(to_be_changed, denomination):
    resulting_change = list()
    for bill in denomination:
        while to_be_changed >= bill:
            resulting_change.append(bill)
            to_be_changed = to_be_changed - bill
    return resulting_change, len(resulting_change)

currency = [100, 50, 20, 10, 5, 1]
amount = 367
print ('Change: %s (using %i bills)'
       % (change(amount, currency)))

Change: [100, 100, 100, 50, 10, 5, 1, 1] (using 8 bills)

The algorithm, encapsulated in the change() function, scans the denominations 
available, from the largest to the smallest. It uses the largest available currency to 
make change until the amount due is less than the denomination. It then moves 
to the next denomination and performs the same task until it finally reaches the 
lowest denomination. In this way, change() always provides the largest bill pos-
sible given an amount to deliver. (This is the greedy principle in action.)

Greedy algorithms are particularly appreciated for scheduling problems, optimal 
caching, and compression using Huffman coding. They also work fine for some 
graph problems. For instance, Kruskal’s and Prim’s algorithms for finding a 
minimum-cost spanning tree and Dijkstra’s shortest-path algorithm are all greedy 
ones (see Chapter 9 for details). A greedy approach can also offer a nonoptimal, yet 
an acceptable first approximation, solution to the traveling salesman problem 
(TSP) and solve the knapsack problem when quantities aren’t discrete. (Chapter 16 
discusses both problems.)

Understanding why greedy is good
It shouldn’t surprise you that a greedy strategy works so well in the make-change 
problem. In fact, some problems don’t require farsighted strategies: The solution 
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is built using intermediate results (a sequence of decisions), and at every step the 
right decision is always the best one according to an initially chosen criteria.

Acting greedy is also a very human (and effective) approach to solving economic 
problems. In the 1987 film Wall Street, Gordon Gecko, the protagonist, declares 
that “Greed, for lack of a better word, is good” and celebrates greediness as a 
positive act in economics. Greediness (not in the moral sense, but in the sense of 
acting to maximize singular objectives, as in a greedy algorithm) is at the core of 
the neoclassical economy. Economists such as Adam Smith, in the eighteenth 
century, theorized that the individual’s pursuit of self-interest (without a global 
vision or purpose) benefits society as a whole greatly and renders it prosperous in 
economy (it’s the theory of the invisible hand: https://plus.maths.org/
content/adam-smith-and-invisible-hand).

Detailing how a greedy algorithm works (and under what conditions it can work 
correctly) is straightforward, as explained in the following four steps:

1.	 You can divide the problem into partial problems. The sum (or other combina-
tion) of these partial problems provides the right solution. In this sense, a 
greedy algorithm isn’t much different from a divide-and-conquer algorithm 
(like Quicksort or Mergesort, both of which appear in Chapter 7).

2.	 The successful execution of the algorithm depends on the successful execution 
of every partial step. This is the optimal substructure characteristic because an 
optimal solution is made only of optimal subsolutions.

3.	 To achieve success at each step, the algorithm considers the input data only at 
that step. That is, situation status (previous decisions) determines the decision 
the algorithm makes, but the algorithm doesn’t consider consequences. This 
complete lack of a global strategy is the greedy choice property because being 
greedy at every phase is enough to offer ultimate success. As an analogy, it’s 
akin to playing the game of chess by not looking ahead more than one move, 
and yet winning the game.

4.	 Because the greedy choice property provides hope for success, a greedy 
algorithm lacks a complex decision rule because it needs, at worst, to consider 
all the available input elements at each phase. There is no need to compute 
possible decision implications; consequently, the computational complexity is 
at worst linear O(n). Greedy algorithms shine because they take the simple 
route to solving highly complex problems that other algorithms take forever to 
compute because they look too deep.

Keeping greedy algorithms under control
When faced with a new difficult problem, it’s not hard to come up with a greedy 
solution using the four steps described in the previous section. All you have to do 

https://plus.maths.org/content/adam-smith-and-invisible-hand
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is divide your problems into phases and determine which greedy rule to apply at 
each step. That is, you do the following:

»» Choose how to make your decision (determine which approach is the 
simplest, most intuitive, smallest, and fastest)

»» Start solving the problem by applying your decision rule

»» Record the result of your decision (if needed) and determine the status of 
your problem

»» Repeatedly apply the same approach at every step until reaching the problem 
conclusion

No matter how you apply the previous steps, you must determine whether you’re 
accomplishing your goal by relying on a series of myopic decisions. The greedy 
approach works for some problems and sometimes for specific cases of some 
problems, but it doesn’t work for every problem. For instance, the make-change 
problem works perfectly with U.S. currency but produces less-than-optimal 
results with other currencies. For example, using a fictional currency (call it cred-
its, using a term in many sci-fi games and fiction) with denominations of 1, 15, 
and 25 credits, the previous algorithm fails to deliver the optimal change for a due 
sum of 30 credits:

print ('Change: %s (using %i bills)'
       % (change(30, [25, 15, 1])))

Change: [25, 1, 1, 1, 1, 1] (using 6 bills)

Clearly, the optimal solution is to return two 15 credit bills, but the algorithm, 
being shortsighted, started with the highest denomination available (25 credits) 
and then used five 1 credit bills to make up the residual 5 credits.

Some complex mathematical frameworks called matroids (read the article at 
https://jeremykun.com/2014/08/26/when-greedy-algorithms-are-perfect- 
the-matroid/ for details) can help verify whether you can use a greedy solution 
to optimally solve a particular problem. If phrasing a problem using a matroid 
framework is possible, a greedy solution will provide an optimal result. Yet there 
are problems that have optimal greedy solutions that don’t abide by the matroid 
framework. (You can read about matroid structures being sufficient, but not nec-
essary for an optimal greedy solution in the article found at http://cstheory.
stackexchange.com/questions/21367/does-every-greedy-algorithm- 
have-matroid-structure.)

The greedy algorithms user should know that greedy algorithms do perform well 
but don’t always provide the best possible results. When they do, it’s because the 

https://jeremykun.com/2014/08/26/when-greedy-algorithms-are-perfect-the-matroid/
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problem consists of known examples or because the problem is compatible with 
matroid mathematical framework. Even when a greedy algorithm works best in 
one setting, changing the setting may break the toy and generate just good or 
acceptable solutions. In fact, the cases of just good or acceptable results are many, 
because greedy algorithms don’t often outperform other solutions, as shown by

»» The make-change problem solutions demonstrated earlier in this chapter 
show how a change in setting can cause a greedy algorithm to stop working.

»» The scheduling problem (described in the “Finding Out How Greedy Can Be 
Useful” section, later in this chapter) illustrates how a greedy solution works 
perfectly with one worker, but don’t expect it to work with more than one.

»» The Dijkstra shortest-path algorithm works only with edges having positive 
weights. (Negative weights will cause the algorithm to loop around some 
nodes indefinitely.)

Demonstrating that a greedy algorithm works the best is a hard task, requiring a 
solid knowledge of mathematics. Otherwise, you can devise a proof in a more 
empirical way by testing the greedy solution against one of the following:

»» Against a known optimal solution, when the greedy algorithm produces the 
optimal solution or you can change such a solution by exchanging its ele-
ments into an equivalent best solution (without any loss of performance or 
success). When a greedy solution matches the result of an optimal solution, 
you know that the greedy solution is equivalent and that it works best (this is 
the exchange proof).

»» Against another algorithm when, as you see the greedy solution unfolding, 
you notice that the greedy solution stays ahead of the other algorithm; that is, 
the greedy solution always provides a better solution at every step than is 
provided by another algorithm.

Even considering that it’s more the exception than a rule that a successful greedy 
approach will determine the top solution, greedy solutions often outperform other 
tentative solutions. You may not always get the top solution, but the solution will 
provide results that are good enough to act as a starting point (as a minimum), 
which is why you should start by trying greedy solutions first on new problems.

Considering NP complete problems
Usually you think of a greedy algorithm because other choices don’t compute the 
solution you need in a feasible time. The greedy approach suits problems for which 
you have many choices and have to combine them. As the number of possible 
combinations increases, complexity explodes and even the most powerful 
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computer available fails to provide an answer in a reasonable time. For example, 
when attempting to solve a puzzle, you could try to solve it by determining all the 
possible ways you can fit the available pieces together. A more reasonable way is 
to start solving the problem by choosing a single location and then finding the 
best-fitting piece for it. Solving the puzzle this way means using time to find 
the best fitting piece, but you don’t have to consider that location again, reducing 
the total number of pieces for each iteration.

Puzzle problems, in which the number of possible decisions can become huge, are 
more frequent than you expect. Some problems of this type have already been 
solved, but many others aren’t, and we can’t even transform them (yet) into ver-
sions we know how to solve. Until someone is smart enough to find a generic 
solution for these problems, a greedy approach may be the easiest way to approach 
them, provided that you accept that you won’t always be getting the best solution 
but a roughly acceptable one instead (in many cases).

These difficult problems vary in characteristics and problem domain. Different 
examples of difficult problems are protein unfolding (which can help cure cancer) 
or breaking strong password encryption, such as the popular RSA cryptosystem 
(http://blogs.ams.org/mathgradblog/2014/03/30/rsa/). In the 1960s, 
researchers found a common pattern for all of them: They are all equally difficult 
to solve. This pattern is called the NP-completeness theory (NP stands for nonde-
terministic polynomial). In a sense, these problems distinguish themselves from 
others because it’s not yet possible to find a solution in a reasonable time —that 
is, in polynomial time.

Polynomial time means that an algorithm runs in powers of the number of inputs 
(known as P problems). Linear time is polynomial time because it runs O(n1). Also 
quadratic O(n2) and cubic O(n3) complexities are polynomial time, and though they 
grow quite fast, they don’t compare to NP-complete complexity, which is usually 
exponential time, that is, O(cn). Exponential time complexity makes it impossible to 
find a reasonable solution for any of these problems using brute force. In fact if n 
is large enough, you may easily have to try a number of solutions larger than the 
number of atoms present in the known universe. The hope of algorithm experts is 
that someone will find a way to solve any of these problems in the future, thus 
opening the door to solving all the NP-complete problems at one time. Solving 
NP-complete problems is one of the “Millennium Prize Problems” proposed by 
the Clay Mathematics Institute, which offers an award of one million USD to 
anyone who can devise a solution (http://www.claymath.org/millennium- 
problems/p-vs-np-problem).

NP is a broad class of algorithmic problems that comprises both P and NP-complete 
problems. Generally, NP problems are difficult (the ones that require you to 
devise  a smart algorithm). P problems are solvable in polynomial time; 
NP-complete problems are so hard to solve that the associated algorithms run 

http://blogs.ams.org/mathgradblog/2014/03/30/rsa/
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in  exponential  time. Fortunately, if you have a solution for an NP-complete 
problem, you can easily check its validity.

Maybe you won’t solve any NP-complete problem using an algorithm specifically 
designed to find an optimal solution. However, you can still find a reasonable 
solution using greedy algorithms.

Finding Out How Greedy Can Be Useful
After discussing greedy algorithms generally, it’s illuminating to describe some of 
them in detail, understanding how they work and determine how to reuse their 
strategies for solving other problems. The following sections review the Huffman 
coding algorithm to provide more insight on the way it works to create new effi-
cient encoding systems. These sections also describe how a computer cache (an 
algorithm always found under the hood of any computer) works. In addition, you 
discover how to schedule tasks correctly to achieve deadlines and priorities. Pro-
duction of material goods strongly relies on greedy algorithms to schedule 
resources and activities. Usually, activity algorithms appear at the core of Material 
Requirements Planning (MRP) software, and they help run a factory efficiently 
(http://searchmanufacturingerp.techtarget.com/definition/
Material-requirements-planning-MRP).

Arranging cached computer data
Computers are often processing the same data multiple times. Obtaining data 
from disk or the Internet requires times and costs computational time. 
Consequently, it’s useful to store often-used data in local storage where it’s easier 
to access (and maybe already preprocessed). A cache, which is usually a series of 
memory slots or space on disk reserved for that need, fulfills the purpose.

For instance, when reviewing your web browser’s history, you likely notice that 
only a part of traffic is made of new websites, whereas you spend a large amount 
of time and page requests on sites you know well. Storing in cache some parts of 
commonly seen websites (such as the header, background, some pictures, and 
some pages that seldom change) can really improve your web experience because 
it reduces the need to download data again. All you need is the new data from the 
Internet because most of what you want to see is already somewhere in your com-
puter. (The cache of a web browser is a disk directory.)

The problem isn’t new. In the 1960s, László Bélády, a Hungarian computer scien-
tist working at IBM Research, hypothesized that the best way to store information 
in a computer for prompt reuse is to know what data is needed in the future and 

http://searchmanufacturingerp.techtarget.com/definition/Material-requirements-planning-MRP
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for how long. It isn’t possible to implement such forecasting in practice because 
computer usage can be unpredictable and not predetermined.

Yet, as a principle, the idea of anticipating the future can inspire an optimal replace-
ment strategy, a greedy choice based on the idea of keeping the pages that you 
expect to use soon based on previous requests to the cache. Bélády’s optimal page 
replacement policy (also known as the clairvoyant replacement algorithm) works on 
a greedy principle: to discard data from the cache whose next use will likely occur 
farthest in the future in order to minimize the chance of discarding something you 
need soon. To implement this idea, the algorithm follows these steps:

1.	 Fill the computer cache by recording data from every request made. Only when 
the cache is full do you start discarding past stuff to make room for new data.

2.	 Define a method for determining recent usage. This algorithm can use file date 
stamps or a system of memory flags (which flags recently used pages and 
clears all the flags after a certain time) to make the determination.

3.	 When you have to fit new data, you discard data that hasn’t been used recently 
from the cache. The algorithm picks one piece of data randomly among the 
ones not used.

For instance, if your cache has only four memory slots, and it is filled by four 
alphabet letters that arrive in the following order: 

A B C D

when a new letter is processed, such as the letter E, the computer makes space for 
it by removing one of the letters that are less likely to be requested at this point. 
In this example, good candidates are A, B, or C (D is the most recent addition). The 
algorithm will pick one slot randomly and evict its data from the cache in order to 
let E in.

Competing for resources
When you want to achieve an objective, such as to create a service or produce a 
material object, a common problem is scheduling several competing activities that 
require exclusive access to resources. Resources can include time or a production 
machine. Examples of such situations abound in the real world, ranging from 
scheduling your attendance at university courses to arranging the supplies of an 
army, or from assembling a complex product such as a car to organizing a com-
putational job sequence in a data center. Invariably, common goals in such situa-
tions are to
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»» Achieve getting the most jobs done in a certain amount of time

»» Manage jobs as quickly as possible, on average

»» Respect some strict priorities (hard deadlines)

»» Respect some priority indications (soft deadlines)

Job scheduling falls into two categories:

»» Jobs that are hard to solve properly and require advanced algorithms to solve

»» Jobs that are easier to deal with and that can be solved by simple greedy 
algorithms

Most of the scheduling you perform actually falls among those solvable by greedy 
algorithms. For instance, managing jobs as quickly as possible is a common 
requirement for industrial production or the service industry when each job serves 
the needs of a client and you want to do your best for all your clients. Here’s how 
you can determine a context for such an algorithm:

»» You have a single machine (or worker) that can work out orders.

»» Orders arrive in batches, so you have many to choose from at a time.

»» Orders differ in length, each requiring a different execution time.

For instance, you receive four jobs from four business customers requiring eight, 
four, 12, and three hours, respectively, to execute. Even though the total execution 
time remains the same, changing the job-execution order changes the time when 
you complete the jobs and dictates how long each business customer has to wait 
before having its job done. The following sections consider different methods for 
meeting business customer needs given specific goals.

Addressing customer satisfaction
Business is about keeping customers happy. If you execute the jobs in the order 
presented, the work takes 8+4+12+3=27 hours to execute completely. Yet, the first 
customer will receive its job after eight hours, the last one after 27 hours. In fact, 
the first job completes in eight hours, the second in 8+4=12 hours, the third in 
8+4+12=24 hours, the last in 8+4+12+3=27 hours.

If you aim at having all your customers happy and satisfied, you should strive to 
minimize the average waiting time for each of them. This measure is given by the 
average of the delivery times: (8+12+24+27)/4=17.75 hours on average to wait for a 
job. To reduce the average wait time, you could start simulating all the possible 
combinations of order execution and recalculate the estimate. This is feasible for 
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a few jobs on a single machine, but if you have hundreds of them on multiple 
machines, that becomes a very heavy computational problem. A greedy algorithm 
can save the day without much planning: just execute the shortest first. The 
resulting average will be the smallest possible: (3+(3+4)+(3+4+8)+(3+4+8+12))/4=
13 hours on average.

To obtain the average wait time, you take the average of the cumulated sums of 
runtimes. If you instead take the average of raw times, you obtain the average 
length of a task, which doesn’t represent the customer’s waiting time.

The greedy principle is simple: Because you sum cumulative times, if you start by 
running the longest tasks, you extend the longest run to all successive execution 
times (because it is a cumulative sum). If instead you start with the shortest jobs, 
you draw the smallest times first, positively affecting the average (and your cus-
tomers’ level of satisfaction).

Meeting deadlines
Sometimes, more than just wanting to make your customers wait less time, you 
also have to respect their time requirements, meaning that you have deadlines. 
When you have deadlines, the greedy mechanism changes. Now you don’t start 
from the shortest task but with the task that you must deliver the earliest, accord-
ing to the principle the earliest, the better. This is the problem of hard deadlines, 
and it’s a problem you can actually fail to solve. (Some deadlines are simply 
impossible to meet.)

If you try a greedy strategy and can’t solve the problem, you can acknowledge that 
no solution to the required deadline exists. When hard deadlines can’t work, you 
can try to solve the problem using soft deadlines instead, meaning that you have 
to respect a priority (executing certain tasks first).

In this example, you have both the lengths of the tasks, as discussed in the previ-
ous section, and you have a value (a weight) that defines the task importance 
(larger weights, higher priority). It’s the same problem, but this time you must 
minimize the weighted average completion time. To achieve this goal, you create 
a priority score by dividing the time lengths by the weights, and you start with the 
tasks that have the lowest score. If a task has the lowest score, it’s because it is 
high priority or very short.

For instance, reprising the previous example, you now have tuples of both weights 
and lengths: (40,8), (30,4), (20,12), (10,3), where 40 in the first tuple is a weight 
and 8 is a length. Divide each length by the weight and you get priority scores of: 
0.20, 0.13, 0.60, and 0.30. Start from the lowest-priority score and, adding the 
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lowest left priority score, you obtain a best schedule that assures that you both 
minimize times and respect priorities: (30,4), (40,8), (10,3), (20,12).

Revisiting Huffman coding
As seen in the previous chapter, Huffman coding can represent data content in a 
more compact form by exploiting the fact that some data (for instance certain 
characters of the alphabet) appear more frequently in a data stream. By using 
encodings of different length (shorter for the most frequent characters, longer for 
the least frequent ones), the data consumes less space. Prof. Robert M.  Fano 
(Huffman’s professor) and Claude Shannon already envisioned such a compres-
sion strategy but couldn’t find an efficient way to determine an encoding arrange-
ment that would make it impossible to mistake one character for another.

Prefix-free codes are necessary in order to avoid errors when decoding the mes-
sage. It means that no previously used bit encoding should be used as the starting 
point of another bit encoding. Huffman found a simple and workable solution for 
implementing prefix-free codes using a greedy algorithm. The solution to the 
prefix-free problem found by Huffman is to transform the originally balanced tree 
(a data structure discussed in Chapter 6) containing the fixed-length encoding 
into an unbalanced tree, as shown in Figure 15-1.

An unbalanced tree has a special characteristic that each node has only one branch 
that keeps on developing in other nodes and branches, whereas the other branch 
terminates with an encoded character. This characteristic assures that no previ-
ously used encoding sequence can start a new sequence (graphically, a branch 
terminating with an encoded character is a dead end).

FIGURE 15-1: 
From a balanced 

tree (left) to an 
unbalanced tree 

(right).
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Apart from graphically drafting the unbalanced structure, a greedy algorithm can 
also construct an unbalanced tree. The idea is to build the structure up from the 
root, starting with the least frequently used characters. The algorithm creates the 
upper levels of the tree by aggregating less frequent characters in sequence until 
there are no more characters and you reach the top.

To demonstrate the greedy recipe behind the algorithm, this section provides a 
Python code example based on DNA. DNA is represented as a sequence of the let-
ters A, C, T, and G (the four nucleotides present in all living beings). A good trick is 
to use just two bits in order to represent each of the four letters, which is already 
a good memory-saving strategy when compared to using a full ASCII encoding 
(which is at least 7 bits).

The nucleotides aren’t uniformly distributed. The distribution varies depending 
on what genes you study. The following table shows a gene with an uneven distri-
bution, allowing for a predominance of A and C nucleotides.

Nucleotides Percentage Fixed Encoding Huffman Encoding

A 40.5% 00 0

C 29.2% 01 10

G 14.5% 10 110

T 15.8% 11 111

Weighted bit average 2.00 1.90

By multiplying the number of bits of the two encodings by their percentage and 
summing everything, you obtain the weighted average of bits used by each of 
them. In this case, the result is 1.9 for the Huffman encoding versus 2.0 for the 
fixed encoding. It means that you obtain a five percent bit saving in this example. 
You could save even more space when having genes with an even more unbal-
anced distribution in favor of some nucleotide.

The following example generates a random DNA sequence and shows how the 
code systematically generates the encoding. (If you change the seed value, the 
random generation of the DNA sequences may lead to a different result, both in 
the distribution of nucleotides and Huffman encoding.)

from heapq import heappush, heappop, heapify
from collections import defaultdict, Counter
from random import shuffle, seed
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generator = ["A"]*6+["C"]*4+["G"]*2+["T"]*2
text = ""
seed(4)
for i in range(1000):
    shuffle(generator)
    text += generator[0]

print(text)
frequencies = Counter(list(text))
print(frequencies)

CAACCCCGACACGCCTCCATAGCCACAACAAGCAAAAAAGGC ...
Counter({'A': 405, 'C': 292, 'T': 158, 'G': 145})

After making the data inputs ready to compress, the code prepares a heap data 
structure (see the “Performing specialized searches using a binary heap” section 
of Chapter  7 for details) to arrange the results efficiently along the steps the 
algorithm takes. The elements in the heap contain the frequency number of 
nucleotides, the nucleotide characters, and its encoding. With a log-linear time 
complexity, O(n*log(n)), a heap is the right structure to use to order the results 
and allow the algorithm to draw the two smallest elements quickly.

heap = ([[freq, [char, ""]] for char, freq in
         frequencies.items()])
heapify(heap)
print(heap)

[[145, ['G', '']], [158, ['T', '']], [405, ['A', '']],  
[292, ['C', '']]]

When you run the algorithm, it picks the nucleotides with fewer frequencies from 
the heap (the greedy choice). It aggregates these nucleotides into a new element, 
replacing the previous two. The process continues until the last aggregation 
reduces the number of elements in the heap to one.

iteration = 0
while len(heap) > 1:
    iteration += 1
    lo = heappop(heap)
    hi = heappop(heap)
    print ('Step %i 1st:%s 2nd:%s' % (iteration, lo,hi))
    for pair in lo[1:]:
        pair[1] = '0' + pair[1]
    for pair in hi[1:]:
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        pair[1] = '1' + pair[1]
    heappush(heap, [lo[0] + hi[0]] + lo[1:] + hi[1:])

Step 1 1st:[145, ['G', '']] 2nd:[158, ['T', '']]
Step 2 1st:[292, ['C', '']] 2nd:[303, ['G', '0'],
 ['T', '1']]
Step 3 1st:[405, ['A', '']] 2nd:[595, ['C', '0'],
 ['G', '10'], ['T', '11']]

As the aggregations put the nucleotides together, which constitutes different lev-
els of the unbalanced tree, their Huffman encoding is systematically modified; 
adding a zero in front of the encoding of the lowest frequent aggregate and adding 
one to the second-lowest frequent one. In this way, the algorithm efficiently rep-
licates the unbalanced tree structure previously illustrated.

tree = sorted(heappop(heap)[1:], key=lambda p: (len(p[-
            1]), p))
print ("Symbol\tWeight\tCode")
for e in tree:
    print ("%s\t%s\t%s" % (e[0], frequencies[e[0]], e[1]))

Symbol   Weight   Code
A        405      0
C        292      10
G        145      110
T        158      111

The final step is to print the result, sorting it by the bit encoding and showing the 
final symbol table generated.
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IN THIS CHAPTER

»» Understanding what dynamic means 
when used with programming

»» Using memoization effectively for 
dynamic programming

»» Discovering how the knapsack 
problem can be useful for 
optimization

»» Working with the NP-complete 
traveling salesman problem

Relying on Dynamic 
Programming

Instead of using brute force, which implies trying all possible solutions to a 
problem, greedy algorithms provide an answer that is quick and often satisfy-
ing. In fact, a greedy algorithm can potentially solve the problem fully. Yet, 

greedy algorithms are also limited because they make decisions that don’t con-
sider the consequences of their choices. Chapter 15 shows that you can’t always 
solve a problem using a greedy algorithm. Therefore, an algorithm may make an 
apparently optimal decision at a certain stage, which later appears limiting and 
suboptimal for achieving the best solution. A better algorithm, one that doesn’t 
rely on the greedy approach, can revise past decisions or anticipate that an appar-
ently good decision is not as promising as it might seem. This is the approach that 
dynamic programming takes.

Dynamic programming is an algorithm approach devised in the 1950s by Richard 
Ernest Bellman (an applied mathematician also known for other discoveries in the 
field of mathematics and algorithms, you can read more at https://en.wikipedia.
org/wiki/Richard_E._Bellman) that tests more solutions than a corresponding 
greedy approach. Testing more solutions provides the ability to rethink and pon-
der the consequences of decisions. Dynamic programming avoids performing 

Chapter 16

https://en.wikipedia.org/wiki/Richard_E._Bellman
https://en.wikipedia.org/wiki/Richard_E._Bellman


300      PART 5  Challenging Difficult Problems

heavy computations thanks to a smart caching system (a cache is a storage system 
collecting data or information) called memoization, a term defined later in the 
chapter.

This chapter offers you more than a simple definition of dynamic programming. 
It also explains why dynamic programming has such a complicated name and how 
to transform any algorithm (especially recursive ones) into dynamic program-
ming using Python and its function decorators (powerful tools in Python that 
allow changing an existing function without rewriting its code). In addition, you 
discover applications of dynamic programming to optimize resources and returns, 
creating short tours between places and comparing strings in an approximate 
way. Dynamic programming provides a natural approach to dealing with many 
problems you encounter while journeying through the world of algorithms.

Explaining Dynamic Programming
Dynamic programming is as effective as an exhaustive algorithm (thus providing 
correct solutions), yet it is often as efficient as an approximate solution (the com-
putational time of many dynamic programming algorithms is polynomial). It 
seems to work like magic because the solution you need often requires the algo-
rithm to perform the same calculations many times. By modifying the algorithm 
and making it dynamic, you can record the computation results and reuse them 
when needed. Reusing takes little time when compared to recalculating, thus the 
algorithm finishes the steps quickly. The following sections discuss what dynamic 
programming involves in more detail.

Obtaining a historical basis
You can boil dynamic programming down to having an algorithm remember the 
previous problem results where you’d otherwise have to perform the same calcu-
lation repeatedly. Even though dynamic programming might appear to be quite 
complex, the implementation is actually straightforward. However, it does have 
some interesting historical origins.

Bellman described the name as the result of necessity and convenience in his 
autobiography, In the Eye of the Hurricane. He writes that the name choice was a 
way to hide the true nature of his research at the RAND Corporation (a research 
and development institution funded by both the U.S. government and private 
financers) from Charles Erwin Wilson, the Secretary of Defense under the Eisen-
hower presidency. Cloaking the true nature of his research helped Bellman remain 
employed at the RAND Corporation. You can read his explanation in more detail in 
the excerpt at: http://smo.sogang.ac.kr/doc/dy_birth.pdf. Some researchers 

http://smo.sogang.ac.kr/doc/dy_birth.pdf
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don’t agree about the name source. For example, Stuart Russell and Peter Norvig, 
in their book Artificial Intelligence: A Modern Approach, argue that Bellman actually 
used the term dynamic programming in a paper dating 1952, which is before Wilson 
became Secretary in 1953 (and Wilson himself was CEO of General Motors before 
becoming an engineer involved in research and development).

Computer programming languages weren’t widespread during the time that Bell-
man worked in operations research, a discipline that applies mathematics to make 
better decisions when approaching mainly production or logistic problems (but is 
also used for other practical problems). Computing was at the early stages and 
used mostly for planning. The basic approach of dynamic programming is the 
same as linear programming, another algorithmic technique (see Chapter  19) 
defined in those years when programming meant planning a specific process to 
find an optimal solution. The term dynamic reminds you that the algorithm moves 
and stores partial solutions. Dynamic programming is a complex name for a smart 
and effective technique to improve algorithm running times.

Making problems dynamic
Because dynamic programming takes advantage of repeated operations, it oper-
ates well on problems that have solutions built around solving subproblems that 
the algorithm later assembles to provide a complete answer. In order to work 
effectively, a dynamic programming approach uses subproblems nested in other 
subproblems. (This approach is akin to greedy algorithms, which also require an 
optimal substructure, as explained in Chapter 15.) Only when you can break down 
a problem into nested subproblems can dynamic programming beat brute-force 
approaches that repeatedly rework the same subproblems.

As a concept, dynamic programming is a huge umbrella covering many different 
applications because it isn’t really a specific algorithm for solving a specific prob-
lem. Rather, it’s a general technique that supports problem solving.

You can trace dynamic programming to two large families of solutions:

»» Bottom-up: Builds an array of partial results that aggregate into a com-
plete solution

»» Top-down: Splits the problem into subproblems, starting from the complete 
solution (this approach is typical of recursive algorithms) and using memoization 
(defined in the next section) to avoid repeating computations more than once

Typically, the top-down approach is more computationally efficient because it 
generates only the subproblems necessary for the complete solution. The bottom-
up approach is more explorative and, using trial and error, often obtains partial 
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results that you won’t use later. On the other hand, bottom-up approaches better 
reflect the approach that you’d take in everyday life when facing a problem (think-
ing recursively, instead, needs abstraction and training before application). Both 
top-down and bottom-up approaches aren’t all that easy to understand at times. 
That’s because using dynamic programming transforms the way you solve prob-
lems, as detailed in these steps:

1.	 Create a working solution using brute-force or recursion. The solution works 
but it takes a long time or won’t finish at all.

2.	 Store the results of subproblems to speed your computations and reach a 
solution in a reasonable time.

3.	 Change the way you approach the problem and gain even more speed.

4.	 Redefine the problem approach, in a less intuitive but more efficient way to 
obtain the greatest advantage from dynamic programming.

Transforming algorithms using dynamic programming to make them work effi-
ciently makes them harder to understand. In fact, you might look at the solutions 
and think they work by magic. Becoming proficient in dynamic programming 
requires repeated observations of existing solutions and some practical exercise. 
This proficiency is worth the effort, however, because dynamic programming can 
help you solve problems for which you have to systematically compare or compute 
solutions.

Dynamic programming is especially known for helping solve (or at least make less 
time demanding) combinatorial optimization problems, which are problems that 
require obtaining combinations of input elements as a solution. Examples of such 
problems solved by dynamic programming are the traveling salesman and the 
knapsack problems, described later in the chapter.

Casting recursion dynamically
The basis of dynamic programming is to achieve something as effective as brute-
force searching without actually spending all the time doing the computations 
required by a brute-force approach. You achieve the result by trading time for disk 
space or memory, which is usually done by creating a data structure (a hash table, 
an array, or a data matrix) to store previous results. Using lookup tables allows 
you to access results without having to perform a calculation a second time.

The technique of storing previous function results and using them instead of the 
function is memoization, a term you shouldn’t confuse with memorization. 
Memoization derives from memorandum, the Latin word for “to be remembered.”



CHAPTER 16  Relying on Dynamic Programming      303

Caching is another term that you find used when talking about memoization. 
Caching refers to using a special area of computer memory to serve data faster 
when required, which has more general uses than memoization.

To be effective, dynamic programming needs problems that repeat or retrace pre-
vious steps. A good example of a similar situation is using recursion, and the 
landmark of recursion is calculating Fibonacci numbers. The Fibonacci sequence 
is simply a sequence of numbers in which the next number is the sum of the pre-
vious two. The sequence starts with 0 followed by 1. After defining the first two 
elements, every following number in the sequence is the sum of the previous ones. 
Here are the first eleven numbers:

[0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55]

As with indexing in Python, counting starts from the zero position, and the last 
number in the sequence is the tenth position. The inventor of the sequence, the 
Italian mathematician Leonardo Pisano, known as Fibonacci, lived in 1200. Fibo-
nacci thought that the fact that each number is the sum of the previous two should 
have made the numbers suitable for representing the growth patterns of a group 
of rabbits. The sequence didn’t work great for rabbit demographics, but it offered 
unexpected insights into both mathematics and nature itself because the numbers 
appear in botany and zoology. For instance, you see this progression in the 
branching of trees, in the arrangements of leaves in a stem, and of seeds in a sun-
flower (you can read about this arrangement at https://www.goldennumber.
net/spirals/).

Fibonacci was also the mathematician who introduced Hindu-Arabic numerals to 
Europe, the system we daily use today. He described both the numbers and the 
sequence in his masterpiece, the Liber Abaci, in 1202.

You can calculate a Fibonacci number sequence using recursion. When you input a 
number, the recursion splits the number into the sum of the previous two Fibo-
nacci numbers in the sequence. After the first split, the recursion proceeds by 
performing the same task for each element of the split, splitting each of the two 
numbers into the previous two Fibonacci numbers. The recursion continues split-
ting numbers into their sums, until it finally finds the roots of the sequence, the 
numbers 0 and 1. Reviewing the two types of dynamic programming algorithm 
described in the previous paragraph, this solution uses a top-down approach. The 
following code shows the recursive approach in Python. (You can find this code in 
the A4D; 16; Fibonacci.ipynb file on the Dummies site as part of the download-
able code; see the Introduction for details.)

 def fib(n, tab=0):
    if n==0:
        return 0

https://www.goldennumber.net/spirals/
https://www.goldennumber.net/spirals/
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    elif n == 1:
        return 1
    else:
        print ("lvl %i, Summing fib(%i) and fib(%i)" %
               (tab, n-1, n-2))
        return fib(n-1,tab+1) + fib(n-2,tab+1)

The code prints the splits generated by each recursion level. The following output 
shows what happens when you call fib() with an input value of 7:

fib(7)

lvl 0, Summing fib(6) and fib(5)
lvl 1, Summing fib(5) and fib(4)
lvl 2, Summing fib(4) and fib(3)
lvl 3, Summing fib(3) and fib(2)
lvl 4, Summing fib(2) and fib(1)
lvl 5, Summing fib(1) and fib(0)
lvl 4, Summing fib(1) and fib(0)
lvl 3, Summing fib(2) and fib(1)
lvl 4, Summing fib(1) and fib(0)
lvl 2, Summing fib(3) and fib(2)
lvl 3, Summing fib(2) and fib(1)
lvl 4, Summing fib(1) and fib(0)
lvl 3, Summing fib(1) and fib(0)
lvl 1, Summing fib(4) and fib(3)
lvl 2, Summing fib(3) and fib(2)
lvl 3, Summing fib(2) and fib(1)
lvl 4, Summing fib(1) and fib(0)
lvl 3, Summing fib(1) and fib(0)
lvl 2, Summing fib(2) and fib(1)
lvl 3, Summing fib(1) and fib(0)

13

The output shows 20 splits. Some numbers appear more than once as part of the 
splits. It seems like an ideal case for applying dynamic programming. The follow-
ing code adds a dictionary, called memo, which stores previous results. After the 
recursion splits a number, it checks whether the result already appears in the 
dictionary before starting the next recursive branch. If it finds the result, the code 
uses the precomputed result, as shown here:

memo = dict()
def fib_mem(n, tab=0):
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    if n==0:
        return 0
    elif n == 1:
        return 1
    else:
        if (n-1, n-2) not in memo:
            print ("lvl %i, Summing fib(%i) and fib(%i)" %
                   (tab, n-1, n-2))
            memo[(n-1,n-2)] = fib_mem(n-1,tab+1
                          ) + fib_mem(n-2,tab+1)
        return memo[(n-1,n-2)]

Using memoization, the recursive function doesn’t compute 20 additions but 
rather uses just six, the essential ones used as building blocks to solve the initial 
requirement for computing a certain number in the sequence:

fib_mem(7)

lvl 0, Summing fib(6) and fib(5)
lvl 1, Summing fib(5) and fib(4)
lvl 2, Summing fib(4) and fib(3)
lvl 3, Summing fib(3) and fib(2)
lvl 4, Summing fib(2) and fib(1)
lvl 5, Summing fib(1) and fib(0)

13

Looking inside the memo dictionary, you can find the sequence of sums that define 
the Fibonacci sequence starting from 1:

memo
{(1, 0): 1, (2, 1): 2, (3, 2): 3, (4, 3): 5, (5, 4): 8,
 (6, 5): 13}

Leveraging memoization
Memoization is the essence of dynamic programming. You often find the need to 
use it when scripting an algorithm yourself. When creating a function, whether 
recursive or not, you can easily transform it using a simple command, a decorator, 
which is a special Python function that transforms functions. To see how to 
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work  with a decorator, start with a recursive function, stripped of any print 
statement:

def fib(n):
    if n==0:
        return 0
    elif n == 1:
        return 1
    else:
        return fib(n-1) + fib(n-2)

When using Jupyter, you use IPython built-in magic commands, such as timeit, 
to measure the execution time of a command on your computer:

%timeit -n 1 -r 1 print(fib(36))

14930352
1 loop, best of 1: 15.5 s per loop

The output shows that the function requires about 15 seconds to execute. How-
ever, depending on your machine, function execution may require more or less 
time. No matter the speed of your computer, it will certainly take a few seconds to 
complete, because the Fibonacci number for 36 is quite huge: 14930352. Testing 
the same function for higher Fibonacci numbers takes even longer.

Now it’s time to see the effect of decorating the function. Using the lru_cache 
function from the functools package can radically reduce execution time. This 
function is available only when using Python3. It transforms a function by auto-
matically adding a cache to hold its results. You can also set the cache size by 
using the maxsize parameter (lru_cache uses a cache with an optimal replace-
ment strategy, as explained in the Chapter 15). If you set maxsize=None, the cache 
uses all the available memory, without limits.

from functools import lru_cache

@lru_cache(maxsize=None)
def fib(n):
    if n==0:
        return 0
    elif n == 1:
        return 1
    else:
        return fib(n-1) + fib(n-2)
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Note that the function is the same as before. The only addition is the imported 
lru_cache (https://docs.python.org/3.5/library/functools.html), which 
you call by putting an @ symbol in front of it. Any call with the @ symbol in front 
is an annotation and calls the lru_cache function as a decorator of the following 
function.

Using decorators is an advanced technique in Python. Decorators don’t need to be 
explained in detail in this book, but you can still take advantage of them because 
they are so easy to use. (You can find additional information about decorators at 
http://simeonfranklin.com/blog/2012/jul/1/python-decorators-in-
12-steps/ and https://www.learnpython.org/en/Decorators.) Just remember 
that you call them using annotations (@ + decorator function’s name) and that you 
put them in front of the function you want to transform. The original function is 
fed into the decorator and comes out transformed. In this example of a simple 
recursive function, the decorator outputs a recursion function enriched by 
memoization.

It’s time to test the function speed, as before:

%timeit -n 1 -r 1 print(fib(36))

14930352
1 loop, best of 1: 60.6 µs per loop

Even if your execution time is different, it should decrease from seconds to 
milliseconds. Such is the power of memoization. You can also explore how your 
function uses its cache by calling the cache_info method from the decorated 
function:

fib.cache_info()

CacheInfo(hits=34, misses=37, maxsize=None, currsize=37)

The output tells you that there are 37 function calls that don’t find an answer in 
the cache. However, 34 other calls did find a useful answer in the cache.

Just by importing lru_cache from functools and using it in annotations in front 
of your heavy-duty algorithms in Python, you will experience a great increase in 
performance (unless they are greedy algorithms).

https://docs.python.org/3.5/library/functools.html
http://simeonfranklin.com/blog/2012/jul/1/python-decorators-in-12-steps/
http://simeonfranklin.com/blog/2012/jul/1/python-decorators-in-12-steps/
https://www.learnpython.org/en/Decorators
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Discovering the Best Dynamic Recipes
Even dynamic programming has limitations. The biggest limitation of all relates 
to its main strength: If you keep track of too many partial solutions to improve 
running time, you may run out of memory. You may have too many partial solu-
tions in store because the problem is complex, or simply because the order you use 
to produce partial solutions is not an optimal one and too many of the solutions 
don’t fit the problem requirements.

The order used to solve subproblems is something you must track. The order you 
choose should make sense for the efficient progression of the algorithm (you solve 
something that you’re going to reuse immediately) because the trick is in smart 
reuse of previously built building blocks. Therefore, using memoization may not 
provide enough benefit. Rearranging your problems in the right order can improve 
the results. You can learn how to correctly order your subproblems by learning 
directly from the best dynamic programming recipes available: knapsack, travel-
ing salesman, and approximate string search, as described in the sections that 
follow.

Looking inside the knapsack
The knapsack problem has been around since at least 1897 and is likely the work 
of Tobias Dantzig (https://www.britannica.com/biography/Tobias-Dantzig). 
In this case, you have to pack up your knapsack with as many items as possible. 
Each item has a value, so you want maximize the total value of the items you 
carry. The knapsack has a threshold capacity or you have a limit of weight you can 
carry, so you can’t carry all the items.

The general situation fits any problem that involves a budget and resources, and 
you want to allocate them in the smartest way possible. This problem setting is so 
common that many people consider the knapsack problem to be one of the most 
popular algorithmic problems. The knapsack problem finds applications in com-
puter science, manufacturing, finance, logistics, and cryptography. For instance, 
real-world applications of the knapsack problem are how to best load a cargo ship 
with goods or how to optimally cut raw materials, thus creating the least waste 
possible.

Even though it’s such a popular problem, this book doesn’t explore the knapsack 
problem again because the dynamic approach is incontestably one of the best 
solving approaches. It’s important to remember, though, that in specific cases, for 
such as when the items are quantities, other approaches, such as using greedy 
algorithms, may work equally well (or even better).

https://www.britannica.com/biography/Tobias-Dantzig
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This section shows how to solve the 1-0 knapsack problem. In this case, you have a 
finite number of items and can put each of them into the knapsack (the one sta-
tus) or not (the zero status). It’s useful to know there are other possible variants 
of the problem:

»» Fractional knapsack problem: Deals with quantities. For example, an item 
could be kilograms of flour, and you must pick the best quantity. You can 
solve this version using a greedy algorithm.

»» Bounded knapsack problem: Puts one or more copies of the same item into 
the knapsack. In this case, you must deal with minimum and maximum 
number requirements for each item you pick.

»» Unbounded knapsack problem: Puts one or more copies of the same item 
into the knapsack without constraints. The only limit is that you can’t put a 
negative number of items into the knapsack.

The 1-0 knapsack problem relies on a dynamic programming solution and runs in 
pseudo-polynomial time (which is worse than just polynomial time) because the 
running time depends on the number of items (n) multiplied by the number of 
fractions of the knapsack capacity (W) that you use on building your partial solu-
tion. When using big-O notation, you can say that the running time is O(nW). The 
brute-force version of the algorithm instead runs in O(2n). The algorithm works 
like this:

1.	 Given the knapsack capacity, test a range of smaller knapsacks (subproblems). 
In this case, given a knapsack capable of carrying 20 kilograms, the algorithm 
tests a range of knapsacks carrying from 0 kilograms to 20 kilograms.

2.	 For each item, test how it fits in each of the knapsacks, from the smallest 
knapsack to the largest. At each test, if the item can fit, choose the best value 
from the following:

a.	 The solution offered by the previous smaller knapsack

b.	 The test item, plus you fill the residual space with the best valued solution 
previously that filled that space

The code runs the knapsack algorithm and solves the problem with a set of six 
items of different weight and value combinations as well as a 20-kg knapsack:

Item 1 2 3 4 5 6

Weight in kg 2 3 4 4 5 9

Profit in 100 USD 3 4 3 5 8 10
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Here is the code to execute the dynamic programming procedure described. (You 
can find this code in the A4D; 16; Knapsack.ipynb file on the Dummies site as 
part of the downloadable code; see the Introduction for details.)

import numpy as np

values = np.array([3,4,3,5,8,10])
weights = np.array([2,3,4,4,5,9])
items = len(weights)
capacity = 20

memo = dict()
for size in range(0, capacity+1, 1):
    memo[(-1, size)] = ([], 0)

for item in range(items):
    for size in range(0, capacity+1, 1):
        # if the object doesn't fit in the knapsack
        if weights[item] > size:
            memo[item, size] = memo[item-1, size]
        else:
        # if the objcts fits, we check what can best fit
        # in the residual space
            previous_row, previous_row_value = memo[
                        item-1, size-weights[item]]
            if memo[item-1, size][1] > values[item
                            ] + previous_row_value:
                memo[item, size] = memo[item-1, size]
            else:
                memo[item, size] = (previous_row + [item
                    ], previous_row_value + values[item])

The best solution is the cached result when the code tests inserting the last item 
with the full capacity (20 kg) knapsack:

best_set, score = memo[items-1, capacity]
print ('The best set %s weights %i and values %i'
       % (best_set, np.sum((weights[best_set])), score))

The best set [0, 3, 4, 5] weights 20 and values 26
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You may be curious to know what happened inside the memoization dictionary:

print (len(memo))

147

print (memo[2, 10])

([0, 1, 2], 10)

It contains 147 subproblems. In fact, six items multiplied by 21 knapsacks is 126 
solutions, but you have to add another 21 naive solutions to allow the algorithm to 
work properly (naive means leaving the knapsack empty), which increases the 
number of subproblems to 147.

You may find solving 147 subproblems daunting (even though they’re blazingly 
fast to solve). Using brute force alone to solve the problem means solving fewer 
subproblems in this particular case. Solving fewer subproblems requires less time, 
a fact you can test by solving the accounts using Python and the comb function:

from scipy.misc import comb
objects = 6
np.sum([comb(objects,k+1) for k in range(objects)])

It takes testing 63 combinations to solve this problem. However, if you try using 
more objects, say, 20, running times look much different because there are now 
1,048,575 combinations to test. Contrast this huge number with dynamic pro-
gramming, which requires solving just 20*21+21 = 441 subproblems.

This is the difference between quasi-polynomial and exponential time. (As a 
reminder, the book discusses exponential complexity in Chapter 2 when illustrat-
ing the Big O Notation. In Chapter 15, you discover polynomial time as part of the 
discussion about NP complete problems.) Using dynamic programming becomes 
fruitful when your problems are complex. Toy problems are good for learning but 
they can’t demonstrate the full extent of employing smart algorithm techniques 
such as dynamic programming. Each solution tests what happens after adding a 
certain item when the knapsack has a certain size. The preceding example adds 
item 2 (weight=4, value=3) and outputs a solution that puts items 0, 1, and 2 into 
the knapsack (total weight 9 kg) for a value of 10. This intermediate solution 
leverages previous solutions and is the basis for many of the following solutions 
before the algorithm reaches its end.
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You may wonder whether the result offered by the script is really the best one 
achievable. Unfortunately, the only way to be sure is to know the right answer, 
which means running a brute-force algorithm (when feasible in terms of running 
time on your computer). This chapter doesn’t use brute force for the knapsack 
problem but you’ll see a brute-force approach used in the traveling salesman 
problem that follows.

Touring around cities
The traveling salesman problem (TSP for short) is at least as widely known as the 
knapsack problem. You use it mostly in logistics and transportation (such as the 
derivative Vehicle Routing Problem shown at http://neo.lcc.uma.es/vrp/ 
vehicle-routing-problem/), so it doesn’t see as much use as the knapsack prob-
lem. The TSP problem asks a traveling salesperson to visit a certain number of 
cities and then come back to the initial starting city (because it’s circular, it’s 
called a tour) using the shortest path possible.

TSP is similar to graph problems, but without the edges because the cities are all 
interconnected. For this reason, TSP usually relies on a distance matrix as input, 
which is a table listing the cities on both rows and columns. The intersections 
contain the distance from a row city to a column city. TSP problem variants may 
provide a matrix containing time or fuel consumption instead of distances.

TSP is an NP-hard problem, but you can solve the problem using various 
approaches, some approximate (heuristic) and some exact (dynamic programming). 
The problem, as with any other NP-hard problem, is the running time. Although 
you can count on solutions that you presume optimally solve the problem (you 
can’t be certain except when solving short tours), you can’t know for sure with 
problems as complex as touring the world: http://www.math.uwaterloo.ca/
tsp/world/. The following example tests various algorithms, such as brute force, 
greedy, and dynamic programming, on a simple tour of six cities, represented as 
a weighted graph (see Figure 16-1). (You can find this code in the A4D; 16; TSP.
ipynb file on the Dummies site as part of the downloadable code; see the 
Introduction for details.)

import numpy as np
import networkx as nx
import matplotlib.pyplot as plt
%matplotlib inline

D = np.array([[0,20,16,25,24],[20,0,12,12,27],
              [16,12,0,10,14],[25,12,10,0,20],
              [24,27,14,20,0]])

http://neo.lcc.uma.es/vrp/vehicle-routing-problem/
http://neo.lcc.uma.es/vrp/vehicle-routing-problem/
http://www.math.uwaterloo.ca/tsp/world/
http://www.math.uwaterloo.ca/tsp/world/


CHAPTER 16  Relying on Dynamic Programming      313

Graph = nx.Graph()
Graph.add_nodes_from(range(D.shape[0]))
for i in range(D.shape[0]):
    for j in range(D.shape[0]):
        Graph.add_edge(i,j,weight=D[i,j])

np.random.seed(2)
pos=nx.shell_layout(Graph)
nx.draw(Graph, pos, with_labels=True)
labels = nx.get_edge_attributes(Graph,'weight')
nx.draw_networkx_edge_labels(Graph,pos,
                             edge_labels=labels)
plt.show()

After defining the D (distance) matrix, the example tests the first, simplest solu-
tion to determine the shortest tour starting and ending from city zero. This solu-
tion relies on brute force, which generates all the possible order permutations 
between the cities, leaving out zero. The distance from zero to the first city and 
from the last city of the tour to zero is added after the total distance of each 
solution is calculated. When all the solutions are available, you simply choose the 
shortest.

from itertools import permutations
best_solution = [None, np.sum(D)]
for solution in list(permutations(range(1,D.shape[0]))):

FIGURE 16-1: 
Cities 

represented 
as nodes in a 

weighted graph.
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    start, distance = (0,0)
    for next_one in solution:
        distance += D[start, next_one]
        start = next_one
    distance += D[start,0]
    if distance <= best_solution[1]:
        best_solution = [[0]+list(solution)+[0], distance]
        print ('Best solution so far: %s kms' %
               str(best_solution)[1:-1])

Best solution so far: [0, 1, 2, 3, 4, 0], 86 kms
Best solution so far: [0, 1, 3, 2, 4, 0], 80 kms
Best solution so far: [0, 4, 2, 3, 1, 0], 80 kms

The brute-force algorithm quickly determines the best solution and its symmetric 
path. However, as a result of the small problem size, you obtain a prompt answer 
because, given four cities, just 24 possible solutions exist. As the number of cities 
increases, the number of permutations to test becomes intractable, even after 
removing the symmetric paths (which halves the permutations) and using a fast 
computer. For example, consider the number of computations when working with 
13 cities plus the starting/ending point:

from scipy.special import perm
print (perm(13,13)/2)

3113510400.0

Dynamic programming can simplify the running time. The Held–Karp algorithm 
(also known as the Bellman–Held–Karp algorithm because Bellman published it 
in 1962, the same year as Michael Held and Richard Karp) can cut time complexity 
to O(2nn2). It’s still exponential complexity, yet it requires less time than applying 
the exhaustive enumeration of all tours by brute force.

Approximate and heuristic algorithms can provide fast and useful results (even 
though the result may not always reflect the optimal solution, it’s usually good 
enough). You see TSP again later in the book (see Chapters 18 and 20), when deal-
ing with local search and heuristics.

To find the best TSP solution for n cities, starting and ending from city 0, the 
algorithm proceeds from city 0 and keeps records of the shortest path possible, 
considering different settings. It always uses a different ending city and touches 
only a city subset. As the subsets become larger, the algorithm learns how to solve 
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the problem efficiently. Therefore, when solving TSP for five cities, the algorithm 
first considers solutions involving two cities, then three cities, then four, and 
finally five (sets have dimensions 1 to n). Here are the steps the algorithm uses:

1.	 Initialize a table to track the distances from city 0 to all other cities. These sets 
contain only the initial city and a destination city because they represent the 
initial step.

2.	 Consider every possible set size, from two to the number of tour cities. This is a 
first iteration, the outer loop.

3.	 Inside the outer loop, for each set size, consider every possible combination of 
cities of that size, not containing the initial city. This is an inner iteration.

4.	 Inside the inner iteration (Step 3), for every available combination, consider 
each city inside the combination as the ending city. This is another inner 
iteration.

5.	 Inside the inner iteration (Step 4), given a different destination city, determine 
the shortest path connecting the cities in the set from the city that starts the 
tour (city 0). In finding the shortest path, use any useful, previously stored 
information, thus applying dynamic programming. This step saves computa-
tions and provides the rationale for working by growing subsets of cities. 
Reusing previously solved subproblems, you find the shorter tours by adding 
to a previous shortest path the distance necessary to reach the destination city. 
Given a certain set of cities, a specific initial city, and a specific destination city, 
the algorithm stores the best path and its length.

6.	 When all the iterations end, you have as many different shortest solutions as 
n-1 cities, with each solution covering all the cities but ending at a different 
city. Add a closing point, the city 0, to each one to conclude the tour.

7.	 Determine the shortest solution and output it as the result.

The Python implementation of this algorithm isn’t very simple because it involves 
some iterations and manipulating sets. It’s an exhaustive search reinforced by 
dynamic programming and relies on an iterative approach with subsets of cities 
and with candidates to add to them. The following commented Python example 
explores how this solution works. You can use it to calculate customized tours 
(possibly using cities in your region or county as entries in the distance matrix). 
The script uses advanced commands such as frozenset (a command that makes 
a set usable as a dictionary key) and operators for sets in order to achieve the 
solution.

from itertools import combinations

memo = {(frozenset([0, idx+1]), idx+1): (dist, [0,idx+1])
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        for idx,dist in enumerate(D[0][1:])}
cities = D.shape[0]
for subset_size in range(2, cities):
    # Here we define the size of the subset of cities
    new_memo = dict()
    for subset in [frozenset(comb) | {0} for comb in
                   combinations(range(1, cities),
                                subset_size)]:
        # We enumerate the subsets having a certain subset
        # size
        for ending in subset - {0}:
            # We consider every ending point in the subset
            all_paths = list()
            for k in subset:
                # We check the shortest path for every
                # element in the subset
                if k != 0 and k!=ending:
                    length = memo[(subset-{ending},k)][0
                                        ] + D[k][ending]
                    index  = memo[(subset-{ending},k)][1
                                            ] + [ending]
                    all_paths.append((length, index))
            new_memo[(subset, ending)] = min(all_paths)
    # In order to save memory, we just record the previous
    # subsets since we won't use shorter ones anymore
    memo = new_memo
# Now we close the cycle and get back to the start of the
# tour, city zero
tours = list()
for distance, path in memo.values():
    distance += D[path[-1],0]
    tours.append((distance, path+[0]))
# We can now declare the shortest tour
distance, path = min(tours)
print ('Shortest dynamic programming tour is: %s, %i kms'
       % (path, distance))
Shortest dynamic programming tour is:
 [0, 1, 3, 2, 4, 0], 80 kms
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Approximating string search
Determining when one word is similar to another isn’t always simple. Words may 
differ slightly because of misspelling or different ways of writing the word itself, 
thus rendering any exact match impossible. This isn’t just a problem that raises 
interesting issues during a spell check, though. For example, putting similar text 
strings together (such as names, addresses, or code identifiers) that refer to the 
same person may help create a one-customer view of a firm’s customer base or 
help a national security agency locate a dangerous criminal.

Approximating string searches has many applications in machine translation, 
speech recognition, spell checking and text processing, computational biology, 
and information retrieval. Thinking about the manner in which sources input data 
into databases, you know there are many mismatches between data fields that a 
smart algorithm must solve. Matching a similar, but not precisely equal, series of 
letters is an ability that finds uses in fields such as genetics when comparing DNA 
sequences (expressed by letters representing nucleotides G,A,T, and C ) to deter-
mine whether two sequences are similar and how they resemble each other.

Vladimir Levenshtein, a Russian scientist expert in information theory (see 
http://ethw.org/Vladimir_I._Levenshtein for details), devised a simple mea-
sure (named after him) in 1965 that computes the grade of similarity between two 
strings by counting how many transformations it takes to change the first string 
into the second. The Levenshtein distance (also known as edit distance) counts 
how many changes are necessary in a word:

»» Deletion: Removing a letter from a word

»» Insertion: Inserting a letter into a word and obtaining another word

»» Substitution: Replacing one letter with another, such as changing the p letter 
into an f letter and obtaining fan from pan

Each edit has a cost, which Levenshtein defines as 1 for each transformation. 
However, depending on how you apply the algorithm, you could set the cost dif-
ferently for deletion, insertion, and substitution. For example, when searching for 
similar street names, misspellings are more common than outright differences in 
lettering, so substitution might incur only a cost of 1, and deletion or insertion 
might incur a cost of 2. On the other hand, when looking for monetary amounts, 
similar values quite possibly will have different numbers of numbers. Someone 
could enter $123 or $123.00 into the database. The numbers are the same, but the 
number of numbers is different, so insertion and deletion might cost less than 
substitution (a value of $124 is not quite the same as a value of $123, so substitut-
ing 3 for 4 should cost more).

http://ethw.org/Vladimir_I._Levenshtein
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You can render the counting algorithm as a recursion or an iteration. However, it 
works much faster using a bottom-up dynamic programming solution, as described 
in the 1974 paper “The String-to-string Correction Problem,” by Robert A. Wagner 
and Michael J.  Fischer (http://www.inrg.csie.ntu.edu.tw/algorithm2014/
homework/Wagner-74.pdf). The time complexity of this solution is O(mn), where n 
and m are the lengths in letter of the two words being compared. The following 
code computes the number of changes required to turn the word Saturday into 
Sunday by using dynamic programming with a matrix (see Figure 16-2) to store 
previous results (the bottom-up approach). (You can find this code in the A4D; 16; 
Levenshtein.ipynb file on the Dummies site as part of the downloadable code; see 
the Introduction for details.)

import numpy as np
import pandas as pd

s1 = 'Saturday'
s2 = 'Sunday'
m = len(s1)
n = len(s2)
D = np.zeros((m+1,n+1))
D[0,:] =  list(range(n+1))
D[:,0] = list(range(m+1))

for j in range(1, n+1):
    for i in range(1, m+1):
        if s1[i-1] == s2[j-1]:
            D[i, j] = D[i-1, j-1]
        else:
                D[i, j] = np.min([
                D[i-1, j]   + 1,  # a deletion
                D[i, j-1]   + 1,  # an insertion
                D[i-1, j-1] + 1   # a substitution
                ])
print ('Levenshtein distance is %i' % D[-1,-1])

Levenshtein distance is 3

You can plot or print the result using the following command:

pd.DataFrame(D,index=list(' '+s1), columns=list(' '+s2))

The algorithm builds the matrix, placing the best solution in the last cell. After 
building the matrix using the letters of the first string as rows and the letters of 
the second one as columns, it proceeds by columns, computing the differences 

http://www.inrg.csie.ntu.edu.tw/algorithm2014/homework/Wagner-74.pdf
http://www.inrg.csie.ntu.edu.tw/algorithm2014/homework/Wagner-74.pdf
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between each letter in the rows compared to those in the columns. In this way, the 
algorithm makes a number of comparisons equivalent to the multiplication of the 
number of the letters in the two strings. As the algorithm continues, it accounts 
for the result of previous comparisons by looking at the solutions present in the 
previous matrix cells and choosing the solution with the least number of edits.

When the matrix iteration completes, the resulting number represents the mini-
mum number of edits necessary for the transformation to occur — the smaller the 
number, the more similar the two strings. Retracing from the last cell to the first 
one by moving to the previous cell with the least value (if more directions are 
available, it prefers to move diagonally) hints at what transformations to execute 
(see Figure 16-3):

»» A diagonal backward movement hints at a substitution in the first string if the 
letters on the row and column differ (otherwise, no edit needs to be done)

»» An upward movement dictates a deletion of a letter in the first string

»» A left backward move indicates that an insertion of a new letter should be 
done on the first string

In this example, the backtracking points out the following transformations (two 
deletions and one substitution):

Saturday => Sturday => Surday => Sunday

FIGURE 16-2: 
Transforming 

Sunday into 
Saturday.
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FIGURE 16-3: 
Highlighting what 

transformations 
are applied.
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IN THIS CHAPTER

»» Understanding how randomness can 
prove smarter than more reasoned 
ways

»» Introducing key ideas about 
probability and its distributions

»» Discovering how a Monte Carlo 
simulation works

»» Learning about Quickselect and 
revisiting Quicksort algorithms

Using Randomized 
Algorithms

Random number generators are a key function in computing and play an 
important role in the algorithmic techniques discussed in this part of the 
book. Randomization isn’t just for gaming or for gambling, but people 

employ it to solve a large variety of problems. Randomization sometimes proves 
more effective during optimization than other techniques and in obtaining the 
right solution than more reasoned ways. It helps different techniques work better, 
from local search and simulated annealing to heuristics, cryptography, and dis-
tributed computing (with cryptography for concealing information being the most 
critical).

You can find randomization embedded into unexpected everyday tools. The robot 
vacuum cleaner Roomba (designed by a company founded by the Massachusetts 
Institute of Technology [MIT]) cleans rooms without having a precise plan and a 
blueprint of the place. The tool works most of the time by wandering randomly 
around the room and, according to the original patent, after hitting an obstacle, it 
turns a random number of degrees and starts in a new direction. Yet Roomba 
always completes its cleaning chores. (If you are curious about how it operates, 
you can consult http://www.explainthatstuff.com/how-roomba-works.html.)

Chapter 17

http://www.explainthatstuff.com/how-roomba-works.html


322      PART 5  Challenging Difficult Problems

From a historical perspective, randomized algorithms are a recent innovation, 
because the first algorithm of this kind, the closest-pair algorithm (which deter-
mines the pair of points, among many on a geometric plane, with the smallest 
distance between the points without having to compare them all) was developed 
by Michael Rabin in 1976. That first algorithm was followed the next year by the 
randomized primality test (an algorithm for determining whether a number is a 
composite or a probable prime number), by Robert M. Solovay and Volker Stras-
sen. Soon after, applications in cryptography and distributed computing made 
randomization more popular and the subject of intense research, although the 
field is still new and uncharted.

Randomization makes finding a solution simpler, trading time against complex-
ity. Simplifying tasks isn’t its only advantage: Randomization saves resources and 
operates in a distributed way with a reduced need for communication and coordi-
nation. This chapter introduces you to the information needed to understand how 
enriching your algorithms with randomness can help solve problems (the chapter 
uses the term injecting randomness, as if it were a cure). Even more applications 
wait in the following chapters, so this chapter also discusses key topics such as 
probability basics, probability distributions, and Monte Carlo simulations.

Defining How Randomization Works
Randomization relies on the capability by your computer to generate random 
numbers, which means creating the number without a plan. Therefore, a random 
number is unpredictable, and as you generate subsequent random numbers, they 
shouldn’t relate to each other.

However, randomness is hard to achieve. Even when you throw dice, the result 
can’t be completely unexpected because of the way you hold the dice, the way you 
throw them, and the fact that the dice aren’t perfectly shaped. Computers aren’t 
good at creating random numbers, either. They generate randomness by using 
algorithms or pseudorandom tables (which work by using a seed value as a start-
ing point, a number equivalent to an index) because a computer can’t create a 
truly random number. Computers are deterministic machines; everything inside 
them responds to a well-defined response pattern, which means that it imitates 
randomness in some way.

Considering why randomization is needed
Even if a computer can’t create true randomness, streams of pseudorandom num-
bers (numbers that appear as random but that are somehow predetermined) can 
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still make the difference in many computer science problems. Any algorithm that 
employs randomness in its logic can appear as a randomized algorithm, no matter 
whether randomness determines its results, improves performance, or mitigates 
the risk of failing by providing a solution in certain cases.

Usually you find randomness employed in selecting input data, the start point of 
the optimization, or the number and kind of operations to apply to the data. When 
randomness is a core part of the algorithm logic and not just an aid to its perfor-
mance, the expected running time of the algorithm and even its results may 
become uncertain and subject to randomness, too; for instance, an algorithm may 
provide different, though equally good, results during each run. It’s therefore 
useful to distinguish between kinds of randomized solutions, each one named 
after iconic gambling locations:

»» Las Vegas: These algorithms are notable for using random inputs or 
resources to provide the correct problem answer every time. Obtaining a 
result may take an uncertain amount of time because of its random proce-
dures. An example is the Quicksort algorithm.

»» Monte Carlo: Because of their use of randomness, Monte Carlo algorithms 
may not provide a correct answer or even an answer at all, although these 
outcomes seldom happen. Because the result is uncertain, a maximum 
number of trials in their running time may bind them. Monte Carlo algorithms 
demonstrate that algorithms do not necessarily always successfully solve 
the problems they are supposed to. An example is the Solovay–Strassen 
primality test.

»» Atlantic City: These algorithms run in polynomial time, providing a correct 
problem answer at least 75 percent of the time. Monte Carlo algorithms are 
always fast but not always correct, and Las Vegas algorithms are always correct 
but not always fast. People therefore think of Atlantic City algorithms as halfway 
between the two because they are usually both fast and correct. This class of 
algorithms was introduced in 1982 by J. Finn in an unpublished manuscript 
entitled Comparison of Probabilistic Test for Primality. Created for theoretical 
reasons to test for prime numbers, this class comprises hard-to-design 
solutions, thus very few of them exist today.

Understanding how probability works
Probability tells you the likelihood of an event, which you normally express as a 
number. In this book, and generally in the field of probabilistic studies, the prob-
ability of an event is measured in the range between 0 (no probability that an 
event will occur) and 1 (certainty that an event will occur). Intermediate values, 
such as 0.25 or 0.75, indicate that the event will happen with a certain frequency 
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under conditions that should lead to that event (referred to as trials). Even if a 
numeric range from 0 to 1 doesn’t seem intuitive at first, working with probability 
over time makes the reason for using such a range easier to understand. When an 
event occurs with probability 0.25, you know that out of 100 trials, the event will 
happen 0.25 * 100 = 25 times.

For instance, when the probability of your favorite sports team winning is 0.75, 
you can use the number to determine the chances of success when your team plays 
a game against another team. You can even get more specific information, such as 
the probability of winning a certain tournament (your team has a 0.65 probability 
of winning a match in this tournament) or conditioned by another event (when a 
visitor, the probability of winning for your team decreases to 0.60).

Probabilities can tell you a lot about an event, and they’re helpful for algorithms, 
too. In a randomized algorithmic approach, you may wonder when to stop an 
algorithm because it should have reached a solution. It’s good to know how long 
to look for a solution before giving up. Probabilities can help you determine how 
many iterations you may need. The discussion of the 2-satisfiability (o 2-SAT) 
algorithm in Chapter 18 provides a working example of using probabilities as 
stopping rules for an algorithm.

You commonly hear about probabilities as percentages in sports and economics, 
telling you that an event occurs a certain number of times after 100 trials. 
It’s  exactly the same probability no matter whether you express it as 0.25 or 
25 percent. That’s just a matter of conventions. In gambling, you even hear about 
odds, which is another way of expressing probability, where you compare the 
likelihood of an event (for example, having a certain horse win the race) against 
not having the event happen at all. In this case, you express 0.25 as 25 against 75 
or in any other way resulting in the same ratio.

You can multiply a probability for a number of trials and get an estimated number 
of occurrences of the event, but by doing the inverse, you can empirically estimate 
a probability. Perform a certain number of trials, observe each of them, and count 
the number of times an event occurs. The ratio between the number of occur-
rences and the number of trials is your probability estimate. For instance, the 
probability 0.25 is the probability of picking a certain suit when choosing a card 
randomly from a deck of cards. French playing cards (the most widely used deck; 
it also appears in America and Britain) provide a classic example for explaining 
probabilities. (The Italians, Germans, and Swiss, for example, use decks with 
different suits, which you can read about at http://healthy.uwaterloo.ca/
museum/VirtualExhibits/Playing%20Cards/decks/index.html.) The deck con-
tains 52 cards equally distributed into four suits: clubs and spades, which are 
black, and diamonds and hearts, which are red. If you want to determine the prob-
ability of picking an ace, you must consider that, by picking cards from a deck, you 

http://healthy.uwaterloo.ca/museum/VirtualExhibits/Playing%20Cards/decks/index.html
http://healthy.uwaterloo.ca/museum/VirtualExhibits/Playing%20Cards/decks/index.html
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will observe four aces. Your trials at picking the cards are 52 (the number of cards), 
therefore the answer in terms of probability is 4/52 = 0.077.

You can get a more reliable estimate of an empirical probability by using a larger 
number of trials. When using a few trials, you may not get a correct estimate of 
the event probability because of the influence of chance. As the number of trials 
grows, event observations will get nearer to the true probability of the event itself. 
The principle there is a generating process behind events. To understand how the 
generating process works, you need many trials. Using trials in such a way is also 
known as sampling from a probabilistic distribution.

Understanding distributions
Probability distribution is another idea that is important for working out better 
algorithms. A distribution is a table of values or a mathematical function that links 
every possible value of an input to the probability that such values could occur. 
Probability distributions are usually (but not solely) represented in charts whose 
abscissa axis represents the possible values of an input and whose ordinal axis 
represents the probability of occurrence. Most statistical models rely on the nor-
mal distributions, a distribution which is symmetric and has a characteristic bell 
shape. Representing a normal distribution in Python (as shown in Figure  17-1) 
requires a few lines of code. (You can find this code in the A4D; 17; Probability.
ipynb file on the Dummies site as part of the downloadable code; see the Intro-
duction for details.)

import numpy as np
from numpy.random import normal, uniform
import matplotlib.pyplot as plt
%matplotlib inline

normal_distribution = normal(size=10000) * 25 + 100
weights = np.ones_like(normal_distribution
                      ) / len(normal_distribution)
plt.hist(normal_distribution, bins=20, weights=weights)
plt.xlabel("Value")
plt.ylabel("Probability")
plt.show()

The plotted distribution represents an input of 10,000 numbers whose average is 
about 100. Each bar in the histogram represents the probability that a certain 
range of values will appear in the input. If you sum all the bars, you obtain the 
value of 1, which comprises all the probabilities expressed by the distribution.
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In a normal distribution, most of the values are around the mean value. Therefore, 
if you pick a random number from the input, you most likely get a number around 
the center of the distribution. However; though less likely, you may also draw a 
number far from the center. If your algorithm works better by using the mean 
than it does with any other number, picking a number at random makes sense and 
may be less trouble than devising a smarter way to draw values from your input.

Another important distribution mentioned in this chapter is the uniform dis
tribution. You can represent it using some Python code (the output appears in 
Figure 17-2), too:

uniform_distribution = uniform(size=10000) * 100
weights = np.ones_like(uniform_distribution
                      ) / len(uniform_distribution)
plt.hist(uniform_distribution, bins=20, weights=weights)
plt.xlabel("Value")
plt.ylabel("Probability")
plt.show()

The uniform distribution is noticeably different from the normal distribution 
because each number has the same probability of being in the input as any other. 
Consequently, the histogram bars are all roughly of the same size, and picking a 
number in a uniform distribution means giving all the numbers the same chance 
to appear. It’s a way to avoid systematically picking the same groups of numbers 
when your algorithm works better with varied inputs. For instance, uniform dis-
tributions work well when your algorithm works fine with certain numbers, so-so 
with most, and badly with a few others, and you prefer to pick numbers randomly 

FIGURE 17-1: 
A histogram  
of a normal 

distribution.
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to avoid picking a series of bad numbers. This is the strategy used by the Quickse-
lect and randomized Quicksort algorithms, described later in the chapter.

Because algorithms need numeric inputs, knowing their distribution can help 
make them work smarter. It’s not just the initial distribution that counts. You can 
also take advantage of how data distribution changes as the algorithm proceeds. 
As an example of how a changing distribution can improve your algorithm, the 
following code shows how to guess a card in a French deck by random choice:

numbers = ['Ace','2','3','4','5','6','7','8','9','10',
                                'Jack','Queen','King']
seeds = ['Clubs','Spades','Diamonds','Hearts']
deck = [s+'_'+n for n in numbers for s in seeds]

from random import choice
my_cards = deck.copy()
guessed = 0
for card in deck:
    if card == choice(my_cards):
        guessed += 1
print ('Guessed %i card(s)' % guessed)

Guessed 1 card(s)

This strategy brings few results, and on average, you’ll guess a single card in all 
52 trials. In fact, for each trial, you have a 1/52 probability of guessing the correct 

FIGURE 17-2: 
A histogram  
of a uniform 
distribution.
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card, which amounts to 1 after picking all the cards: (1/52) * 52 = 1. Instead, you 
can change this simple random algorithm by discarding the cards that you’ve seen 
from your possible choices:

from random import choice
my_cards = deck.copy()
guessed = 0
for card in deck:
    if card == choice(my_cards):
        guessed += 1
    else:
        my_cards.pop(my_cards.index(card))
print ('Guessed %i card(s)' % guessed)

Guessed 1 card(s)

Now, on average, you’ll guess the right card more often because as the deck 
decreases, your chances of guessing increases and you’ll likely guess correctly 
more often when nearing the end of the game. (Your chances are 1 divided by the 
number of cards left in the deck).

Counting cards can provide an advantage in card games. A team of MIT students 
used card counting and probability estimates to win huge amounts in Las Vegas 
until the practice was banned from Casinos. The story even inspired a 2008 film 
entitled 21, starring Kevin Spacey. You can read more about the story at: http:// 
www.bbc.com/news/magazine-27519748.

Simulating the use of the Monte  
Carlo method
Calculating probabilities, apart from the operations discussed earlier in this 
chapter, is beyond the scope of this book. Understanding how an algorithm incor-
porating randomness works is not an easy task, even when you know how to com-
pute probabilities because it may be the result of blending many different probability 
distributions. However, a discussion of the Monte Carlo method casts light on the 
results of the most complex algorithms and helps you understand how they work. 
This method sees use in both mathematics and physics to solve many problems. 
For instance, scientists such as Enrico Fermi and Edward Teller used Monte Carlo 
simulations on specially devised supercomputers during the Manhattan project 
(which developed the atomic bomb during World War II) to accelerate their experi-
ments. You can read more about this use at http://www.atomicheritage.org/
history/computing-and-manhattan-project.

http://www.bbc.com/news/magazine-27519748
http://www.bbc.com/news/magazine-27519748
http://www.atomicheritage.org/history/computing-and-manhattan-project
http://www.atomicheritage.org/history/computing-and-manhattan-project
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Don’t confuse the Monte Carlo method with the Monte Carlo algorithm. The 
Monte Carlo method is a way to understand how a probability distribution affects 
a problem, whereas, as discussed previously, the Monte Carlo algorithm is a 
randomized algorithm that isn’t guaranteed to reach a solution.

In a Monte Carlo simulation, you repeatedly sample the algorithm results. You 
store a certain number of results and then calculate statistics, such as the mean, 
and visualize them as a distribution. For instance, if you want to understand bet-
ter how reducing the size of the deck you’re drawing from can help you achieve 
better results (as in the previous Python script), you iterate the algorithm a few 
times and record the success rate:

import numpy as np
samples = list()
for trial in range(1000):
    my_cards = deck.copy()
    guessed = 0
    for card in deck:
        if card == choice(my_cards):
            guessed += 1
        else:
            my_cards.pop(my_cards.index(card))
    samples.append(guessed)

Running a Monte Carlo simulation may take a few seconds. The time required 
depends on the speed of the algorithm, the size of the problem, and the number of 
trials. However, when sampling from distributions, the more trials you make, the 
more stable the result. This example performs 1,000 trials. You can both estimate 
and visualize the expected result (see Figure 17-3) using the following code:

plt.hist(samples, bins=8)
plt.xlabel("Guesses")
plt.ylabel("Frequency")
plt.show()
print ('On average you can expect %0.2f guesses each run'
       % np.mean(samples))

On average you can expect 3.15 guesses each run

Observing the resulting histogram, you can determine that you get a result of 
three in about 300 runs out of the 1,000 trials, which gives three the highest prob-
ability of happening. Interestingly you never got a result of zero, but it is also rare 
to score seven or more hits. Later examples in the chapter use Monte Carlo simu-
lations to understand how more sophisticated randomized algorithms work.
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Putting Randomness into your Logic
Here are some of many reasons to include randomness in the logic of your 
algorithm:

»» It makes algorithms work better and provide smarter solutions.

»» It requires fewer resources, in terms of memory and computations.

»» It creates algorithms that have a distributed output with little or no 
supervision.

In the next chapter, which is dedicated to local search, you see how randomization 
and probability can prove helpful when it’s difficult to determine what direction 
your algorithm should take. The examples in the sections that follow demonstrate 
how randomization helps to quickly find values in a certain position in your data 
input and how relying on randomness can speed up sorting.

Calculating a median using Quickselect
Calculating a statistical measure, the median, can prove challenging when you 
work on unsorted input lists. In fact, a median relies on the position of your data 
when it is ordered:

FIGURE 17-3: 
Displaying the 

results of a 
Monte Carlo 

simulation.
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»» If the data inputs have an odd number of elements, the median is exactly the 
middle value.

»» If the data inputs have an even number of elements, the median is the 
average of the pair of middle numbers in the ordered input list.

A median is like a mean, a single value that can represent a distribution of values. 
The median, based on the input vector element order, isn’t influenced much by 
the values present in your list. It’s simply the middle value. Instead, the values 
present at the head and tail of the input can influence the mean when they’re 
extremely small or large. This robustness makes the median very helpful in many 
situations when using statistics. A simple example of a median calculation using 
Python functions helps you understand this measure. (You can find this code in 
the A4D; 17; Quickselect.ipynb file on the Dummies site as part of the down-
loadable code; see the Introduction for details.)

from random import randint, random, choice
import numpy as np
import sys
sys.setrecursionlimit(1500)

n = 501
series = [randint(1,25) for i in range(n)]
print ('Median is %0.1f' % np.median(series))

Median is 14.0

The code creates a list of 501 elements and obtains the list median using the median 
function from the NumPy package. The reported median is actually the middle 
point of the ordered list, which is the 251st element:

print ('251st element of the ordered series is %0.1f' %
       sorted(series)[250])

251st element of the ordered series is 14.0

Ordering the list and extracting the necessary element demonstrates how median 
works. Because ordering is involved in calculating a median, you can expect a best 
running time of O(n*log(n)). By using randomization provided by the Quickse-
lect algorithm, you can get an even better result, a running time of O(n). Quick-
select works recursively, which is why you must set a higher recursion limit in 
Python, given a list and the position of the value needed from an ordered list. 
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The value index is called k, and the algorithm is also known as the largest kth value 
algorithm. It uses the following steps to obtain a result:

1.	 Determine a pivot number in the data list and split the list into two parts, a left 
list whose numbers are less than the pivot number, and a right list whose 
numbers are higher.

2.	 Determine the length of each list. When the length of the left list is larger than 
the kth position, the median value is inside the left part. The algorithm applies 
itself recursively to just that list.

3.	 Compute the number of pivot number duplicates in the list (subtract from the 
length of the list the length of the left and right sides).

4.	 Determine whether the number of duplicates is more than k.

a.	 When this condition is true, it means that the algorithm has found the 
solution because the kth position is contained in the duplicates (it’s the 
pivot number).

b.	 When this condition isn’t true, remove the number of duplicates from k and 
apply the result recursively to the right side, which must contain the value of 
the kth position.

Now that you understand the process, you can look at some code. The following 
example shows how to implement a Quickselect algorithm.

def quickselect(series, k):
    pivot = choice(series)

    left, right = list(),list()
    for item in series:
        if item < pivot:
            left.append(item)
        if item > pivot:
            right.append(item)

    length_left = len(left)
    if length_left > k:
        return quickselect(left, k)
    k -= length_left

    duplicates = len(series) - (length_left + len(right))
    if duplicates > k:
        return float(pivot)
    k -= duplicates
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    return quickselect(right, k)

quickselect(series, 250)

14.0

The algorithm works well because it keeps reducing the problem size. It works 
best when the random pivot number is drawn nearer to the kth position (the stop-
ping rule is that the pivot number is the value in the kth position). Unfortunately, 
because you can’t know the kth position in the unordered list, drawing randomly 
by using a uniform distribution (each element in the list has the same chance of 
being chosen) is the best solution because the algorithm eventually finds the right 
solution. Even when random chance doesn’t work in the algorithm’s favor, the 
algorithm keeps on reducing the problem, thus getting more chances to find the 
solution, as demonstrated earlier in the chapter when guessing the cards ran-
domly picked from a deck. As the deck gets smaller, guessing the answer gets 
easier. The following code shows how to use Quickselect to determine the median 
of a list of numbers:

def median(series):
    if len(series) % 2 != 0:
        return quickselect(series, len(series)//2)
    else:
        left  = quickselect(series, (len(series)-1) // 2)
        right = quickselect(series, (len(series)+1) // 2)
        return (left + right) / 2

median(series)

14.0

Doing simulations using Monte Carlo
As part of understanding the Quickselect algorithm, it pays to know how it works 
internally. By setting a counter inside the quickselect function, you can check 
performance under different conditions using a Monte Carlo simulation:

def quickselect(series, k, counter=0):
    pivot = choice(series)

    left, right = list(),list()
    for item in series:
        if item < pivot:
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            left.append(item)
        if item > pivot:
            right.append(item)

    counter += len(series)

    length_left = len(left)
    if length_left > k:
        return quickselect(left, k, counter)
    k -= length_left

    duplicates = series.count(pivot)
    if duplicates > k:
        return float(pivot), counter
    k -= duplicates

    return quickselect(right, k, counter)

The first experiment tries to determine how many operations the algorithm needs, 
on average, to find the median of an input list of 1001 numbers:

results = list()
for run in range(1000):
    n = 1001
    series = [randint(1,25) for i in range(n)]
    median,count = quickselect(series, n//2)
    assert(median==np.median(series))
    results.append(count)

print ("Mean operations: %i" % np.mean(results))

Mean operations: 2764

Displaying the results on a histogram (see Figure 17-4) reveals that the algorithm 
computes from two to four times the size of the input, with three times being the 
most likely number of processed computations.

import matplotlib.pyplot as plt

%matplotlib inline

plt.hist(results, bins='auto')
plt.xlabel("Computations")
plt.ylabel("Frequency")
plt.show()
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If on average it takes about three times the size of the input, Quickselect is provid-
ing good performance. However, you may wonder whether the proportion between 
inputs and computations will hold when the input size grows. As seen when 
studying NP-complete problems, many problems explode when the input size 
grows. You can prove this theory by using another Monte Carlo simulation on top 
of the previous one and plotting the output, as shown in Figure 17-5.

input_size = [501, 1001, 5001, 10001, 20001, 50001]
computations = list()
for n in input_size:
    results = list()
    for run in range(1000):
        series = [randint(1, 25) for i in range(n)]
        median,count = quickselect(series, n//2)
        assert(median==np.median(series))
        results.append(count)
    computations.append(np.mean(results))

plt.plot(input_size, computations, '-o')
plt.xlabel("Input size")
plt.ylabel("Number of computations")
plt.show()

Completing the computations from this example may take up to ten minutes (some 
Monte Carlo simulations may be quite time consuming), but the result helps you 
visualize what it means to work with an algorithm that works with linear time. 
As the input grows (represented in abscissa), the computations (represented on 
the ordinal axis) grow proportionally, making the growth curve a perfect line.

FIGURE 17-4: 
Displaying the 

results of a 
Monte Carlo 

simulation on 
Quickselect.
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Ordering faster with Quicksort
Chapter 7 explains ordering algorithms, the true foundations of all the modern 
computer-based algorithmic knowledge. The Quicksort algorithm, which can run 
in logarithmic time but sometimes fails and produces results in quadratic time 
under ill-conditioned inputs, will surely amaze you. This section explores the rea-
sons why this algorithm may fail and provides an effective solution by injecting 
randomness into it. You start by examining the following code:

def quicksort(series, get):

    try:
        global operations
        operations += len(series)
    except:pass

    if len(series) <= 3:
        return sorted(series)

    pivot = get(series)
    duplicates = series.count(pivot)

    left, right = list(),list()
    for item in series:
        if item < pivot:
            left.append(item)

FIGURE 17-5: 
Displaying Monte 
Carlo simulations 

as input grows.
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        if item > pivot:
            right.append(item)

    return quicksort(left, get) + [pivot
            ] * duplicates + quicksort(right, get)

This is another implementation of the algorithm from Chapter 7. However, this 
time the code extracts the function that decides the pivot the algorithm uses to 
recursively split the initial list. The algorithm decides the split by taking the first 
list value. It also tracks how many operations it takes to complete the ordering 
using the operations global variable, which is defined, reset, and accessed as a 
counter outside the function. The following code tests the algorithm, under 
unusual conditions, requiring it to process an already ordered list. Note its 
performance:

series = list(range(25))
operations = 0
sorted_list = quicksort(series, choose_leftmost)
print ("Operations: %i" % operations)

Operations: 322

In this case, the algorithm takes 322 operations to order a list of 25 elements, 
which is horrid performance. Using an already ordered list causes the problem 
because the algorithm splits the list into two lists: an empty one and another one 
with the residual values. It has to repeat this unhelpful split for all the unique 
values present in the list. Usually the Quicksort algorithm works fine because it 
works with unordered lists, and picking the leftmost element is equivalent to 
randomly drawing a number as the pivot. To avoid this problem, you can use a 
variation of the algorithm that provides a true random draw of the pivot value.

def choose_random(l): return choice(l)

series = [randint(1,25) for i in range(25)]
operations = 0
sorted_list = quicksort(series, choose_random)
print ("Operations: %i" % operations)

Operations: 81

Now the algorithm performs its task using a lower number of operations, which is 
exactly the running time n * log(n) that is 25 * log(25) = 80.5.
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IN THIS CHAPTER

»» Determining how to perform a local 
search on an NP-hard problem

»» Working with heuristics and 
neighboring solutions

»» Solving the 2-SAT problem with local 
search and randomization

»» Discovering that you have many 
tricks to apply to a local search

Performing Local Search

When dealing with an NP-hard problem, a problem for which no known 
solution has a running complexity less than exponential (see the 
NP-completeness theory discussion in Chapter  15), you have a few 

alternatives worth trying. Based on the idea that NP-class problems require some 
compromise (such as accepting partial or nonoptimal results), the following 
options offer a solution to this otherwise intractable problem:

»» Identify special cases under which you can solve the problem efficiently in 
polynomial time using an exact method or a greedy algorithm. This approach 
simplifies the problem and limits the number of solution combinations to try.

»» Employ dynamic programming techniques (described in Chapter 16) that 
improve on brute-force search and reduce the complexity of the problem.

»» Compromise and sketch an approximate algorithm that finds a partial, 
close-to-optimal solution. When you’re satisfied with a partial solution, you cut 
the algorithm’s running time short. Approximate algorithms can be

•	 Greedy algorithms (as discussed in Chapter 15)

•	 Local search using randomization or some other heuristic technique (the 
topic of the present chapter)

•	 Linear programming (the topic of Chapter 19)

Chapter 18
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»» Choose a heuristic or a meta-heuristic (a heuristic that helps you determine 
which heuristic to use) that works well for your problem in practice. However, 
it has no theoretical guarantee and tends to be empiric.

Understanding Local Search
Local search is a general approach to solving problems that comprises a large range 
of algorithms, which will help you escape the exponential complexities of many 
NP problems. A local search starts from an imperfect problem solution and moves 
away from it, a step at a time. It determines the viability of nearby solutions, 
potentially leading to a perfect solution, based on random choice or an astute 
heuristic (no exact method is involved).

A heuristic is an educated guess about a solution, such as a rule of thumb that 
points to the direction of a desired outcome but can’t tell exactly how to reach it. 
It’s like being lost in an unknown city and having people tell you to go a certain 
way to reach your hotel (but without precise instructions) or just how far you are 
from it. Some local search solutions use heuristics, so you find them in this 
chapter. Chapter 20 delves into the full details of using heuristics to perform prac-
tical tasks.

You have no guarantee that a local search will arrive at a problem solution, but 
your chances do improve from the starting point when you provide enough time 
for the search to run its computations. It stops only after it can’t find any further 
way to improve the solution it has reached.

Knowing the neighborhood
Local search algorithms iteratively improve from a starting solution, moving one 
step at a time through neighboring solutions until they can’t improve the solution 
any further. Because local search algorithms are as simple and intuitive as greedy 
algorithms, designing a local search approach to an algorithmic problem is not 
difficult. The key is defining the correct procedure:

1.	 Start with an existing solution (usually a random solution or a solution from 
another algorithm).

2.	 Search for a set of possible new solutions within the current solution’s 
neighborhood, which constitutes the candidates’ list.
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3.	 Determine which solution to use in place of the current solution based on the 
output of a heuristic that accepts the candidates’ list as input.

4.	 Continue performing Steps 2 and 3 until you see no further improvement on 
the solution, which means that you have the best solution available.

Although easy to design, local search solutions may not find a solution in a rea-
sonable time (you can stop the process and use the current solution) or produce a 
minimum quality solution. You can employ some tricks of the trade to ensure that 
you get the most out of this approach.

At the start of the local search, you pick an initial solution. If you decide on a ran-
dom solution, it’s helpful to wrap the search in repeated iterations in which you 
generate different random start solutions. Sometimes, arriving at a good final 
solution depends on the starting point. If you start from an existing solution to be 
refined, plugging the solution into a greedy algorithm may prove to be a good 
compromise in fitting a solution that doesn’t take too long to produce.

After choosing a starting point, define the neighborhood and determine its size. 
Defining a neighborhood requires figuring the smallest change you can impose on 
your solution. If a solution is a set of elements, all the neighboring solutions are 
the sets in which one of the elements mutates. For instance, in the traveling sales-
man problem (TSP), neighboring solutions could involve changing the ending 
cities of two (or more) trips, as shown in Figure 18-1.

Based on how you create the neighborhood, you may have a smaller or a larger 
candidates’ list. Larger lists require more time and computations but, contrary to 
short lists, may offer more opportunities for the process to end earlier and better. 

FIGURE 18-1: 
Switching ending 

trips in a TSP 
problem may 

bring better 
results.
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List length involves a trade-off that you refine by using experimentation after 
each test to determine whether enlarging or shrinking the candidate list brings an 
advantage or a disadvantage in terms of time to complete and solution quality.

Base the choice of the new solution on a heuristic and, given the problem, decide 
on the best solution. For instance, in the TSP problem, use the trip switches that 
shorten the total tour length the most. In certain cases, you can use a random 
solution in place of a heuristic (as you discover in the SAT-2 problem in this 
chapter). Even when you have a clear heuristic, the algorithm could find multiple 
best solutions. Injecting some randomness could make your local search more 
efficient. When faced with many solutions, you can safely choose one randomly.

Ideally, in a local search, you get the best results when you run multiple searches, 
injecting randomness as much as you can into the start solution and along the way 
as you decide the next process step. Let the heuristic decide only when you see a 
clear advantage to doing so. Local search and randomness are good friends.

Your search has to stop at a certain point, so you need to choose stopping rules for 
the local search. When your heuristic can’t find good neighbors anymore or it can’t 
improve solution quality (for instance, computing a cost function, as it happens in 
TSP, by measuring the total length of the tour). Depending on the problem, if you 
don’t create a stopping rule, your search may go on forever or take an unacceptably 
long time. In case you can’t define a stopping, just limit the time spent looking for 
solutions or count the number of trials. When counting trials, you can decide that 
it’s not worth going on because you calculate the probability of success and at a 
certain point, the probability of success becomes too small.

Presenting local search tricks
Local search tracks the current solution and moves to neighboring solutions one 
at a time until it finds a solution (or can’t improve on the present solution). It 
presents some key advantages when working on NP-hard problems because it

»» Is simple to devise and execute

»» Uses little memory and computer resources (but searches require running 
time)

»» Finds acceptable or even good problem solutions when starting from a 
less-than-perfect solution (neighboring solutions should create a path to the 
final solution)
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You can see the problems that a local search can solve as a graph of interconnected 
solutions. The algorithm traverses the graph, moving from node to node looking 
for the node that satisfies the task requirements. Using this perspective, a local 
search takes advantage of graph exploration algorithms such as depth-first search 
(DFS) or breadth-first search (BFS), both discussed in Chapter 9.

Local search provides a viable way to find acceptable solutions to NP-hard prob-
lems. However, it can’t work properly without the right heuristic. Randomization 
can provide a good match with local search, and it helps by using

»» Random sampling: Generating solutions to start

»» Random walk: Picking a random solution that neighbors the current one. 
(You find more on random walks in the “Solving 2-SAT using randomization” 
section, later in this chapter.)

Randomization isn’t the only heuristic available. A local search can rely on a more 
reasoned exploration of solutions using an objective function to get directions (as 
in hill-climbing optimization) and avoid the trap of so-so solutions (as in simulated 
annealing and Tabu Search). An objective function is a computation that can assess 
the quality of your solution by outputting a score number. If you need higher 
scores in hill climbing, you have a maximization problem; if you are looking for 
smaller score numbers, you have a problem of minimization.

Explaining hill climbing with n-queens
You can easily find analogies of the techniques employed by local search because 
many phenomena imply a gradual transition from one situation to another. Local 
search isn’t just a technique devised by experts on algorithms but is actually a 
process that you see in both nature and human society. In society and science, for 
instance, you can view innovation as a local search of the next step among the 
currently available technologies: https://www.technologyreview.com/s/ 
603366/mathematical-model-reveals-the-patterns-of-how-innovations- 
arise/. Many heuristics derive from the physical world, taking inspiration from 
the force of gravity, the fusion of metals, the evolution of DNA in animals, and the 
behavior of swarms of ants, bees, and fireflies (the paper at https://arxiv.org/ 
pdf/1003.1464.pdf explains the Lévy-Flight Firefly algorithm).

Hill climbing takes inspiration from the force of gravity. It relies on the observa-
tion that as a ball rolls down a valley, it takes the steepest descent, and when it 
climbs a hill, it tends to take the most direct upward direction to reach the top. 
Gradually, one step after the other, no matter whether it’s climbing up or 
down, the ball arrives at its destination, where proceeding higher or lower isn’t 
possible.

https://www.technologyreview.com/s/603366/mathematical-model-reveals-the-patterns-of-how-innovations-arise/
https://www.technologyreview.com/s/603366/mathematical-model-reveals-the-patterns-of-how-innovations-arise/
https://www.technologyreview.com/s/603366/mathematical-model-reveals-the-patterns-of-how-innovations-arise/
https://arxiv.org/pdf/1003.1464.pdf
https://arxiv.org/pdf/1003.1464.pdf
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In local search, you can mimic the same procedure successfully using an objective 
function, a measurement that evaluates the neighboring solutions and determines 
which one improves on the current one. Using the hill-climbing analogy, having 
an objective function is like feeling the inclination of the terrain and determining 
the next best move. From the current position, a hiker evaluates each direction to 
determine the terrain’s slope. When the goal is to reach the top, the hiker chooses 
the direction with the greatest upward slope to reach the top. However, that’s just 
the ideal situation; hikers often encounter problems during a climb and must use 
other solutions to circumnavigate them.

An objective function is similar to a greedy criterion (see Chapter 5). It’s blind 
with respect to its final destination, so it can determine direction but not detect 
obstacles. Think about the effect of blindness when climbing the mountains —  
it’s difficult to say when a hiker reaches the top. Flat terrain that lacks any oppor-
tunities for upward movement could indicate that the hiker reached the top. 
Unfortunately, a flat spot can also be a plain, an elbow, or even a hole the hiker 
happened to fall into. You can’t be sure because the hiker can’t see.

The same problem happens when using a local search guided by a hill-climbing 
heuristic: It pursues progressively better neighbor solutions until it can’t find a 
better solution by checking the solutions that exist around the current one. At this 
point, the algorithm declares it found the solution. It also says that it has found a 
global solution, even though, as illustrated in Figure  18-2, it may have simply 
found a local maximum, a solution that’s the best around because it’s surrounded 
by worse solutions. It’s still possible to find a better solution through further 
exploration.

FIGURE 18-2: 
Local search 
explores the  

landscape by  
hill climbing.
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An example of hill climbing in action (and of the risks of getting stuck in a local 
maximum or in a local minimum when you’re descending, as in this example) is 
the n-queens puzzle, first created by the chess expert Max Bezzel, in 1848, as a 
challenge for chess lovers. In this problem, you have a number of queens (this 
number is n) to place on a chessboard of n x n dimensions. You must place them 
so that no queen is threatened by any other. (In chess, a queen can attack by any 
direction by row, column, or diagonal.)

This is really a NP-hard problem. If you have eight queens to place on a 8 x 8 
chessboard, there are 4,426,165,368 different ways to place them but only 92 con-
figurations solve the problem. Clearly, you can’t solve this problem using brute 
force or luck alone. Local search solves this problem in a very simple way using 
hill climbing:

1.	 Place the n queens randomly on the chessboard so that each one is on a 
different column (no two queens on the same column).

2.	 Evaluate the next set of solutions by moving each queen one square up or 
down in its column. This step requires 2*n moves.

3.	 Determine how many queens are attacking each other after each move.

4.	 Determine which solution has the fewest queens attacking each other and use 
that solution for the next iteration.

5.	 Perform Steps 4 and 5 until you find a solution.

Unfortunately, this approach works only about 14 percent of the time because it 
gets stuck in a chessboard configuration that won’t allow any further improve-
ment 86 percent of the time. (The number of queens under attack won’t diminish 
for all 2*n moves available as next solutions.) The only way you get away from 
such a block is to restart the local search from scratch by choosing another ran-
dom starting configuration of the queens on the chessboard. Figure 18-3 shows a 
successful solution.

In spite of this weakness, hill-climbing algorithms are used everywhere, especially 
in artificial intelligence and machine learning. Neural networks that recognize 
sounds or images, power mobile phones, and motivate self-driving cars mostly 
rely on a hill-climbing optimization called gradient descent. Randomized starts and 
random injections in the hill-climbing procedure make it possible to escape any 
local solution and reach the global maximum. Both simulated annealing and Tabu 
Search are smart ways to use random decisions in hill climbing.
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Discovering simulated annealing
At a certain point in the search, if your objective function stops giving you the 
right indications, you can use another heuristic to control the situation and try to 
find a better path to a better task solution. This is how both simulated annealing 
and Tabu Search work: They provide you with an emergency exit when needed.

Simulated annealing take its name from a technique in metallurgy, which 
heats the metal to a high temperature and then slowly cools it to soften the metal 
for cold working and to remove internal crystalline defects (see http://www.
brighthubengineering.com/manufacturing-technology/30476-what-is- 
heat-treatment/ for details on this metal-working process). Local search repli-
cates this idea by viewing the solution search as an atomic structure that changes 
to improve its workability. The temperature is the game changer in the optimiza-
tion process. Just as high temperatures make the structure of a material relax 
(solids melt and liquid evaporate at high temperatures), so high temperatures in 
a local search algorithm induce relaxation of the objective function, allowing it to 
prefer worse solutions to better ones. Simulated annealing modifies the hill-
climbing procedure, keeping the objective function for neighbor solution evalua-
tion but allowing it to determine the search solution choice in a different way:

1.	 Obtain a temperature expressed as probability. (The Gibbs-Boltzmann physics 
function is a formula that converts temperature to probability. An explanation 
of this function is beyond the scope of this book, but you can explore it at: 
http://www.iue.tuwien.ac.at/phd/binder/node87.html.)

2.	 Set a temperature schedule. The temperature decreases at a certain rate as 
time passes and the search runs.

FIGURE 18-3: 
An 8-queen 

puzzle solved.

http://www.brighthubengineering.com/manufacturing-technology/30476-what-is-heat-treatment/
http://www.brighthubengineering.com/manufacturing-technology/30476-what-is-heat-treatment/
http://www.brighthubengineering.com/manufacturing-technology/30476-what-is-heat-treatment/
http://www.iue.tuwien.ac.at/phd/binder/node87.html
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3.	 Define a starting solution (using random sampling or another algorithm) and 
start a loop. As the loop proceeds, the temperature decreases.

4.	 Stop the optimization when the temperature is zero.

5.	 Propose the current result as the solution.

At this point, you must iterate the search for solutions. For each step in the previ-
ous iteration, between the preceding Steps 3 and 4, do the following:

1.	 List the neighboring solutions and choose one at random.

2.	 Set the neighboring solution as the current solution when the neighboring 
solution is better than the current one.

3.	 Otherwise, pick a random number between 0 and 1 based on a threshold 
probability associated with the actual temperature and determine whether it’s 
less than the threshold probability:

•	 If it’s less, set the neighboring solution as the current solution (even if it’s 
worse than the current solution, according to the objective function).

•	 If it’s more, keep the current solution.

Simulated annealing is a smart way to improve hill climbing because it avoids 
having the search stopped at a local solution. When the temperature is high 
enough, the search might use a random solution and find another way to a better 
optimization. Because the temperature is higher at the beginning of the search, 
the algorithm has a chance of injecting randomness into the optimization. As the 
temperature cools to zero, less and less chance exists for picking a random solu-
tion, and the local search proceeds as in hill climbing. In TSP, for instance, the 
algorithm achieves simulated annealing by challenging the present solution at 
high temperatures by

»» Choosing a segment of the tour randomly and traversing it in the oppo-
site direction

»» Visiting a city earlier or afterward in the tour, leaving the order of visit to the 
other cities the same

If the resulting adjustments worsen the tour’s length, the algorithm keeps or 
rejects them according to the temperature in the simulated annealing process.

Avoiding repeats using Tabu Search
Tabu is an ancient word from Polynesian Tongan that says certain things can’t 
be  touched because they’re sacred. The word tabu (which is spelled as taboo in 
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English) passed from anthropological studies to the everyday language to indicate 
something that is prohibited. In local search optimization, it’s common to become 
stuck in a neighborhood of solutions that don’t offer any improvement; that is, it’s 
a local solution that appears as the best solution but is far from being the solution 
you want. Tabu search relaxes some rules and enforces others to offer a way out of 
local minima and help you reach better solutions.

The Tabu Search heuristics wraps objective functions and works its way along 
many neighboring solutions. It intervenes when you can’t proceed because the 
next solutions don’t improve on your objective. When such happens, Tabu Search 
does the following:

»» Allows use of a pejorative solution for a few times to see whether moving 
away from the local solution can help the search find a better path to the 
best solution.

»» Remembers the solutions that the search tries and forbids it from using them 
anymore, thus assuring that the search doesn’t loop between the same 
solutions around the local solution without finding an escape route.

»» Creates a long-term or short-term memory of Tabu solutions by modifying the 
length of the queue used to store past solutions. When the queue is full, the 
heuristic drops the oldest Tabu to make space for the new one.

You can relate Tabu Search to caching and memoization (see Chapter 16) because 
it requires the algorithm to track its steps to save time and avoid retracing previ-
ously used solutions. In the TSP, it can help when you try optimizing your solution 
by swapping the visit order of two or more cities by avoiding repeat solution sets.

Solving satisfiability of Boolean circuits
As a practical view of how a local search works, this example delves into circuit 
satisfiability, a classical NP-complete problem. It uses a randomization and Monte 
Carlo algorithm approach. As seen in Chapter 17, a Monte Carlo algorithm relies on 
random choices during its optimization process and isn’t guaranteed to succeed in 
its task, although it has a high likelihood of completing the task successfully. The 
problem isn’t merely theoretical, though, because it tests how electronic circuits 
work, optimizing them by removing circuits that can’t transport electric signals. 
Moreover, the solving algorithm sees use in other applications: automatic labeling 
on maps and charts, discrete tomography, scheduling with constraints, data clus-
tering into groups, and other problems for which you have to make conflicting 
choices.
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Computer circuits are composed of a series of connected components, each one 
opening or closing a circuit based on its inputs. Such elements are called logic gates 
(physically, their role is played by transistors) and if you build a circuit with many 
logic gates, you need to understand whether electricity can pass through it and 
under what circumstances.

Chapter 14 discusses the internal representation of a computer, based on zeros 
(absence of electricity in the circuit) or ones (presence of electricity). You can 
render this 0/1 representation from a logical perspective, turning signals into 
False (there isn’t electricity in the circuit) or True (there is indeed electricity) 
conditions. Chapter  4 examines the Boolean operators (AND, OR, and NOT), as 
shown in Figure 18-4, which work on True and False conditions as inputs and 
transform them into a different output. All these concepts help you represent a 
physical electric circuit as a sequence of Boolean operators defining logic gates. 
The combination of all their conditions determines whether the circuit can carry 
electricity.

This logic representation is a Boolean combinational circuit, and the test to verify its 
functionality is the circuit satisfiability. In the easiest scenario, the circuit consists 
of only NOT conditions (called inverters) that accept one wire input, and OR condi-
tions that accept two wires as inputs. This is a satisfiability-two (2-SAT) scenario, 
and if the algorithm were to go through it using an exhaustive search, it would 
take at worst 2k trials (having k as the number of input wires) to find a set of con-
ditions that makes electricity pass through the whole circuit. There are even more 
complex versions of the problem, accepting more inputs for each OR logic gate 
and using AND gates, but they are beyond the scope of this book.

Solving 2-SAT using randomization
No matter the electronic circuit you have to test using a Boolean representation, 
you can render it as a vector of Boolean variables. You can also create another 

FIGURE 18-4: 
Symbols and 

truth tables of 
logic operators 

AND, OR, and NOT.
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vector to contain the clauses, the set of conditions the circuit needs to satisfy (for 
example, that wire A and wire B should both be True). This isn’t the only way to 
represent the problem; in fact, there are other solutions involving the use of 
graphs. However, for this example, these two vectors are enough.

You solve the problem using a randomized local search in polynomial time. Pro-
fessor Christos H. Papadimitriou, teaching at the University of California at Berke-
ley (https://people.eecs.berkeley.edu/~christos/), devised this algorithm, 
called RandomWalkSAT. He presented it in his paper “On Selecting a Satisfying 
Truth Assignment,” published in 1991 on the Proceedings of the 32nd IEEE Sym-
posium on the Foundations of Computer Science. The algorithm is competitive 
when compared to more reasoned ways, and it is an exemplary local search 
approach because it makes just one change at a time on the current solution. It 
uses two nested loops, one for trying the starting solution multiple times and one 
for randomly amending the initial random solution. Repeat the outer loop log2(k) 
times (where k is the number of wires). The inner loop uses the following steps:

1.	 Pick a random problem solution.

2.	 Repeat the following steps 2*k2 times:

a.	 Determine whether the current solution is the right one. When it is the 
correct solution, break free of all the loops and report the solution.

b.	 Pick an unsatisfied clause at random. Choose one of the conditions in it at 
random and amend it.

Implementing the Python code
To solve the 2-SAT problem using Python and the RandomWalkSAT algorithm, 
you need to set a few helpful functions. The create_clauses and signed 
functions help generate a circuit problem to solve by handling the OR and NOT 
gates, respectively. Using these functions, you specify the number of OR gates 
and provide a seed number that guarantees that you can recreate the resulting 
problem later (allowing you to try the problem multiple times and on different 
computers).

The create_random_solutions function provides a cold problem start by providing 
a random solution that sets the inputs. The chances of finding the right solution 
using random luck is slim (one out of the power of two to the number of gates), but 
on average, you can expect that three quarters of the gates are correctly set 
(because, as seen using the truth table for the OR function, three inputs out of four 
possible are True). The check_solution function determines when the circuit is 
satisfied (indicating a correct solution). Otherwise, it outputs what conditions 
aren’t satisfied. (You can find this code in the A4D; 18; Local Search.ipynb file 

https://people.eecs.berkeley.edu/~christos/
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on the Dummies site as part of the downloadable code; see the Introduction for 
details.)

import numpy as np
import random
from math import log2

import matplotlib.pyplot as plt
% matplotlib inline

def signed(v):
    return v if np.random.random()<0.5 else -v

def create_clauses(i, seed=1):
    np.random.seed(seed)
    return [(signed(np.random.randint(i)), signed(
                np.random.randint(i))) for j in range(i)]

def create_random_solution(i, *kwargs):
    return {j:signed(1)==1 for j in range(i)}

def check_solution(solution, clauses):
    violations = list()
    for k,(a,b) in enumerate(clauses):
        if not (((solution[abs(a)]) == (a>0)) |
                ((solution[abs(b)]) == (b>0))):
            violations.append(k)
    return violations

After setting these functions, you have all the building blocks for a sat2 function 
to solve the problem. This solution uses two nested iterations: The first replicates 
many starts; the second picks unsatisfied conditions at random and makes them 
true. The solution runs in polynomial time. The function isn’t guaranteed to find 
a solution, if one exists, but chances are, it will provide a solution when one exists. 
In fact, the internal iteration loop makes 2*k2 random attempts to solve the 
circuit, which usually proves enough for a random walk on a line to reach its 
destination.

A random walk is a series of computations representing an object that moves away 
from its initial position by taking a random direction at every step. You might 
imagine a random walk as the journey of a drunken person from one light pole to 
the next. Random walks are useful for representing a mathematical model of 
many real-world aspects. They find applications in biology, physics, chemistry, 
computer science, and economics, especially in stock market analysis. If you 
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want to know more about random walks, go to http://www.mit.edu/~kardar/ 
teaching/projects/chemotaxis(AndreaSchmidt)/random.htm.

A random walk on a line is the easiest example of a random walk. On average, k2 
steps of a random walk are required to arrive at a k distance from the starting 
point. This expected effort explains why RandomWalkSAT requires 2*k2 random 
chances to amend the starting solution. The number of chances provides a high 
probability that the algorithm will fix the k clauses. Moreover, it works as the 
random card guessing game discussed in the previous chapter. As the algorithm 
proceeds, choosing the right answer becomes easier. The external replications 
guarantee an escape from unfortunate internal-loop random choices that may 
stop the process in a local solution.

def sat2(clauses, n, start=create_random_solution):
    for external_loop in range(round(log2(n))):
        solution = start(n, clauses)
        history = list()
        for internal_loop in range(2*n**2):
            response = check_solution(solution, clauses)
            unsatisfied = len(response)
            history.append(unsatisfied)
            if unsatisfied==0:
                print ("Solution in %i external loops," %
                       (external_loop+1), end=" ")
                print ("%i internal loops" %
                       (internal_loop+1))
                break
            else:
                r1 = random.choice(response)
                r2 = np.random.randint(2)
                clause_to_fix = clauses[r1][r2]
                solution[abs(clause_to_fix)] = (
                 clause_to_fix>0)
        else:
            continue
        break
    return history, solution

Now that all the functions are correctly set, you can run the code to solve a prob-
lem. Here’s the first example, which tries the circuit created by seed 0 and uses 
1,000 logic gates.

http://www.mit.edu/~kardar/teaching/projects/chemotaxis(AndreaSchmidt)/random.htm
http://www.mit.edu/~kardar/teaching/projects/chemotaxis(AndreaSchmidt)/random.htm
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n = 1000
# Solvable seeds with n=1000 : 0,1,2,3,4,5,6,9,10
# Unsolvable seeds with n=1000 : 8
clauses = create_clauses(n, seed=0)
history, solution = sat2(clauses, n,
        start=create_random_solution)

Found solution in 1 external loops, 1360 internal loops

Plotting the solution, as a chart representing the number of steps on the abscissa 
(random emendations of the solution) and the clauses left to fix on the ordinal 
axis, you can verify that the algorithm tends to find the correct solution in the 
long run, as shown in Figure 18-5.

plt.plot(np.array(history), 'b-')
plt.xlabel("Random adjustments")
plt.ylabel("Unsatisfied clauses")
plt.grid(True)
plt.show()

If you try the circuit with 1,000 gates and seed equal to 8, you will notice that it 
seems to never end. This is because the circuit is not solvable, and making all the 
random choices and attempts takes a long time. In the end, the algorithm won’t 
provide you with any solution.

FIGURE 18-5: 
The number of 

unsatisfiable 
clauses decreases 

after random 
adjustments.
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Realizing that the starting  
point is important
Even though the RandomWalkSAT algorithm has a runtime complexity of 
O(log2k * k

2) at worst, with k the number of inputs, you can speed it up by hack-
ing the starting point. In fact, even though starting with a random configuration 
means that a quarter of the clauses remains unsatisfied at the start on average, 
you can fix many of them using a pass over the data.

The problem with clauses is that many require a true input, and simultaneously, 
many others require a false input. When all clauses require an input to be true 
or false, you can set it to the required condition, which satisfies a large number 
of  clauses and makes solving the residual ones easier. The following new 
RandomWalkSAT implementation includes a start phase that immediately solves 
the situations in which an input requires a specific true or false setting by all the 
clauses they interact with:

def better_start(n, clauses):
    clause_dict = dict()
    for pair in clauses:
        for clause in pair:
            if abs(clause) in clause_dict:
                clause_dict[abs(clause)].add(clause)
            else:
                clause_dict[abs(clause)] = {clause}

    solution = create_random_solution(n)

    for clause, value in clause_dict.items():
        if len(value)==1:
            solution[clause] = value.pop() > 0
    return solution

The code defines a new function for the cold start where, after generating a ran-
dom solution, it scans through the solution and finds all the inputs associated 
with a single state (true or false). By setting them immediately to the required 
state, you can reduce the number of clauses requiring amendment, and have the 
local search do less work and complete earlier.

n = 1000
# Solvable seeds = 0,1,2,3,4,5,6,9,10
# Unsolvable seeds = 8
clauses = create_clauses(n, seed=0)
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history, solution = sat2(clauses, n, start=better_start)

Found solution in 1 external loops, 393 internal loops

By providing this new, simplified starting point, after charting the results you can 
immediately see an improvement because on average, fewer operations are needed 
to complete the task.

In a local search, always consider that the starting point is important to allow the 
algorithm to complete earlier and more successfully, as shown in Figure 18-6. In 
sum, try to provide the best-quality start for your search as possible.

FIGURE 18-6: 
Execution is 

speedier 
because the 

starting point is 
better.





CHAPTER 19  Employing Linear Programming      357

IN THIS CHAPTER

»» Discovering how optimization 
happens using linear programming

»» Transforming real-world problems 
into math and geometry ones

»» Learning how to use Python to solve 
linear programming problems

Employing Linear 
Programming

Linear programming made a first appearance during World War II when 
logistics proved critical in maneuvering armies of millions of soldiers, weap-
ons, and supplies across geographically variegated battlefields. Tanks and 

airplanes needed to refuel and rearm, which required a massive organizational 
effort to succeed in spite of limitations in time, resources, and actions from the 
enemy.

You can express most of these military problems in mathematical form. Mathe-
matician George Bernard Dantzig, who was employed in the U.S. Air Force Office 
of Statistical Control, devised a smart way to solve these problems using the 
simplex algorithm. Simplex is the core idea that created interest in numerical opti-
mization after the war and gave birth to the promising field of linear program-
ming. The availability of the first performing computers of the time also increased 
interest, rendering complex computations solvable in a new and fast way. You can 
view the early history of computing in the 1950s and 1960s as a quest to optimize 
logistical problems using the simplex method and applying both high-speed 
computers and specialized programming languages.

Chapter 19
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Dantzig died in 2005, and the field he inaugurated is still under constant develop-
ment. In the recent years, fresh ideas and methods related to linear programming 
continue to make successful appearances, such as the following:

»» Constrain programming: Expresses the relationships between the variables 
in a computer program as constraints in linear programming.

»» Genetic algorithms: Considers the idea that math formulas can replicate and 
mutate in order to solve problems in the same manner as DNA does in nature 
by evolution. Genetic algorithms also appear in Chapter 20 because of their 
heuristic approach to optimization.

This chapter helps you understand linear programming. In addition, you see how 
to apply linear programming to real-world problems by using Python as the tool 
to express those problems in code.

Using Linear Functions as a Tool
This section shows how to address a problem where someone transforms the 
objective (the representation of cost, profit, or some other quantity to maximize or 
minimize subject to the constraints) and constraints (linear inequalities derived 
from the application, such as the limit of a 40-hour work week) of that problem 
into linear functions. The purpose of linear programming is to provide an opti-
mum numeric solution, which could be a maximum or a minimum value, and the 
set of conditions to obtain it.

This definition may sound a little bit tricky because both math and some abstrac-
tion is involved (objective and constraints as linear functions), but things become 
clearer after considering what a function is and when we can determine whether 
a function is linear or not. Beyond the math jargon, linear programming is just a 
different point of view when dealing with algorithmic problems, where you trade 
operations and manipulations of data inputs with mathematical functions and you 
perform calculations using a software program called an optimizer.

You can’t use linear programming to solve all problems, but a large number of 
them fit linear programming requirements, especially problems requiring opti-
mization using previously defined limits. Previous chapters discuss how dynamic 
programming is the best approach when you need to optimize problems subject to 
constraints. Dynamic programming works with problems that are discrete, that is 
the numbers you work with are whole numbers. Linear programming mainly 
works with decimal numbers, although special optimization algorithms are avail-
able that provide solutions as integer numbers (for instance you can solve the 
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traveling salesman problem using integer linear programming). Linear program-
ming has a wider scope, because it can cope with almost any polynomial time 
problem.

Linear programming sees use for needs such as manufacturing, logistics, trans-
portation (especially for airlines, for defining routes, timetables, and the cost of 
tickets), marketing, finance, and telecommunications. All these applications 
require that you obtain a maximum economic result and minimum cost while opti-
mizing available resource allocation and satisfying all constraints and limitations. 
In addition, you can apply linear programming to common applications such as 
video games and computer visualization, because games require dealing with bidi-
mensional and tridimensional complex shapes, and you need to determine whether 
any shapes collide as well as ensure that they respect the rules of the game. You 
achieve these aims via the convex hull algorithm powered by linear programming 
(see http://www.tcs.fudan.edu.cn/rudolf/Courses/Algorithms/Alg_ss_07w/ 
Webprojects/Chen_hull/applications.htm). Finally, linear programming is at 
work in search engines for document-retrieval problems; you can transform 
words, phrases, and documents into functions and determine how to maximize 
your search result (getting the documents you need in order to answer your query) 
when you look for documents with certain mathematical characteristics.

Grasping the basic math you need
In computer programming, functions provide the means for packaging code that 
you intend to use more than once. Functions turn code into a black box, an entity 
to which you provide inputs and expect certain outputs. Chapter 4 discusses how 
to create functions in Python. Mathematics uses functions in a similar manner to 
programming; they are set of mathematical operations that transform some input 
into an output. The input can include one or more variables, resulting in a unique 
output based on the input. Usually a function has this form:

f (x) = x*2

»» f: Determines the function name. It can be anything; you can use any letter of 
the alphabet or even a word.

»» (x): Specifies the input. In this example, the input is the variable x, but you can 
use more inputs and of any complexity, including multiple variables or 
matrices.

»» x*2: Defines the set of operations that the function performs after receiving 
the input. The result is the function output in the form of a number.

http://www.tcs.fudan.edu.cn/rudolf/Courses/Algorithms/Alg_ss_07w/Webprojects/Chen_hull/applications.htm
http://www.tcs.fudan.edu.cn/rudolf/Courses/Algorithms/Alg_ss_07w/Webprojects/Chen_hull/applications.htm
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If you plug the input 2 as x in this example, you obtain:

f(2) = 4

In math terms, by calling this function, you mapped the input 2 to the output 4.

Functions can be simple or complex, but every function has one and only one 
result for every set of inputs that you provide (even when the input is made of 
multiple variables).

Linear programming leverages functions to render the objectives it has to reach in 
a mathematical way to solve the problem at hand. When you turn objectives into a 
math function, the problem translates into determining the input to the function 
that maps the maximum output (or the minimum, depending on what you want 
to achieve). The function representing the optimization objective is the objective 
function. In addition, linear programming uses functions and inequalities to 
express constraints or bounds that keep you from plugging just any input you 
want into the objective function. For instance, inequalities are

0 <= x <= 4
y + x < 10

The first of these inequalities translates into limiting the input of the objective 
function to values between 0 and 4. Inequalities can involve more input variables 
at a time. The second of these inequalities ties the values of an input to other 
values because their sum can’t exceed 10.

Bounds imply an input limitation between values, as in the first example. Con-
straints always involve a math expression comprising more than one variable, as 
in the second example.

The final linear programming requirement is for both the objective function and 
the inequalities to be linear expressions. This means that the objective function 
and inequalities can’t contain variables that multiply each other, or contain vari-
ables raised to a power (squared or cubed, for instance).

All the functions in an optimization should be linear expressions because the pro-
cedure represents them as lines in a Cartesian space. (If you need to review the 
concept of a Cartesian space, you can find useful information at http://www.
mathsisfun.com/data/cartesian-coordinates.html.) As explained in the 
“Using Linear Programming in Practice” section, later in this chapter, you can 
imagine working with linear programming more as solving a geometric problem 
than a mathematical one.

http://www.mathsisfun.com/data/cartesian-coordinates.html
http://www.mathsisfun.com/data/cartesian-coordinates.html
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Learning to simplify when planning
The problems that the original simplex algorithm solved were all of the kind that 
you usually read as math problems in a textbook. In such problems, all the data, 
information, and limitations are stated clearly, there is no irrelevant or redundant 
information, and you clearly have to apply a math formula (and most likely the 
one you just studied) to solve the problem.

In the real world, solutions to problems are never so nicely hinted at. Instead, they 
often appear in a confused way, and any necessary information isn’t readily avail-
able for you to process. Yet, you can analyze the problem and locate required data 
and other information. In addition, you can discover limitations such as money, 
time, or some rule or order that you must consider. When solving the problem, 
you gather the information and devise the means to simplify it.

Simplification implies some loss of realism but renders things simpler, which can 
highlight the underlying processes that make things move, thereby helping you 
decide what happens. A simpler problem allows you to develop a model represent-
ing the reality. A model can approximate what happens in reality, and you can use 
it for both managing simulations and linear programming.

For instance, if you work in a factory and have to plan a production schedule, you 
know that the more people you add, the speedier production will be. However, you 
won’t always obtain the same gain with the same addition of people. For example, 
the skills of the operators you add to the job affects results. In addition, you may 
find that adding more people to the job brings decreasing results when those peo-
ple spend more time communicating and coordinating between themselves than 
performing useful work. Yet, you can make the model easier by pretending that 
every person you add to the task will produce a certain amount of final or inter-
mediate goods.

Working with geometry using simplex
Classic examples of linear programming problems imply production of goods using 
limited resources (time, workers, or materials). As an example for depicting how 
linear programming approaches such challenges, imagine a factory that assembles 
two or more products that it must deliver in a certain time. The factory workers 
produce two products, x and y, during an eight-hour shift. For each product, they 
get a different profit (that you compute by subtracting costs from revenue), differ-
ent hourly production rates, and different daily demands from the market:

»» Revenue in USD for each product: x=15, y=25

»» Production rate per hour: x=50, y=40

»» Daily demand per product: x=300, y=200
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In essence, the business problem is to decide whether to produce more x, which is 
easier to assemble but pays less, or y, which guarantees more revenue but less 
production. To solve the problem, first determine the objective function. Express 
it as the sum of the quantities of the two products, multiplied by their expected 
unit revenue, which you know you have to maximize (only if the problem is about 
costs do you have to minimize the objective function):

f(x,y) = 15 * x + 25 * y

This problem has inequalities, which are bounded by x and y values that have to 
hold true to obtain a valid result from the optimization:

0 <= x <= 300
0 <= y <= 200

In fact, you can’t produce a negative number of products, nor does it make sense 
to produce more products than the market demands. Another important limita-
tion is available time, because you can’t exceed eight hours for each work shift. 
This means calculating the time to produce both x and y products and constrain-
ing the total time to less than or equal to eight hours.

x/40 + y/50 <= 8

You can represent functions on a Cartesian plane. (For a refresher on plotting func-
tions, consult http://www.mathplanet.com/education/pre-algebra/graphing- 
and-functions/linear-equations-in-the-coordinate-plane.) Because you can 
express everything using functions in this problem, you can also solve the linear 
programming problems as geometry problems on a Cartesian coordinate space. If 
the problem doesn’t involve more than two variables, you can plot the two func-
tions and their constraints as lines on a plane, and determine how they delimit a 
geometric shape. You’ll discover that the lines delimit an area, shaped as a poly-
gon, called the feasible region. This region is where you find the solution, which 
contains all the valid (according to constraints) inputs for the problem.

When the problem deals with more than two variables, you can still imagine it 
using lines intersecting in a space, but you can’t represent this visually because 
each input variable needs a dimension in the graph, and graphs are bound to the 
three dimensions of the world we live in.

At this point, the linear programming algorithm explores the delimited feasible 
region in a smart way and reports back with the solution. In fact, you don’t need 
to check every point in the delimited area to determine the best problem solution. 
Imagine the objective function as another line that you represent on the plane 
(after all, even the objective function is a linear function). You can see that the 

http://www.mathplanet.com/education/pre-algebra/graphing-and-functions/linear-equations-in-the-coordinate-plane
http://www.mathplanet.com/education/pre-algebra/graphing-and-functions/linear-equations-in-the-coordinate-plane
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solution you are looking for is the coordinate points where the feasible area and 
the objective function line first touch each other (see Figure 19-1). When the 
objective function line descends from above (arriving from outside the feasible 
region, where results occur that you can’t accept because of the constraints), at a 
certain point it will touch the area. This contact point is usually a vertex of the 
area, but it could be an entire side of the polygon (in which case each point on that 
side is an optimal solution).

As a practical matter, the simplex algorithm can’t make lines visually descend, 
as  in this example. Instead, it walks along the border of the feasible area (by 
enumerating the vertexes) and tests the resulting objective function values at each 
vertex until it finds the solution. Consequently, the effective running time depends 
on the number of vertexes, which for its part depends on the number of con-
straints and variables involved in the solution. (More variables mean more dimen-
sions and more vertexes.)

Understanding the limitations
As you gain more confidence with linear programming and the problems become 
more challenging, you require more complex approaches than the basic simplex 
algorithm presented in this chapter. In fact, the simplex isn’t used anymore 
because more sophisticated algorithms have replaced it —algorithms that geo-
metrically cut through the interior of the feasible region instead of walking  
along it. These newer algorithms take a shortcut when the algorithm is clearly 
looking for the solution at the wrong side of the region.

FIGURE 19-1: 
Looking where 

the objective 
function is going 

to touch the 
feasible area.
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You can also find working with floating-point numbers limiting because many 
problems require a binary (1/0) or integer answer. Moreover, other problems may 
require using curves, not lines, to represent the problem space and feasible region 
correctly. You find integer linear programming and nonlinear programming algo-
rithms implemented in commercial software. Just be aware that both integer and 
nonlinear programming are NP-complete problems and may require as much, if 
not more, time than other algorithms you know.

Using Linear Programming in Practice
The best way to start in linear programming is to use predefined solutions, rather 
than create custom applications on your own. The first section that follows helps 
you install a predefined solution used for the examples that follow.

When working with a software product, you may find significant differences 
between open source software and commercial packages. Although open source 
software offers a wide spectrum of algorithms, performance could be disappoint-
ing on large and complex problems. Much art is still involved in implementing 
linear programming algorithms as part of working software, and you can’t expect 
open source software to run as fast and smoothly as commercial offerings.

Even so, open source provides some nice options for learning linear program. The 
following sections use an open source Python solution named PuLP that allows 
you to create linear programming optimizations after defining a cost function and 
constraints as Python functions. It’s mostly a didactical solution, suitable to help 
you test how linear programming works on some problems and get insight on 
formulating problems in math terms.

PuLP provides an interface to the underlying solver programs. Python comes with 
a default, open source, solver program that PuLP helps you access. The perfor-
mance (speed, accuracy, and scalability) that PuLP provides depends almost 
entirely on the solver and optimizer that the user chooses. The best solvers are 
commercial products, such as CPLEX (https://en.wikipedia.org/wiki/CPLEX), 
XPRESS (https://en.wikipedia.org/wiki/FICO_Xpress), and GuRoBi (https://
en.wikipedia.org/wiki/Gurobi), which provide a huge speed advantage when 
compared to open source solvers.

Setting up PuLP at home
PuLP is a Python open source project created by Jean-Sebastien Roy, later modi-
fied and maintained by Stuart Antony Mitchell. The PuLP package helps you 

https://en.wikipedia.org/wiki/CPLEX
https://en.wikipedia.org/wiki/FICO_Xpress
https://en.wikipedia.org/wiki/Gurobi
https://en.wikipedia.org/wiki/Gurobi
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define linear programming problems and solve them using the internal solver 
(which relies on the simplex algorithm). You can also use other solvers that are 
available on public domain repositories or by paying for a license. The project 
repository (containing all the source code and many examples) is at https://
github.com/coin-or/pulp . The complete documentation is located at https://
pythonhosted.org/PuLP/.

PuLP isn’t readily available as part of the Anaconda distribution, thus you have to 
install it yourself. You must use the Anaconda3 (or above) command prompt to 
install PuLP because the older versions of the Anaconda command prompt won’t 
work. Open a command-line shell, type pip install pulp and press Enter. If you 
have Internet access, the pip command downloads the PuLP package and installs 
it in Python. (The version used by the examples in this chapter is PuLP 1.6.1, but 
later versions should provide the same functionality.)

Optimizing production and revenue
The problem in this section is another optimization related to production. You 
work with two products (because this implies just two variables that you can rep-
resent on a bidimensional chart), product A and B, which have to undergo a series 
of transformations through three stages. Each stage requires a number of opera-
tors (the value n), which could be workers or robots, and each stage is operative at 
most for a number of days in the month (represented by the value t). Each stage 
operates differently on each product, requiring a different number of days before 
completion. For instance, a worker in the first stage (called ‘res_1’) takes two 
days to finish product A but three days for product B. Finally, each product has a 
different profit: product A brings $3,000 USD each and product B $2,500 USD 
each. The following table summarizes the problem:

Production  
Stage

Time for Product A 
per Worker (Days)

Time for Product B 
per Worker (Days)

Uptime  
(Days)

Workers

res_1 2 3 30 2

res_2 3 2 30 2

res_3 3 3 22 3

To find the objective function, compute the sum of each product quantity multi-
plied by its profit. It has to be maximized. Although not stated explicitly by the 
problem, some constraints exist. First is the fact that uptime limits productivity at 
each stage. Second is the number of workers. Third is productivity relative to the 
processed product type. You can restate the problem as the sum of the time used 
to process each product at each stage, which can’t exceed the uptime multiplied 
by the number of workers available. The number of workers multiplied by number 

https://github.com/coin-or/pulp
https://github.com/coin-or/pulp
https://pythonhosted.org/PuLP/
https://pythonhosted.org/PuLP/
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of working days provides you the time resources you can use. These resources 
can’t be less than the time it takes to produce all the products you plan to deliver. 
Here are the resulting formulations with constraints for each stage:

objective = 3000 * qty_A + 2500 * qty_B
   production_rate_A * qty_A + production_rate_B * qty_B
     <=  uptime_days * workers

You can express each constraint using the quantity of one product to determine 
the other (in fact, if you produce A, you can’t produce B when A’s production 
leaves no time):

qty_B <= ((uptime_days * workers) –
   (production_rate_A * qty_A) ) / production_rate_B

You can record all the values relative to each stage for production_rate_A,  
production_rate_B, uptime_days, and workers for easier access into a Python 
dictionary. Keep profits in variables instead. (You can find this code in the A4D; 
19; Linear Programming.ipynb file on the Dummies site as part of the down-
loadable code; see the Introduction for details.)

import numpy as np
import matplotlib.pyplot as plt
import pulp

%matplotlib inline

res_1 = {'A':2, 'B':3, 't':30, 'n':2}
res_2 = {'A':3, 'B':2, 't':30, 'n':2}
res_3 = {'A':3, 'B':3, 't':22, 'n':3}
res = {'res_1':res_1, 'res_2':res_2, 'res_3':res_3}
profit_A = 3000
profit_B = 2500

Having framed the problem in a suitable data structure, try to visualize it using 
the Python plotting functions. Set product A as the abscissa and, because you 
don’t know the solution, represent the production of product A as a vector of 
quantities ranging from 0 to 30 (quantities can’t be negative). As for product B 
(as seen in the formulations above), derive it from the production remaining 
after A is done. Formulate three functions, one for each stage, so that as you 
decide the quantity for A, you get the consequent quantity of B — considering the 
constraints.
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a = np.linspace(0, 30, 30)
c1 = ((res['res_1']['t'] * res['res_1']['n'])-
      res['res_1']['A']*a) / res['res_1']['B']
c2 = ((res['res_2']['t'] * res['res_2']['n'])-
      res['res_2']['A']*a) / res['res_2']['B']
c3 = ((res['res_3']['t'] * res['res_3']['n'])-
      res['res_3']['A']*a) / res['res_3']['B']

plt.plot(a, c1, label='constrain #1')
plt.plot(a, c2, label='constrain #2')
plt.plot(a, c3, label='constrain #3')

axes = plt.gca()
axes.set_xlim([0,30])
axes.set_ylim([0,30])
plt.xlabel('qty model A')
plt.ylabel('qty model B')

border = np.array((c1,c2,c3)).min(axis=0)

plt.fill_between(a, border, color='yellow', alpha=0.5)
plt.scatter(*zip(*[(0,0), (20,0),
                   (0,20), (16,6), (6,16)]))
plt.legend()
plt.show()

The constraints turn into three lines on a chart, as shown in Figure 19-2. The lines 
intersect among themselves, showing the feasible area. This is the area delimited 
by the three lines whose A and B values are always inferior or equal compared to 
the values on any of the constraint lines. (The constraints represent a frontier; you 
can’t have A or B values beyond them.)

According to the simplex method, the optimal solution is one of the five vertexes 
of the polygon (which are (0,0), (20,0), (0,20), (16,6), and (6,16)). You can dis-
cover which one is the solution by setting the necessary functions from the PuLP 
package. First, define the problem and call it model. By doing so, you determine 
that it’s a maximization problem and that both A and B should be positive.

model = pulp.LpProblem("Max profit", pulp.LpMaximize)
A = pulp.LpVariable('A', lowBound=0)
B = pulp.LpVariable('B', lowBound=0)
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The PuLP solver can also look for integer solutions, something the original sim-
plex can’t do. Just add cat='Integer' as a parameter when defining a variable: 
A = pulp.LpVariable('A', lowBound=0, cat='Integer'), and you get only 
whole numbers as a solution. Be aware that in certain problems, integer number 
results may prove less optimal than the decimal number results; therefore, use an 
integer solution only if it makes sense for your problem (for instance, you can’t 
produce a fraction of a product).

Next, add the objective function by summing the sum of the two variables defined 
by pulp.LpVariable and representing the ideal quantities of products A and B, 
multiplied by each unit profit value.

model += profit_A * A + profit_B * B

Finally, add the constraints, in exactly the same way as the objective function. You 
create the formulation by using the appropriate values (taken from the data dic-
tionary) and the predefined A and B variables.

model += res['res_1']['A'] * A + res['res_1']['B'
            ] * B <= res['res_1']['t'] * res['res_1']['n']
model += res['res_2']['A'] * A + res['res_2']['B'
            ] * B <= res['res_2']['t'] * res['res_2']['n']
model += res['res_3']['A'] * A + res['res_3']['B'
            ] * B <= res['res_3']['t'] * res['res_3']['n']

FIGURE 19-2: 
Wondering 

which vertex is 
the right one.
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The model is ready to optimize (it has ingested both the objective function and the 
constraints). Call the solve method and then check its status. (Sometimes a solu-
tion may prove impossible to find or may not be optimal.)

model.solve()
print ('Completion status: %s'
       % pulp.LpStatus[model.status])

Completion status: Optimal

Having received confirmation that the optimizer found the optimal solution, you 
print the related quantities of product A and B.

print ("Production of model A = %0.1f" % A.varValue)
print ("Production of model B = %0.1f" % B.varValue)

Production of model A = 16.0
Production of model B = 6.0

In addition, you print the resulting total profit achievable by this solution.

print ('Maximum profit achieved: %0.1f'
       % pulp.value(model.objective))

Maximum profit achieved: 63000.0
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IN THIS CHAPTER

»» Understanding when heuristics are 
useful to algorithms

»» Discovering how pathfinding can be 
difficult for a robot

»» Getting a fast start using the Best-
first search

»» Improving on Dijkstra’s algorithm 
and taking the best heuristic route 
using A*

Considering Heuristics

As a concluding topic, this chapter completes the overview of heuristics 
started in Chapter  18 that describes heuristics as an effective means of 
using a local search to navigate neighboring solutions. Chapter 18 defines 

heuristics as educated guesses about a solution — that is, they are sets of rules of 
thumb pointing to the desired outcome, thus helping algorithms take the right 
steps toward it; however, heuristics alone can’t tell you exactly how to reach the 
solution.

There are shades of heuristics, just as there can be shades to the truth. Heuristics 
touch the fringes of algorithm development today. The AI revolution builds on the 
algorithms presented so far in the book that order, arrange, search, and manipu-
late data inputs. At the top of the hierarchy are heuristic algorithms that power 
optimization, as well as searches that determine how machines learn from data 
and become capable of solving problems autonomously from direct intervention.

Heuristics aren’t silver bullets; no solution solves every problem. Heuristic algo-
rithms have serious drawbacks, and you need to know when to use them. In addi-
tion, heuristics can lead to wrong conclusions, both for computers and humans. 
As for humans, biases that save time when evaluating a person or situation can 
often prove wrong, and even rules of conduct taken from experience obtain the 
right solution only under certain circumstances. For instance, consider the habit 
of hitting electric appliances when they don’t work. If the problem is a loose con-
nection, hitting the appliance may prove beneficial by reestablishing the electric 

Chapter 20
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connection, but you can’t make it a general heuristic because in other cases, that 
“solution” may prove ineffective or even cause serious damage to the appliance.

Differentiating Heuristics
The word heuristic comes from the ancient Greek heuriskein, which meant to invent 
or discover. Its original meaning underlines the fact that employing heuristics is 
a practical means of finding a solution that isn’t well defined, but that is found 
through exploration and an intuitive grasp of the general direction to take. Heu-
ristics rely on the lucky guess or a trial-and-error approach of trying different 
solutions. A heuristic algorithm, which is an algorithm powered by heuristics, solves 
a problem faster and more efficiently in terms of computational resources by sac-
rificing solution precision and completeness, in contrast to most algorithms, 
which have certain output guarantees. When a problem becomes too complex, a 
heuristic algorithm can represent the only way to obtain a solution.

Considering the goals of heuristics
Heuristics can speed the long, exhaustive searches performed by other solutions, 
especially with NP-hard problems that require an exponential number of attempts 
based on the number of their inputs. For example, consider the traveling salesman 
problem or variants of the SAT problem, such as the MAX-3SAT (both problems 
appear in Chapter 18). Heuristics determine the search direction using an estima-
tion, which eliminates a large number of the combinations it would have to test 
otherwise.

Because a heuristic is an estimate or a guess, it can lead the algorithm that relies 
on it to a wrong conclusion, which could be an inexact solution or just a subopti-
mal solution, which is a solution that works but is far from being the best possible. 
For example, in a numerical estimation, a heuristic might answer that the solu-
tion is 41 instead of 42. Other problems often associated with heuristics are the 
impossibility of finding all best solutions and the variability of time and computa-
tions required to reach a solution.

A heuristic provides a perfect match when working with algorithms that would 
otherwise incur a higher cost when running using other algorithmic techniques. 
For instance, you can’t solve certain problems without heuristics because of the 
poor quality and overwhelming number of data inputs. The traveling salesman 
problem (TSP) is one of these: If you have to tour a large number of cities, you 
cannot use any exact method. TSP and other problems exclude any exact solution. 
AI applications fall into this category because many AI problems, such as 
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recognizing spoken words or the content of an image, aren’t solvable in an exact 
sequence of steps and rules.

Going from genetic to AI
The Chapter  18 local search discussion presents heuristics such as simulated 
annealing and tabu search, which helps with hill-climbing optimization (not get-
ting stuck with solutions that are less than ideal). Apart from these, the family of 
heuristics comprises many different applications, among which are the following:

»» Swarm intelligence: A set of heuristics based on the study of the behavior of 
insect swarms (such as bees, ants, or fireflies) or particles. The method uses 
multiple attempts to find a solution using agents (such as running several 
instances of the same algorithm) that interact cooperatively between them-
selves and the problem setting. Professor Marco Dorigo, one of the top experts 
and contributors on the study of swarm intelligence algorithms, provides more 
information on this topic at http://www.aco-metaheuristic.org/.

»» Metaheuristics: Heuristics that help you determine (or even generate) the 
right heuristic for your problem. Among metaheuristics, the most widely 
known are genetic algorithms, inspired by natural evolution. Genetic algorithms 
start with a pool of possible problem solutions and then generate new 
solutions using mutation (they add or remove something in the solution) and 
cross-over (they mix parts of different solutions when a solution is divisible). 
For instance, in the n-Queen problem (Chapter 18), you see that you can split 
a checkerboard vertically into parts because the Queens do not move 
horizontally, making it a problem suitable for cross-over. When the pool is 
enough large, genetic algorithms select the surviving solutions by ruling out 
those that don’t work or lack promise. The selected pool then undergoes 
another iteration of mutation, cross-over, and selection. After enough time 
and iterations, genetic algorithms can find solutions that perform better and 
are completely different from the initial ones.

»» Machine learning: Approaches such as neuro-fuzzy systems, support vector 
machines, and neural networks, which are the foundation of how a computer 
learns to estimate and classify from training examples that are provided as 
part of datasets of data. Similar to how a child learns by experience, machine 
learning algorithms determine how to deliver the most plausible answer 
without using precise rules and detailed rules of conduct. (See Machine 
Learning For Dummies, by John Paul Mueller and Luca Massaron [Wiley], for 
details on how machine learning works.)

»» Heuristic routing: A set of heuristics that helps robots (but also found in 
network telecommunications and logistic transportations) to choose the best 
path to avoid obstacles when moving around.

http://www.aco-metaheuristic.org/
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Routing Robots Using Heuristics
Guiding a robot in an unknown environment means avoiding obstacles and reach-
ing a specific target. It’s both a fundamental and challenging task in artificial 
intelligence. Robots can rely on laser rangefinder, lidar (devices that allow you to 
determine the distance to an object by means of a laser ray), or sonar arrays (devices 
that use sounds to see their environment) to navigate their surroundings. Yet, no 
matter the sophisticated hardware they are equipped with, robots still need proper 
algorithms to

»» Find the shortest path to a destination (or at least a reasonably short one)

»» Avoid obstacles on the way

»» Perform custom behaviors such as minimizing turning or braking

A pathfinding (also called path planning or simply pathing) algorithm helps a robot 
start in one location and reach a goal using the shortest path between the two, 
anticipating and avoiding obstacles along the way (it isn’t enough to react after 
hitting a wall). Pathfinding is also useful when moving any other device to a target 
in space, even a virtual one, such as in a video game or the pages in the World 
Wide Web.

Routing autonomously is a key capability of self-driving cars (SDC), vehicles that 
can sense the road environment and drive to the destination without any human 
intervention. (You still need to tell the car where to go; it can’t read minds.) This 
recent article from the Guardian newspaper provides a good overview about the 
developments and expectations for self-driving cars: https://www.theguardian.
com/technology/2015/sep/13/self-driving-cars-bmw-google-2020-driving.

Scouting in unknown territories
Pathfinding algorithms achieve all the previously discussed tasks to achieve 
shortest routing, obstacle avoidance, and other desired behaviors. Algorithms 
work by using basic schematic maps of their surroundings. These maps are of two 
kinds:

»» Topological maps: Simplified diagrams that remove every unnecessary detail. 
The maps retain key landmarks, correct directions, and some scale propor-
tions for distances. Real-life examples of topological maps include subway 
maps of Tokyo (http://www.tokyometro.jp/en/subwaymap/) and London 
(https://tfl.gov.uk/maps/track/tube).

https://www.theguardian.com/technology/2015/sep/13/self-driving-cars-bmw-google-2020-driving
https://www.theguardian.com/technology/2015/sep/13/self-driving-cars-bmw-google-2020-driving
http://www.tokyometro.jp/en/subwaymap/
https://tfl.gov.uk/maps/track/tube
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»» Occupancy grid maps: These maps divide the surroundings into small, empty 
squares or hexagons, filling them in when the robot’s sensors find an obstacle 
on the spot they represent. You can see an example of such a map at the Czech 
Technical University in Prague: http://cmp.felk.cvut.cz/cmp/demos/Omni/ 
mobil/. In addition, check out the videos showing how a robot builds and 
visualizes such a map at https://www.youtube.com/watch?v=zjl7NmutMIc 
and https://www.youtube.com/watch?v=RhPlzIyTT58.

You can visualize both topological and occupancy grid maps as graphic diagrams. 
However, they’re best understood by algorithms when rendered into an appropri-
ate data structure. The best data structure for this purpose is the graph because 
vertexes can easily represent squares, hexagons, landmarks, and waypoints. 
Edges can connect vertexes in the same way that road, passages, and paths do.

Your GPS navigation device operates using graphs. Underlying the continuous, 
detailed, colorful map that the device displays on screen, road maps are elaborated 
behind the scenes as sets of vertexes and edges traversed by algorithms helping 
you find the way while avoiding traffic jams.

Representing the robot’s territory as a graph re-introduces problems discussed in 
Chapter 9, which examines how to travel from one vertex to another using the 
shortest path. The shortest path can be the path that touches the fewest vertexes 
or the path that costs less (given the sum of the cost of the crossed edge weights, 
which may represent the length of the edge or some other cost). As when driving 
your car, you decide not only on the distance driven to reach your destination but 
also on traffic (roads crowded with traffic or blocked by traffic jams), road condi-
tions, and speed limits that may influence the quality of your journey.

When finding the shortest path to a destination in a graph, the simplest and most 
basic algorithms in graph theory are depth-first search and Dijkstra’s algorithm 
(described in Chapter 9). Depth-first search explores the graph by going as far as 
possible from the start and then retracing its steps to explore other paths until it 
finds the destination. Dijkstra’s algorithm explores the graph in a smart and 
greedy way, considering only the shortest paths. Despite their simplicity, both 
algorithms are extremely effective when evaluating a simple graph, as in a bird’s- 
eye view, with complete knowledge of the directions you must take to reach the 
destination and little cost in evaluating the various possible paths.

The situation with a robot is slightly different because it can’t perceive all the 
possible paths at one time, being limited in both visibility and range of sight 
(obstacles may hide the path or the target may be too far). A robot discovers its 
environment as it moves and, at best, can assess the distance and direction of its 
final destination. It’s like solving a maze, though not as when playing in a puzzle 
maze but more akin to immersion in a hedge maze, where you can feel the direc-
tion you are taking or you can spot the destination in the distance.

http://cmp.felk.cvut.cz/cmp/demos/Omni/mobil/
http://cmp.felk.cvut.cz/cmp/demos/Omni/mobil/
https://www.youtube.com/watch?v=zjl7NmutMIc
https://www.youtube.com/watch?v=RhPlzIyTT58
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Hedges are found everywhere in the world. Some of the most famous were built in 
Europe from the mid-sixteenth century to eighteenth century. In a hedge maze, 
you can’t see where you’re going because the hedges are too high. You can per-
ceive direction (if you can see the sun) and even spot the target (see https://www.
venetoinside.com/hidden-treasures/post/maze-of-villa-pisani-in-stra-
venice/ as an example). There are also famous hedge mazes in films such as  
The Shining by Stanley Kubrick and in Harry Potter and the Goblet of Fire.

Using distance measures as heuristics
When you can’t solve real-life problems in a precise algorithmic way because their 
input is confused, missing, or unstable, using heuristics can help. When perform-
ing path finding using coordinates in a Cartesian plane (flat maps that rely on a 
set of horizontal and vertical coordinates), two simple measures can provide the 
distances between two points in that plane: the Euclidean distance and the 
Manhattan distance.

People commonly use the Euclidean distance because it derives from the Pythago-
rean Theorem on triangles. If you want to know the distance in line of sight 
between two points in a plane, say, A and B, and you know their coordinates, you 
can pretend they’re the extremes of the hypotenuse (the longest side in a trian-
gle). As depicted in Figure 20-1, you calculate distance based on the length of the 
other two sides by creating a third point, C, whose horizontal coordinate is derived 
from B and whose vertical coordinate is from A.

FIGURE 20-1: 
A and B are 

points on a map’s 
coordinates.

https://www.venetoinside.com/hidden-treasures/post/maze-of-villa-pisani-in-stra-venice/
https://www.venetoinside.com/hidden-treasures/post/maze-of-villa-pisani-in-stra-venice/
https://www.venetoinside.com/hidden-treasures/post/maze-of-villa-pisani-in-stra-venice/
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This process translates into taking the difference between the horizontal and ver-
tical coordinates of your two points, squaring both the differences (so that they 
both become positive), sum them, and finally taking the square root of the result. 
In this example, going from A to B uses coordinates of (1,2) and (3,3):

sqrt((1-3)2 + (2-3)2) = sqrt(22+12) = sqrt(5) = 2.236

The Manhattan distance works differently. You begin by summing the lengths of 
the sides B and C, which equates summing the absolute value of the differences 
between the horizontal and vertical coordinates of the points A and B.

|(1-3)| + |(2-3)| = 2 + 1 = 3

The Euclidean distance marks the shortest route, and the Manhattan distance 
provides the longest yet most plausible route if you expect obstacles when taking 
a direct route. In fact, the movement represents the trajectory of a taxi in Manhat-
tan (hence the name), moving along a city block to reach its destination (taking 
the short route through buildings would never work). Other names for this 
approach are the city block distance or the taxicab distance. Consequently, if you 
have to move from A to B but you don’t know whether you’ll find obstacles 
between them, taking a detour through point C is a good heuristic because that’s 
the distance you expect at worst.

Explaining Path Finding Algorithms
This last part of the chapter concentrates on explaining two algorithms, best-first 
search and A* (read as “A star”), both based on heuristics. The following sections 
demonstrate that both these algorithms provide a fast solution to a maze problem 
representing a topological or occupancy grid map that’s represented as a graph. 
Both algorithms are widely used in robotics and video gaming.

Creating a maze
A topological or occupancy grid map resembles a hedge maze, as mentioned pre-
viously, especially if obstacles exist between the start and the end of the route. 
There are specialized algorithms for both creating and processing mazes, most 
notably the Wall Follower (known since antiquity: You place your hand on a wall 
and never pull it away until you get out of the maze) or the Pledge algorithm (read 
more about the seven maze classifications at http://www.astrolog.org/ 
labyrnth/algrithm.htm). However, pathfinding is fundamentally different from 
maze solving because in pathfinding, you know where the target should be, 

http://www.astrolog.org/labyrnth/algrithm.htm
http://www.astrolog.org/labyrnth/algrithm.htm
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whereas maze-solving algorithms try to solve the problem in complete ignorance 
of where the exit is.

Consequently, the procedure for simulating a maze of obstacles that a robot has to 
navigate takes a different and simpler approach. Instead of creating a riddle of 
obstacles, you create a graph of vertexes arranged in a grid (resembling a map) 
and randomly remove connections to simulate the presence of obstacles. The 
graph is undirected (you can traverse each edge in both directions) and weighted 
because it takes time to move from one vertex to another. In particular, it takes 
longer to move diagonally than to move upward/downward or left/right.

The first step is to import the necessary Python packages. The code defines the 
Euclidean and the Manhattan distance functions next. (You can find this code in 
the A4D; 20; Heuristic Algorithms.ipynb file on the Dummies site as part of 
the downloadable code; see the Introduction for details.)

import numpy as np
import string
import networkx as nx
import matplotlib.pyplot as plt
%matplotlib inline

def euclidean_dist(a, b, coord):
    (x1, y1) = coord[a]
    (x2, y2) = coord[b]
    return np.sqrt((x1-x2)**2+(y1-y2)**2)

def manhattan_dist(a, b, coord):
    (x1, y1) = coord[a]
    (x2, y2) = coord[b]
    return abs(x1 - x2) + abs(y1 - y2)

def non_informative(a,b):
    return 0

The next step creates a function to generate random mazes. It’s based on an inte-
ger number seed of your choice that allows you to recreate the same maze every 
time you provide the same number. Otherwise, maze generation is completely 
random.

def create_maze(seed=2, drawing=True):
    np.random.seed(seed)
    letters = [l for l in string.ascii_uppercase[:25]]
    checkboard = np.array(letters[:25]).reshape((5,5))
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    Graph = nx.Graph()
    for j, node in enumerate(letters):
        Graph.add_nodes_from(node)
        x, y = j // 5, j % 5
        x_min = max(0, x-1)
        x_max = min(4, x+1)+1
        y_min = max(0, y-1)
        y_max = min(4, y+1)+1
        adjacent_nodes = np.ravel(
            checkboard[x_min:x_max,y_min:y_max])
        exits = np.random.choice(adjacent_nodes,
            size=np.random.randint(1,4), replace=False)
        for exit in exits:
            if exit not in Graph.edge[node]:
                Graph.add_edge(node, exit)
    spacing = np.arange(0.0, 1.0, 0.2)
    coordinates = [[x,y] for x in spacing \
                   for y in spacing]
    position  = {l:c for l,c in zip(letters, coordinates)}
    
    for node in Graph.edge:
        for exit in Graph.edge[node]:
            length = int(round(
                    euclidean_dist(
                        node, exit, position)*10,0))
            Graph.add_edge(node,exit,weight=length)

    if drawing:
        nx.draw(Graph, position, with_labels=True)
        labels = nx.get_edge_attributes(Graph,'weight')
        nx.draw_networkx_edge_labels(Graph, position,
                                     edge_labels=labels)
        plt.show()
    
    return Graph, position

The functions return a NetworkX graph (Graph), a favorite data structure for rep-
resenting graphs, which contains 25 vertexes (or nodes, if you prefer) and a Car-
tesian map of points (position). The vertexes are placed on a 5 x 5 grid, as shown 
in Figure 20-2. The output also applies distance functions and calculates the posi-
tion of vertexes.

graph, coordinates = create_maze(seed=3)
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In the maze generated by a seed value of 2, every vertex connects with the others. 
Because the generation process is random, some maps may contain disconnected 
vertexes, which precludes going between the disconnected vertexes. To see how 
this works, try a seed value of 13. This actually happens in reality; for example, 
sometimes a robot can’t reach a particular destination.

Looking for a quick best-first route
The depth-first search algorithm explores the graph by moving from vertex to 
vertex and adding directions to a stack data structure. When it’s time to move, the 
algorithm moves to the first direction found on the stack. It’s like moving through 
a maze of rooms by taking the first exit you see. Most probably, you arrive at a 
dead end, which isn’t your destination. You then retrace your steps to the previ-
ously visited rooms to see whether you encounter another exit, but it takes a long 
time when you’re far from your target.

Heuristics can greatly help with the repetition created by a depth-first search 
strategy. Using heuristics can tell you whether you’re getting nearer or farther 
from your target. This combination is called the best-first search algorithm (BFS). 
In this case, the best in the name hints at the fact that, as you explore the graph, 
you don’t take the first edge in sight, but rather evaluate which edge to take and 
choose the one that, based on the heuristic, should take you closer to your desired 
outcome. This behavior resembles greedy optimization (the best first), and some 
people also call this algorithm greedy best-first search. BFS will probably miss the 
target at first, but because of heuristics, it won’t end up far from target and will 
retrace less than it would if using depth-first search alone.

FIGURE 20-2: 
A maze 

representing a 
topological map 

with obstacles.
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You use the BFS algorithm principally in web crawlers that look for certain infor-
mation on the web. In fact, BFS allows a software agent to move in a mostly 
unknown graph, using heuristics to detect how closely the content of the next 
page resembles the initial one (to explore for better content). The algorithm is also 
widely used in video games, helping characters controlled by the computer move 
in search of enemies and bounties, thereby resembling a greedy, target-oriented 
behavior.

Demonstrating BFS in Python using the previously built maze illustrates how a 
robot can move in a space by seeing it as a graph. The following code shows some 
general functions, which are also used for the next algorithm in this section. These 
two functions provide the directions to take from a vertex (node_neighbors) and 
determines the cost of going from one vertex to another (graph_weight). Weight 
represents distance or time.

def graph_weight(graph, a, b):
    return graph.edge[a][b]['weight']

def node_neighbors(graph, node):
    return graph.edge[node]

The path-planning algorithm simulates robot movement in a graph. When it 
found a solution, the plan translates into movement. Therefore, path-planning 
algorithms provide an output telling you how to best move from one vertex to 
another, you still need a function to translate the information and determine the 
route to take and calculate trip length. The functions reconstruct_path and  
compute_path provide the plan in terms of steps and expected cost when provided 
with the result from the path-planning algorithm.

def reconstruct_path(connections, start, goal):
    if goal in connections:
        current = goal
        path = [current]
        while current != start:
            current = connections[current]
            path.append(current)
        return path[::-1]

def compute_path_dist(path, graph):
    if path:
        run = 0
        for step in range(len(path)-1):
            A = path[step]
            B = path[step+1]
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            run += graph_weight(graph, A, B)
        return run
    else:
        return 0

Having prepared all the basic functions, the example creates a maze using a seed 
value of 30. This maze presents two main routes going from vertex A to vertex Y 
because there are some obstacles in the middle of the map (as shown in 
Figure 20-3). There are also some dead ends on the way (such as vertexes E and O).

graph, coordinates = create_maze(seed=30)
start = 'A'
goal  = 'Y'
scoring=manhattan_dist

The BFS implementation is a bit more complex than the depth-first search code 
found in Chapter 9. It uses two lists: one to hold the never-visited vertexes (called 
open_list), and another to hold the visited ones (closed_list). The open_list 
list acts as a priority queue, one in which a priority determines the first element 
to extract. In this case, the heuristic provides the priority, thus the priority queue 
provides a direction that’s closer to the target. The Manhattan distance heuristic 
works best because of the obstacles obstructing the way to the destination:

# Best-first search
path = {}
open_list = set(graph.nodes())

FIGURE 20-3: 
An intricate maze 

to be solved by 
heuristics.
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closed_list = {start: manhattan_dist(start, goal,
                                     coordinates)}

while open_list:

    candidates = open_list&closed_list.keys()
    if len(candidates)==0:
        print ("Cannot find a way to the goal %s" % goal)
        break
    frontier = [(closed_list[node],
                 node) for node in candidates]
    score, min_node =sorted(frontier)[0]

    if min_node==goal:
        print ("Arrived at final vertex %s" % goal)
        print ('Unvisited vertices: %i' % (len(
                    open_list)-1))
        break
    else:
        print("Processing vertex %s, " % min_node, end="")

    open_list = open_list.difference(min_node)
    neighbors = node_neighbors(graph, min_node)
    to_be_visited = list(neighbors-closed_list.keys())

    if len(to_be_visited) == 0:
        print ("found no exit, retracing to %s"
               % path[min_node])
    else:
        print ("discovered %s" % str(to_be_visited))

    for node in neighbors:
        if node not in closed_list:
            closed_list[node] = scoring(node, goal,
                                        coordinates)
            path[node] = min_node

print ('\nBest path is:', reconstruct_path(
        path, start, goal))
print ('Length of path: %i' % compute_path_dist(
        reconstruct_path(path, start, goal), graph))
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Processing vertex A, discovered ['F', 'G']
Processing vertex G, discovered ['K', 'H']
Processing vertex H, discovered ['B', 'D']
Processing vertex D, discovered ['E', 'J', 'C']
Processing vertex J, discovered ['O', 'I', 'N']
Processing vertex O, found no exit, retracing to J
Processing vertex N, discovered ['R']
Processing vertex R, discovered ['M', 'X']
Processing vertex X, discovered ['T', 'W', 'Y']
Arrived at final vertex Y
Unvisited vertices: 15

Best path is: ['A', 'G', 'H', 'D', 'J', 'N', 'R', 'X',
 'Y']
Length of path: 22

The verbose output from the example tells you how the algorithm works. BFS 
keeps moving until it runs out of vertexes to explore. When it exhausts the ver-
texes without reaching the target, the code tells you that it can’t reach the target 
and the robot won’t budge. When the code does find the destination, it stops pro-
cessing vertexes, even if open_list still contains vertexes, which saves time.

Finding a dead end, such as ending up in vertex O, means looking for a previously 
unused route. The best alternative immediately pops up thanks to the prior-
ity  queue, and the algorithm takes it. In this example, BFS efficiently ignores 
15 vertexes and takes the upward route in the map, completing its journey from  
A to Y in 22 steps.

You can test other mazes by setting a different seed number and comparing the 
BFS results with the A* algorithm described in the next section. You’ll find that 
sometimes BFS is both fast and accurate in choosing the best way, sometimes not. 
If you need a robot that searches quickly, BFS is the best choice.

Going heuristically around by A*
The A* algorithm speedily produces best shortest paths in a graph by combining 
the Dijikstra greedy search discussed in Chapter 9 with an early stop (the algo-
rithm stops when it reaches its destination vertex) and a heuristic estimate (usu-
ally based on the Manhattan distance) that hints at the graph area to explore first. 
A* was developed at the Artificial Intelligence Center of Stanford Research Insti-
tute (now called SRI International) in 1968 as part of the Shakey the robot project. 
Shakey was the first mobile robot to autonomously decide how to go somewhere 
(although it was limited to wandering around a few rooms in the labs). To render 
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Shakey fully autonomous, its developers came up with the A* algorithm, the 
Hough transform (an image-processing transformation to detect the edges of an 
object), and the visibility graph method (a way to represent a path as a graph). 
The article at http://www.ai.sri.com/shakey/ describes Shakey in more detail 
and even shows it in action. It is still surprising watching what Shakey was capa-
ble of doing; go to https://www.youtube.com/watch?v=qXdn6ynwpiI to take a 
look. The A* algorithm is currently the best available algorithm when you’re 
looking for the shortest route in a graph and you must deal with partial informa-
tion and expectations (as captured by the heuristic function guiding the search). 
A* is able to

»» Find the shortest path solution every time: The algorithm can do this if 
such a path exists and if A* is properly informed by the heuristic estimate.  
A* is powered by the Dijkstra algorithm, which guarantees always finding the 
best solution.

»» Find the solution faster than any other algorithm: A* can do this if given 
access to a fair heuristic — one that provides the right directions to reach the 
target proximity in a similar, though even smarter, way as BFS.

»» Computes weights when traversing edges: Weights account for the cost of 
moving in a certain direction. For example, turning may take longer than going 
straight, as in the case of Shakey the robot.

A proper, fair, admissible heuristic provides useful information to A* about the 
distance to the target by never overestimating the cost of reaching it. Moreover, 
A* makes greater use of its heuristic than BFS, therefore the heuristic must per-
form calculations quickly or the overall processing time will be too long.

The Python implementation in this example uses the same code and data struc-
tures used for BFS, but there are differences between them. The main differences 
are that as the algorithm proceeds, it updates the cost of reaching from the start 
vertex to each of the explored vertexes. In addition, when it decides on a route, A* 
considers the shortest path from the start to the target, passing by the current 
vertex, because it sums the estimate from the heuristic with the cost of the path 
computed to the current vertex. This process allows the algorithm to perform 
more computations than BFS when the heuristic is a proper estimate and to deter-
mine the best path possible.

Finding the shortest path possible in cost terms is the core Dijkstra algorithm 
function. A* is simply a Dijkstra algorithm in which the cost of reaching a vertex 
is enhanced by the heuristic of the expected distance to the target. Chapter  9 
describes the Dijkstra algorithm in detail. Revisiting the Chapter 9 discussion will 
help you better understand how A* operates in leveraging heuristics.

http://www.ai.sri.com/shakey/
https://www.youtube.com/watch?v=qXdn6ynwpiI
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# A*
open_list = set(graph.nodes())
closed_list = {start: manhattan_dist(
        start, goal, coordinates)}
visited = {start: 0}
path = {}

while open_list:

    candidates = open_list&closed_list.keys()
    if len(candidates)==0:
        print ("Cannot find a way to the goal %s" % goal)
        break
    frontier = [(closed_list[node],
                 node) for node in candidates]
    score, min_node =sorted(frontier)[0]

    if min_node==goal:
        print ("Arrived at final vertex %s" % goal)
        print ('Unvisited vertices: %i' % (len(
                open_list)-1))
        break
    else:
        print("Processing vertex %s, " % min_node, end="")

    open_list = open_list.difference(min_node)
    current_weight = visited[min_node]
    neighbors = node_neighbors(graph, min_node)
    to_be_visited = list(neighbors-visited.keys())

    for node in neighbors:
        new_weight = current_weight + graph_weight(
                     graph, min_node, node)
        if node not in visited or \
        new_weight < visited[node]:
            visited[node] = new_weight
            closed_list[node] = manhattan_dist(node, goal,
                        coordinates) + new_weight
            path[node] = min_node

    if to_be_visited:
        print ("discovered %s" % to_be_visited)
    else:
        print ("getting back to open list")
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print ('\nBest path is:', reconstruct_path(
        path, start, goal))
print ('Length of path: %i' % compute_path_dist(
        reconstruct_path(path, start, goal), graph))

Processing vertex A, discovered ['F', 'G']
Processing vertex F, discovered ['B', 'K']
Processing vertex G, discovered  ['H']
Processing vertex K, discovered  ['Q', 'P']
Processing vertex H, discovered  ['D']
Processing vertex B, discovered  ['C']
Processing vertex P, discovered  ['L', 'U', 'V']
Processing vertex Q, discovered  ['M', 'W']
Processing vertex C, getting back to open list
Processing vertex U, getting back to open list
Processing vertex D, discovered  ['E', 'J']
Processing vertex V, getting back to open list
Processing vertex L, getting back to open list
Processing vertex W, discovered  ['X']
Processing vertex E, getting back to open list
Processing vertex M, discovered  ['R']
Processing vertex J, discovered  ['O', 'I', 'N']
Processing vertex X, discovered ['T', 'Y']
Processing vertex R, getting back to open list
Processing vertex O, getting back to open list
Processing vertex I, getting back to open list
Arrived at final vertex Y
Unvisited vertices: 3

Best path is: ['A', 'F', 'K', 'Q', 'W', 'X', 'Y']
Length of path: 14

When the A* has completed analyzing the maze, it outputs a best path that’s 
much shorter than the BFS solution. This solution comes at a cost: A* explores 
almost all the present vertexes, leaving just three vertexes unconsidered. As with 
Dijkstra, its worst running time is O(v2), where v is the number of vertexes in the 
graph; or O(e + v*log(v)), where e is the number of edges, when using min- 
priority queues, an efficient data structure when you need to obtain the minimum 
value for a long list. The A* algorithm is not different in its worst running time 
than Dijkstra’s, though on average, it performs better on large graphs because it 
first finds the target vertex when correctly guided by the heuristic measurement 
(in the case of a routing robot, the Manhattan distance).
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Consider how algorithms are changing the world.

Discover the future of algorithms.

Define problems that algorithms haven’t solved.

Learn how games help people solve algorithms.
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IN THIS CHAPTER

»» Considering sort and search routines

»» Using random numbers

»» Making data smaller

»» Ensuring that data remains secret, 
and more . . .

Ten Algorithms That 
Are Changing the World

It’s hard to imagine an algorithm doing much of anything, much less changing 
the world. However, algorithms today appear everywhere, and you might not 
even realize just how much effect they have on your life. 

Most people realize that online stores and other sales venues rely on algorithms to 
determine which add-on products to suggest based on previous purchases. How-
ever, most people are unaware of the uses of algorithms in medicine, many of 
which help a doctor decide what diagnosis to provide.

Algorithms appear in the oddest places. The timing of traffic lights often depends 
on the calculations of algorithms. Algorithms will help your smartphone talk to 
you today, and you see algorithms at work in making your television do more than 
any television has done in the past. Consequently, it’s not all that impossible to 
believe that algorithms are poised to change the world. This chapter highlights 
ten of them.

Chapter 21
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For algorithm purists, you can say that the algorithm has changed the world 
throughout the centuries, so nothing has really changed for thousands of years. 
The Babylonians used algorithms to perform factorization and find square roots 
as early as 1600 BC. Al-Khawarizmi described algorithms to solve both linear and 
quadratic equations around 820. This chapter focuses on computer-based algo-
rithms, but algorithms have been around for a long time.

Using Sort Routines
Without ordered data, most of the world would come to a stop. To use data, you 
must be able to find it. You can find hundreds of sort algorithms explained on sites 
such as https://betterexplained.com/articles/sorting-algorithms/ and 
as part of this book (see Chapter 7).

However, the three most common sort routines are Mergesort, Quicksort, and 
Heapsort because of the superior speed they provide (see the time comparisons at 
http://www.cprogramming.com/tutorial/computersciencetheory/sortcomp.
html). The sort routine that works best for your application depends on the 
following:

»» What you expect the application to do

»» The kind of data you work with

»» The computing resources you have available

The point is that the capability to sort data into whatever form an application 
needs to accomplish a task makes the world run, and this capability is changing 
how the world works.

Some businesses today thrive as a result of the sort algorithm. For example, con-
sider the fact that Google exists because it helps people find things, and this abil-
ity resides substantially in the capability to sort data to make it readily accessible. 
Consider just how hard it would be to find an item on Amazon without the sort 
routine. Even that recipe application on your computer at home relies heavily on 
sort routines to keep the data it contains in order. In fact, it probably wouldn’t be 
too much of a stretch to say that any substantial application relies heavily on sort 
routines.

https://betterexplained.com/articles/sorting-algorithms/
http://www.cprogramming.com/tutorial/computersciencetheory/sortcomp.html
http://www.cprogramming.com/tutorial/computersciencetheory/sortcomp.html
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Looking for Things with Search Routines
As with sort routines, search routines appear in nearly every application of any 
size  today. The applications appear everywhere, even in places that you might 
not  think too much about, such as your car. Finding information quickly is an 
essential part of daily life. For example, imagine being late for an appointment and 
suddenly discovering that your GPS can’t find the address you need. As with sort 
routines, search routines come in all shapes and sizes, and you can find 
them  described on  sites such as https://tekmarathon.com/2012/10/05/best- 
searching-algorithm-2/ and http://research.cs.queensu.ca/home/cisc121/ 
2006s/webnotes/search.html. In fact, if anything, there are more search routines 
than sort routines because search requirements are often more strenuous and 
complex. You find a lot of search routines discussed in this book as well (see 
Chapter 7).

Shaking Things Up with Random Numbers
All sorts of things would be a lot less fun without randomness. For example, 
imagine starting Solitaire and seeing precisely the same game every time you  
start it. No one would play such a game. Consequently, random number generation 
is an essential part of the gaming experience. In fact, as expressed in a number of 
chapters in this book, some algorithms actually require some level of randomness 
to work properly (see the “Arranging caching computer data” section of Chapter 15 
as an example). You also find that testing works better when using random values 
in some cases (see the “Choosing a particular kind of compression” section of 
Chapter 14 as an example).

The numbers that you obtain from an algorithm are actually pseudo-random, 
which means that you can potentially predict the next number in a series by 
knowing the algorithm and the seed value used to generate the number. That’s 
why this information is so closely guarded.

Not all applications and not all computers rely on pseudo-random numbers gen-
erated by algorithms (the vast majority do, however). Computer hardware-based 
methods of creating random numbers exist, such as relying on atmospheric noise 
or temperature changes (see http://engineering.mit.edu/ask/can-computer- 
generate-truly-random-number for details). In fact, you can get a hardware-
based random number solution, such as ChaosKey (http://altusmetrum.org/ 
ChaosKey/) and plug it into your USB slot to generate what likely are true random 
numbers. The interesting thing about the ChaosKey site is that it provides you 
with a schematic to show how it collects random noise and changes it into a 
random number.

https://tekmarathon.com/2012/10/05/best-searching-algorithm-2/
https://tekmarathon.com/2012/10/05/best-searching-algorithm-2/
http://research.cs.queensu.ca/home/cisc121/2006s/webnotes/search.html
http://research.cs.queensu.ca/home/cisc121/2006s/webnotes/search.html
http://engineering.mit.edu/ask/can-computer-generate-truly-random-number
http://engineering.mit.edu/ask/can-computer-generate-truly-random-number
http://altusmetrum.org/ChaosKey/
http://altusmetrum.org/ChaosKey/
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Performing Data Compression
Chapter 14 discusses data compression techniques and uses the kind of compres-
sion that you normally find used for files. However, data compression affects every 
aspect of computing today. For example, most graphics, video, and audio files rely 
on data compression. Without data compression, you couldn’t possibly obtain the 
required level of throughput to make tasks such as streamed movies work.

However, data compression finds even more uses than you might expect. Just 
about every Database Management System (DBMS) relies on data compression to 
make data fit in a reasonable amount of space on disk. Cloud computing wouldn’t 
work without data compression because it downloading items from the cloud to 
local machines would take too long. Even web pages often rely on data compres-
sion to get information from one place to another.

Keeping Data Secret
The concept of keeping data secret isn’t new. In fact, it’s one of the oldest reasons 
to use an algorithm of some sort. The word cryptography actually comes from two 
Greek words: kryptós (hidden or secret) and graphein (writing). In fact, the Greeks 
were probably the first users of cryptography, and ancient texts report that Julius 
Caesar used encrypted missives to communicate with his generals. The point is, 
keeping data secret is one of the longest running battles in history. The moment 
one party finds a way to keep a secret, someone else finds a way to make the secret 
public by breaking the cryptography. General uses for computer-driven cryptog-
raphy today include:

»» Confidentiality: Ensuring that no one can see information exchanged 
between two parties.

»» Data integrity: Reducing the likelihood that someone or something can 
change the content of data passed between two parties.

»» Authentication: Determining the identity of one or more parties.

»» Nonrepudiation: Reducing the ability of a party to say he or she didn’t 
commit a particular act.
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Because keeping a secret when using computers, the history of computer-based 
cryptographic algorithms is long and interesting. You can find a list of commonly 
used algorithms (both present and historical) at http://www.cryptographyworld.
com/algo.htm and https://www.dwheeler.com/secure-programs/Secure- 
Programs-HOWTO/crypto.html. The guide at https://www.owasp.org/index.
php/Guide_to_Cryptography provides additional details on how cryptography 
works.

Changing the Data Domain
The Fourier Transform and Fast Fourier Transform (FFT) make a huge difference 
in how applications perceive data. These two algorithms transform data from the 
frequency domain (how fast a signal oscillates) to the time domain (the time dif-
ferential between signal changes). In fact, it’s impossible to get any sort of com-
puter hardware degree without having spent time working with these two 
algorithms extensively. Timing is everything.

By knowing how often something changes, you can figure out the time interval 
between changes and therefore know how long you have to perform a task before 
a change in state requires that you do something else. These algorithms com-
monly see use in filters of all sorts. Without the filtering effects of these algo-
rithms, reproducing video and audio faithfully through a streamed connection 
would be impossible. All these applications sound rather advanced, and they are, 
but some amazing tutorials give you a better sense of how these algorithms work 
(see the tutorial at http://w.astro.berkeley.edu/~jrg/ngst/fft/fft.html as 
an example). The tutorial at https://betterexplained.com/articles/an- 
interactive-guide-to-the-fourier-transform/ is possibly the most interest-
ing and especially entertaining if you like smoothies.

Analyzing Links
The capability to analyze relationships is something that has made modern com-
puting unique. In fact, the capability to first create a representation of these rela-
tionships and then analyze them is the subject of Part III of this book. The whole 
idea of the web, in fact, is to create connections, and connectivity was a consider-
ation at the start of what has become a worldwide phenomenon. Without the 
capability to analyze and utilize links, applications such as databases and e-mail 
wouldn’t work. You couldn’t communicate well with friends on Facebook.

http://www.cryptographyworld.com/algo.htm
http://www.cryptographyworld.com/algo.htm
https://www.dwheeler.com/secure-programs/Secure-Programs-HOWTO/crypto.html
https://www.dwheeler.com/secure-programs/Secure-Programs-HOWTO/crypto.html
https://www.owasp.org/index.php/Guide_to_Cryptography
https://www.owasp.org/index.php/Guide_to_Cryptography
http://w.astro.berkeley.edu/~jrg/ngst/fft/fft.html
https://betterexplained.com/articles/an-interactive-guide-to-the-fourier-transform/
https://betterexplained.com/articles/an-interactive-guide-to-the-fourier-transform/
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As the web has matured and people have become more in tune with devices that 
make connectivity both simpler and ubiquitous, applications such as Facebook 
and sales sites such as Amazon have made greater use of link analysis to do things 
like sell you more products. Of course, some of this connectivity has a negative 
outcome (see http://www.pcmag.com/commentary/351623/facebook-a-tool- 
for-evil as an example), but for the most part, link analysis does make it pos-
sible for people to remain better informed and in better contact with the world 
around them.

Of course, link analysis does more than inform in a connected sort of way. Con-
sider the use of link analysis to provide driving directions or to find casual links 
between human activity and disease. Link analysis enables you to see the connec-
tion between things that you might not ordinarily consider but that do have an 
impact on your daily live. Because of link analysis, you might live longer because 
a doctor can advise you on which habits to change to correct issues that could 
become problems later. The point is that connections exist everywhere, and link 
analysis offers a method to determine where these connections exist and whether 
they’re actually important.

Spotting Data Patterns
Data doesn’t exist in a vacuum. All sorts of factors affect data, including biases 
that color how humans perceive data. Chapter 10 starts a discussion of how data 
tends to cluster in certain environments and how analysis of these clusters can 
tell you all sorts of things about the data.

Pattern analysis is at the forefront of some of the more amazing uses of comput-
ers today. For example, the Viola–Jones object detection framework makes real-
time facial recognition possible. This algorithm could enable people to create 
better security in places like airports where nefarious individuals currently ply 
their trade. Similar algorithms could help your doctor detect cancers of various 
sorts long before the cancer is actually visible to the human eye. Earlier detection 
makes a full recovery a higher probability. The same holds true for all sorts of 
other medical problems (such as finding bone fractures that are currently too 
small to see but cause pain nonetheless).

You also find pattern recognition used for more mundane purposes. For example, 
pattern analysis lets people detect potential traffic problems before they occur. 
It’s also possible to use pattern analysis to help farmers grow more food at a lower 
cost by applying water and fertilizer only when necessary. The use of pattern rec-
ognition can also help move drones around fields so that the farmer becomes 

http://www.pcmag.com/commentary/351623/facebook-a-tool-for-evil
http://www.pcmag.com/commentary/351623/facebook-a-tool-for-evil
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more time efficient and can work more land at a lower cost. Without algorithms, 
these sorts of patterns, which have such a high impact on daily life, can’t be 
recognized.

Dealing with Automation and  
Automatic Responses

The proportional integral derivative algorithm is quite a mouthful. Just try saying 
it three times fast! However, it’s one of the most important secret algorithms 
you’ve never heard about, yet rely on every day. This particular algorithm relies on 
a control loop feedback mechanism to minimize the error between the desired 
output signal and the real output signal. You see it used all over the place to con-
trol automation and automatic responses. For example, when your car goes into a 
skid because you break too hard, this algorithm helps ensure that the Automatic 
Breaking System (ABS) actually works as intended. Otherwise, the ABS could 
overcompensate and make matters worse.

Just about every form of machinery today uses the proportional integral derivative 
algorithm. In fact, robotics wouldn’t be possible without it. Imagine what would 
happen to a factory if all of the robots constantly overcompensated for every 
activity in which they engaged. The resulting chaos would quickly convince owners 
to stop using machines for any purpose whatsoever.

Creating Unique Identifiers
It seems as if we’re all just a number. Actually, not just one number — lots and lots 
of numbers. Each of our credit cards has a number, as does our driver license, as 
does our government identifier, as do all sorts of other businesses and organiza-
tions. People actually have to keep lists of all of the numbers because they simply 
have too many to track. Yet, each of these numbers must identify the person uniquely 
to some party. Behind all of this uniqueness are various kinds of algorithms.

Chapter 7 discusses hashes, which are one way to ensure uniqueness. Underlying 
both hashes and cryptography is integer factorization, a kind of algorithm that 
breaks really large numbers into prime numbers. In fact, integer factorization is 
one of the hardest kinds of problems to solve with algorithms, but people are 
working on the problem all the time. So much of society today depends on your 
ability to identify yourself uniquely that the hidden secrets of creating these iden-
tifiers is an essential part of a modern world.
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IN THIS CHAPTER

»» Performing text searches easily

»» Detecting differences in individual 
words

»» Considering the feasibility of 
hypercomputers

»» Employing one-way functions, 
and more . . .

Ten Algorithmic 
Problems Yet to Solve

Algorithms have indeed been around for centuries, so you’d think that 
scientists would have discovered and solved every algorithm by now. 
Unfortunately, the opposite is true. Solving a particular algorithm often 

presents a few more questions that the algorithm doesn’t solve and that didn’t 
seem apparent until someone did come up with the solution. In addition, changes 
in technologies and lifestyle often present new challenges that call for yet more 
algorithms. For example, the connected nature of society and the use of robots 
have both increased the need for new algorithms.

As presented in Chapter 1, algorithms are a series of steps used to solve a problem, 
and you shouldn’t confuse them with other entities, such as equations. An algo-
rithm is never a solution in search of a problem. No one would create a series of 
steps to solve a problem that doesn’t yet exist (or may never exist). In addition, 
many problems are interesting but have no pressing need for a solution. Conse-
quently, even though everyone knows about the problem and understands that 
someone might want a solution for it, no one is in a hurry to create the solution.

Chapter 22
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This chapter is about algorithmic problems that would serve a purpose should 
someone find a solution for them. In short, the reason you need to care about this 
chapter is that you might find a problem that you’d really like to solve and might 
even decide to become part of the team that solves it.

Dealing with Text Searches
Many text searches involve the use of regular expressions — a sort of shorthand 
that tells the computer what to find. The grammar used for the regular expression 
depends on the language or application, but you find regular expressions used in 
a number of places, including word processors, email applications, search dialogs, 
and in all sorts of other places where you need to provide precise search terms for 
a range of text items. You can read more about regular expressions at http://
www.regular-expressions.info/.

One of the current problems with regular expressions is that it seems as if every 
application environment has a similar set of rules, but with just enough differ-
ences to make creating a search term hard. The generalized star-height problem 
seeks to discover whether a generalized regular expression syntax exists. If so, the 
resulting algorithm would make it possible for someone to learn just one method 
of creating regular expressions to perform searches. You can read more about this 
problem at https://www.irif.fr/~jep/Problemes/starheight.html.

Differentiating Words
When working with characters, a computer sees numbers, not letters. The num-
bers are actually just a series of 0s and 1s to the computer and don’t actually have 
any meaning. Combining characters into strings just makes the series of 0s and 1s 
longer. Consequently, comparing two strings, something that a human can do at 
a glance, can take time within a computer, and confusion is likely between conju-
gates. For example, unless you’re careful in constructing the algorithm, a com-
puter could confuse enlist and listen. More important, the computer would require 
time to discern the difference between the two. The separating words problem 
seeks to find the smallest (and fastest) possible algorithm (a deterministic finite 
automaton, DFN, in this case) to perform word separation. The goal is to accept 
one word and reject another, given two words of a particular length.

http://www.regular-expressions.info/
http://www.regular-expressions.info/
https://www.irif.fr/~jep/Problemes/starheight.html
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Determining Whether an  
Application Will End

One of the problems that Alan Turing proposed in 1936 is the issue of whether an 
algorithm, given a description of a program and an input, could determine whether 
the program would eventually halt (the halting problem). When working with a 
simple application, it’s easy to determine in many cases whether the program will 
halt or continue running in an endless loop. However, as program complexity 
increases, determining the result of running the program with any given input 
becomes harder. A Turing machine can’t make this determination; the result is 
buggy code with infinite loops. No amount of testing that uses current technology 
can solve this issue.

A hypercomputer is a computing model that goes beyond the Turing machine to 
solve problems such as the halting problem. However, such machines aren’t pos-
sible using current technology. If they were possible, you would be able to ask 
them all kinds of imponderables that computers can’t currently answer. The arti-
cle at https://www.newscientist.com/article/mg22329781-500-what-will- 
hypercomputers-let-us-do-good-question/ provides you with a good idea of 
what would happen if someone were able to solve this problem.

Creating and Using One-Way Functions
A one-way function is a function that is easy to use to obtain an answer in one 
direction, but nearly impossible to use with the inverse of that answer. In other 
words, you use a one-way function to create something like a hash that would 
appear as part of a solution for cryptography, personal identification, authentica-
tion, or other data security needs.

The existence of a one-way function is less mystery and more a matter of proof. 
Many telecommunications, e-commerce, and e-banking systems currently rely 
on functions that are purportedly one way, but no one truly knows whether they 
really are one way. The existence of a one-way function is currently a hypothesis, 
not a theory (see an explanation of the difference between the two at http://www.
diffen.com/difference/Hypothesis_vs_Theory). If someone were able to prove 
that a one-way function exists, data security issues would be easier to solve from 
a programming perspective.

https://www.newscientist.com/article/mg22329781-500-what-will-hypercomputers-let-us-do-good-question/
https://www.newscientist.com/article/mg22329781-500-what-will-hypercomputers-let-us-do-good-question/
http://www.diffen.com/difference/Hypothesis_vs_Theory
http://www.diffen.com/difference/Hypothesis_vs_Theory
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Multiplying Really Large Numbers
Really large numbers exist in many places. For example, consider performing the 
calculations involving distances to Mars, or perhaps Pluto. Methods currently do 
exist for performing multiplication on really large numbers, but they tend to be 
slow because they require multiple operations to complete. The problem occurs 
when the numbers are too large to fit in the processor’s registers. At that point, 
the multiplication must occur in more than one step, which slows things consid-
erably. The current solutions include:

»» Gauss’s complex multiplication algorithm

»» Karatsuba multiplication

»» Toom-Cook

»» Fourier transform methods

Even though many of the methods currently available produce acceptable results, 
they all take time, and when you have a lot of calculations to perform, the time 
problem can become critical. Consequently, large number multiplication is one of 
those problems that requires a better solution than those available today.

Dividing a Resource Equally
Dividing resources equally may not seem hard, but humans, being the envious 
sort, might see the resource as being unequally divided unless you can find a way 
to assure everyone that the division is indeed fair. This is the envy-free cake-
cutting problem. Of course, when you cut a cake, no matter how fairly you attempt 
to do it, there is always the perception that the division is unfair. Creating a fair 
division of resources is important in daily life to minimize strife between stake-
holders in any organization, making everyone more efficient.

Two solutions already exist for the envy-free cake-cutting problem with a specific 
number of people, but no general solution exists. When there are two people 
involved, the first cuts the cake and the second chooses the first piece. In this way, 
both parties are assured of an equal division. The problem becomes harder with 
three people, but you can find the Selfridge-Conway solution for the problem at 
https://ochronus.com/cutting-the-pie (even though the site discusses pie, 
the process is the same). However, after you get to four people, no solution exists.

https://ochronus.com/cutting-the-pie
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Reducing Edit Distance Calculation Time
The edit distance between two strings is the number of operations required to 
transform one string into the other string. The distance calculation revolves 
around the Levenshtein distance operations, which are the removal, insertion, or 
substitution of a character in the string. This particular technique sees use in 
natural language interfaces, DNA sequence quantification, and all sorts of other 
places where you can have two similar strings that require some sort of compari-
son or modification.

A number of solutions for this problem currently exist, all of them quite slow. In 
fact, most of them take exponential time, so the time required to perform a trans-
formation quickly adds up to the point where humans can see pauses in the pro-
cessing of input. The pause isn’t quite so bad when using a word processor that 
performs automatic word checks and changes a misspelled word into the correct 
one. However, when using voice interfaces, the pause can become quite noticeable 
and cause the human operator to make mistakes. The current goal is to allow edit 
distance calculation in subquadratic time: O(n2−ϵ).

Solving Problems Quickly
As machine learning takes off and we count more and more on computers to solve 
problems, the issue of how quickly a computer can solve a problem becomes criti-
cal. The P versus NP problem simply asks whether a computer can solve a problem 
quickly when it can verify the solution to the problem quickly. In other words, if 
the computer can reasonably ascertain that a human response to a problem is cor-
rect in polynomial time or less, can it also solve the problem itself in polynomial 
time or less?

This question was originally discussed in the 1950s by John Nash in letters to  
the National Security Agency (NSA) and again in letters between Kurt Gödel and 
John von Neumann. In addition to machine learning (and AI in general), this 
particular problem is a concern to many other fields, including mathematics, 
cryptography, algorithm research, game theory, multimedia processing, philosophy, 
and economics.
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Playing the Parity Game
At first, solving a game might not seem all that useful in real life. Yes, games are 
fun and interesting, but they don’t really provide a background for doing anything 
useful — at least, that’s the general theory. However, game theory does come into 
play in a large number of real-life scenarios, many of which involve complex pro-
cesses that someone can understand more easily as games than as actual pro-
cesses. In this case, the game helps people understand automated verification and 
controller synthesis, among other things. You can read more about the parity 
game at http://www.sciencedirect.com/science/article/pii/S0890540115 
000723. In fact, you can play it if you’d like at https://www.abefehr.com/
parity/.

Understanding Spatial Issues
To put this particular problem into context, think about moving boxes around in 
a warehouse or some other situations in which you need to consider the space in 
which things move. Obviously, if you have many boxes in a big warehouse and 
they all require a forklift to pick up, you don’t want to try to figure out how to 
store them optimally by physically rearranging them. This is where you need to 
work through the problem by visualizing a solution.

However, the question is whether all spatial problems have a solution. In this case, 
think about one of those kids’ puzzles that has you putting a picture together by 
sliding the little tiles around. It seems as if a solution should exist in all cases, but 
in some situations, a bad starting point can result in a situation that has no  
solution. You can find a discussion of such a problem at http://math.stack 
exchange.com/questions/754827/does-a-15-puzzle-always-have-a-solution.

Mathematicians such as Sam Loyd (see https://www.mathsisfun.com/puzzles/
sam-loyd-puzzles-index.html) often use puzzles to demonstrate complex math 
problems, some of which have no solution today. Visiting these sites is fun because 
you not only get some free entertainment but also, food for thought. The issues 
that these puzzles raise do have practical applications, but they’re presented in a 
fun way.

http://www.sciencedirect.com/science/article/pii/S0890540115000723
http://www.sciencedirect.com/science/article/pii/S0890540115000723
https://www.abefehr.com/parity/
https://www.abefehr.com/parity/
http://math.stackexchange.com/questions/754827/does-a-15-puzzle-always-have-a-solution
http://math.stackexchange.com/questions/754827/does-a-15-puzzle-always-have-a-solution
https://www.mathsisfun.com/puzzles/sam-loyd-puzzles-index.html
https://www.mathsisfun.com/puzzles/sam-loyd-puzzles-index.html
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