

www.dbooks.org

https://www.dbooks.org/

Ansible Succinctly

By

Zoran Maksimovic

Foreword by Daniel Jebaraj

3

Copyright © 2021 by Syncfusion, Inc.

2501 Aerial Center Parkway

Suite 200

Morrisville, NC 27560

USA

All rights reserved.

ISBN: 978-1-64200-216-4

Important licensing information. Please read.

This book is available for free download from www.syncfusion.com on completion of a

registration form.

If you obtained this book from any other source, please register and download a free copy from

www.syncfusion.com.

This book is licensed for reading only if obtained from www.syncfusion.com.

This book is licensed strictly for personal or educational use.

Redistribution in any form is prohibited.

The authors and copyright holders provide absolutely no warranty for any information provided.

The authors and copyright holders shall not be liable for any claim, damages, or any other

liability arising from, out of, or in connection with the information in this book.

Please do not use this book if the listed terms are unacceptable.

Use shall constitute acceptance of the terms listed.

SYNCFUSION, SUCCINCTLY, DELIVER INNOVATION WITH EASE, ESSENTIAL, and .NET

ESSENTIALS are the registered trademarks of Syncfusion, Inc.

Technical Reviewer: James McCaffrey

Copy Editor: Courtney Wright

Acquisitions Coordinator: Tres Watkins, VP of content, Syncfusion, Inc.

Proofreader: Jacqueline Bieringer, content producer, Syncfusion, Inc.

www.dbooks.org

http://www.syncfusion.com/
http://www.syncfusion.com/
http://www.syncfusion.com/
https://www.dbooks.org/

4

Table of Contents

The Story Behind the Succinctly Series of Books ... 8

About the Author ..10

Introduction ...11

Target audience ...11

Additional resources ...11

Ansible source code ..12

Ansible useful links ..12

Software requirements ...12

Conventions used in the book ..12

Code in this book ...12

Resources ...13

Ansible version ..13

Chapter 1 Introduction ...14

Why do we need Ansible? ..14

What can Ansible be used for? ...15

Infrastructure provisioning ..15

Configuration management ..15

Application deployment ..16

Orchestration ...16

Chapter 2 High-Level View ..17

Users ...17

Modules ...17

Plugins ...18

Inventories ...18

5

Ansible playbooks ..18

Chapter 3 Environment Setup ...19

Vagrant ..20

VirtualBox ...21

Visual Studio Code ...21

Infrastructure installation procedure ..22

Accessing the servers ..27

Other Vagrant commands ..28

Visual Studio Code: connecting with the manager node ...29

Chapter 4 Installing Ansible ..32

Using the OS package manager ...32

Installing Ansible on CentOS ...32

Installing Ansible by using pip ...33

Installing Python and pip ..33

Installing Ansible ..35

Chapter 5 Ansible Configuration ..37

The [defaults] section ...39

Chapter 6 Ansible Inventory ..40

Inventory location ...40

Inventory file content ..40

Host groups ...41

Nested groups ...41

Host ranges ...42

Host verification ...42

Dynamic inventories ...44

Chapter 7 Connecting to Remote Environments ...45

www.dbooks.org

https://www.dbooks.org/

6

Ansible Manager Server configuration ..46

Generation of the ssh key ...47

Chapter 8 Running Ad-Hoc Commands ...49

Example command: ping ..50

Example command: service..51

Common modules ..52

Ansible built-in modules ...53

Command modules ..53

Idempotent modules ...54

Chapter 9 Ansible Playbook ..56

Basic structure..56

Executing the playbook ..57

Limit option ..58

Checking the syntax ..59

Dry run ...59

Variables ..59

Naming convention ..60

Declaring variables in the playbook ..61

Declaring group or host variables ..64

Looping through variables ..65

Conditional statements ...66

Combining loops and conditional statements ..68

Chapter 10 Ansible Playbook Handlers ..69

Chapter 11 Templating ..71

Jinja2 basic syntax ...71

Jinja2 module ...71

7

Chapter 12 Ansible Vault: Data Encryption ..76

Ansible-vault command line tool ...76

Encrypt ..76

Decrypt ..77

View ...77

Edit ..77

Rekey ..77

Using secrets within the playbook ..78

Suppressing the output ...78

Example code ..78

Chapter 13 Ansible Runtime Facts ...81

Chapter 14 Ansible Tags ...84

Chapter 15 Ansible Roles ..87

Role’s directory structure ..87

MongoDB custom role ..89

Role creation ...90

Chapter 16 Ansible Galaxy ..99

Using roles ... 100

Web server setup ... 100

Load balancer example .. 108

Final Words ... 112

www.dbooks.org

https://www.dbooks.org/

8

The Story Behind the Succinctly Series
 of Books

Daniel Jebaraj, CEO
Syncfusion, Inc.

taying on the cutting edge

As many of you may know, Syncfusion is a provider of software components for the
Microsoft platform. This puts us in the exciting but challenging position of always
being on the cutting edge.

Whenever platforms or tools are shipping out of Microsoft, which seems to be about
every other week these days, we have to educate ourselves, quickly.

Information is plentiful but harder to digest
In reality, this translates into a lot of book orders, blog searches, and Twitter scans.

While more information is becoming available on the Internet and more and more books are
being published, even on topics that are relatively new, one aspect that continues to inhibit us is
the inability to find concise technology overview books.

We are usually faced with two options: read several 500+ page books or scour the web for
relevant blog posts and other articles. Just as everyone else who has a job to do and customers
to serve, we find this quite frustrating.

The Succinctly series
This frustration translated into a deep desire to produce a series of concise technical books that
would be targeted at developers working on the Microsoft platform.

We firmly believe, given the background knowledge such developers have, that most topics can
be translated into books that are between 50 and 100 pages.

This is exactly what we resolved to accomplish with the Succinctly series. Isn’t everything
wonderful born out of a deep desire to change things for the better?

The best authors, the best content
Each author was carefully chosen from a pool of talented experts who shared our vision. The
book you now hold in your hands, and the others available in this series, are a result of the
authors’ tireless work. You will find original content that is guaranteed to get you up and running
in about the time it takes to drink a few cups of coffee.

Free forever
Syncfusion will be working to produce books on several topics. The books will always be free.
Any updates we publish will also be free.

S

9

Free? What is the catch?

There is no catch here. Syncfusion has a vested interest in this effort.

As a component vendor, our unique claim has always been that we offer deeper and broader
frameworks than anyone else on the market. Developer education greatly helps us market and
sell against competing vendors who promise to “enable AJAX support with one click,” or “turn
the moon to cheese!”

Let us know what you think

If you have any topics of interest, thoughts, or feedback, please feel free to send them to us at
succinctly-series@syncfusion.com.

We sincerely hope you enjoy reading this book and that it helps you better understand the topic
of study. Thank you for reading.

Please follow us on Twitter and “Like” us on Facebook to help us spread the
word about the Succinctly series!

www.dbooks.org

mailto:succinctly-series@syncfusion.com
https://twitter.com/Syncfusion
https://www.facebook.com/Syncfusion
https://www.dbooks.org/

10

About the Author

Zoran Maksimovic is a solution architect and software developer with more than 20 years of
professional experience. He is passionate about programming and technology.

He specializes in Microsoft.NET, OOD, TDD, DDD (Domain Driven Development), CQRS/ES,
Event streaming, and more recently, DevOps, Linux, and Python. He is also a big fan of Agile
Methodology.

Zoran is also the author of ServiceStack Succinctly, MongoDB 3 Succinctly, and Akka.NET
Succinctly.

Zoran enjoys guitar, baroque music, good food, and Italian wine. He is a proud father of three:
Alexei, Xenia, and Sofia.

For more info, visit https://zoran.me.

https://zoran.me/

11

Introduction

Ansible is an open-source automation engine used for provisioning, configuration management,
application deployment, and orchestration. The core Ansible is written in Python and can be
used on Unix-like machines or Microsoft Windows.

I wrote this book primarily to make you aware of infrastructure automation made in Ansible, and
to help you start working with this technology in the fastest possible way. My hope is that after
reading it, you will have enough knowledge to start coding and using Ansible effectively. While
this book is not fully comprehensive of the technology, it should give a good grounding in
performing the most useful operations.

Target audience

This book is intended for DevOps practitioners, or in general, software developers or readers
with a notion of scripting or programming. It would be useful for any kind of application
developer involved with the following areas:

• Infrastructure provisioning and automation.
• Application deployments.
• Configuration management.
• Interest in writing Infrastructure as Code (IaC).

You should already be familiar with Linux OS commands and Bash shell, and have some idea
of any programming language, as those concepts are mostly left unexplained.

Git, Apache HTTP Server (httpd), Firewall, Linux in general, MongoDB, and others won’t be
covered in this book, so the expectation is that these topics are to be understood separately.
Where appropriate, I’ve provided links (usually in the footer) for more information.

I’ve taken some shortcuts in this book—the intention is not to go too deep into the details, but
rather to show the various concepts, options, and possibilities.

Additional resources

You can find a lot of additional information about Ansible directly on the Ansible website.

If you want to know more about some of the technologies mentioned in this book, take a look at
the following resources:

• Linux Succinctly

• Bash (Unix shell)

• MongoDB Succinctly

• Firewalld

www.dbooks.org

https://www.ansible.com/
https://www.syncfusion.com/succinctly-free-ebooks/linux
https://en.wikipedia.org/wiki/Bash_(Unix_shell)
https://www.syncfusion.com/succinctly-free-ebooks/mongodb-3-succinctly
https://firewalld.org/
https://www.dbooks.org/

12

• Apache Server

• PHP

Ansible source code

Ansible is an open-source framework, and at the time of writing, it’s hosted on GitHub. Ansible
itself is written in Python.

Ansible useful links

There are several groups on the web that provide useful information and answer common
questions. Here are a few links that you might find useful:

• Official Ansible website
• Ansible source code on GitHub
• Official Ansible Twitter account
• Ansible official documentation

Software requirements

To get the most out of this book and the included examples, you will need to have a version of
the Microsoft Visual Studio Code IDE installed (or any other file editor you prefer).

All of the examples in this book have been written and tested on Microsoft Windows 10, Linux
CentOS 8, and Microsoft Visual Studio Code.

Conventions used in the book

There are specific formats that you will see throughout this book to illustrate tips and tricks or
other important concepts.

 Note: This icon will identify things to note throughout the book.

 Tip: This icon will identify tips and tricks throughout the book.

Code in this book

Source code is written in a consistent manner. Command prompt (terminal) code follows the
following style.

Code Listing 1: Command prompt code style

$ command

https://httpd.apache.org/
https://www.php.net/
https://github.com/ansible/ansible
https://www.ansible.com/
https://github.com/ansible/ansible
https://twitter.com/ansible
https://docs.ansible.com/

13

Most of the coding examples are written in YAML, and the following formatting style is used when

working with it.

Code Listing 2: YAML code style

Most of the results of executing commands are shown as a windows terminal image.

Figure 1: Example of a result from the command line

Resources

You can check out the code mentioned in this book here.

Ansible version

All the examples and explanations apply to Ansible v2.10, which is the latest stable version at
the time of writing.

- name: Web Server Playbook

 hosts: webservers

 become: yes

 tasks:

 - name: Pinging web server

 ansible.builtin.ping:
 data: pong

www.dbooks.org

https://github.com/SyncfusionSuccinctlyE-Books/Ansible-Succinctly
https://github.com/ansible/ansible/tree/stable-2.10
https://www.dbooks.org/

14

 Chapter 1 Introduction

Ansible is an open-source software, automation engine, and automation language mainly used
in software configuration management, infrastructure provisioning, configuration management,
application deployment, and orchestration. The Ansible automation engine executes Ansible
playbooks.

The main qualities of Ansible are:

• Simple: Playbooks are readable and easy to understand. Playbooks will contain some tasks
that will be executed in the order in which they are written. No special coding skills are
required.

• Powerful: Ansible can manage infrastructure, networks, operating systems, and other
resources, straight out of the box. It enables us to orchestrate the entire infrastructure and
environment lifecycle (cloud and on premises).

• Agentless: Uses Open SSH and Windows Remote Management. No additional firewall
ports need to be open.

Ansible, initially created in 2012, was acquired by Red Hat in 2015.

Why do we need Ansible?

As a software developer or system administrator, you are aware of how challenging it is to keep
the application deployment and server’s management efficient and reliable.

System administrators at one point in time managed servers by hand (and this is sometimes still
the case). This obviously included installing the operating system and keeping it up to date,
installing the software needed for the application to run, changing configuration for application
deployment, and a myriad of other tasks.

Given the fact that we live in an information age, and that the usage of the typical applications,
now internet-facing, has grown to an unthinkable size, manual system management simply
doesn’t work anymore.

Application development, now being very agile, has become quicker, as the time to market is
one of the key factors (as it has always been!). Software releases have become more frequent,
and scalability and elasticity of the applications are requiring an effort that can no longer be
managed manually.

In simple terms: everything is more complex, bigger, and faster!

This is why configuration management tools such as Ansible, Puppet, Chef, and SaltStack
came to thrive as solutions to the problems I just mentioned.

https://en.wikipedia.org/wiki/Information_Age
https://www.ansible.com/
https://puppet.com/
https://www.chef.io/
https://www.saltstack.com/

15

What can Ansible be used for?

Ansible has a wide range of usages, covered in the following sections.

Infrastructure provisioning

Infrastructure provisioning is the process of setting up the IT infrastructures, which refers to the
components, hardware, and software needed to operate an application service or system. Bear
in mind that provisioning is not the same as configuration, but both are steps in the deployment
process.

Infrastructure as code (IaC) is a term that describes the ability to script and code the
infrastructure, as we would do for other kinds of software. This obviously has the great benefit of
being traceable, versioned, and rolled back if necessary.

Infrastructure has never stopped evolving, and Ansible offers great support for automation of the
following aspects:

• Virtualization: How to provision infrastructure in minutes rather than days.
• Containerization: How to provision infrastructure in seconds instead of minutes.
• Cloud-based resources: How to provision resources you don’t own.
• Serverless: How to provision infrastructure on demand.

The chance you are working in the cloud and using virtualization or container-based
deployments is very high! Ansible, in that sense, has great support for all of the major cloud
providers and supports industry-leading virtualization platforms such as VMware, Vagrant, and
Red Hat Virtualization.

Support that Ansible gives is available for all of the major operating systems: Microsoft
Windows, Linux (Ubuntu, CentOS, RHEL, Fedora, and others), Unix, and OS X.

An example of infrastructure provisioning might include all of the operations needed to create a
new machine (server) and bring it to a working state, including defining the desired state of the
system.

Configuration management

Configuration management is the process of maintaining infrastructure and software in a
desired and consistent state. It’s a way to make sure that a system performs as expected as
changes are made over time.

This is particularly important when it comes to applying changes to the resources. The goal,
especially with automation, is to keep the configuration changes transparent and documented.
Without it, we couldn’t simply know what changes have been applied to which resource, which
again, makes it hard to maintain.

One example is that we would like the production system to have exactly the same settings as a
development system (or vice-versa). In that way, we can ensure the consistency of the state of
the environment.

www.dbooks.org

https://www.dbooks.org/

16

With configuration management, you can accurately replicate an environment with the correct
configurations and software, as it is documented!

The great benefits of automating and having the configuration management processes in place
is that it makes the deployments faster, removes the possibility of the human errors, and
manages the system in a predictable and stable state.

Application deployment

With Ansible, teams are able to manage the entire application lifecycle effectively from
development to production. Ansible offers a simple way to deploy your multi-tier application in a
reliable and consistent way.

Although Ansible does not directly perform source and version control, it has great support for
application source control systems like Git and Subversion.

You can configure needed services as well as push application artifacts from one common
place. Ansible doesn’t require agents on remote systems, and it offers the possibility to execute
a playbook that contains a list of tasks that will be executed in order. That order will always be
consistent.

Orchestration

Ansible provides orchestration in the sense of aligning the business request with the
applications, data, and infrastructure.

It obviously helps define the policies and service levels through automated workflows,
provisioning, and change management. This creates an application-aligned infrastructure that
can be scaled up or down based on the needs of each application. This is especially useful
when working in an enterprise environment.

17

Chapter 2 High-Level View

When it comes to the architecture, Ansible is a straightforward automation engine. Its
components and the relationships among them are shown in Figure 2.

Ansible works by connecting via ssh to the hosts (without the need for a special agent to be

installed on the host itself), and by pushing modules to the hosts itself. The modules are then
executed locally on the host, and the output is pushed back to the Ansible server.

Since it uses ssh, it can very easily connect to clients using SSH-Keys authentication, which

simplifies the whole process.

MODULES

INVENTORY API

PLUGINS

ANSIBLE S ORCHERSTRATION ENGINE

ANSIBLE PLAYBOOK

USERS

PUBLIC / PRIVATE
CLOUD

CMDB

HOSTS

NETWORKING

Figure 2: Ansible orchestration engine architecture

Users

Users are simply the developers, operators, and DevOps practitioners who are writing or
executing the automation scripts. This automation and orchestration script is called the Ansible
playbook. A user can execute those scripts by using the Ansible orchestration engine.

Modules

Modules are executed directly on remote hosts through playbooks or by running them
individually from the command line. Modules, therefore, are the units of code Ansible executes.

Each module has a particular use, from administering users on a specific type of database, to
managing VLAN interfaces on a specific type of network device.

www.dbooks.org

https://www.dbooks.org/

18

Ansible allows users to write their own modules and provides out-of-the-box core (maintained by
the Ansible team) or extras modules (maintained by community).

Some of the most commonly used modules are:

• File handling: file, stat, copy, template
• Remote execution: command, shell
• Service management: service
• Package management: apt, yum, bsd, ports
• Source control system: git, subversion

To get an idea of the scope of the available Ansible modules, take a look at the list of all
modules.

Plugins

Plugins should not be confused with Ansible modules. While modules are executed on the
managed hosts, plugins are extensions to the Ansible runtime. Operations such as data
transformation, logging of the output, and inventory handling are plugins.

Plugins are often working in conjunction with modules.

Inventories

Ansible works against multiple managed nodes or hosts that are part of the infrastructure, and
the list of those items is also known as the inventory.

Inventory is a file, defined in a YAML or INI format, that contains a list of hosts (nodes) along
with their IP addresses, servers, and databases, which need to be managed. Ansible then takes
action via a transport to connect to them: ssh for UNIX, Linux, or networking devices; and WinRM

for Windows system.

Ansible playbooks

Playbooks are files (scripts) that combine configuration, deployment, and orchestration
functions. Playbooks are executed to provide a way of automating the remote systems in a
consistent and repeatable manner.

Playbooks will execute predefined tasks, such as installing a new package on a remote system,
and tasks on their own will use modules to provide such a functionality. In that sense, playbooks
can be seen as the ultimate place where all the automation code converges.

Playbooks are human-readable and use the YAML format, which is easy to write and understand.

https://docs.ansible.com/ansible/2.9/modules/modules_by_category.html
https://docs.ansible.com/ansible/2.9/modules/modules_by_category.html

19

Chapter 3 Environment Setup

Before starting to work with Ansible, we need to set up the environment against which we will be
performing the examples and exercises.

For simplicity, this book assumes you are using Microsoft Windows 10 on a desktop computer.
Therefore, we will be using Microsoft Windows 10 to perform the basic setup. Windows 10 will
be purely used to host the VM. The rest of the examples will be run on CentOS 8 Linux.

Figure 3 depicts the set of virtual machines we are going to create, which will be installed locally
(on your desktop computer). The virtual machines are all based on CentOS 8 and will be
running on VirtualBox. To have them up and running, you will need to have about 6GB of RAM
available. However, it’s not necessary that all the servers run at the same time, if that’s the
limitation you have in your environment.

The environment presented is a possible setup for a web application that is load balanced, that
can be possibly scaled out (by attaching more web servers), and that has a backend system
serving the data (database).

Load Balancer Web Server 2 DB Server

Web Server 1

Ansible Manager
Server

Developer s
Desktop

Web Server n...

Figure 3: Development environment

Let’s briefly explain each of the hosts mentioned in Figure 3.

Table 1: Server (Hosts) List

Server Purpose Hostname Description (Static) IP Address

Ansible Manager
Server

amgr This is the virtual machine
where Ansible will be installed.
We will perform all of the
Ansible operations directly
from this server against other
hosts.

192.168.3.100

Load Balancer lb Host responsible for
redirecting HTTP requests to

192.168.3.200

www.dbooks.org

https://www.dbooks.org/

20

Server Purpose Hostname Description (Static) IP Address

either web server 1 or web
server 2.

Web Server web160

web161

Server hosting the web
application.

192.168.3.160

192.168.3.161

DB Server db Server hosting the database. 192.168.3.199

 Note: It would be good to familiarize yourself with Table 1, since we will be
using these hostnames and IP addresses throughout the examples in the
book.

In order to have the recommended setup, you need to install the following tools on your desktop
machine:

• Vagrant

• VirtualBox

• Git

• Visual Studio Code

Let’s just briefly explain the tools, their purpose, and the installation procedure.

Vagrant

“Vagrant is a tool for building and managing virtual machine environments in a single workflow.
With an easy-to-use workflow and focus on automation…” (Vagrant website).

We need Vagrant to create the Linux VMs, as stated previously.

You can install the Vagrant software by downloading it here. Just follow the installation wizard,
which is quite straightforward. If there is already a version of Vagrant installed, it will be
upgraded. You might need to restart your computer.

After the installation, please verify that the software has been installed correctly by opening the
command prompt (PowerShell) and typing the following command.

Code Listing 3: Checking the Vagrant version

You should receive no errors, and the result should be something like Vagrant 2.2.15, which

is the version used at the time of writing this book.

PS C:\>vagrant -v

https://www.vagrantup.com/intro
https://www.vagrantup.com/downloads.html

21

We need also to install a Vagrant plugin called vagrant-hostmanager, which will help us in

setting up the connectivity between hosts by manipulating the /etc/hosts file at the time of

provisioning of the machines.

Please run the following command.

Code Listing 4: Installation of the vagrant-hostmanager plugin

The version used at the time of writing is 1.8.9. To check that the plugin got installed (and the
version), we can run the following command.

Code Listing 5: Check the installed Vagrant plugins

VirtualBox

According to its website, VirtualBox is a powerful virtualization product for enterprise as well as
home use. We will be using VirtualBox in order to run the aforementioned virtual machines.

On Windows, you can install VirtualBox by visiting this site. After downloading the application,
install it by following the wizard. You can simply keep the default options.

 Tip: Keep in mind that only one hypervisor can be active at the same time, so if
your Windows 10 has the Hyper-V (or other) installed and active, you might need to
deactivate it in order to run VirtualBox.

After installing VirtualBox, please also install the VirtualBox Extension Pack. The link to the
extension pack is typically in the link provided.

At the time of writing, the version of the Virtual Box application is 6.1.18.

Visual Studio Code

Visual Studio Code is a free and open-source code-editing app we are going to use to work with
Ansible scripts. Please install Visual Studio Code by following this link. The version used in this
book is 1.55.2.

After installing the tool, please install some plugins that will help you with the scripting, such as
the ones listed in the following table.

PS C:\>vagrant plugin install vagrant-hostmanager

PS C:\>vagrant plugin list

www.dbooks.org

https://www.virtualbox.org/
https://www.virtualbox.org/wiki/Virtualization
https://www.virtualbox.org/wiki/Downloads
https://code.visualstudio.com/
https://www.dbooks.org/

22

Table 2: Visual Studio Code Plugins

Plugin Name Plugin Identifier Short Description

Vagrantfile Support
marcostazi.vs-code-vagrantfile

Provides syntax highlighting
support for Vagrantfile,
which is the Vagrant
configuration file.

Jinja
wholroyd.jinja

Jinja template editing
support.

Ansible
haaaad.ansible

Ansible language support.

Remote ssh
connections support

ms-vscode-remote.remote-ssh
Microsoft plugin to connect
to remote servers via ssh.

Remote ssh
connections support

ms-vscode-remote.remote-ssh-edit
Microsoft plugin to connect
to remote servers via ssh
and edit files.

Remote ssh
connections support

ms-vscode-remote.vscode-remote-
extensionpack

Microsoft plugin.

Ansible Mod
sysninja.vscode-ansible-mod

Ansible editing helper
functions.

By using the following commands and running them from the PowerShell command line, you
can automate the installation of the plugins mentioned in the previous table.

Code Listing 6: Visual Studio Plugin Installation via command line

Infrastructure installation procedure

Now that the tools are installed, please create a folder in which we will place the Vagrantfile

configuration.

code --install-extension marcostazi.vs-code-vagrantfile
code --install-extension wholroyd.jinja
code --install-extension haaaad.ansible
code --install-extension ms-vscode-remote.remote-ssh
code --install-extension ms-vscode-remote.remote-ssh-edit
code --install-extension ms-vscode-remote.vscode-remote-extensionpack
code --install-extension sysninja.vscode-ansible-mod

23

For example, I have created the following two folders:

• C:\AnsibleSuccinctly to hold all the Ansible scripts.

• C:\AnsibleSuccinctly\Vagrant (subfolder) to place the Vagrantfile to start the
environment.

You can execute in the command line (PowerShell) the following script.

Code Listing 7: Folder creation

After creating the folders, we also need to create the Vagrantfile.

Code Listing 8: Create Vagrantfile via command line

Let’s open the folder in Visual Studio Code.

Code Listing 9: Opening the folder with Visual Studio Code

You should now have the basic folders and a file called Vagrantfile created and opened in
Visual Studio Code.

Figure 4: Creation of the Vagrantfile

After running the commands, you should also see Visual Studio Code opening the folder
AnsibleSuccinctly. You should get something similar to the following figure.

PS C:\>mkdir AnsibleSuccinctly\Vagrant

PS C:\>New-Item C:\AnsibleSuccinctly\Vagrant\Vagrantfile

PS C:\>code C:\AnsibleSuccinctly\

www.dbooks.org

https://www.dbooks.org/

24

Figure 5: Visual Studio Code view of the folder

Open the file called Vagrantfile, paste the following content, and save the file, which contains
the script that will be executed to create the VMs.

Code Listing 10: Vagrantfile content

-*- mode: ruby -*-

vi: set ft=ruby :

BOX_IMAGE = "Dougs71/CentOS-8.1.1911"

BOX_VERSION = "1.0.0"

Vagrant.configure("2") do |config|

 config.hostmanager.enabled = true

 config.hostmanager.manage_host = false

 #Ansible manager definition

 config.vm.define "amgr" do |amgr|

 amgr.vm.box = BOX_IMAGE

 amgr.vm.box_version = BOX_VERSION

 amgr.vm.hostname = 'amgr'

 amgr.vm.network :private_network, ip: "192.168.3.100"

 amgr.vm.provider :virtualbox do |v|

 v.memory = 2048

 v.cpus = 4

 v.name = "amgr"

 v.customize ["modifyvm", :id, "--natdnshostresolver1", "on"]

 end

25

 end

 #Load balancer definition

 config.vm.define "lb" do |lb|

 lb.vm.box = BOX_IMAGE

 lb.vm.box_version = BOX_VERSION

 lb.vm.hostname = 'lb'

 lb.vm.network :private_network, ip: "192.168.3.200"

 lb.vm.provider :virtualbox do |v|

 v.memory = 1024

 v.cpus = 1

 v.name = "lb"

 end

 end

 #Database definition

 config.vm.define "db" do |db|

 db.vm.box = BOX_IMAGE

 db.vm.box_version = BOX_VERSION

 db.vm.hostname = 'db'

 db.vm.network :private_network, ip: "192.168.3.199"

 db.vm.provider :virtualbox do |v|

 v.memory = 1024

 v.name = "db"

 end

 end

 #Creation of the web application servers

 (160..161).each do |host|

 config.vm.define "web#{host}" do |web|

 web.vm.box = BOX_IMAGE

 web.vm.box_version = BOX_VERSION

 web.vm.hostname = 'web#{host}'

 web.vm.network :private_network, ip: "192.168.3.#{host}"

 web.vm.hostname = "web#{host}"

 web.vm.provider :virtualbox do |v|

 v.memory = 1024

 v.cpus = 1

 v.name = "web#{host}"

 end

 end

 end

end

www.dbooks.org

https://www.dbooks.org/

26

Finally, let’s create the VirtualBox images by running the following command in the Vagrant
folder.

 Note: Vagrant needs to download the CentOS 8 image from the Vagrant online
repository. The speed will depend on speed of your internet connection. As an
indication, you might experience 3–5 minutes of waiting time for the creation of all
five machines.

Code Listing 11: Starting the VM creation

You might open VirtualBox at the same time and see in real time how the VMs are getting
created. The result should look similar to what is shown in the following figure.

Figure 6: VirtualBox virtual machine status

When you run the status command, it should give you the view on the status of the VMs.

Code Listing 12: Vagrant status checking

Please note that, in the result, we can also see that we can ping the newly created server, as
shown in the following figure.

PS C:\>AnsibleSuccinctly\Vagrant>vagrant up

PS C:\>AnsibleSuccinctly\Vagrant>vagrant status

27

Figure 7: Status of VMs

 Tip: At every restart of your PC/workstation, you might need to run the vagrant up
command to start the VMs. Unless you destroy and recreate a VM, the state of the VM
will remain intact.

Accessing the servers

There are two ways of accessing the servers that you should use.

Table 3: Accessing the VM via ssh

vagrant ssh <machine-name> By using vagrant ssh, you may easily

access any machine created by Vagrant. The
following command:

vagrant ssh amgr

will automatically log you in to the amgr
machine without asking for username and
password.

This command has to be run in the folder
where the Vagrantfile is located, in our case
C:\AnsibleSuccinctly\Vagrant.

Examples:

www.dbooks.org

https://www.dbooks.org/

28

• vagrant ssh web160

• vagrant ssh db

ssh vagrant@<machine_ip> This is the standard ssh command. The

vagrant machines have been set up so that
they can be accessed from the Windows 10
client, but only by the IP address. But we
have to supply the credentials:

username = vagrant
password = vagrant

Examples:

• ssh vagrant@192.168.3.100
• ssh vagrant@192.168.3.200

Other Vagrant commands

Vagrant has several commands you should be aware of.

Table 4: Vagrant commands

vagrant up Given the presence of a Vagrantfile with the infrastructure definition,
creates or starts the infrastructure. Use this command every time you
want to start the VMs.

vagrant destroy It can only be executed in the folder where the Vagrantfile is located. It
destroys the VMs created, by literally deleting all of the files and
configuration.

vagrant reload Reloads the virtual machine by applying new settings from the
Vagrantfile. Useful when you need to change network or synced folder
settings.

vagrant ssh It connects to a running Vagrant VM.

vagrant halt Stops (pauses) the virtual machine.

Most of the time, we will be using vagrant ssh.

Figure 8: Using Vagrant ssh

29

 Tip: Anytime you think you’ve done something wrong within the VM, you can
always destroy it by running vagrant destroy <machine_name> and vagrant up
<machine_name>. It’s a very convenient way to experiment with machines and reset
the environment at any time—and all of this within minutes.

Visual Studio Code: connecting with the manager node

This step is optional, and while you might use vi, vim, nano, or your other favorite editor to edit

the files directly on the Linux amgr node, I personally find it very useful to work from Visual

Studio Code while being connected remotely to the amgr node.

VS Code gives us a very easy way of doing so. After starting up the VM with the vagrant up

command, we can connect remotely to the amgr node by executing the following steps:

1. Open Visual Studio Code and click the Remote Explorer icon on the left-hand side of the
editor.

2. Choose SSH Targets from the drop-down menu and click the + icon, as shown in Figure
9.

Follow the wizard by entering the following.

Code Listing 13: Connection settings VS Code

When you are prompted with Select SSH configuration file to update, choose the folder
location as in the Code Listing.

Code Listing 14: Storing configuration settings

ssh vagrant@192.168.3.100

C:\ProgramData\ssh\ssh_config

www.dbooks.org

https://www.dbooks.org/

30

Figure 9: Add new remote connection

At the end of the process, you should see something like the following.

Figure 10: Setting up the remote connection

If not already present, make sure there is a path selected for the config file in the remote
connection settings. To do so in VS Code, press Ctrl+Shift+P and type Remote-SSH: Settings.
When the settings are open, specify the full path to the config file in the RemoveSSH: Config
File entry, as shown in the following figure.

31

Figure 11: Remote.SSH: config file setting

On the Remote Explorer, right-click the IP address and choose Connect to Host in Current
Window. The process of connecting to the remote server starts.

You will be prompted for the password twice, so please enter vagrant as the password.

At the end of the process, you should have the result shown in Figure 12. You can open any
folder on the server by choosing File >Open Folder.

Figure 12: Opened folder on remote server

Now you can create your own folders, edit files, and execute commands directly from Visual
Studio Code.

 Note: All the figures in this book are showing examples using the command line.
Use what you will find more convenient vagrant ssh, ssh vagrant@192.168.3.100, or
VS Code remote connections.

www.dbooks.org

https://www.dbooks.org/

32

Chapter 4 Installing Ansible

We will be installing the Ansible software on our Ansible Manager server amgr, which we started

up previously. From there, we will be orchestrating the execution of the code. There are two
main ways to install and use Ansible on the host:

• Using the operating system package manager (apt-get, yum), depending on the
operating system in use.

• Install Ansible by using pip, which is the Python package manager.

Ansible creates new releases a couple of times per year. Due to this short release cycle, minor
bugs will generally be fixed in the next release. Major bugs will still have maintenance releases
when needed, though these are not so frequent.

 Note: Although you can try both installation options, in this book we will be using
the installation through pip.

Using the OS package manager

Installing Ansible by using the OS package manager obviously depends on the operating
system (and distribution, in case of Linux). As mentioned previously, we are using CentOS.

Installing Ansible on CentOS

Throughout this book, we are using CentOS as our example Linux distribution. CentOS is a
good choice, as it is secure, has a good package-management software, and is well
documented. The chance of finding it in an enterprise environment is quite high.

Let’s log into the amgr server by running the following command.

Code Listing 15: Log into the amgr host

Once logged into the amgr host, we’ll use the Ansible installation command.

Code Listing 16: Installing Ansible command

PS C:\>AnsibleSuccinctly\Vagrant>vagrant ssh amgr

Or alternatively (when asked, provide vagrant as password)

PS C:\>ssh vagrant@192.168.3.100

[vagrant@amgr ~]$ sudo yum install ansible

33

To check that Ansible has been properly installed, let’s run the following command.

Code Listing 17: Checking the Ansible version

The result returned should be similar to what is shown in Figure 13. You can see that the result
returned shows a lot of information about the installed software, such as the version (in our case
Ansible 2.9.18) and the configuration settings, such as configuration file location and Ansible
location.

Figure 13: Ansible version information

Installing Ansible by using pip

The standard package manager for Python is pip. It allows you to install and manage additional

packages that are not part of the Python standard library.

If pip is not already installed (as in our case currently), we should install it first.

 Note: If you have followed the previous installation by using the package
manager, you can simply destroy the amgr machine and create a new one to have a
clean environment [vagrant destroy amgr, vagrant up amgr].

As we did previously, we should login to the amgr host first.

PS C:\>AnsibleSuccinctly\Vagrant> vagrant ssh amgr

 Note: Throughout this book, we will be using Ansible installed by using pip and
within a virtual environment.

Installing Python and pip

To install pip, we need to install the Python framework, which already contains the pip tool as

part of its package. Let’s run the following command to install Python version 3.6.

[vagrant@amgr ~]$ ansible --version

www.dbooks.org

https://www.dbooks.org/

34

Code Listing 18: Installation of Python 3.6

The output of the command should look like the output shown in Figure 14. We can also see
that together with Python 3.6, this command also installs the pip and setuptools packages.

Figure 14: Installing Python 3.6

Once it’s installed, we will be working in a virtual environment, which we need to create first.
This is very useful, as we can play around with packages installed by Python.

We need to create a folder called ansible, where we will keep the code, and afterward we will
create and activate the virtual environment called avenv (which stands for ansible virtual

environment, a random name chosen for convenience).

Code Listing 19: Creating the virtual environment

[vagrant@amgr ~]$ sudo dnf install python36 -y

[vagrant@amgr ~]$ mkdir ansible
[vagrant@amgr ~]$ cd ansible
[vagrant@amgr ansible]$ python3 -m venv avenv
[vagrant@amgr ansible]$ source avenv/bin/activate

https://docs.python.org/3.6/tutorial/venv.html

35

Activating the virtual environment will change your shell’s prompt to show what virtual
environment you’re using, as you can see the (avenv) in front of the command prompt.

 Note: Make sure to activate the environment every time before using Ansible by
running source avenv/bin/activate in the ansible folder. To deactivate the virtual
environment, just use the deactivate command.

Before installing Ansible, it is good to take the latest version of pip and setuptools by running

the following command. We will also install a package called wheel, which will help us install

Ansible.

Code Listing 20: Upgrade pip, setuptools, and wheel command

Installing Ansible

After pip and its dependencies have been properly installed and updated, we can install

Ansible. Ansible is installed by the following command (inside the virtual environment).

Code Listing 21 : Installing Ansible with pip command

 Note: Installing Ansible also installs the dependencies such as jinja2, PyYAML,
cryptography, and other packages.

The installation procedure is shown in the following figure.

(avenv) [vagrant@amgr ansible]$

(avenv) [vagrant@amgr ansible]$ pip3 install --upgrade pip setuptools wheel

(avenv) [vagrant@amgr ansible]$ pip3 install ansible

www.dbooks.org

https://www.dbooks.org/

36

Figure 15: Installation procedure of Ansible using pip

When you wish to update Ansible, we can first check whether there is a newer version by using
the following command.

Code Listing 22: Check for a newer version

We can update to a newer version, if it exists.

Code Listing 23: Update Ansible command

The version of Ansible used in the examples in this book is 2.10.8.

(avenv) [vagrant@amgr ~]$ pip3 list --outdated

(avenv) [vagrant@amgr ~]$ pip3 install -U ansible

37

Chapter 5 Ansible Configuration

Certain settings in Ansible are adjustable via a configuration file (ansible.cfg). This file contains
all of the Ansible configuration.

Installing Ansible via the pip tool doesn’t create such a file. To verify this, we can run the

version command as follows.

Code Listing 24: Ansible.cfg location

You will get a similar output to the one shown in Figure 16, and you might notice that the config
file setting is set to None. This means that when we install Ansible via the pip command, the

ansible.cfg file is not set up by default. In the next chapter, I will provide more information about
how to deal with the ansible.cfg file.

Figure 16: Ansible version information

Ansible will look at the configuration file in a variety of locations, with the following priority, and
use the first file found (all others are ignored).

Table 5

ANSIBLE_CONFIG If there is an environment variable ANSIBLE_CONFIG set up to

point to any file on the file system.

In the ANSIBLE_CONFIG we can specify the file location

directly anywhere in the system before running Ansible, for
example:

export ANSIBLE_CONFIG=/path_to_file/ansible.cfg

./ansible.cfg The . represents the current directory.

~/.ansible.cfg ~ is a shortcut for the user’s home directory. In our case, this
would be the vagrant user under its home directory.

(avenv) [vagrant@amgr ~]$ ansible --version

www.dbooks.org

https://www.dbooks.org/

38

/home/vagrant.

/etc/ansible/ansible.cfg File in a system location, globally defined.

 Note: Throughout this book, the ansible.cfg file will be always placed in the
“current folder” ./ansible.cfg. In this way, we can have different folders with different
ansible.cfg files.

To find out all of the currently configured options, the ansible-config utility can help us.

Code Listing 25: Check current Ansible configuration

The output of this command is going to be a long list of configuration items with explanations.

In case the ansible.cfg file is present, we can see its content by running the following command.

Code Listing 26: Displaying the current config file

An error will be returned if the file is not present at any of the aforementioned locations.

An example of a complete ansible.cfg file can be found on the Ansible GitHub account.

This file can be copied in the current folder, and its default parameters could be changed.
Alternatively, we can have an empty ansible.cfg file and simply set the values we want to
override.

Another very useful command option is --only-changed, which will show only the values that

we have potentially overwritten, and which are different from the default ones.

Code Listing 27: Displaying changes in ansible.cfg

There are quite few sections in the ansible.cfg file with subconfiguration keys.

Table 6: Ansible.cfg configuration sections

[defaults] Default generic Ansible settings.

[inventory] Dynamic inventory plugin settings.

[privilege_escalation] Ansible can use existing privilege escalation
systems to allow a user to execute tasks as
another user.

(avenv) [vagrant@amgr ~]$ ansible-config list

(avenv) [vagrant@amgr ~]$ ansible-config view

(avenv) [vagrant@amgr ~]$ ansible-config dump --only-changed

https://github.com/ansible/ansible/blob/devel/examples/ansible.cfg

39

[paramiko_connection] Paramiko is the default SSH connection
implementation on Enterprise Linux 6 or
earlier and is not used by default on other
platforms.

[ssh_connection] OpenSSH specific settings.

[persistent_connection] When communicating with a remote device,
you have control over how long Ansible
maintains the connection to that device, as
well as how long Ansible waits for a
command to complete on that device.

[sudo_become_plugin] User to be used as the sudo.

[colors] Colors in the editor when running
commands.

[galaxy] Galaxy platform-specific settings.

The [defaults] section

Among other sections, the ansible.cfg file has a [defaults] section, which contains the basic
configuration information, such as where to locate the inventory file, which user to use when
connecting to remote hosts, and the remote host port.

Figure 17: Snippet of a [defaults] section

www.dbooks.org

https://www.dbooks.org/

40

Chapter 6 Ansible Inventory

The inventory or host configuration file is a file that defines the hosts or groups of hosts upon
which commands, modules, and tasks in an Ansible Playbook will operate. In other words, it
defines a list of systems that we wish to manage with Ansible.

Typically, this file is located in the /etc/ansible directory if Ansible is installed with the default
Linux package manager. This file is not provided by the pip installation, so it has to be created

manually.

Some important facts about the inventory file:

• The inventory file defines a collection of hosts that are target systems of the automation.

• The inventory file contains a list of hosts that can be grouped together into groups. One
host can be part of multiple groups. For example, we could group hosts into webservers,
databases, load balancers, and so on.

• Groups can be grouped together and managed collectively.

• The inventory file contains variables that could apply to either hosts or groups.

• The inventory file is a file that can be written in INI-style or YAML-style formats.

• It is possible to create an inventory file in a dynamic way, but this is outside of the scope
of this book.

Inventory location

As mentioned previously, the file has a default location; however, we can create our own local
version, just to be used by our project. Wherever this location is, it is controlled by the
ansible.cfg file, which specifies the location of the inventory file that can be either local
(relative), as in the following example, or absolute.

Code Listing 28: Inventory file location in ansible.cfg

Inventory file content

The inventory file format can be either INI- or YAML-based. It contains a list of hosts that can be
specified as IP addresses, as qualified domain names, or both.

Code Listing 29: Inventory file in its simplest form

[defaults]

Inventory = ./inventory

mail.example.com

192.168.3.100

web.mydomain.local

41

Host groups

We can organize the list of hosts in an intelligent way, so that whenever we want to apply some
changes, those changes get applied in one go to several hosts belonging to the group.

The following example shows how we can define three arbitrary groups: webservers,

databases, and production. Under each of them we can see that one server

(web1.domain.com) can make part of two different groups.

Code Listing 30: Inventory file with groups defined

There are two groups that are defined by default in Ansible:

• All: Contains every host as defined in the inventory file.

• Ungrouped: Contains all hosts that don’t have another group defined (aside from all).

This implies that every host will belong to at least one of the two groups.

Nested groups

It’s also possible to “group the groups.” This is achieved by appending :children to the group

definition. We can define the list of hosts in Europe by putting together the list of Italian and
Swiss hosts.

Code Listing 31: Inventory file with nested groups

[webservers]

web1.domain.com

web2.domain.com

192.168.3.1

[databases]

db.domain.com

[production]

web1.domain.com

[italy]

web1.domain.it

web2.domain.it

[switzerland]

web1.domain.ch

[europe:children]

italy

switzerland

www.dbooks.org

https://www.dbooks.org/

42

Host ranges

It is also possible to define host ranges when defining hosts, in case we have a repetitive and
large list of servers that otherwise would be cumbersome to handle manually.

Range is typically defined by [START:END], and it can contain letters or numbers.

Code Listing 32: Range of host names

• The first case defines two web servers starting with web1.domain.com and

web2.domain.com.

• The second case defines the list, such as: a.domain.com, b.domain.com,

c.domain.com.

• The third case defines the servers in a range from 192.168.3.1, 192.168.3.2 until

192.168.3.200.

• The fourth example defines the range of:

• 192.168.2.1, 192.168.2.2, … until 192.168.2.200

• 192.168.3.1, 192.168.3.2, … until 192.168.3.200

There is also a possibility to create an alias (such as WS1), in case we have only the IP

addresses. This is quite useful when displaying the information about the machine while
executing commands, as the IP addresses might not give us enough information, especially if
we have a lot of machines to manage.

Code Listing 33: Define an alias in the inventory file

Why it is it important to group the hosts together? This is mainly because it’s more convenient to
launch a command against a group (or all) of servers rather than doing it one by one, which

would defeat the reason for having the inventory file altogether.

Host verification

Ansible offers the ansible-inventory command line tool, which is used to display or dump the

configured inventory files as Ansible sees it. By default, it produces an output in JSON format,
but it can also produce a YAML file, which is useful if we like to convert the format from INI-style
to YAML.

Let’s quickly check the command by creating a folder on the amgr node and naming it

chapter_6. Let’s also create two files: the inventory file with the content (Code Listing 34), and
the ansible.cfg (Code Listing 35).

1. web[1:2].domain.com

2. [a:c].domain.com

3. 192.168.3.[1:200]

4. 192.168.[2:3].[1:200]

some_server ansible_port=5555 ansible_host=192.0.2.5

https://docs.ansible.com/ansible/latest/cli/ansible-inventory.html

43

Code Listing 34: Inventory file

Code Listing 35: ansible.cfg with inventory file specified

By running the ansible-inventory command, we can get a list of hosts as a graph.

Figure 18: Inventory content shown as graph

We can get a list of hosts converted into YAML format by supplying the -y argument and –list.

Figure 19: Inventory file shown as YAML

[webservers]

192.168.3.160

192.168.3.161

[load_balancers]

192.168.3.200

[databases]

192.168.3.199

[defaults]

Inventory = ./inventory

www.dbooks.org

https://www.dbooks.org/

44

Dynamic inventories

It’s outside the scope of this book to discuss dynamic inventories, but it’s worth mentioning that
there is such a possibility.

Dynamic inventories are particularly important in cases where the infrastructure is not
predefined, or it might change overtime.

Ansible supports this scenario either through inventory plugins, which would then integrate with
the data providers (cloud, LDAP), or by predefined, custom scripts that are custom built.

You can find more information by consulting the Ansible documentation.

https://docs.ansible.com/ansible/latest/user_guide/intro_dynamic_inventory.html

45

Chapter 7 Connecting to Remote
Environments

In order to execute any code, Ansible has to first connect to the host that is targeted for
changes. That host could be of various types, such as Linux, Windows, or Kubernetes.

The beauty of Ansible is the pluggable architecture and its support for various environments. As
shown in the following picture, there are various methods that Ansible supports given the
targeted host type.

Figure 20: Ansible pluggable architecture

When it comes to connecting to the Linux hosts, the typical way is to use the OpenSSH (ssh).

For connecting to Microsoft Windows hosts, the default is the winrm technology supported by

Microsoft Windows, and so on.

Ansible supports other plugins, as well; you can find a full list here.

You can find the list of available and installed plugins by running the following command.

Code Listing 36: Find the list of connection plugins

The result shows the list of plugins currently available, as seen in Figure 21.

We won’t go into the details of those connection types other than ssh, as this is the default

mechanism used in Linux, and since all of our machines are Linux-based, this would be the
context of this book.

(avenv) [vagrant@amgr ~]$ ansible-doc -t connection -l

www.dbooks.org

https://docs.ansible.com/ansible/latest/plugins/connection.html
https://www.dbooks.org/

46

Figure 21: Ansible connection plugins result

Ansible Manager Server configuration

One of the most common ways of connecting to remote hosts in Linux is to use ssh. When

using Ansible, it’s recommended to use the ssh key-based authentication.

To run the commands, Ansible should be using the unprivileged account that can use sudo to

become root without supplying a password. Requiring a password during the command

running can be cumbersome, as the operator needs manual interaction.

If we look at the ansible.cfg [privilege_escalation] section, we can see that Ansible by

default is configured to support what I just described (the # in front of the key means that this

setting is just commented out, making it de facto a default value).

Code Listing 37: Privilege escalation defaults

However, these settings can be also placed in the playbook to override the default settings, as
we are going to see later.

 Note: By default, Ansible will connect to the other host by using the user
executing commands.

[privilege_escalation]

#become=True

#become_method=sudo

#become_user=root

#become_ask_pass=False

47

Generation of the ssh key

Before using Ansible without providing the username and password, we have to create the ssh

key (as a file) and push this file to all the hosts we’d like to manage.

First, log in to the amgr server, and at the shell prompt, type the following command.

[vagrant@amgr ~]$ ssh-keygen -t rsa

You will be prompted for the location of the key file, and you can just keep the default values as
supplied in the command prompt. Please do override the id_rsa file.

Figure 22: Overriding id_rsa

Once the ssh key is generated, we need to copy it to all the hosts. We can accomplish this by

running the following command. You will be asked to provide a password for each server.
Hopefully this is just a one-time operation.

Code Listing 38: Copy ssh key to remote hosts

You can see that now we can log into the servers without supplying any username and
password, as shown in the following figure.

[vagrant@amgr ~]$ hosts="web160 web161 db lb"
[vagrant@amgr ~]$ for host in $hosts; do
> ssh-copy-id -i ~/.ssh/id_rsa.pub vagrant@$host -o
StrictHostKeyChecking=no -f
> done

www.dbooks.org

https://www.dbooks.org/

48

Figure 23: No password required

49

Chapter 8 Running Ad-Hoc Commands

One of the easiest ways to interact with the hosts defined in the inventory is to run ad-hoc
commands. An ad-hoc command is a one-time, quick, and easy operation—but in general, not
reusable.

There are several tasks that are rarely repeated, so in that case, it’s not that efficient to create
playbooks. These can be whatever comes to mind, from rebooting servers or simply checking
that the servers are up by using the ping command.

To run Ansible ad-hoc commands, we will directly use the ansible command line tool. The

command looks like the following.

Code Listing 39: Ad-hoc command template

• Pattern defines the specific host or group of hosts as defined in the inventory against

which we’d like to run the command.
• Module defines the command to be executed. This can be a simple ping command or

something way more complex. Executing modules is idempotent (they only make
changes if the change is needed). We are going to see a few examples of commands to
understand this better.

You can retrieve the full list of available commands by running the following command.

Code Listing 40: Retrieving all modules

There is a large amount of information retrieved; therefore, you can simply filter out the
commands and retrieve what you need by using the grep command.

Code Listing 41: Retrieving all modules filtering for ping

Documentation for a particular command is also available, and we can look for it by using the
following command.

Code Listing 42: Retrieving ping documentation

The result is shown in Figure 24.

$ ansible [pattern] -m [module] -a "[module options]"

$ ansible-doc -l

$ ansible-doc -l | grep ping

$ ansible-doc ping

www.dbooks.org

https://www.dbooks.org/

50

Figure 24: Ping documentation

Some modules need some arguments to be passed to them, and for this we can supply them by
specifying the -a option. For instance, Ansible has a module called command, which executes

whatever command we want directly on the remote host.

Example command: ping

Let’s run an example. We can run the ping command—this time not as a module, but as an

argument passed to the command module.

This will log in to the remote host, execute the ping www.microsoft.com -c 2 command from

the remote host, and return the result.

Code Listing 43: Inventory file to use in the example

And the ansible.cfg file as follows.

Code Listing 44: Ansible.cfg with web servers

Now, in the directory where we placed the two files, we can run the following command to ping
the web servers.

Code Listing 45: Pinging www.microsoft.com from web servers

[webservers]

192.168.3.160

192.168.3.161

[defaults]

Inventory = ./inventory

$ ansible webservers -m command -a "ping www.microsoft.com -c 2"

51

We can see that two results are returned, one per web server (as we have specified two web
servers as the target of the module).

Figure 25: Pinging www.microsoft.com from web servers

Let’s see how this is different from running the ping module.

Figure 26: Pinging web servers

Here we can also see two results, but this time the amgr is pinging the webservers (web160,

web161) rather than the webservers themselves pinging www.microsoft.com.

Example command: service

Another very useful module is the service module. We can check the documentation to see

what this module all about.

www.dbooks.org

http://www.microsoft.com/
https://www.dbooks.org/

52

Figure 27: Service module documentation

The documentation says that it controls services on remote hosts. This means that we are able
to control the status of services on a given host, such as by stopping or (re)starting the service.

In the next example, we are issuing a service command to restart sshd service running on the

web servers.

If there is need for elevated rights, the -b option can be specified directly in the command line.

This option is the same as when specifying become=True in the ansible.cfg file (which we have

encountered previously).

Code Listing 46: Restarting sshd service on remote host

The following is the content of the ansible.cfg if we’re not supplying the -b option.

Code Listing 47: Ansible.cfg with become option specified

Common modules

In the previous examples, we have seen how to use ad-hoc commands. Ansible offers many
modules that could be used. The following sections cover some of the most common ones.

$ ansible webservers -m service -a "state=restarted name=sshd" -b

[defaults]

Inventory = ./inventory

deprecation_warnings = False

[privilege_escalation]

become=True

53

Ansible built-in modules

The following list is just an extract of the most-used modules. These modules are idempotent,
which means that the operation, action, or request can be applied multiple times without
changing the result (state of the system).

Table 7

apt Manages apt-packages; useful for managing Linux distributions using apt.

yum Manages yum packages; useful for managing Linux distributions using yum.

dnf Manages dnf packages; useful for managing Linux distributions using dnf.

copy Copies files to remote location.

file Manages files and file properties.

get_url Downloads files from http, https, or ftp to node.

git Deploys software or files from git checkouts.

reboot Reboots a machine.

user Manages user accounts.

The full list of modules is available in the official Ansible documentation.

Command modules

In addition to using the built-in Ansible modules, you can run commands directly on the
managed hosts. Those are very handy if there are no specific modules built for Ansible, but in
general, the advice is to use the Ansible ones if possible.

These modules are not idempotent! In other words, issuing multiple identical commands may
not have the same effect as issuing a command once.

www.dbooks.org

https://docs.ansible.com/ansible/latest/collections/index_module.html
https://www.dbooks.org/

54

Table 8

command Runs a single command on the remote system.

shell Runs a command on the managed host system’s shell.

raw Runs a command directly using the remote shell and bypasses the module
subsystem, which is useful when the remote system cannot have Python
installed.

Idempotent modules

We have already mentioned that Ansible runs the ad-hoc commands in an idempotent way. As
is stated in the Ansible documentation:

“An operation is idempotent if the result of performing it once is exactly the same as the result of
performing it repeatedly without any intervening actions.”

Let’s demonstrate this concept by using the group module, which creates a user group on the

managed host, (in our case, web servers).

We have learned that we can investigate the documentation and check the options (arguments)
the group command supports by running the ansible-doc group command-line command.

We can see that group supports several arguments:

• name: A mandatory argument that specifies the name of the group to be added or
removed.

• state: An optional argument that can be either absent or present. If absent is
specified, we will instruct Ansible that the final state of the group on the managed host
should be, indeed, absent (removed). Otherwise, it will be present, which is the default
value.

Code Listing 48: Create app_users group on webservers

The result of running the command is shown in the following figure. We can see that the result
of the command was CHANGED. This means that a change has been applied to the managed

host. The changed property is also set to true, which tells us that the change has been applied,

so the state of the system has changed.

$ ansible webservers -m group -a "name=app_users state=present" -b

https://docs.ansible.com/ansible/latest/reference_appendices/glossary.html
https://docs.ansible.com/ansible/latest/collections/ansible/builtin/group_module.html

55

Figure 28: Result of create app_users group on webservers

However, if we rerun the same command, the message we see is another one. You can see
that the command was successful (SUCCESS), but the changed property is false. This means

that the command executed didn’t apply any change on the managed host.

Figure 29: (Re)running the command

Because this command is idempotent, it didn’t change the state of the managed machine by
running the same command twice.

www.dbooks.org

https://www.dbooks.org/

56

Chapter 9 Ansible Playbook

An Ansible playbook is a file written in the Ansible automation language, and it’s based on the
YAML format. The playbook is Ansible’s means to perform configuration, deployment, and
orchestration.

As opposed to the ad-hoc commands we discussed previously, playbooks can declare
configurations, but they can also orchestrate the steps to be executed. A playbook contains
tasks that can be launched synchronously or asynchronously, depending on the use case.

One can think of a playbook as an entry point for all of the operations that we would like to
execute in a given order against one or a set of managed hosts. In that sense, playbooks are
meant to be kept in the source control (such as Git) and should be treated as any other
application code.

Basic structure

The first thing to know about an Ansible playbook is that it’s written in YAML. There are just a
few rules to pay attention to when writing the code:

• The file typically should have the standard yml extension.
• The file must start with (three dashes) ---.
• The file is indented by two spaces (not tabs), as emphasized by the orange highlights in

the following code snippet.
• The items of the same level must be aligned.

Code Listing 49: Simple playbook example (webserver.yml)

We have specified the name of the play, the hosts to which this code is going to be applied

(group in the inventory file), and the become:yes option (to enable privilege escalation). These

settings are global to the playbook.

We can see that there is a tasks section defined and aligned by two spaces. The tasks section

is a list of individual tasks identified by the name, the module, and other possible arguments. It’s

very similar to what we have seen previously with the ad-hoc commands.

- name: Web Server Playbook

 hosts: webservers

 become: yes

 tasks:

 - name: Pinging web server

 ansible.builtin.ping:

 data: pong

57

Although we see only one task in the previous example, we can specify more of them, and as
we are going to see in the following chapters, combine them with variables, handlers, or roles to
obtain a very powerful orchestration.

Playbook

Play 1

Task 1: Module

Task 2: Handler

Task 3: Notify

Play 2

Task 4: Module

Handler 1: Restart service

Handler 2: Restart service

Hosts

Variables

Figure 30: Typical playbook structure

Executing the playbook

To execute the playbook, we use the ansible-playbook command.

Code Listing 50: Execution of the webserver.yml playbook

The result is going to look similar to the following.

Code Listing 51: Playbook output

$ ansible-playbook webserver.yml

(avenv) [vagrant@amgr simple_playbook]$ ansible-playbook webserver.yml

PLAY [Web Server Playbook]

**

TASK [Gathering Facts]

**

ok: [193.168.3.161]

ok: [193.168.3.160]

TASK [Pinging web server]

ok: [193.168.3.161]

ok: [193.168.3.160]

www.dbooks.org

https://www.dbooks.org/

58

We can clearly see that the output contains the output grouped under the names of the sections
as defined in the webserver.yml:

• Gathering Facts: This is the phase of retrieving information about all of the hosts listed

in the inventory file, and that are in the context of the playbook. We can disable it by
specifying the option gather_facts: false in the default section of the playbook.

• TASK [task_name]: For every task defined in the playbook and executed, there will be

one section in the result. In our case, we have only one task. Pinging web server is
executing the module ping, and it is displaying that the operation has been completed

successfully, specifying the name of the host, as well.

• PLAY RECAP: After each run, there is a summary of the playbook execution stating if

there were failures during the execution, and it constitutes a very nice report of the
playbook execution itself. We can clearly see that there are a few pieces of information
available:

o ok=2: There are two operations completed successfully.

o changed=0: Something has changed on that particular host. In our case, ping

doesn’t change anything, really.
o unreachable=0: If playbooks are not able to reach some hosts, this will be

shown here.
o failed=0: If any operation fails, this will be shown in the recap, as in the task

itself with more details.
o skipped=0: Shows if there are tasks that are not being executed due to some

conditions set.
o rescued=0: Tasks that failed but recovered execution. There is a fallback

solution in case a task fails to execute.
o ignored=0: If there are some errors being ignored, the count will be shown here.

Limit option

There are a few options when using ansible-playbook commands, such as limiting the hosts

against which we would like to run the command. This is done by using the --limit argument.

This is useful if we would like to target just one server, for instance, without changing the
playbook itself.

Code Listing 52: Targeting specific hosts

PLAY RECAP

**

193.168.3.161 : ok=2 changed=0 unreachable=0 failed=0 skipped=0 rescued=0

ignored=0

193.168.3.160 : ok=2 changed=0 unreachable=0 failed=0 skipped=0 rescued=0

ignored=0

$ ansible-playbook --limit 192.168.3.160 webserver.yml

59

The result will show that the command was executed only on one server, as specified in the
command.

Figure 31: Command executed only on one server

Checking the syntax

If we would like to check the syntax of the playbook without executing it, there is the --syntax-
check option. This is very handy for figuring out if there are issues with the file.

Code Listing 53: playbook syntax checking

If an error is found, the line containing the issue will be displayed.

Dry run

To run the “dry run,” which is like a test mode, there is the -C option. Dry run mode will show the

output of the specified change, but without changing the managed hosts. This is extremely
useful when testing, as we can see which changes would occur if we execute this command.

Code Listing 54: Dry run option when executing playbooks

Variables

We have seen the most basic playbook content and how to execute it. Now we have to look into
how to parametrize and make the playbooks more useful by specifying variables.

Variables provide a very convenient way to handle dynamic values. Variables could be about
anything, such as a list of users, a list of software packages to install or uninstall, and services
to start or stop.

$ ansible-playbook --syntax-check webserver.yml

$ ansible-playbook -C webserver.yml

www.dbooks.org

https://www.dbooks.org/

60

It’s obvious that having everything statically defined in the playbook would work, but it would
also be a bit more cumbersome to handle, as this would typically result in a larger code base
with some repetition, which would potentially increase the possibility of errors in code.

Naming convention

The variables have to start with a letter, and they can include underscores and numbers.

Table 9: Variables: naming convention

Valid variable name Invalid

account_name account name

account-name

account.name

account_nr_1 account-nr1

accountnr#1

account$1

1_account

Variables scope

The scope of the variable is the context within which it is defined. In other words, this defines in
which parts of the program variables will be seen, applied, or used.

Ansible defines three scopes, summarized in the following table.

Table 10: Variables: scope

Scope Description

Global This is set by configuration, environment variables, and the command line. It is
set to all hosts.

Host Directly associated to a specific host or host groups (as defined in the

inventory file). Those are variables defined in the inventory or in the host_vars

directory.

Play Scope applies to the play in which variables are declared. It applies to all hosts
in the context of the current play.

The vars directive in the playbook is where the variables are declared.

Additionally, they can be defined by the include_vars task.

If a variable is defined in several scope levels, the value of the level that has the precedence
would be taken as the variable value. The narrower in scope we go, the more precedence it
has.

61

Play scope overrides the host variables, which override the global variables, which have more

precedence over the variables defined in the inventory file. However, if the variable value is
defined in the command line directly while executing the command, it has the highest
precedence. By providing the -e option in the ansible-playbook command, we can override

any value.

Declaring variables in the playbook

In the playbook, we can define the variables in two possible ways: either by declaring them
explicitly using the vars directive, or by using the vars_files directive to include the file(s)

where the variables are declared (in our case, in the vars/users.yml and vars/services.yml files).

Code Listing 55: Variables—declaring

We can then reference those variables in the playbook by placing the variable name between
double curly braces: {{ name_of_variable }}.

Code Listing 56: Variables—using

- name: Example with vars

 hosts: all

 vars:

 user_name: john

 user_description: "standard user"

- name: Example with vars_files

 hosts: all

 vars_files:

 - vars/users.yml

 - vars/services.yml

- name: Example with vars

 hosts: all

 vars:

 user_name: john

 user_description: "standard user"

 tasks:

 - name: Show user name

 debug:

 msg: "{{ user_name }} - {{ user_description }}"

www.dbooks.org

https://www.dbooks.org/

62

In this snippet, you can see that we are using the debug module. This module is useful when we

want to display some information to the console, in this case the variables defined. The two
variables previously defined are stored in the msg argument of the module. An important thing to

notice is that we placed the variables between quotes.

Let’s execute this code and see what the output will be, as shown in the following figure. We
can clearly see the “msg”: “john – standard user” is displayed in the output.

Figure 32: Retrieving variable values

This is the same output we would have when using the the var_files directive. In the

users.yml file, we would place the same content as in the vars section.

Code Listing 57: Content of the users.yml file

By looking at the folder structure, we can see there is a users.yml file in the vars folder.

Figure 33: Folder structure with vars directory

It’s worth noting that we can also define a list or dictionary of parameters.

user_name: john

user_description: "standard user"

63

Code Listing 58: Playbook with a list

This code returns the following result.

Figure 34: Result by using a list

Or we can define a dictionary of values, like in the following.

Code Listing 59: Playbook with dictionary

- name: Example with list

 hosts: all

 vars:

 users:

 - john

 - mark

 - bob

 tasks:

 - name: Show user name

 debug:

 msg: "{{ users }}"

- name: Example with list

 hosts: all

 vars:

 users:

 john:

 name: john

 default_password: john1234

 mark:

 name: mark

 default_password: mark1234

www.dbooks.org

https://www.dbooks.org/

64

This code returns the following result.

Figure 35: Running playbook by using dictionary variable

Declaring group or host variables

Group or host variables can be declared either in the inventory file or as specific files in the
group_vars or host_vars directories, in the same location as the inventory file.

The naming convention for files is driven by using the same host names or group names as
defined in the inventory file.

Say we had an inventory file as follows.

Code Listing 60: Inventory file

The following is the folder structure with files containing group or host files with the same names
as defined in the inventory file.

 bob:

 name: bob

 default_password: bob1234

 tasks:

 - name: Show user name

 debug:

 msg: "{{ users['john']['name'] }} -

 {{ users['john']['default_password']}}"

[webservers]

web160

web161

[load_balancers]

lb

[databases]

db

65

Code Listing 61: Directory structure of group and host vars

These variables will be loaded by default, depending on what is declared in the playbook hosts

section.

Looping through variables

Ansible defines the loop keyword that enables looping through variables within a given task. A

special variable called item holds the current item value during the iteration through values.

Code Listing 62: Looping

When we execute the playbook, in the output we can see three distinct msgs being returned to

us. In fact, this is executing the task as many times as there are items in the list.

\

|-- group_vars

| |-- all

| |-- webservers

| |-- load_balancers

| |-- databases

|-- host_vars

| |-- web160

| |-- web180

|-- playbook.yml

|-- ansible.cfg

|-- inventory

- name: Looping through a list of variables

 hosts: all

 vars:

 packages:

 - httpd

 - python

 - mysql

 tasks:

 - name: List packages

 debug:

 msg: "{{ item }}}"

 loop: "{{ packages }}"

www.dbooks.org

https://www.dbooks.org/

66

Figure 36: Result of looping through variables

Conditional statements

Ansible supports conditional statements. Similar to an if statement in programming languages

such as Python or C#, Ansible uses the keyword when to check whether a condition is being

satisfied or not.

Code Listing 63: Conditional statement example

In this case, the debug task will not be executed, as the preinstall_package is set to false.

We can clearly see in the output that the task is skipped.

Figure 37: Conditional statement result

- name: Conditional check for true

 hosts: all

 vars:

 preinstall_package: false

 tasks:

 - name: List packages

 debug:

 msg: "executed"

 when: preinstall_package

67

Checking for true or false values is just one of the possibilities. There are other predefined
keywords, such as is defined, where the variable is checked for its existence. The following

table defines other possibilities.

Table 11: Conditional statements

Operation Example

Equal “some string”

Equal some number

package_name == "httpd"

port_number == 80

Less than

Less than or equal to

Greater than

Greater than or equal to

port_number < 80

port_number <= 80

port_number > 80

port_number >= 80

Not equal to package_name != "httpd"

port_number != 80

Variable exists

Variable doesn’t exist

port_number is defined

port_number is not defined

Boolean check for true

Boolean check for false

1, True, yes: evaluate to true

0, False, no: evaluate to false

user_exists

not user_exists

Value present in a list of values username in user_list

Conditions can be multiple, and we can separate them by using the or and and keywords.

Code Listing 64: Using and in condition

The equivalent to the and statement can also be written as a list.

Code Listing 65: Alternative syntax for conditional and

when: username == “john” and groupname == “admin”

when:

 - username = "john"

 - groupname = "admin"

www.dbooks.org

https://www.dbooks.org/

68

Combining loops and conditional statements

With the knowledge of how to write loops and conditional statements, we can certainly combine
the two, making the playbook execution even more powerful.

Code Listing 66: Combining loop and when statement

As you may already expect, this task will be executed only if the name of the user is john.

Figure 38: Result—loop and when combined

- name: Conditional check for true

 hosts: all

 vars:

 users:

 - john

 - mark

 tasks:

 - name: List packages

 debug:

 msg: "executed"

 loop: "{{ users }}"

 when: item == "john"

69

Chapter 10 Ansible Playbook Handlers

There are situations where we want a task to run only when a change is made on a managed
host. For example, we may want to restart a particular service if a task updates the configuration
of a service, or we might reboot the machine after some package installation.

Ansible uses handlers to address this use case. We may ask, why not simply create a task at
the end of the playbook that would reboot the server, or something similar? This task would
need to depend on the execution of other tasks and to check the status of each of them to
decide if something has to happen or not.

Ansible has solved this issue elegantly by introducing handlers. Handlers are tasks that only run
when notified by other tasks, and only when the change happens on the managed host. If a task
doesn’t notify the handler, it won’t run.

A nice thing about handlers is that they run only once, even if notified by multiple tasks. This fits
perfectly, for instance, with the reboot use-case where it doesn’t make sense to reboot the server
after each task requiring it, but only once when all the tasks have been executed.

Handlers have a unique name globally and typically get placed at the end of the playbook. All of
the modules used by tasks can also be used in the handler, so technically everything we can do
in a task, we can do also in a handler itself.

Let’s see how to declare and link a handler to a task.

Code Listing 67: Handler definition

- name: Handler restarting httpd service after installation
 hosts: webservers
 become: yes
 gather_facts: false

 tasks:
 - name: Install apache package
 yum:
 name: httpd
 state: present
 notify: Restart apache

 handlers:
 - name: Restart apache
 service:
 name: httpd
 state: restarted

www.dbooks.org

https://www.dbooks.org/

70

In the previous code snippet, we can see a playbook containing one task and one handler.

The task’s responsibility is to install the httpd (Apache HTTP Server) by using the yum package

manager. The state present in the task means that we want the httpd service to be present on

the system as a result of running the task.

We can also see that there is a notify keyword after the task (aligned to the name and

module), and the handler’s name to which the link is made (notify: Restart apache).

On the other hand, at the bottom of the playbook, we define a handler in the same way we
would define a task: by specifying a name, module, and eventual arguments. The state

restarted simply means that we want the service to be restarted.

By running the playbook, we will get the following result.

Figure 39: Result—handler restarting Apache package

We can see that the service got installed on the managed host 192.168.3.160 (web160) and

that the httpd service got restarted.

Here are some more facts about handlers to keep in mind:

• We can declare more than one handler (in the example, we only had one).
• The order in which the handlers are executed depends on the order in which they are called

(not declared) by the task.
• The handler will be executed only after all tasks are executed!
• If the task doesn’t change the system, the handler won’t run.
• In handlers, we can use variables in the same way we use them normally in tasks.

71

Chapter 11 Templating

In this chapter, we are going to discuss the Jinja2 templates. Jinja2 is a templating language for
Python. Ansible uses Jinja2 templating to enable the dynamic creation of the content. The
dynamic content is going to be driven by the variables used within a playbook. This is useful
when we need to apply changes to the static content and adapt it to the managed hosts.

For instance, a load balancer configuration file might need to be updated with the list of
available web servers. Rather than hard-coding this information in the load balancer’s config file,
and in fact duplicating this information that we need later on to maintain, we can simply utilize
the list of hosts we already have predefined in our inventory file, change the content of the
config file, and ship it to the load balancer.

When playbooks are executed, these variables get replaced by actual values defined in the
playbooks. This way, templating offers an efficient and flexible solution to create or alter content
with ease.

Jinja2 basic syntax

A Jinja2 template file is a text file that contains variables that get evaluated and replaced by
actual values upon runtime or code execution. In a Jinja2 template file, you will find the following
syntax:

• {{ }}: Used for embedding variables and using their value during code execution. For

example, a simple syntax using the double curly braces is as shown: The {{ webserver
}} is running on {{ nginx-version }}.

• {% %}: Used for control statements such as loops and if-else statements.

• {# #}: These denote comments that describe a task.

We can perform conditional statements such as loops and if-else statements, and transform

the data using filters and more.

Code Listing 68: Example of a Jinja2 loop

Jinja2 module

To invoke the transformation of the template, we have to integrate it within a playbook. Ansible
offers a module called template.

{% for host in groups['webservers'] %}

 {{ host }}

{% endfor %}

www.dbooks.org

https://github.com/pallets/jinja
https://docs.ansible.com/ansible/latest/collections/ansible/builtin/template_module.html
https://www.dbooks.org/

72

Code Listing 69: Basic template module with arguments

Template has a few arguments we could supply:

• src: The source file we would like to transform; in this case, haproxy.cfg.

• dest: Where we want to copy the content after the transformation.

• owner: Name of the user who should own the file/directory, as would be fed to chown.

• group: Name of the user who should own the file/directory, as would be fed to chown.

• mode: The permissions the resulting file or directory should have.

To debug the template, we could utilize the debug module with a special lookup function. This is
particularly useful as the content won’t be deployed to any host, but we could see the result of
the transformation.

The lookup plugin is an Ansible extension to the Jinja2 templating language. For more
information, you can run ansible-doc -t lookup -l to list all available lookup plugins. For

more information about the lookup template plugin, you can always consult the documentation
by running the ansible-doc -t lookup template command.

Code Listing 70: Task used for displaying transformations locally

Let’s run this code in debug mode.

The inventory file we are going to use is as follows, and we can see that we are defining a
webservers group with two servers.

Code Listing 71: Inventory file

tasks:

 - name: Jinja2 template

 template:

 src: haproxy.cfg

 dest: /etc/haproxy/haproxy.cfg

 owner: root

 group: root

 mode: 0644

tasks:

 - name: Show the template content

 debug:

 msg: "{{ lookup('template', './haproxy.cfg') }}"

[webservers]

web160

web161

[load_balancers]
lb

73

Let’s create a file named webservers.j2 and put it in the local folder, where we run the

playbook.yml. The content of the webservers.j2 is shown in Code Listing 72. This is actually

our template file. Typically the file can have the .j2 extension, but this is purely optional, as it

might be useful when using text editors with the Jinja2 syntax option.

group['webservers'] is something we haven’t yet seen. It’s a built-in collection that would

return the content of the hosts as defined in the inventory file.

Code Listing 72: Webservers.j2 template file

Code Listing 73: Playbook running the template

Available Web Servers:

{# message variable defined in the template #}

{{ message }}

{# displaying list of hosts as defined in the inventory#}

{% for host in groups['webservers'] %}

 {{ host }}

{% endfor %}

{# message variable defined in the template #}

Host joined by a comma separated value

{{ groups['webservers'] | join(",") }}

- name: Using a jinja2 template

 hosts: load_balancers

 gather_facts: false

 vars:

 - message: "We love Ansible"

 tasks:

 - name: Show the template content

 debug:

 msg: "{{ lookup('template', './webservers.j2') }}"

www.dbooks.org

https://www.dbooks.org/

74

The result of executing the playbook follows.

Figure 40: Debug output of the template

To run the code against the load balancer, let’s change the playbook to look as follows.

Code Listing 74: Template module used in a task

We are using the template module rather than the one used for the debugging purpose.

With the newly defined task, we are going to transform the file locally, and then the file will be
copied to the load balancer at the destination folder /home/vagrant, as specified in the dest

argument.

Figure 41: Task with deployment on the load balancer

The task went fine, but let’s check on the load balancer server and see the content of the file we
have transformed and copied across. By using the cat command, we can see the content of the

file.

- name: Using a jinja2 template

 hosts: load_balancers

 gather_facts: false

 vars:

 - message: "We love Ansible"

 tasks:

 - name: Jinja2 template

 template:

 src: webservers.j2

 dest: /home/vagrant

75

Figure 42: Load balancer home directory

The content of the file is as shown in the following code listing.

Code Listing 75: Result of the command execution

We love Ansible

 web160

 web161

Host joined by a comma separated value

web160,web161

www.dbooks.org

https://www.dbooks.org/

76

Chapter 12 Ansible Vault: Data Encryption

In this chapter, we will describe how Ansible can protect sensitive data.

Whenever we want to automate something, sooner or later there is a moment where we
encounter a password, API keys, certificates, or some other sensitive content.

As with any other code, we would use a versioning system such as Git or Subversion to keep
our code versioned. This automatically means that we would expose sensitive information to
people who are not intended to see it.

Rather than leaving this content (playbooks, variable files, etc.) visible in plaintext, Ansible offers
a tool called Ansible Vault that allows data encryption and decryption. Only after encrypting

the sensitive content should we feel safe about putting it into a source control.

To use Ansible Vault, we need to encrypt the data by providing a password, and the same for
decrypting the content. This password of passwords obviously should be kept in some (other)
safe place.

Ansible-vault command line tool

Ansible offers a command line tool called ansible-vault, which will enable us to encrypt the

content.

Encrypt

The encrypt command encrypts the existing file. We can also pass the --output argument to

specify the name of the newly encrypted file. If the --output is not provided, the file will simply

be overwritten by the encrypted content.

Code Listing 76: Encrypt a file

Ansible offers the ability to encrypt multiple files with different passwords; each file would have
its own. This can be done by supplying the --vault-id parameter to the encrypt command. In

our case, we have given an identifier called secret@prompt. Prompt, in this case, means that

the password will be supplied in the command line.

Code Listing 77: Specify value-id

$ ansible-vault encrypt <filename> --output=<new_filename>

$ ansible-vault encrypt --value-id secret@prompt <file>

77

Decrypt

The decrypt command decrypts the existing file.

Code Listing 78: Decrypt a file

If the file has been given a –vault-id during the encryption, as we have seen in the previous

example, we could provide the --vault-id in the command line with the same name as we

provided during the encryption.

Code Listing 79: Decrypt a file supplying the vault-id

View

The view command enables us to see the content.

Code Listing 80: View encrypted file

Edit

The edit command allows us to edit the file. When we use the edit command, an editor will

open the file ready to be edited in the command line.

Code Listing 81: Edit encrypted file

Rekey

Changing a password for an already encrypted file is rather simple using the rekey command.

This command is useful, as otherwise we would need to do two operations—decrypt and
encrypt—to achieve the same thing. We can provide multiple files to the command.

Code Listing 82: Changing the encryption password

$ ansible-vault decrypt <filename>

$ ansible-vault decrypt --vault-id secret@prompt <filename>

$ ansible-vault view <filename>

$ ansible-vault edit <filename>

$ ansible-vault rekey <filename> <filename2>

www.dbooks.org

https://www.dbooks.org/

78

Using secrets within the playbook

When referencing an encrypted file within an Ansible playbook, we need to provide a password
for the content to be decrypted during the execution. The ansible-playbook command offers

an option to supply the password through the --vault-id option.

The @prompt option will prompt the user to provide the password in the command line.

Code Listing 83: Execute playbook by providing the password

Suppressing the output

There are situations where the secret might be displayed during the execution of the playbook.
We can suppress the output by using the no_log: true directive within the task.

Code Listing 84: Suppressing the output

Example code

Let’s create a file called secret_file.yml with the following content.

Code Listing 85: content of secret_file.yml

And let’s encrypt this file with the encrypt command.

Code Listing 86: Encrypting the file

You will be asked for a password, which will be used to encrypt the file. After supplying the
password (in my case, the password is 1234) and reopening the file, we will see that the file has
been encrypted, and that it is unreadable by a human.

$ ansible-playbook –-vault-id @prompt playbook.yml

…

 tasks:

 - name: print variable

 debug:

 msg: {{ secret_variable }}

 no_log: true

password: some_very_secret_password

(avenv) [vagrant@amgr vault]$ ansible-vault encrypt secret_file.yml

79

Code Listing 87: Secret_file.yml after encryption

Let’s now create a playbook where we will use this secret information.

Code Listing 88: Playbook that references encrypted file

We are already familiar with the tasks section. We can see a new module called

include_vars, which is responsible for loading files with variables so that those are available to

other tasks. This is very handy, as we can reference our encrypted file (secret_file.yml).

Additionally, we would like to display the password value in the subsequent two tasks; one,
however, should suppress the output as we have previously seen, by using the no_log: true

argument.

We can now execute the playbook and see that providing the --vault-id parameter with

@prompt will actually prompt for a password. I will supply the password used for encrypting the

file.

$ANSIBLE_VAULT;1.1;AES256

66626463316264313732366638323532653130363232383131643434643235393763343039383362

3363356465383565613938623666306161663463396361370a366362623965663437353934636165

32373964313433343130343634663061393166656333373466663631383631643063623336313830

3234386136663232650a343862336163616264666565326630353934343635643663376536373464

35343664626635626263383764663139653165363835323332336632316462656262663839633833

3762343138656233333531326139336633393431323438663233

- name: Handling secret information

 hosts: lb

 become: yes

 gather_facts: false

 tasks:

 - name: Load encrypted variable

 include_vars:

 file: secret_file.yml

 - name: Retrieve information from the secret_file

 debug:

 msg: "{{ password }}"

 - name: Retrieve information from the secret_file but not show output

 debug:

 msg: "{{ password }}"

 no_log: true

www.dbooks.org

https://www.dbooks.org/

80

Code Listing 89: Run playbook with secret data

The result looks like the following figure.

Figure 43: Result when executing the playbook

We can clearly see that in the first task, the output gets properly shown, while in the second,
that’s not the case.

(avenv) [vagrant@amgr Code_Listing_88]$ ansible-playbook --vault-id @prompt

playbook.yml

81

Chapter 13 Ansible Runtime Facts

When executing playbooks, Ansible retrieves certain information and stores it for possible
reuse. Information returned in Ansible terms are called facts.

We can utilize and reuse this information to decide on taking certain actions or simply use this
information in the configuration when deploying some artifacts to other systems. A typical
example is the IP address. We can retrieve one IP address from one system and reuse this
information when configuring another system.

Code Listing 90: Retrieve and display facts

In the example shown in Code Listing 90, we can retrieve all the information about the
webservers in scope. Pay attention to the gather_facts: true, as this has to be enabled in

order to retrieve the variables.

Before starting to execute the tasks, Ansible will have its own internal task that will indeed
gather the information about the machines that are in scope for the given run.

Code Listing 91: Running playbook to retrieve facts

The output of this command is a long list of information provided.

- name: Retrieving and displaying facts

 hosts: webservers

 become: yes

 gather_facts: true

 tasks:

 - name: Retrieve server information

 debug:

 var: ansible_facts

(avenv) [vagrant@amgr Code_Listing_90]$ ansible-playbook --limit web160

playbook.yml

www.dbooks.org

https://www.dbooks.org/

82

Figure 44: Ansible facts output

We can certainly obtain the individual values from the returned long list of values.

Let’s say that we would like to retrieve the Linux distribution and the first IP address from the
server in question.

Code Listing 92: Retrieving individual values

In the output, we can see that the distribution is CentOS and the private IP address (in this case)

is 10.0.2.15. To obtain the first value from an array of values, we used the .0 notation.

- name: Retrieving facts individually

 hosts: webservers

 become: yes

 gather_facts: true

 tasks:

 - name: Retrieve server information

 debug:

 var: ansible_facts['distribution']

 - name: Retrieve server information

 debug:

 var: ansible_facts['all_ipv4_addresses'].0

83

Figure 45: Result of retrieving individual facts

It’s now even more evident how we can use this information in the task, where we can decide
whether to install a package given the distribution name of the host, or some other variables that
might be useful to base the decision on.

www.dbooks.org

https://www.dbooks.org/

84

Chapter 14 Ansible Tags

Sometimes we have the requirement of only running one specific task within a plethora of tasks
configured in a playbook. In other words, instead of executing the playbook itself, we might
choose to run only a part. Ansible enables this scenario with the tags attribute. Tags are

annotations to the task that identify or group them with other tasks.

Let’s quickly see an example of how to configure a tag.

Code Listing 93: Playbook with tags

- name: Tags Playbook

 hosts: localhost

 gather_facts: true

 connection: local

 tasks:

 - name: Display information

 debug:

 msg:

 - "Distro of {{ ansible_facts['hostname'] }}:

{{ ansible_facts['distribution'] }}"

 - "IP of {{ ansible_facts['hostname'] }}:

{{ ansible_default_ipv4.address }}"

 tags: info

 - name: Apply changes

 debug:

 msg: "Some changes executed"

 tags: execute

 - name: Post execution

 debug:

 msg: "Command executed successfully"

 tags: [info, execute]

 - name: Never

 debug:

 msg: "This command has to be explicitly called"

 tags: [never, debug]

85

Through the tags keyword, we have marked all of the tasks, de facto attaching a label to them.

We can see that more than one tag can be assigned at the same time. As mentioned
previously, this is very useful if we want to group certain tasks together, and sometimes one
given task may belong to more than one group.

There are two special tags defined by Ansible: never and always. The never tag, if specified,

will prevent the execution of the tasks, unless this is not explicitly specified to run. On the other
hand, always is the default value of any tag.

When executing the playbook, we have a few possibilities on how to include or exclude certain
tags from being executed

Table 12: Tag command line options

Example Description

ansible-playbook p.yml -t all all is a special keyword that will run all

the tasks (except tasks marked as never).

ansible-playbook p.yml -t tagged tagged is a special keyword that will run all

of the tasks that have been explicitly
tagged (at least one tag).

ansible-playbook p.yml -t untagged untagged is a special keyword that will run

all of the tasks that have not been explicitly
tagged (at least one tag).

ansible-playbook p.yml -t "info, debug" Executes tasks with multiple tags.

ansible-playbook p.yml --skip-tags info Runs all the tags, but not the one(s)
specified.

ansible-playbook p.yml -–list-tags Lists all of the tags defined in the current
playbook.

ansible-playbook p.yml -t info -–list-
tasks

Lists all the tasks that are tagged with the
label info.

Let’s see a few examples.

If we set the playbook.yml file to run only the tasks labeled info, only the tasks named

Display information and Post execution will run, as shown in the following figure.

www.dbooks.org

https://www.dbooks.org/

86

Figure 46: Running tasks tagged "info"

Instead, if we were to run everything but not tags with the info label, then only the Apply
changes task would be executed.

Figure 47: Skipping all tasks tagged "info"

In both cases, we can see that the task named never was never executed. If we want to

execute this task, too, we need to explicitly specify it when running the playbook.

Figure 48: Explicitly executing the “debug” and “execute” tasks

87

Chapter 15 Ansible Roles

In Chapter 9, we saw how to work with the Ansible Playbook and how to utilize tasks. We are
able to automate a large number of processes in this way.

In a more complex environment, we are automating and managing multiple environments or
different products, which will undoubtedly increase code redundancy and complexity. At that
point, it becomes quite difficult to manage everything in one Ansible playbook file.

Another cool feature that exists in other programming and scripting languages is code reuse,
and Ansible in that sense is not any different. When writing code to automate webservers or
databases, or managing another kind of host, we would also like to be able to share this work
with others.

Ansible has created the concept of a role to help solve these issues. Each role is basically
limited to a particular functionality or desired output, with all the necessary steps to provide that
result. You might think of it as a library or module in other programming languages.

The Ansible role:

• Allows code reuse and makes the Ansible projects more manageable.
• Allows the creation of generic code that can be shared between teams or projects.
• Contains a set of (pre)packaged tasks.
• Has to be used within playbook.
• Has a predefined directory structure.
• Is written in YAML, as is the case for playbook or tasks.

 Note: The concept of the Ansible role is simple: it is a group of variables, tasks,
files, and handlers that are stored in a standardized file structure.

Role’s directory structure

The Ansible role has a predefined and standardized directory structure where files are
organized into subdirectories for placing items such as variables, tasks, and handlers.

There are two ways of creating such a structure: manually, or by using the ansible-galaxy
command. As we like automation, we will utilize the command to generate a skeleton folder
structure for a role called webservice.

Code Listing 94: Initializing a role skeleton structure

When we run the command, a predefined directory structure will be created for us. Figure 49
shows the directory hierarchy.

$ ansible-galaxy init webserver

www.dbooks.org

https://www.dbooks.org/

88

Figure 49: Role Skeleton creation

We can see that the command has created the skeleton with a few subfolders and files.

Table 13: Role directory structure explained

Directory Description

\ The root directory is named after the role name.

defaults
Contains default variables for the role. Variables in this directory have
the lowest priority, so they are easy to override.

files Contains (static) files that are to be copied to the remote host.

handlers Contains handler definitions to be used by the role.

meta
Contains the general information about the role itself, such as author,
description, and license, as well the dependencies to other roles.

README.md Can contain information/documentation about the role.

tasks
Contains the main list of steps (tasks) to be executed by the role.
Similar to what we define in a playbook.

templates Jinja2 templates referenced by the role tasks.

Tests
- inventory
- test.yml

The inventory file and test.yml playbook that can be used for

testing.

vars Variables (with high precedence) used internally by the role.

All of the subdirectories contain a main.yml file, which is the default file to be included in the
execution pipeline.

There are three ways to start working with roles:

89

• Create a playbook first, and when it’s getting too complex, start translating and porting
this code to a role.

• Start working on and creating the role from the beginning. This comes with the
experience and the actual need of the application.

• Reuse an already available role, something we will explore in Chapter 16.

MongoDB custom role

In this section, we will automate the MongoDB installation with some prerequisites for a newly
created role. The goal of this exercise is to install the MongoDB on the db server and install the

MongoDB client on the two available webservers (web161, web162).

MongoDB is a NoSQL database, and it’s often used as the backend of web applications. The
procedure to follow to install the MongoDB on the CentOS server is described on the MongoDB
website.

What is important to understand in general is that Ansible just gives a means of automation, but
not the actual recipe of how exactly each application works. So, looking into the official
documentation is crucial to understanding what to automate.

By reading the official MongoDB documentation, we will see that we need to perform the
following operations:

1. Add the yum repository, as CentOS doesn’t have MongoDB available by default.
2. Install MongoDB.
3. Open Firewall ports to be able to access it from other servers (web server).
4. Start the service.

While there are many other operations that could be added, such as configuring the ulimit and

other settings for better performance, we will omit those for the sake of brevity.

Let’s start by creating the inventory file. In our case, the hostname is called db

(192.168.3.199).

Code Listing 95: Inventory file

In the following ansible.cfg code, we can see that there is a roles_path property being set to

the local folder called roles. The role_path is defining where Ansible is going to look for the

roles by default.

[database]

db ansible_host=192.168.3.199

[webservers]

web160 ansible_host=192.168.3.160

web161 ansible_host=192.168.3.161

www.dbooks.org

https://docs.mongodb.com/manual/tutorial/install-mongodb-on-red-hat
https://docs.mongodb.com/manual/tutorial/install-mongodb-on-red-hat
https://www.dbooks.org/

90

Code Listing 96: ansible.cfg with roles defined

With this information, we are now ready to create our role by using the command line tool
ansible-galaxy.

Role creation

The mongodb role is going to contain two types of automation: one for installing the mongodb
server, and another one to install the mongodb client.

Let’s create the role called mongodb and place it under the ./roles folder as defined in the

argument --init-path. This code should be executed in the root folder, where the ansible.cfg

or playbook.yml files are placed; otherwise, please do specify the full path to the roles
directory.

Code Listing 97: Code to initiate a skeleton of a role called mongodb

As shown in the following figure, we can see that the skeleton of the role has been successfully
created under the roles folder.

Figure 50: Creation of the mongodb role

Variables

Under the vars folder, let’s open the main.yml file and set the following variables.

[defaults]

inventory = ./inventory

roles_path = ./roles

$ ansible-galaxy role init mongodb --init-path ./roles

91

Code Listing 98: Content of vars/main.yml

Here we are defining the version of the MongoDB we would like to install, and two more
configuration options to be set after the MongoDB installation.

Tasks

Now we can start filling out the tasks by opening the main.yml file under the tasks folder. This
task is just a bit longer, but we will go through each task and explain it.

Code Listing 99: Main.yml under tasks folder

vars file for mongodb
mongo_db_version: "4.4"
mongo_db_journal_enabled: "false"
mongo_db_server_port: 27017

- name: Add yum MongoDB repository
 ansible.builtin.template:
 src: mongodb-org.repo.j2
 dest: /etc/yum.repos.d/mongodb-org-{{ mongo_db_version }}.repo
 mode: 0644
 tags: [never, mongodbclient, mongodbserver]

- name: Install MongoDB server
 ansible.builtin.yum:
 name: mongodb-org
 update_cache: yes
 state: present
 tags: [never, mongodbserver]

- name: Install MongoDB client
 ansible.builtin.yum:
 name: mongodb-org-shell
 update_cache: yes
 state: present
 tags: [never, mongodbclient]

- name: Change the MongoDB configuration file
 ansible.builtin.template:
 src: mongod.conf.j2
 dest: /etc/mongod.conf
 mode: 0644
 notify: restart_mongo_db
 tags: [never, mongodbserver]

- name: Start MongoDB service
 ansible.builtin.systemd:

www.dbooks.org

https://www.dbooks.org/

92

The first thing to notice is the file indentation. There is no need to specify the tasks keyword

like we were doing in the playbook, as Ansible will automatically assume that the file under the
tasks\main.yml file contains tasks.

We can see six tasks defined. Let’s explain what they do in detail.

Add yum MongoDB repository

As the CentOS yum package manager doesn’t have the MongoDB repository predefined, we

have to add it to the list of available repositories. To achieve this, we are using a template file
located in the templates folder called mongodb-org.repo.j2. The transformed file is then going
to be sent to the default yum configuration location, which is /etc/yum.repos.d.

Code Listing 100: Content of the file templates/mongodb-org.repo.j2

This file internally uses the variable called mongo_db_version. This variable is defined in the
vars/main.yml file. This file contains the variables defined for the given role.

After executing the playbook, we should see a transformed file to be delivered into the
/etc/yum.repos.d folder on the database server.

 name: mongod
 state: started
 tags: [never, mongodbserver]

- name: Open Firewall Port 27017
 ansible.posix.firewalld:
 zone: public
 rich_rule: >
 rule family="ipv4" source address="{{ hostvars[item].ansible_host }}"
 port protocol="tcp" port="{{ mongo_db_server_port }}" accept
 permanent: yes
 immediate: yes
 state: enabled
 with_items: "{{ groups['webservers'] }}"
 tags: [never, mongodbserver]

[mongodb-org-{{ mongo_db_version }}]

name=MongoDB Repository

baseurl=https://repo.mongodb.org/yum/redhat/$releasever/mongodb-

org/{{ mongo_db_version }}/x86_64/

gpgcheck=1

enabled=1

gpgkey=https://www.mongodb.org/static/pgp/server-{{ mongo_db_version }}.asc

93

Install MongoDB server

This task is responsible for installing the MongoDB (mongodb-org) package. We do this only

after the repository location has been added to yum. With the state present, we are telling

Ansible to install the package.

This code corresponds as if we were executing the following command on the managed server:

$ sudo yum install -y mongodb-org

This command will install all of the necessary components of MongoDB.

Install MongoDB client

This task is responsible for installing the MongoDB client package. We do this only after the
repository location has been added to yum. With state present, we are telling Ansible to actually

install the package.

This code corresponds as if we were executing the following command on the managed server:

$ sudo yum install -y mongodb-org-shell

This command will install all of the necessary components of MongoDB shell.

Change the MongoDB configuration file

After installing MongoDB, and before starting it to run as a service, we are going to perform just
a few customizations in the MongoDB configuration file.

Again, we are using a template located under templates/mongod.conf.j2 that, once
transformed, will be sent to the database server at the location /etc/mongod.conf.

One thing to notice here is that the change in the configuration file triggers a handler called
restart_mongo_db, which is defined in the handlers/main.yml file as follows.

Code Listing 101: Content of the file handlers/main.yml

Open Firewall Port 27017

This task is supposed to run after MongoDB has been installed. The task is responsible for
opening the port 27017 on the database server to allow only connections from the web
server(s), hence the use of groups[‘webservers’]. This is important, as in general it’s a good

practice to secure the system to only those hosts that need to communicate to the database.

handlers file for mongodb

- name: restart_mongo_db

 ansible.builtin.systemd:

 name: mongod

 state: restarted

 tags: [never, mongodbserver]

www.dbooks.org

https://www.dbooks.org/

94

The variable mongo_db_server_port is defined in the vars/main.yml file.

Code Listing 102: Content of mongod.conf.j2

mongod.conf

for documentation of all options, see:

http://docs.mongodb.org/manual/reference/configuration-options/

where to write logging data.

systemLog:

 destination: file

 logAppend: true

 path: /var/log/mongodb/mongod.log

Where and how to store data.

storage:

 dbPath: /var/lib/mongo

 journal:

 enabled: {{ mongo_db_journal_enabled }}

engine:

wiredTiger:

how the process runs

processManagement:

 fork: true # fork and run in background

 pidFilePath: /var/run/mongodb/mongod.pid # location of pidfile

 timeZoneInfo: /usr/share/zoneinfo

network interfaces

net:

 port: 27017

 bindIp: 127.0.0.1, {{ ansible_all_ipv4_addresses.0 }} # Enter 0.0.0.0,::

to bind to all IPv4 and IPv6 addresses or, alternatively, use the

net.bindIpAll setting.

#security:

#operationProfiling:

#replication:

#sharding:

Enterprise-Only Options

95

Some attention has to be paid to the ansible_all_ipv4_addresses.0 variable. If there are

multiple network adapters, this might not work. Make sure to readapt the value to
ansible_all_ipv4_addresses.0 or .1, depending on where the public IP address is kept.

Playbooks

We are going to have two playbooks to be placed in the root directory of our project:
database.yml and webservers.yml. The first will be responsible for the installation and setup
of the mongodb on the db server, while the other will be responsible for installing the MongoDB

client application on the web server, so that we query the database and test what have we done
so far.

Code Listing 103: Content of the database.yml playbook

We can see that the playbook now is quite simple to read, as we have eliminated the tasks and
handlers.

The new keyword we use is roles. Under the roles, in general, we can specify more than one

role. Roles would be executed in exactly the same order we place them in a list. In our case, we
only have one, so we are specifying the mongodb role.

To run the code against the db server, however, we will be using the tag to specify that we only

want to install the server (without the client).

Code Listing 104: Execution of the database.yml playbook

We can see that by running this code, we only install the mongodb server.

#auditLog:

#snmp:

- name: Installation of the MongoDB database

 hosts: database

 become: yes

 gather_facts: yes

 roles:

 - mongodb

$ ansible-playbook database.yml -t mongodbserver

www.dbooks.org

https://www.dbooks.org/

96

Figure 51: Result of the execution of the database.yml playbook

To test that the database has been properly installed, we can directly log in on the db server

and run the mongo command. The mongo command is the MongoDB client tool that gets

installed with the server.

After launching the mongo command without any parameter, we will automatically log into the

localhost MongoDB instance. If this is successful, this would mean that MongoDB is up and
running.

We are showing an additional command, show dbs, which will list all of the currently available

databases.

Figure 52: Checking on the server if MongoDB runs

97

The next playbook is about installing the webservers.

Code Listing 105: Content of webservers.yml playbook

We can run the playbook:

$ ansible-playbook webservers.yml -t mongodbclient

And see that both configured web servers were updated, as shown in the following figure.

Figure 53: MongoDB client installed on webservers

We can now finally test that we can run queries from the web server against the db-installed

MongoDB.

We need to log in on one of the webservers, let’s say web160, and run the following command.

Code Listing 106: Mongo client connection

We can see that we are successfully logged in to the MongoDB server and getting the result by
executing a query.

- name: Installation of the MongoDB client

 hosts: webservers

 become: yes

 gather_facts: yes

 roles:

 - mongodb

$ mongo --host db

www.dbooks.org

https://www.dbooks.org/

98

Figure 54: MongoDB client connecting to db

99

Chapter 16 Ansible Galaxy

In the previous chapter, we saw that we can create roles from scratch. We introduced the
concept of code sharing and code reuse. We also used the ansible-galaxy command line to

initiate the role skeleton.

Ansible has taken this concept further and created Ansible Galaxy, Ansible’s official hub for
sharing Ansible content. You can visit the web application here.

Ansible Galaxy is essentially a large public repository of Ansible roles. We can programmatically
interact with the repository by using the already mentioned command line tool ansible-galaxy.

We can use the ansible-galaxy tool to list, install, or remove existing roles prepackaged and

maintained by someone else.

By running the following command, we can see all the operations supported by the tool.

Code Listing 107: Ansible-Galaxy role help command

Table 14 describes some useful commands.

Table 14: Ansible Galaxy useful commands

ansible-galaxy search <role-name> Searches for a role on the Ansible Galaxy
platform with a given role name.

ansible-galaxy install <role-name>

example:

ansible-galaxy install geerlingguy.apache

ansible-galaxy install -r requirements.yml

Installs the package from the repository.

By specifying the roles_path in the ansible.cfg

file or using the --roles-path attribute on the

command directly, we can tightly control where
the role gets installed.

Multiple roles can be installed at once by
specifying the list in a file (requirements.yml)
and using the -r attribute in the command line

to specify the file name.

ansible-galaxy remove <role-name> Removes (deletes) the role from the local folder.

ansible-galaxy info <role-name> Retrieves more information about the package
itself.

$ ansible-galaxy role --help

www.dbooks.org

https://galaxy.ansible.com/
https://www.dbooks.org/

100

Using roles

In this chapter, we are going to see how we can use the prebuilt roles and integrate them in our
solution, where we will:

• Install and configure the httpd server on our two web servers.
• Deploy a simple webpage to the webserver(s).
• Configure the load balancer to route the calls to the web server.

This is a typical setup for a web infrastructure where we expect a higher load and ability to scale
out by adding additional web servers over time. This is why we placed a load balancer that can
efficiently distribute incoming network traffic across a group of backend servers (in our case,
web servers).

Load Balancer
192.168.3.200

Web Server 2
192.168.3.161

Web Server 1
192.168.3.160

Ansible Manager
Server

Developer s
Desktop

User

Figure 55: Load-balanced websites

Web server setup

Let’s start by creating the inventory file where we will specify the web servers and the load
balancer server.

Code Listing 108: inventory file

[loadbalancer]

lb ansible_host=192.168.3.200

[webservers]

web160 ansible_host=192.168.3.160

web161 ansible_host=192.168.3.161

101

The ansible.cfg is very basic, and it contains only a reference to the inventory file, something we
have seen previously in roles_path, which is the directory from where the roles will be installed

or loaded.

Code Listing 109: Ansible.cfg file

So far, we have enough information to start working on the playbook for the web server. We can
now try to work with the role downloaded; in our case, this will be the package called
geerlingguy.apache. It’s a very good practice to navigate to the role project website where we

can see some examples of usage and customization. Links to the pages are typically shown in
the Ansible Galaxy website, if needed. The number of downloads and the score are a sign of
the quality of the package itself.

Alternatively, we could also consult the README.md file bundled with the installation, which
contains similar information.

Figure 56: Extract from the galaxy.ansible.com on the role

This package is responsible for installing the Apache Server (httpd) on various Linux
distributions (RedHat, Debian, etc.), and it’s quite generic in what it can do.

Let’s start exploring it by installing the role with the following command.

Code Listing 110: Installing apache role

After running the command, we can see that in the ./roles folder, we have the fully downloaded
role.

[defaults]

inventory = ./inventory

roles_path = ./roles

$ ansible-galaxy install geerlingguy.apache

www.dbooks.org

https://github.com/geerlingguy/ansible-role-apache
https://www.dbooks.org/

102

Figure 57: Role downloaded and installed in the ./roles directory

In our case, we will simply use the default options without any customizations. Now we can
create a webserver.yml playbook. As we can see, it has very basic information that we have
already seen previously, including hosts against which to act, elevation by using the become
keyword, and the role section itself.

An additional point to mention is that we are also installing the PHP package as a dependency
needed to run the website.

Code Listing 111: Webserver.yml playbook

After running the playbook, we can check if the outcome of the installation is correct.

The full output is quite large, but we can see in Figure 58 that the task has executed correctly,
and that the script includes the task called setup-RedHat.yml. We mentioned previously that

this role supports various Linux distributions.

- hosts: webservers

 become: true

 tasks:

 - name: Enable running PHP code on Apache

 yum:

 name: "{{ item }}"

 update_cache: yes

 state: latest

 loop:

 - php

 notify: restart apache

 roles:

 - role: geerlingguy.apache

103

Figure 58: Result of running the webserver.yml playbook

Now we can check if the web server is running properly on both the web servers by calling the
http://192.168.3.160 on the desktop machine, and we will notice that result is not being returned.

Figure 59: Website not displaying

This is mainly because on the web server, the default firewall ports are not open. So, let’s
change our playbook by adding two more tasks. Firewall has to be open for both http and https
protocols on the two web servers. The two additional tasks to be added to playbook are as
follows.

www.dbooks.org

http://192.168.3.160/
https://www.dbooks.org/

104

Code Listing 112: Open Firewall to ports 80/443

After rerunning the playbook, we can see the two tasks being executed and completing.

Figure 60: Firewall tasks executed successfully

Now we can also retry checking the browser to see if the page will be displayed properly.
Refreshing the page now, we get the result: the default page that Apache Server displays upon
installation. We will get the same result for both web servers.

 - name: Open firewall

 firewalld:

 service: "{{ item }}"

 state: enabled

 immediate: yes

 permanent: yes

 loop:

 - http

 - https

 - name: Restart Firewall

 systemd:

 name: firewalld

 state: restarted

105

Figure 61: Browsing the webpage on the web servers

Deploying the website

The next step is to deploy our own website. We are going to do this by first downloading the
files from GitHub locally to the Ansible Manager Server, and then uploading them to the web
servers. This is one of the ways to perform the deployment. The alternative would be to execute
the git clone directly on the webservers. The way to go would depend on the limitations

applied to the network, for instance, as the servers will not always have internet connection.

Web Server 2
192.168.3.161

Web Server 1
192.168.3.160

Ansible Manager
Server

download
GitHub

downloadupload

Figure 62: Site deployment

Now we will add two new tasks to the webservers.yml file to be able to perform the checkout

locally, and after the checkout, to deploy the files to the remote server.

www.dbooks.org

https://www.dbooks.org/

106

Code Listing 113: Code needed to deploy the application (code previously shown is omitted)

Checkout

To check out the repository from GitHub, we will use the local_action module in combination

with ansible.builtin.git, which we haven’t seen before.

The local_action will execute the code on the control node (amgr) rather than on the

managed machine (in our case, web servers). We also had to specify that this task should be
run only once: run_once: true.

The Git module used supports several attributes; here we are only using what is really strictly
necessary:

• repo: Specifies the URL to the Git repository.

• dest: Defines the destination directory where the code will be checked out.

• force: If set to true, will override the folder with new data.

In this example, the repository is a real repository hosted on GitHub, and it only contains two
files: index.php and the syncfusion logo. The idea is simply to show the concept rather than

deploying large websites.

The task will check out the files in the folder defined in the local_git_directory variable,

defined at the top of the playbook, which in our case is a local folder ./site.

 …

 vars:

 local_git_directory: site

…

 - name: Check out a git repository on the control node

 local_action:

 module: ansible.builtin.git

 repo: https://github.com/zoranmax/ansible-succinctly-book.git

 dest: "{{ local_git_directory }}"

 force: yes

 run_once: true

 tags: [never, deploy]

 - name: Copy web site

 copy:

 src: "{{ local_git_directory }}/website/"

 dest: /var/www/html

 tags: [never, deploy]

…

107

Copy the website

Copying files involves the module called copy. This module can copy single files or directories:

• src: File or folder to be copied over.

• dest: Destination on the managed server.

In our case, we will copy the content of the checkout GitHub code we previously placed in the
./site folder to the default Apache Server folder where the website is hosted: /var/www/html.

Running the code

Both deployment tasks have been marked with the tags [never, deploy], so they would never

be invoked unless we explicitly specify the tag to run, which we will be doing this time.

$ansible-playbook webserver.yml -t deploy

Once executed, the result will look like the following.

Figure 63: Result—deploying website

Now that we have deployed the simple website to both servers, we can navigate through the
browser and check if the deployment was successful.

We can now open the URL directly from the Windows desktop and navigate to
http://192.168.3.160 or http://192.168.3.161, which are the two IP addresses of the web servers
we originally set up.

The page should be displayed as shown in the following image.

www.dbooks.org

http://192.168.3.160/
http://192.168.3.161/
https://www.dbooks.org/

108

Figure 64: Browser showing the deployed page

Load balancer example

So far, we have seen how to configure a simple website by using Ansible and Apache Server,
and how to deploy the application.

The next step is to configure the load balancer (or reverse-proxy).

Load Balancer
192.168.3.200

Web Server 2
192.168.3.161

Web Server 1
192.168.3.160

Ansible Manager
Server

Developer s
Desktop

User

Figure 65: Load balancer (reverse proxy) setup

There are many great software load balancers that can be used for this purpose, such as Nginx,
HAProxy, and Citrix ADC.

109

In our example, we are going to use HAProxy, which is an open-source product, so we can also
benefit from the fact that it is free.

We can reuse the same directory where we defined the playbook for the web server, and
download the role geerlingguy.haproxy.

We are already familiar with the command, so we can simply run it.

Code Listing 114: Installing geerlingguy.haproxy

The next step is to create a new playbook called load_balancer.yml with the following content.

Code Listing 115: Load_balancer.yml playbook

$ansible-galaxy install geerlingguy.haproxy

- hosts: loadbalancer

 become: true

 vars:

 haproxy_backend_balance_method: 'roundrobin'

 haproxy_backend_servers:

 - name: webserver1

 address: 192.168.3.160:80

 - name: webserver2

 address: 192.168.3.161:80

 tasks:

 - name: Open firewall

 firewalld:

 service: "{{ item }}"

 state: enabled

 immediate: yes

 permanent: yes

 loop:

 - http

 - https

 - name: Restart Firewall

 systemd:

 name: firewalld

 state: restarted

 roles:

 - role: geerlingguy.haproxy

www.dbooks.org

https://www.dbooks.org/

110

By looking at the documentation of the role on GitHub, we can see that it has many
configuration options. By checking the defaults/main.yml, we can see all available options.

We are going to configure the basic ones to let us perform the work:

• haproxy_backend_balance_method: Defines the algorithm the HAProxy software is
going to use, such as roundrobin, leastconn, or source. We will use roundrobin in this
example. roundrobin will just pick the next server and start over at the top of the list.

• haproxy_backend_servers: Sets the list of servers that would be included in the load-
balanced list. This means the servers in this list will be handled by the load balancer.

By running the playbook load_balancer.yml, we get the following result.

Figure 66: Installation of the HAProxy on the load balancer server

Everything seems to be working okay. To test that the load balancer (lb 192.168.3.200) will

return any data, we can again browse the content by using the browser by navigating to
http://192.168.3.200. Now we can clearly see that the HAProxy is redirecting the calls to one of
the servers we previously configured.

https://github.com/geerlingguy/ansible-role-haproxy
https://en.wikipedia.org/wiki/Round-robin_scheduling
http://192.168.3.200/

111

Figure 67: HAProxy using the content from web160 (192.168.3.160)

To demonstrate that the reverse-proxy will redirect the URL in a round-robin way, we can also
use the curl command, and issue 10 calls in a sequence by running the following bash

command on the amgr server.

Code Listing 116: Call the reverse-proxy URL 10 times in a sequence

In the result, we will clearly see that the servers are going to be selected alternatively.

Figure 68: Servers returning the result

$for ((i=1;i<=10;i++)); do curl -s http://192.168.3.200 | grep 192.168.3;

done

www.dbooks.org

https://www.dbooks.org/

112

Final Words

I would like to thank you for reading this book—I really hope you enjoyed the content and the
examples. Ansible has been growing over the last few years into a very mature product, and it is
production-ready.

I tried to present to you the basic (but still very useful) use cases that you will encounter in your
professional life while remaining true to the Succinctly name.

This book should give you a good foundation to get started with Ansible, and the rest of the
discovering should be an evolutive process on your side. The official Ansible documentation is
another helpful resource with many examples.

One important thing to get from this book is that first you need to understand what you are trying
to automate, understand the technology (web server, operating system, database,
infrastructure, etc.), and then how to automate it by using Ansible.

Typically, you will spend more time investigating the configuration of a particular software
component rather than how to automate it with Ansible.

I encourage you to use Ansible in your next automation project.

	Table of Contents
	The Story Behind the Succinctly Series of Books
	Information is plentiful but harder to digest
	The Succinctly series
	The best authors, the best content
	Free forever
	Free? What is the catch?
	Let us know what you think

	About the Author
	Introduction
	Target audience
	Additional resources
	Ansible source code
	Ansible useful links
	Software requirements
	Conventions used in the book
	Code in this book
	Resources
	Ansible version

	Chapter 1 Introduction
	Why do we need Ansible?
	What can Ansible be used for?
	Infrastructure provisioning
	Configuration management
	Application deployment
	Orchestration

	Chapter 2 High-Level View
	Users
	Modules
	Plugins
	Inventories
	Ansible playbooks

	Chapter 3 Environment Setup
	Vagrant
	VirtualBox
	Visual Studio Code
	Infrastructure installation procedure
	Accessing the servers
	Other Vagrant commands
	Visual Studio Code: connecting with the manager node

	Chapter 4 Installing Ansible
	Using the OS package manager
	Installing Ansible on CentOS

	Installing Ansible by using pip
	Installing Python and pip
	Installing Ansible

	Chapter 5 Ansible Configuration
	The [defaults] section

	Chapter 6 Ansible Inventory
	Inventory location
	Inventory file content
	Host groups
	Nested groups
	Host ranges
	Host verification

	Dynamic inventories

	Chapter 7 Connecting to Remote Environments
	Ansible Manager Server configuration
	Generation of the ssh key

	Chapter 8 Running Ad-Hoc Commands
	Example command: ping
	Example command: service
	Common modules
	Ansible built-in modules
	Command modules

	Idempotent modules

	Chapter 9 Ansible Playbook
	Basic structure
	Executing the playbook
	Limit option
	Checking the syntax
	Dry run

	Variables
	Naming convention
	Declaring variables in the playbook
	Declaring group or host variables

	Looping through variables
	Conditional statements
	Combining loops and conditional statements

	Chapter 10 Ansible Playbook Handlers
	Chapter 11 Templating
	Jinja2 basic syntax
	Jinja2 module

	Chapter 12 Ansible Vault: Data Encryption
	Ansible-vault command line tool
	Encrypt
	Decrypt
	View
	Edit
	Rekey

	Using secrets within the playbook
	Suppressing the output
	Example code

	Chapter 13 Ansible Runtime Facts
	Chapter 14 Ansible Tags
	Chapter 15 Ansible Roles
	Role’s directory structure
	MongoDB custom role
	Role creation
	Variables
	Tasks
	Add yum MongoDB repository
	Install MongoDB server
	Install MongoDB client
	Change the MongoDB configuration file
	Open Firewall Port 27017

	Playbooks

	Chapter 16 Ansible Galaxy
	Using roles
	Web server setup
	Deploying the website
	Checkout
	Copy the website
	Running the code

	Load balancer example

	Final Words

