
www.dbooks.org

https://www.dbooks.org/

Go Web Development

Succinctly

By

Mark Lewin

Foreword by Daniel Jebaraj

 3

Copyright © 2017 by Syncfusion, Inc.

2501 Aerial Center Parkway

Suite 200

Morrisville, NC 27560

USA

All rights reserved.

Important licensing information. Please read.

This book is available for free download from www.syncfusion.com on completion of a

registration form.

If you obtained this book from any other source, please register and download a free copy from

www.syncfusion.com.

This book is licensed for reading only if obtained from www.syncfusion.com.

This book is licensed strictly for personal or educational use.

Redistribution in any form is prohibited.

The authors and copyright holders provide absolutely no warranty for any information provided.

The authors and copyright holders shall not be liable for any claim, damages, or any other

liability arising from, out of, or in connection with the information in this book.

Please do not use this book if the listed terms are unacceptable.

Use shall constitute acceptance of the terms listed.

SYNCFUSION, SUCCINCTLY, DELIVER INNOVATION WITH EASE, ESSENTIAL, and .NET

ESSENTIALS are the registered trademarks of Syncfusion, Inc.

Technical Reviewer: James McCaffrey

Copy Editor: John Elderkin

Acquisitions Coordinator: Hillary Bowling, online marketing manager, Syncfusion, Inc.

Proofreader: Jacqueline Bieringer, content producer, Syncfusion, Inc.

www.dbooks.org

http://www.syncfusion.com/
http://www.syncfusion.com/
http://www.syncfusion.com/
https://www.dbooks.org/

 4

Table of Contents

The Story Behind the Succinctly Series of Books ... 7

About the Author ... 9

Acknowledgements ... 9

Chapter 1 Introduction ...10

Who is this e-book for? ...10

Why use Go for web development? ...10

Setting up your development environment ..11

Installing the Go tools ..11

Creating a workspace ..14

Code examples ..14

Chapter 2 Serving and Routing ...16

Go as a simple web server ...16

Simple serving and routing ...17

Middleware ..21

More advanced serving and routing with the Gorilla Web Toolkit ..25

Installing and referencing the gorilla/mux package ..25

Using gorilla/mux ...26

Returning errors ...28

Chapter 3 Accessing Data ...30

Getting a driver for your database ..30

sql.DB ..33

Retrieving data from the database ..34

Tidying up the output ...36

Chapter 4 Templates ..38

 5

Introducing templates ...38

Reworking the data access application using a template ..40

Using embedded methods in templates ..43

Using conditionals in templates ..46

Chapter 5 Creating a RESTful JSON API ..48

RESTful APIs ...48

Our RESTful web service ...51

Serving and routing ..52

The complete application ..60

Running the application ..67

Displaying all cities ..67

Displaying a specific city ..69

Adding a city ..69

Deleting a city ..70

Challenge step ...71

Chapter 6 Cookies and Sessions ..72

Introducing cookies and sessions ...72

What is a cookie? ..72

What is a session? ...72

What is a session cookie? Or a persistent cookie? ..73

Working with cookies ..73

Setting cookies ..73

Fetching cookies ..74

Using cookies ..74

Working with sessions ..77

Basics ..77

www.dbooks.org

https://www.dbooks.org/

 6

Flash messages ...79

Chapter 7 Development Techniques...81

Logging ..81

Basic logging ...81

Logging web requests ..83

Testing ...86

 7

The Story Behind the Succinctly Series
of Books

Daniel Jebaraj, Vice President
Syncfusion, Inc.

taying on the cutting edge
As many of you may know, Syncfusion is a provider of software components for the
Microsoft platform. This puts us in the exciting but challenging position of always
being on the cutting edge.

Whenever platforms or tools are shipping out of Microsoft, which seems to be about every other
week these days, we have to educate ourselves, quickly.

Information is plentiful but harder to digest
In reality, this translates into a lot of book orders, blog searches, and Twitter scans.

While more information is becoming available on the Internet and more and more books are
being published, even on topics that are relatively new, one aspect that continues to inhibit us is
the inability to find concise technology overview books.

We are usually faced with two options: read several 500+ page books or scour the web for
relevant blog posts and other articles. Just as everyone else who has a job to do and customers
to serve, we find this quite frustrating.

The Succinctly series
This frustration translated into a deep desire to produce a series of concise technical books that
would be targeted at developers working on the Microsoft platform.

We firmly believe, given the background knowledge such developers have, that most topics can
be translated into books that are between 50 and 100 pages.

This is exactly what we resolved to accomplish with the Succinctly series. Isn’t everything
wonderful born out of a deep desire to change things for the better?

The best authors, the best content
Each author was carefully chosen from a pool of talented experts who shared our vision. The
book you now hold in your hands, and the others available in this series, are a result of the
authors’ tireless work. You will find original content that is guaranteed to get you up and running
in about the time it takes to drink a few cups of coffee.

S

www.dbooks.org

https://www.dbooks.org/

 8

Free forever
Syncfusion will be working to produce books on several topics. The books will always be free.
Any updates we publish will also be free.

Free? What is the catch?

There is no catch here. Syncfusion has a vested interest in this effort.

As a component vendor, our unique claim has always been that we offer deeper and broader
frameworks than anyone else on the market. Developer education greatly helps us market and
sell against competing vendors who promise to “enable AJAX support with one click,” or “turn
the moon to cheese!”

Let us know what you think

If you have any topics of interest, thoughts, or feedback, please feel free to send them to us at
succinctly-series@syncfusion.com.

We sincerely hope you enjoy reading this book and that it helps you better understand the topic
of study. Thank you for reading.

Please follow us on Twitter and “Like” us on Facebook to help us spread the
word about the Succinctly series!

mailto:succinctly-series@syncfusion.com
https://twitter.com/Syncfusion
https://www.facebook.com/Syncfusion

 9

About the Author

Mark Lewin has been developing, teaching, and writing about software for more than 18 years.
His main interests are web development in general and web mapping in particular. While
working for ESRI, the world's largest GIS company, he acted as a consultant, trainer, and
course author. He has been a frequent speaker at industry events, and he currently works with
a wide variety of open-source mapping technologies and a handful of relevant JavaScript
frameworks, including Node.js, Dojo, and JQuery.

Based in the U.K., Mark currently teaches ArcGIS Server/JavaScript development for
Geospatial Training LLC and is the author of the Google Maps API: Get Started course for
Pluralsight. By day, he writes MySQL courseware for Oracle.

Mark can be reached at mark@marklewin.com or on Twitter at @gisapps.

This is Mark's third e-book for Syncfusion. The first, Leaflet.js Succinctly, was published in
March 2016. And the precursor to this e-book, Go Succinctly, will be published by the time you
read this.

Acknowledgements

I’d like to thank my children for being little rays of sunshine, even on dark days. Words cannot
express how I feel about you all.

And to my best friend, the “philosopher” David Peters. Everyone needs a friend to help them in
the down times and keep them grounded in the good times, and David does that for me.

www.dbooks.org

http://www.geospatialtraining.com)/
https://www.pluralsight.com/courses/google-maps-api-get-started
mailto:mark@marklewin.com
https://www.syncfusion.com/resources/techportal/details/ebooks/leafletjs
https://www.dbooks.org/

 10

Chapter 1 Introduction

Who is this e-book for?

This book is for any developer who has a basic familiarity with the Go programming language
and is interested in using Go to write web applications.

If you can write simple console applications with Go, you shouldn’t have any problem
understanding the contents of this short e-book.

If you’re looking for a primer on the language itself, may I humbly recommend my book Go
Succinctly, which will take you from zero to… well, if not exactly mastery, to an appreciation and
understanding of the Go programming language. It also gives you links to other resources that
will help you become familiar with Go.

Like all e-books in Syncfusion’s Succinctly series, you can download Go Succinctly free of
charge from the Syncfusion website.

Why use Go for web development?

Go is an excellent language for writing web applications, specifically for web services. In fact, it
was designed specifically with the web in mind. After all, any modern programming language
can hardly gain traction if it ignores the web.

So, which features of the Go programming language are particularly useful for web
development? Here are a few:

Concurrency

Any decent-sized web server needs to run many thousands of tasks concurrently. Concurrency
is complex and difficult in many languages because it is usually implemented as an
afterthought. Concurrency, however, is built into the Go language. Indeed, concurrency is one of
the main problems the Go language was designed to solve.

In Go, concurrency is achieved by using Goroutines, which are lightweight threads that allow
developers to perform multiple operations asynchronously. These are incredibly useful in web
applications. For example, when a user connects to your web server, you can simply spawn a
Goroutine to handle any interactions with that client. It’s very easy to do—merely prefix the
function call with the go keyword. Better still, Goroutine scales incredibly well, and your Go web

applications will purr along quite happily while servicing many thousands of users.

https://www.syncfusion.com/resources/techportal/ebooks

 11

Modularity

Web applications, like many other modern applications, usually grow to include a lot of code.
Keeping this code organized and efficient, so that it’s easy to understand and maintain, is a
challenge for today’s developers. This is especially the case when several developers are
working on the same application and each developer formats their code differently.

Go takes away many of these problems by imposing a specific method of structuring and
formatting code. Functions, variables, constants, and type declarations are all expected to be in
predictable places, and Go requires them all to be coded in a specific way.

If Go sounds draconian in this regard, consider this—what you lose in freedom of expression
you gain in predictability; everything is where you expect it to be and formatted identically
throughout.

Go makes it easy for you to satisfy its code formatting rules by providing you with the fmt

package that you can build into your workflow to automatically Go-ify your code.

Compilation

Unlike many recent web development server-side languages, the Go programming language is
compiled. This means that a problem such as a runtime error that might be difficult to track
down is instead caught in the compilation step. Go’s static typing system also helps you
discover errors during development that might otherwise escape into production.

The net/http package

Go’s net/http package is excellent and makes starting a web server while having full control of

accepting requests and delivering responses very easy. Routing is handled by a multiplexer.
You can either adopt the one in the standard library or select from several third-party options. In
this book, we’ll start by using Go’s DefaultServeMux, then we’ll consider a very capable

alternative: gorilla/mux.

Setting up your development environment

I won’t delve too deeply into setup here because I’m going to assume that you have some
experience using Go. However, if you need to recap, I suggest referring to my e-book Go
Succinctly or visiting the official Golang.org “Getting Started” page: https://golang.org/doc/install.

The steps involved in setting up your environment consist of:

• Installing the Go tools.
• Creating a workspace and setting the GOPATH environment variable.

Installing the Go tools

The exact steps you will need to follow depend on which platform you are using. Go binaries are
available for Windows, Mac OS X, and *nix platforms.

www.dbooks.org

https://golang.org/doc/install
https://www.dbooks.org/

 12

You can download them here: https://golang.org/dl/, as shown in Figure 1.

Figure 1: The Golang Downloads Webpage

 Tip: If you are upgrading to a later version of Go, you must uninstall the previous
version first.

Windows

The easiest way to install the Go tools in Windows is to download the MSI installer, launch it,
then follow the prompts. By default, Go installs everything in C:\Go, then it adds C:\Go\bin to

your PATH environment variable.

Alternatively, if you would rather have more control over your environment variables, you can
download the .zip file and extract it to a directory of your choice. In this case, you’ll need to
configure the environment variables yourself.

You can set environment variables through the Environment Variables button on the Advanced
tab of the System control panel. Some versions of Windows provide this control panel through
the Advanced System Settings option inside the System control panel.

https://golang.org/dl/

 13

Figure 2: Setting Go Environment Variables in Windows

You might need to close and re-open any command-line sessions in order for the changes to
take effect.

Mac OS X

Download the .pkg file and follow the prompts. The package installs the Go distribution to

/usr/local/go and adds /usr/local/go/bin to your PATH.

Linux, Unix, and FreeBSD

You’ll notice that *nix-based systems expect a bit more from you. But as a *nix user, you are
more than up to the challenge.

Download the .tar.gz file and extract it to /usr/local as the root user, or get it via sudo:

sudo tar -C /usr/local -xzf go$VERSION.$OS-$ARCH.tar.gz

You next need to add /usr/local/go/bin permanently to your PATH. Put the following line in

your /etc/profile (for all users) or ~/.profile (for only you) to make this a permanent thing:

export PATH=$PATH:/usr/local/go/bin

Custom installation locations

Those methods decide where Go will be installed. If you don’t like to be bossed around that
way, you must tell Go where to find itself by setting the GOROOT environment variable. If you’re

happy with the default location, then don’t specify GOROOT. You’ll only confuse things.

www.dbooks.org

https://www.dbooks.org/

 14

Creating a workspace

The final step is telling Go where any code you write, as well as any third-party libraries that you
download with go get, will reside. Do this by setting the GOPATH environment variable using the

same techniques described above.

Go will create bin, pkg, and src files in this location:

• bin: Contains executables
• pkg: Contains package objects
• src: Contains Go source code

Code examples

All code examples in this book can be found on GitHub at https://github.com/marklewin/go-web-
succinctly.git.

Figure 3: The Github Repository for This E-Book's Code Samples

https://github.com/marklewin/go-web-succinctly.git
https://github.com/marklewin/go-web-succinctly.git

 15

You can identify each sample by the chapter and topic it matches in this e-book.

You can either download each file individually or clone the repository by using the following
commands:

$ git clone git://github.com/marklewin/go-web-succinctly.git

$ git pull origin

www.dbooks.org

https://www.dbooks.org/

 16

Chapter 2 Serving and Routing

Go’s net package facilitates all network communications in Go programs, whether it’s over

HTTP, TCP/IP, WebSockets, or any other standard network protocol.

Of course, because this e-book addresses web development, we are primarily concerned with
HTTP, which means the main subpackage we’ll be using is net/http.

In this chapter, we’ll look at the basic requirements of any Go web application—serving and
routing—and how you can use net/http and complementary packages to implement them.

Go as a simple web server

Back in the old days, web servers did little more than serve up files that resided in a directory on
that server. If that’s all we want now, we can do something very similar in Go by using the
net/http package in just a few lines of code.

Code Listing 1: Go as a Web Server

It’s very basic, but our program fulfills the core responsibilities of any web server—namely,
listening to a request and serving a response. What’s more, because it doesn’t have to worry
about all the other issues that a more traditional web server must, the program is lightning fast.

In this example, we call the http.ListenAndServe() function to send all requests on port 8999

to an http.FileServer handler method, which in turn accepts the directory on the server that

we want to serve files from. Easy!

If you run the program using go run <program_name.go> and enter

http://localhost:8999/ in your browser’s address bar, followed by the name of a file that

exists in /var/www on your server, you’ll see that file’s contents displayed—as in Figure 4.

package main

import (
 "net/http"
)

func main() {
 http.ListenAndServe(":8999",
 http.FileServer(http.Dir("/var/www")))
}

 17

Figure 4: Go Serving Gophers

However, most modern web applications require a bit more than this from the server. And keep
in mind, you’re not always going to be sending static content. Increasingly, you will be called
upon to generate content dynamically, perhaps from the contents of a database. In this case, a
physical file location doesn’t make much sense.

And suppose you have a more complex site structure in which your application’s files are
spread among various subdirectories? For example, www.mysite.com/about/aboutus.html

and www.mysite.com/blog/blog.html? This approach won’t work. So, you’ll need better

control over the URLs your application can accept. You can achieve this by using the net/http

package’s routing capabilities.

Simple serving and routing

Go relies on two main components to process HTTP requests—a multiplexor and handlers. A
multiplexor (or “mux”) is essentially an HTTP request router. In Go’s net/http package, the

multiplexor functionality is provided by ServeMux and the default serve mux is

DefaultServeMux.

Intuitive, eh?

www.dbooks.org

https://www.dbooks.org/

 18

ServeMux compares incoming requests against a list of predefined URL paths, then calls the

appropriate handler (a function that you define) for each path when there is a match.

Let’s first have a look at the code, then we’ll examine what’s going on.

Code Listing 2: Basic Serving and Routing Using Net/http

Notice that the main() function, which is the entry point into the program, sets up some server

routes by using the http.HandleFunc(route, handler) method to map a URL route to a

function that will respond to any requests coming in that match that route.

The program next calls the http.ListenAndServe() method, which starts an HTTP server with

a specified address (in this case, the local machine on port 8999) and a mux. The mux in this
instance is nil, which tells Go to use DefaultServeMux.

The handler functions do different things depending on whether the URL accessed is at the root
of the site (“/”) or at “/site”. However, in both cases their method signatures must implement

both http.ResponseWriter and http.Request. If a handler that does not implement both of

these gets called via http.HandleFunc(), you’ll see that Go will raise a compile-time error.

package main

import (
 "fmt"
 "html"
 "log"
 "net/http"
 "time"
)

func main() {
 http.HandleFunc("/", showInfo)
 http.HandleFunc("/site", serveFile)
 err := http.ListenAndServe(":8999", nil)
 if err != nil {
 log.Fatal("ListenAndServe: ", err)
 }
}

func showInfo(w http.ResponseWriter, r *http.Request) {
 fmt.Fprintln(w, "Current time: ", time.Now())
 fmt.Fprintln(w, "URL Path: ", html.EscapeString(r.URL.Path))
}

func serveFile(w http.ResponseWriter, r *http.Request) {
 http.ServeFile(w, r, "index.html")
}

 19

If the user visits /site, the http.ServeFile() method handles the request and returns the

index.html page that resides in the same directory as the application. You can use

http.ServeFile() to send any static file in the response.

If the user visits the root location, showInfo() gets called and will display the current time and

whichever path that user entered beyond the root URL. The application extracts this information
by using the URL.Path property of the http.Request object that gets passed to the handler.

The response is generated by http.ResponseWriter.

Start the program by issuing go run <program_name.go> from your IDE or simply via the

command line. Next, visit localhost:8999 in your browser. Try various combinations to test its

functionality.

For example, entering http://localhost:8999 results in the dynamically generated page in

Figure 5.

Figure 5: Visiting the Root of the Web Application

Entering any subroute (for example, localhost:8999/hello/there/from/golang) displays

the time and date and the subroute entered, as we see in Figure 6.

www.dbooks.org

https://www.dbooks.org/

 20

Figure 6: Visting a Subroute

Entering localhost:8999/site displays the index.html page.

Figure 7: Visiting/Site

Let’s expand our ability to serve static files in this example. Suppose that the URL in the request
starts with /static/ and we want to strip the /static part of the URL in order to look for the

file referenced in the remaining path in the /var/www directory. We can use the StripPrefix

function to achieve this, as we see in Code Listing 3.

Code Listing 3: Using StripPrefix

package main

import (
 "fmt"
 "html"
 "log"

 21

Note that in this example we’re not calling HandleFunc, but Handle. That’s because the

FileServer function returns its own handler that we can pass to the mux using Handle (instead

of explicitly creating our own handler function).

So, you can see that it’s straightforward to get a site up and running that is self-serving (no
separate web server required) and lets you respond to some simple requests.

Middleware

In web development, middleware is code that sits between the web request and your route
handler. Middleware consists of reusable bits of code you can use to perform tasks that must
occur either before the handler is called or afterward.

The term “middleware” is often used with Go programming, but you might also see similar terms
used with other web languages and technologies, such as “interceptor,” “hooking,” and “request
filtering.”

For example, you might want to check the status of a database connection or authenticate a
user before routing the request. You might also want to compress the content of a response or
limit the amount of times a specific handler is called—perhaps as part of some restriction that
you place on users who access your web service free of charge.

Creating middleware is simply a matter of chaining handlers and handler functions, and it’s
something you will see—and use—a lot in Go web development.

The basic idea is that you pass a handler function—let’s call it f2—into another handler
function—let’s call this one f1—as a parameter. Handler f1 gets called when the route that
triggers it is visited. f1 does some work, then calls f2.

 "net/http"
 "time"
)

func main() {
 http.HandleFunc("/", showInfo)
 files := http.FileServer(http.Dir("/var/www"))
 http.Handle("/site/", http.StripPrefix("/site/", files))
 err := http.ListenAndServe(":8999", nil)
 if err != nil {
 log.Fatal("ListenAndServe: ", err)
 }
}

func showInfo(w http.ResponseWriter, r *http.Request) {
 fmt.Fprintln(w, "Current time: ", time.Now())
 fmt.Fprintln(w, "URL Path: ", html.EscapeString(r.URL.Path))
}

www.dbooks.org

https://www.dbooks.org/

 22

Of course, you could have f1 call f2 directly. However, this is not ideal because we typically
want to achieve a clear separation of concerns, and therefore our handler code should really be
limited to processing the request and not doing whatever f2 is designed to do.

Here’s the basic idea—instead of dealing with the response as part of your handler, you simply
pass the next handler in the chain to it.

Functions that accept another handler function as a parameter and return a new one can
perform tasks before or after the handler is called (or both before and after) and can even
ultimately choose not to call the original handler at all (if that is your intention).

Consider the example in Code Listing 4.

Code Listing 4: Middleware Example 1

package main

import (
 "fmt"
 "net/http"
)

func middleware1(next http.Handler) http.Handler {
 return http.HandlerFunc(func(w http.ResponseWriter, r
*http.Request) {
 fmt.Fprintln(w, "Executing middleware1()...")
 next.ServeHTTP(w, r)
 fmt.Fprintln(w, "Executing middleware1() again...")
 })
}

func middleware2(next http.Handler) http.Handler {
 return http.HandlerFunc(func(w http.ResponseWriter, r
*http.Request) {
 fmt.Fprintln(w, "Executing middleware2()...")
 if r.URL.Path != "/" {
 return
 }
 next.ServeHTTP(w, r)
 fmt.Fprintln(w, "Executing middleware2() again...")
 })
}

func final(w http.ResponseWriter, r *http.Request) {
 fmt.Fprintln(w, "Executing final()...")
 fmt.Fprintln(w, "Done")
}

func main() {
 finalHandler := http.HandlerFunc(final)

 23

Look at the main() function. Here, we are intercepting requests to our root web directory with

the middleware1 handler. This handler accepts as a parameter another handler called

middleware2. That in turn has the final handler as a parameter.

When someone visits our web application, it will call middleware1, which displays a message

and, when it hits next.serveHTTP, executes the code in middleware2. The middleware2

function in turn calls final, which executes and then returns control to middleware2, which

completes its tasks and returns control to middleware1.

The output will look like Figure 8.

Figure 8: The Output of Middleware Example 1

Figure 8 offers a completely artificial example, but it serves to illustrate how much control
middleware can give you.

Go often uses middleware internally. For example, many functions in the net/http package,

such as StripPrefix, are textbook examples of what middleware is—they wrap your handler

and perform additional operations on requests or responses.

The concept of middleware can be somewhat difficult to understand, so Code Listing 5 shows
another example.

Code Listing 5: Middleware Example 2

 http.Handle("/", middleware1(middleware2(finalHandler)))
 http.ListenAndServe(":8999", nil)
}

package main

import (
 "net/http"
)

type AfterMiddleware struct {
 handler http.Handler
}

www.dbooks.org

https://www.dbooks.org/

 24

In this bit of code, we want our middleware to execute when the myHandler function writes the

response body—and to append some data to it.

First, we create a type for the middleware that we call AfterMiddleware. This consists of a

single field—the http.Handler we want our middleware to respond to.

The http.Handler interface requires only that we implement the ServeHTTP interface:

type Handler interface {
 ServeHTTP(ResponseWriter, *Request)
}

We do this as follows:

func (a *AfterMiddleware) ServeHTTP(w http.ResponseWriter, r *http.Request) {
 a.handler.ServeHTTP(w, r)
 w.Write([]byte(" +++ Hello from middleware! +++ "))
}

Now, the response consists of whatever myHandler wrote and is followed by the output of our

middleware in Figure 9.

Figure 9: The Output of Middleware Example 2

We cannot cover every aspect of middleware here, but it is a very powerful feature that is well
worth investigating. This article and video lecture by Mat Ryer is an excellent introduction to the
topic.

We’ll revisit the concept of middleware in Chapter 7, when we create some eminently more
useful logging middleware.

func (a *AfterMiddleware) ServeHTTP(w http.ResponseWriter, r
*http.Request) {
 a.handler.ServeHTTP(w, r)
 w.Write([]byte(" +++ Hello from middleware! +++ "))
}

func myHandler(w http.ResponseWriter, r *http.Request) {
 w.Write([]byte(" *** Hello from myHandler! *** "))
}

func main() {
 mid := &AfterMiddleware{http.HandlerFunc(myHandler)}

 println("Listening on port 8999")
 http.ListenAndServe(":8999", mid)
}

https://medium.com/@matryer/writing-middleware-in-golang-and-how-go-makes-it-so-much-fun-4375c1246e81

 25

More advanced serving and routing with the Gorilla Web
Toolkit

The routing functionality offered by Go’s built-in net/http package only gets you so far. If the

range of possible URLs is complex and if, for example, you want to be able to use regular
expressions or variables to match URLs, you will probably want to consider a third-party
solution.

The Gorilla Web Toolkit is one such solution. Gorilla consists of 22 packages, including:

• gorilla/context stores global request variables.
• gorilla/mux is a powerful URL router and dispatcher.
• gorilla/reverse produces reversible regular expressions for regexp-based muxes.
• gorilla/rpc implements RPC over HTTP with codec for JSON-RPC.
• gorilla/schema converts form values to a struct.
• gorilla/securecookie encodes and decodes authenticated and optionally encrypted

cookie values.
• gorilla/sessions saves cookie and filesystem sessions and allows custom session

back ends.
• gorilla/websocket implements the WebSocket protocol defined in RFC 6455.

As you can see from the list of packages, there is more to Gorilla than merely an alternative
mux for Go routing and serving. In fact, it provides a whole range of different tools to assist you
in your web development efforts.

But here, we’re interested in the mux. The gorilla/mux module implements the http.Handler

interface so that it is compatible with the standard Golang. http.serveMux.

In addition, the gorilla/mux module gives you the ability to:

• Match requests based on URL host, path, path prefix, schemes, header and query
values, HTTP methods, or custom matchers that you define.

• Register URLs so that you can build or “reverse” them, thereby maintaining
references to resources.

• Use “subrouters”—nested routes that are only tested if their parent routes match. In
this way, you can define “groups” of routes that all have something in common, such
as a host or a path prefix. This optimizes request matching by undertaking some
tests only if they are appropriate to the group (rather than executing tests against all
incoming requests).

Installing and referencing the gorilla/mux package

If you are only interested in the more advanced routing capability offered by Gorilla, you can
install gorilla/mux in your GOPATH by using go get. For example, assuming that you have git
installed:

go get github.com/gorilla/mux

Next, you must import it into your application, like so:

www.dbooks.org

https://www.dbooks.org/

 26

package main

import (
 github.com/gorilla/mux
 ...
)

Using gorilla/mux

For a bit of fun, let’s use gorilla/mux to create a handler that matches incoming requests for

product IDs based on a regular expression. If the product ID is a single digit long, we have a
match and can route to the appropriate page. If not, we route to an error page.

We’ll first need to import the gorilla/mux module, which we do in the normal way:

import(
 . . .
 github.com/gorilla/mux
)

Next, we’ll need to tell Go to use gorilla/mux instead of its own DefaultServeMux:

func main() {
 router = mux.NewRouter()
}

When we’ve done that, we can use the handler functions we are familiar with, but in the context
of router and with the extra capabilities gorilla/mux provides, such as searching for a URL

parameter with a regular expression:

router.HandleFunc("/product/{id:[0-9]+}", pageHandler)

That line of code creates a handler function that attempts to match a URL that consists of
/product/ with a number from zero to nine, inclusive, which it refers to as id. If there is a

match, it calls the pageHandler function.

In our pageHandler function, we need a way to examine the exact string that HandleFunc

matched. We can use Gorilla’s mux.Vars function to do this, passing in the request as a single

parameter and getting back a map of route variables. We can reference the route variable we’re
interested in by its name—id.

Having retrieved the product ID, we can next check for a matching HTML page. Go’s os module

provides the Stat and IsNotExist functions to help us with that. If the file exists on the server,

we use http.ServeFile in order to send it to the browser. And if it doesn’t exist there, we’ll

return another page telling the user that the product is invalid.

Code Listing 6 shows the full code.

 27

Code Listing 6: Serving and Routing Using gorilla/mux

This only scratches the surface of what gorilla/mux can do. For example, you can match

against:

Path prefixes:

router.PathPrefix("/products/")

HTTP methods:

router.Methods("GET", "POST")

URL schemes:

router.Schemes("https")

Header values (for example, was the request an AJAX request?):

package main

import (
 "log"
 "net/http"
 "os"

 "github.com/gorilla/mux"
)

func pageHandler(w http.ResponseWriter, r *http.Request) {
 vars := mux.Vars(r)
 productID := vars["id"]
 log.Printf("Product ID:%v\n", productID)

 fileName := productID + ".html"

 if _, err := os.Stat(fileName); os.IsNotExist(err) {
 log.Printf("no such product")
 fileName = "invalid.html"
 }

 http.ServeFile(w, r, fileName)
}

func main() {
 router := mux.NewRouter()
 router.HandleFunc("/product/{id:[0-9]+}", pageHandler)
 http.Handle("/", router)
 http.ListenAndServe(":8999", nil)
}

www.dbooks.org

https://www.dbooks.org/

 28

router.Headers("X-Requested-With", "XMLHttpRequest")

Query values:

router.Queries("key", "value")

Custom matching functions that you define:

router.MatcherFunc(func(r *http.Request, match *RouteMatch) bool {
// do something

})

You can also combine multiple matchers in a single route by chaining function calls:

router.HandleFunc("/products", productHandler).
 Host("www.example.com").
 Methods("GET").
 Schemes("https")

Or, you can use subroutes to group multiple routes together. For example, the following code
looks for a host name of www.example.com, but it will check the subroutes only if it gets a
match on the host name:

router := mux.NewRouter()
subrouter := route.Host("www.example.com").Subrouter()

// Register the subroutes
subrouter.HandleFunc("/products/", AllProductsHandler)
subrouter.HandleFunc("/products/{name}", ProductHandler)
subrouter.HandleFunc("/reviews/{category}/{id:[0-9]+}"), ReviewsHandler)

The gorilla/mux package is a very capable alternative to DefaultServeMux and well worth

investigating. You can find out more at http://www.gorillatoolkit.org/pkg/mux.

Of course, with Go being such a vibrant ecosystem, there are many other choices if you don’t
like Gorilla. I prefer Gorilla because it’s easy to get my head around, and it’s always been able
to do whatever I ask it to do.

Other popular third-party routers include:

• httprouter: Lightning fast, but less capable than Gorilla. For example, you cannot
include regular expressions in your routes.

• Httptreemux: A fast, flexible, tree-based HTTP router, inspired by httprouter.
• Pat: Simple to use and quite popular. If you’re a Ruby-ist familiar with Sinatra and

Rails, you’ll find Pat’s approach very familiar.

Returning errors

Things don’t always work as we intend. Requests get made for pages that no longer exist,
things get moved from one place to another, and sometimes the connection drops.

http://www.example.com/
http://www.gorillatoolkit.org/pkg/mux

 29

The HTTP protocol defines 61 different status codes so that we can determine whether or not a
request was successful.

Here are a few of the most common ones:

• 200 OK: Hooray! All is well.
• 404 Not found: Whatever resource you’re looking for, you won’t find it here.
• 301 Moved Permanently: Used as a permanent redirect to another page.
• 301 Moved Temporarily: Used as a temporary redirect to another page.
• 500 Internal Server Error: Something unexpected has gone wrong. This is a

“catch all.”

The net/http package provides a function called Error that you can use to handle error status

codes. Your job as a developer is to pick one that makes sense for the type of error you are
reporting.

You can raise an error by passing the ResponseWriter, a string message, and the status code.

For example, this raises a 404 Not Found error:

http.HandleFunc("/", func(w http.ResponseWriter, r *http.Request) {
 http.Error(w, "Something has gone wrong", 500)
})

However, it’s better practice to use the various helper functions that net/http provides for this

purpose rather than the generic http.Error() function.

For example:

// Return 404 Not Found
http.NotFound(w, req)

// Return 301 Permanently Moved
http.Redirect(w, req, “http://somewhereelse.com”, 301)

// Return 302 Temporarily Moved
http.Redirect(w, req “http://temporarylocation”, 302)

www.dbooks.org

https://www.dbooks.org/

 30

Chapter 3 Accessing Data

In the previous chapter, we saw how Go can accept requests from different URLs and route
them to an appropriate handler. So far, however, all of our responses to those requests have
served only static content, which is not enough for today’s web applications. In this chapter,
we’ll see how we can connect our Go web applications to a data source and serve dynamic data
instead.

Getting a driver for your database

Go allows you to use any database for which a driver is available. A definitive list of drivers can
be found at https://github.com/golang/go/wiki/SQLDrivers.

Unless you’re using something quite exotic, you should be able to find a driver for your
database in the wiki.

MySQL is a fantastic open-source database and, although it has been around for quite a while,
it continues to be extremely popular, so we’ll use that for our examples in this chapter. However,
whichever database you choose, the steps you need to take will be similar, if not identical, to
those shown here.

You can download the free community edition of MySQL Server from http://www.mysql.com.
Follow the installation instructions for your platform. If you want to follow along with the
examples in this chapter, you should also install the sample “world” database. There’s an option
in the Windows installer for this, but with Mac and Linux you must download and install it
manually from https://dev.mysql.com/doc/index-other.html.

Simply connect to the MySQL server using the command-line client (or MySQL Workbench,
which you can also install if you prefer a GUI environment), then execute the following
statement:

mysql> SOURCE < /path/to/world.sql

You can verify that the “world” database is installed by issuing the command in Figure 10 at the
mysql> prompt.

https://github.com/golang/go/wiki/SQLDrivers
http://www.mysql.com/
https://dev.mysql.com/doc/index-other.html

 31

Figure 10: Verifying "World" Database Installation

When you’ve installed the database server, you need to install the driver for it. You can do this
by using go get. I’m using the go-sql-driver in Figure 11.

Figure 11: Installing the MySQL Driver for Go

When we’ve imported the driver specific to the database server, we’ll next need to reference
both it and the generic database/sql package in our import statement. Note that we are

preceding the driver import with an underscore (_). This tells the Go compiler that the package

we are referencing is complementary to another package—in this instance, the database/sql

package. We’re using it only for its initialization capability—what Go calls “side effects.”

import (
"database/sql"

 "log"

 _ "github.com/go-sql-driver/mysql"
)

Next, we need to specify the server host, port number, initial database, user name, and
password that we’ll use to build the connection string.

db, err := sql.Open("mysql", "root:password@tcp(127.0.0.1:3306)/world")

There are three tables in the “world” database—Country, City, and CountryCode, the last of
which links cities to countries. It’s a good idea to create types for each of the database tables in
your application so that it will be easier to implement changes in the schema later.

www.dbooks.org

https://www.dbooks.org/

 32

Here is our Go struct for rows in the City table:

type City struct {
 Name string
 CountryCode string
 District string
 Population uint32
}

Next, let’s have a variable in which we store a handle to our database when we’re connected:

var database *sql.DB

Finally, we’re ready to connect to the database. We build up the connection string by serializing
the server host, port number, initial database, and the user name and password strings.

Next, we attempt to connect by calling the database/sql.Open method, passing in the type of

driver and the connection string:

dbConn := fmt.Sprintf("%s:%s@tcp(%s)/%s", dbUser, dbPass, dbHost, dbDatabase)
db, err := sql.Open("mysql", dbConn)

This returns an instance of sql.DB (about which we will have more to say later).

The full code is here in Code Listing 7.

Code Listing 7: Connecting to the Database

package main

import (
 "database/sql"
 "log"

 _ "github.com/go-sql-driver/mysql"
)

var database *sql.DB

func main() {
 db, err := sql.Open("mysql",
"root:password@tcp(127.0.0.1:3306)/world")
 if err != nil {
 log.Println("Could not connect!")
 }
 database = db
 log.Println("Connected.")
}

 33

If everything goes to plan, we should receive a message at the terminal prompt telling us that
we are now connected to the MySQL server.

Figure 12: Verifying Connection to the Database

Now that we can connect to the “world” database, we can execute queries against it and display
the results to our users. But first, let’s examine sql.DB.

sql.DB

Note from the previous code example that we are using the database variable that contains

sql.DB to access the database.

The sql.DB is not the database connection—that’s stored in dbConn—instead, it’s the

database/sql package’s abstraction of the database. In our example, it refers to the MySQL

database, but because we can use database/sql to interface with many different data sources,

it could just as easily be a local file or some sort of in-process data store such as memcache.

sql.DB takes care of a lot of things on your behalf, including the opening, closing, and pooling

of database connections.

Don’t keep opening and closing databases unless your application requires it. The sql.DB

object is designed to be long-lived, and all of your interaction with the database will come via
sql.DB. However, you must be certain to close connections by using sql.DB.Close when you

are finished with them so that they can be returned to the pool.

 Tip: If you need to give short-lived function access to sql.DB, pass it to the
function as a parameter instead of creating a new connection within the function.

We’re getting ahead of ourselves. We haven’t done anything with our database yet.

Let’s rectify that now.

www.dbooks.org

https://www.dbooks.org/

 34

Retrieving data from the database

The following code queries the “world” database’s City table based on whatever the user enters
in the browser’s address bar after http://localhost:8999/.

Code Listing 8: Querying the Database

package main

import (
 "database/sql"
 "fmt"
 "log"
 "net/http"

 _ "github.com/go-sql-driver/mysql"
)

type City struct {
 Name string
 CountryCode string
 Population int
}

var database *sql.DB

func main() {

 db, err := sql.Open("mysql",
 "root:password@tcp(127.0.0.1:3306)/world")
 if err != nil {
 log.Println("Could not connect!")
 }
 database = db
 log.Println("Connected.")

 http.HandleFunc("/", showCity)
 http.ListenAndServe(":8999", nil)
}

func showCity(w http.ResponseWriter, r *http.Request) {
 city := City{}
 queryParam := "%" + r.URL.Path[1:] + "%"
 rows, err := database.Query("SELECT Name, CountryCode,
 Population FROM city WHERE Name LIKE ?", queryParam)
 if err != nil {
 log.Fatal(err)
 }
 defer rows.Close()

http://localhost:8999/

 35

What we’re interested in here resides in the showCity function that gets called when the user

visits the root of the web application.

In order to query the database, we call the Query method in sql.DB and pass in the required

SQL. The nice thing about Query (and its counterpart, QueryRow, which retrieves only a single

row) is that it is parameterized, which helps protect against SQL injection.

The query returns a collection of rows that we iterate over by using the Next method. For each

row, we execute Scan to map the columns in the row to the City type we declared earlier. Next,

it’s a simple matter of displaying the results to the user, as in Figure 13.

Figure 13: Displaying the Query Results

 for rows.Next() {
 err := rows.Scan(&city.Name, &city.CountryCode,
 &city.Population)
 if err != nil {
 log.Fatal(err)
 }
 fmt.Fprintf(w, "%s (%s), Population: %d \n", city.Name,
 city.CountryCode, city.Population)
 }
 err = rows.Err()
 if err != nil {
 log.Fatal(err)
 }
}

www.dbooks.org

https://www.dbooks.org/

 36

Tidying up the output

All we have now is some rather ugly text being dumped out to the browser. Let’s make it a little
bit more pleasant to look at by displaying the query results in an HTML table. We do this simply
by rewriting the code in our handler, as in Code Listing 9.

Code Listing 9: Using HTML to Format the Query Results

When we execute it, we get Figure 14.

func showCity(w http.ResponseWriter, r *http.Request) {
 city := City{}
 queryParam := "%" + r.URL.Path[1:] + "%"
 rows, err := database.Query("SELECT Name, CountryCode, Population
FROM city WHERE Name LIKE ?", queryParam)
 if err != nil {
 log.Fatal(err)
 }
 defer rows.Close()

 html := "<html><head><title>City
Search</title></head><body><h1>Search for" + queryParam + "</h1><table
border='1'><tr><th>City</th><th>Country
Code</th><th>Population</th></tr>"

 for rows.Next() {
 err := rows.Scan(&city.Name, &city.CountryCode,
 &city.Population)
 if err != nil {
 log.Fatal(err)
 }
 html +=
fmt.Sprintf("<tr><td>%s</td><td>%s</td><td>%d</td></tr>", city.Name,
city.CountryCode, city.Population)
 }
 err = rows.Err()
 if err != nil {
 log.Fatal(err)
 } else {
 html += "</table></body></html>"
 fmt.Fprintln(w, html)
 }
}

 37

Figure 14: Displaying the Query Results in an HTML Table

Not exactly pretty, but a slight improvement. Of course, we can style this to our hearts’ content
with some judicious use of CSS.

But wait a minute—at what expense does this come to our code? Our nice, neat program is now
a mess of inline HTML. If it becomes more complex over time, we’d find it very difficult to
maintain. What’s more, each time we want to make a trivial change, we would have to recompile
our code.

We have now committed one of web development’s great cardinal sins—mixing logic and
presentation in our source code. Thankfully, there’s a much better way to format the display.
We’ll examine that in the next chapter.

www.dbooks.org

https://www.dbooks.org/

 38

Chapter 4 Templates

In the previous chapter, we connected to a data source, then displayed the results of queries to
the user in HTML format. This HTML code was embedded directly within our source code,
which is not desirable (except for very simple scenarios) because it makes the application very
difficult to maintain.

Go comes to the rescue with a rather good templating engine. Not only does this enable us to
separate our program code from the presentation markup, but it also provides some logical
constructs such as loops, variables, and even functions that allow us to offload presentation
logic to the template.

Introducing templates

First, let’s define a template.

Go template functionality is provided by the template package, which includes a number of

methods, including Parse and ParseFile, for loading a template from a string or file, then

Execute for merging the specific content from our application with the more general content

provided by the template itself.

Note that templates typically exist within their own files, but this is not always the case. We can
use template functionality directly within our program logic by encoding the template as a string,
then using the Parse method to read from it. This is only a slight improvement on encoding

everything as HTML, so in these examples we’ll use separate template files and ParseFile to

read from them.

First, our template. As you can see, this is simply an HTML file with some special syntax so that
our program knows what to insert and where to insert it.

Code Listing 10: Our HTML File

<html>
<head>
<title>Hello!</title>
</head>
<body>
 <h1>A warm hello to....</h1>
 <p>
 {{.Name}}
 </p>
</body>
</html>

 39

Everything should look familiar except the {{.Name}} entry. To Go templates, that is a variable.

It’s contained within double curly braces, and its name (Name) is preceded by a dot.

The dot signifies the scope or context of the variable. In our case, the Name variable refers to the

Name field of a Person struct, which will become apparent when you see the definition for it that

we’ll use in our program logic:

type Person struct {
 Name string
}

We can pass a Person struct to the template variable, and it will pull out the Name field and

replace the variable definition in the template with it.

Note that any fields you refer to in the template must be exported. That is, they must begin with
a capital letter. Unexported fields cause issues, as we’ll see in a bit.

Code Listing 11 shows the full program code.

Code Listing 11: Using the Template

The only code of note here is in the handler function that is invoked when a user visits the root

of our web application at http://localhost:8999.

package main

import (
 "log"
 "net/http"
 "text/template"
)

type Person struct {
 Name string
}

func main() {
 http.HandleFunc("/", handler)
 err := http.ListenAndServe(":8999", nil)
 if err != nil {
 log.Fatal("ListenAndServe: ", err)
 }
}

func handler(w http.ResponseWriter, r *http.Request) {
 p := Person{Name: "John Smith"}
 t, _ := template.ParseFiles("hello.html")

 t.Execute(w, p)
}

www.dbooks.org

http://localhost:8999/
https://www.dbooks.org/

 40

Handler creates a variable p of type Person and assigns “John Smith” to its Name field. We then

use template.ParseFiles, passing in the name of the template file and assigning the results

to variable t.

Having parsed the template file, we next need to perform the merge, which we do by calling
Execute, which passes the http.ResponseWriter and the data item we want to merge with

the template as parameters.

When we launch the application in a browser, we get Figure 15.

Figure 15: The Output of Our Simple Template

Reworking the data access application using a template

Let’s put our newfound knowledge of Go templates to work. First, we need to understand one of
the many capabilities of a template—the ability to iterate over a set of results, then apply the
appropriate formatting to each of them.

In order to achieve this, we must use the {{range}} {{end}} construct. We’ll use the following

template to build out our table. Everything between {{range}} and {{end}} will be repeated

once for every member of the object we pass into it.

Code Listing 12: The Template for Our “Cities” Database Application

<html>
<head>
<title>City Search</title>
</head>
<body>
 <h1>Search Results</h1>
 <table border='1'>
 <tr>
 <th>City</th>

 41

See the dot notation that appears just after the range keyword? That means “any object.”

Something important to note about using ranges in Go templates—they will only accept a single
object. “What?” I hear you say. “Why would something that is supposed to iterate through a set
of values only accept one?”

And you’d be right. But the range allows us to pass in an array or slice of values, then it will dig
into that object to pull out its members.

So, in our database application, we simply need to do a bit of refactoring in order to ensure that
each of our query results gets added to a slice—let’s call it Cities—and that we pass that slice

into our template.

Code Listing 13: Using the Template in Our “Cities” Application

 <th>Country Code</th>
 <th>Population</th>
 </tr>
 {{range .}}
 <tr>
 <td>{{.Name}}</td>
 <td>{{.CountryCode}}</td>
 <td>{{.Population}}</td>
 </tr>
 {{end}}
 </table>
</body>
</html>

package main

import (
 "database/sql"
 "html/template"
 "log"
 "net/http"

 _ "github.com/go-sql-driver/mysql"
)

type City struct {
 Name string
 CountryCode string
 Population int
}

var database *sql.DB

func main() {

www.dbooks.org

https://www.dbooks.org/

 42

Next, we can execute the program and search for cities just as we did before.

 db, err := sql.Open("mysql",
"root:password@tcp(127.0.0.1:3306)/world")
 if err != nil {
 log.Println("Could not connect!")
 }
 database = db
 log.Println("Connected.")

 http.HandleFunc("/", showCity)
 http.ListenAndServe(":8999", nil)
}

func showCity(w http.ResponseWriter, r *http.Request) {
 var Cities = []City{}
 queryParam := "%" + r.URL.Path[1:] + "%"
 cities, err := database.Query("SELECT Name, CountryCode,
 Population FROM city WHERE Name LIKE ?", queryParam)
 if err != nil {
 log.Fatal(err)
 }
 defer cities.Close()

 for cities.Next() {
 theCity := City{}
 cities.Scan(&theCity.Name, &theCity.CountryCode,
 &theCity.Population)
 Cities = append(Cities, theCity)
 }

 t, _ := template.ParseFiles("results.html")

 t.Execute(w, Cities)
}

 43

Figure 16: The Cities Application with Template

Let’s consider some of the benefits of using templates. First, our code is much neater. We don’t
need to wade through long strings of tags in order to work out what’s going on.

Second, we can change the template at any time, no recompilation necessary.

Third, the template syntax is simple enough that we could hand it over to someone who knows
nothing about Go, or about web development in general, but who might have a better handle on
design than we do.

What else can we do with Go templates? Quite a lot, as it happens. Check out the official
documentation for the definitive list. In the meantime, there are several features that are so
useful it would be remiss of me not to at least mention them—embedded methods and
conditionals.

Using embedded methods in templates

Let’s say we want to do something with our templated output. Perhaps we’d like to format the
Population column in the preceding example in order to use a comma as a thousands
separator.

Sure, we could add an extra string field in the City structure to display formatted output and

write the formatted Population column figure to it each time we retrieve a row from the table.

But, technically, that’s presentation, right? And haven’t we been keen to get as much
presentation logic out of our main code as possible?

Also, this is especially cumbersome because Go’s fmt package doesn’t provide this

functionality out of the box, which means we’ll have to roll our own.

So, let’s see if we can offload some of that responsibility to the template. In fact, we can do that
by writing a method in our application that we’ll get the template to invoke. The best way to do
that is to add a method directly to our City structure, as in Code Listing 14.

www.dbooks.org

https://www.dbooks.org/

 44

Code Listing 14: Adding a Custom Function to the City Struct

Note that the function accepts an integer value and a separator and returns a string (a tip of the
hat to Ivan Tung for this function, which saved me having to write it myself!).

You can think of the Go rune keyword as an alias for a Unicode character, which is sometimes
called a “code point” in Go terminology.

In order to call this function within our template, we simply specify its name followed by any
parameters (not in parentheses), as shown in Code Listing 15.

Code Listing 15: Calling the FormatPopulation Function from the Template

func (c City) FormatPopulation(n int, sep rune) string {

 s := strconv.Itoa(n)

 startOffset := 0
 var buff bytes.Buffer

 if n < 0 {
 startOffset = 1
 buff.WriteByte('-')
 }

 l := len(s)

 commaIndex := 3 - ((l - startOffset) % 3)

 if commaIndex == 3 {
 commaIndex = 0
 }

 for i := startOffset; i < l; i++ {

 if commaIndex == 3 {
 buff.WriteRune(sep)
 commaIndex = 0
 }
 commaIndex++

 buff.WriteByte(s[i])
 }

 return buff.String()

}

<html>

 45

When we execute the application, we get nicely formatted population values, as in Figure 17.

Figure 16: The Population Values, Formatted by the Template

<head>
<title>City Search</title>
</head>
<body>
 <h1>Search Results</h1>
 <table border='1'>
 <tr>
 <th>City</th>
 <th>Country Code</th>
 <th>Population</th>
 </tr>
 {{range .}}
 <tr>
 <td>{{.Name}}</td>
 <td>{{.CountryCode}}</td>
 <td>{{.FormatPopulation .Population}}</td>
 </tr>
 {{end}}
 </table>
</body>
</html>

www.dbooks.org

https://www.dbooks.org/

 46

Using conditionals in templates

You can offload the evaluation of conditional expressions to your template using {{if}}
{{else}} {{end}}.

Go supports several functions that support basic types, such as eq (equals), ne (not equal to),

or gt (greater than) that you can use for building expressions.

The use of conditional expressions in templates is best demonstrated by an example.

Let’s say that we’re only interested in populations of less than 5,000,000. Everything else we’ll
count as huge and won’t bother displaying the actual figure.

Code Listing 16 shows our template.

Code Listing 16: Template with Conditional Expression

Figure 18 shows the result.

<html>
<head>
<title>City Search</title>
</head>
<body>
 <h1>Search Results</h1>
 <table border='1'>
 <tr>
 <th>City</th>
 <th>Country Code</th>
 <th>Population</th>
 </tr>
 {{range .}}
 <tr>
 <td>{{.Name}}</td>
 <td>{{.CountryCode}}</td>
 <td>{{if gt .Population 5000000}} HUGE
 {{else}} {{.Population}}
 {{end}}
 </td>
 </tr>
 {{end}}
 </table>
</body>
</html>

 47

Figure 17: Displaying Population Values Using Conditionals in the Template

www.dbooks.org

https://www.dbooks.org/

 48

Chapter 5 Creating a RESTful JSON API

We’ve learned a lot already, so let’s see if we can take all that knowledge and do something
useful with it.

In Chapter 1, we examined how Go is an excellent choice for creating web services for many
reasons—for example, its ability to scale massively through its lightweight threading model, its
ease with modularizing code, and its ability to integrate with common tools such as
cryptographic libraries, secure web protocols, and, of course, HTTP servers.

In this chapter, I want to demonstrate how we can create a simple RESTful web service that can
accept JSON requests and return JSON responses in order to facilitate CRUD (Create, Read,
Update, and Delete) operations on a database.

(Actually, I’m going a cheat a little here. In order to minimize the complexity of our application,
I’m going to create a CRD application. The Update functionality will be left as an exercise for the
reader!)

This application will use what we’ve learned so far about serving, routing, and accessing a
database. In building it, I’ll show you how you might design and develop a typical web service. It
won’t be perfect or production-ready, but it should give you a good idea of how easy it is to build
these sorts of services in Go.

RESTful APIs

If you’ve been a developer, or if you’ve spent any time with developers, you have no doubt
heard about REST. Given the amount of hype it has attracted in recent years, you would think
that it, too, was a recent concept. But it’s not. In fact, it’s as old as the web itself.

REST is simply a response to the hundreds of different protocols that have been developed
over the years that have aimed to get computers talking to each other over networks using the
same language.

Some of these protocols have included SOAP (which, because of its reliance on XML as a
transport mechanism, requires a fair amount of data and computing power and began to fall out
of favor as mobile devices became ubiquitous), JMS (which is specific to Java applications and
therefore not really geared for widespread adoption), and XML-RPC (which, like SOAP, uses
XML but without implementing any of the standards that SOAP has).

As with all these approaches, the aim behind REST was to make sharing data easy for
computers while at the same time being transparent enough that human observers can
understand what they are doing.

What REST offers, however, is the ability to do this while remaining very lightweight. Its
methods are familiar to developers because it uses the same, established methods employed
by the web itself.

 49

How so?

Well, consider a website that you access in a browser. You enter a URL to visit the site, and the
program behind the site can analyze that URL in order to understand your intention. In a static
site, you’re simply entering URLs that point to file resources on the web server, but in a site that
employs web services, you can effectively use the URL as a command line and enter requests
not only for resources, but also for specific operations that the program’s API exposes.

Consider the Open Movie Database website (http://www.omdbapi.com) that provides a free
REST API to access information about movies. You need only to craft the URL so that it
specifies what information you want it to give you.

If you start at https://www.omdbapi.com/, you get the home page in Figure 19.

Figure 18: The Open Movie Database API Home Page

If you specify a movie using the t (title) parameter, you get something a little more interesting:

https://www.omdbapi.com/?t=star%20wars.

Figure 19: Accessing the Open Movie Database API

www.dbooks.org

https://www.omdbapi.com/
https://www.omdbapi.com/?t=star%20wars
https://www.dbooks.org/

 50

That information is JSON, or JavaScript Object Notation. Despite the name, it’s not specific to
JavaScript. In fact, it’s a common way of encoding data in a very lightweight format, and it’s
used by applications written in many different languages, including Go.

Apart from being lightweight and easily parsed by client applications, JSON is also human
readable. Well, just barely. You can tidy up the response either by viewing it in your browser’s
developer console or by installing an extension that prettifies a JSON response.

Figure 21 shows the output after I’ve installed the JSON Formatter add-on in Firefox.

Figure 20: The JSON Response, Prettified

As you can see, JSON is simply a bunch of key/value pairs. Everything inside the curly braces
is a JSON object, and objects themselves can contain other objects and arrays of values.

However, this isn’t a JSON tutorial. You can find out about JSON almost anywhere on the web,
and there isn’t a lot to it. The takeaway here is that APIs exist that can parse a URL and return
data in the JSON format that can be consumed by a client application. Some sites can even
accept JSON, too, but the Open Movie Database isn’t one of them.

We can also add other criteria. Figure 22 looks for a film called The Machinist, includes a short
plot summary, and returns the results as JSON (the default):
http://www.omdbapi.com/?t=the+machinist&y=&plot=short&r=json.

http://www.omdbapi.com/?t=the+machinist&y=&plot=short&r=json

 51

Figure 21: Open Movie Database API Results for The Machinist

Figure 23 sets the r (response) parameter to XML:

http://www.omdbapi.com/?t=the+machinist&y=&plot=short&r=xml.

Figure 22: Changing the Output to XML Format

That’s pretty concise as far as XML goes. A lot of XML is deeply nested and is a nightmare to
parse, hence the preference for JSON in modern APIs.

Play around with the Open Movie Database API for a bit. I’ll wait!

So, that’s an example of a RESTful API. You’re effectively using the URL itself to make calls to
the web service.

Our RESTful web service

We’re going to build something similar in this chapter.

You’ve probably already thought: “I could do that with Go routers!” And, indeed, you can. So, all
you need to get going is some data. And we’ve already been playing around with MySQL’s
“world” database, so let’s use that.

Our application will allow users to enter any of the following URL paths and respond in the way
described:

www.dbooks.org

http://www.omdbapi.com/?t=the+machinist&y=&plot=short&r=xml
https://www.dbooks.org/

 52

• http://localhost:8999/city: Return a list of all cities in the City table in JSON
format.

• http://localhost:8999/city/1028: Return details of the city with ID 1028 in
JSON format.

• http://localhost:8999/cityadd/: Allow the user to POST a JSON representation
of a new city and get a JSON result object back.

• http://localhost:8999/citydel/1028: Allow the user to delete the city with ID
1028 and get a JSON result object back.

In order to make this work while keeping our code as modular as possible, we’re going to create
the following files:

• main.go
• handlers.go
• router.go
• routes.go
• database.go
• city.go
• dbupdate.go

Those module names should be self-explanatory. Let’s dive into it.

Serving and routing

Let’s define our routes first. We’re going to use gorilla/mux instead of net/http’s

DefaultServeMux because gorilla/mux is generally nicer to work with. And instead of simply

defining them one at a time, we’re going to store route details in a struct in order to make it
easier to add new routes when we need them.

Here is routes.go, which defines each of the routes and their handlers in a slice (roughly

analogous to arrays in other programming languages) of Route types, called Routes.

Code Listing 17: routes.go

package main

import "net/http"

type Route struct {
 Name string
 Method string
 Pattern string
 HandlerFunc http.HandlerFunc
}

type Routes []Route

var routes = Routes{
 Route{

 53

And here in Code Listing 18 is router.go, which loops through the Routes and creates

handlers for them.

Code Listing 18: router.go

 "HomePage",
 "GET",
 "/",
 HomePage,
 },
 Route{
 "CityList",
 "GET",
 "/city",
 CityList,
 },
 Route{
 "CityDisplay",
 "GET",
 "/city/{id}",
 CityDisplay,
 },
 Route{
 "CityAdd",
 "POST",
 "/cityadd",
 CityAdd,
 },
 Route{
 "CityDelete",
 "GET",
 "/citydel/{id}",
 CityDelete,
 },
}

package main

import "github.com/gorilla/mux"

func NewRouter() *mux.Router {

 router := mux.NewRouter().StrictSlash(true)
 for _, route := range routes {
 router.
 Methods(route.Method).
 Path(route.Pattern).
 Name(route.Name).

www.dbooks.org

https://www.dbooks.org/

 54

In order to get all those routes up and running and ready to serve requests, we simply need to
create an instance of NewRouter in our main function, but we’ll get around to that in a bit.

Let’s begin by having a look at each of the handlers in handlers.go.

First is the CityList handler, which gets called when a user visits http://localhost:8999/city.

Code Listing 19: The CityList Handler

CityList calls dbCityList in our database.go module in order to query the database and

return a list of cities in JSON format. In order to work with JSON in Go applications, you need
the encoding/json package. Then you can call json.Marshal to turn a struct into JSON and

json.Unmarshal to turn JSON into a struct.

Code Listing 20: Encoding the Query Response as JSON

 Handler(route.HandlerFunc)
 }

 return router
}

func CityList(w http.ResponseWriter, r *http.Request) {
 // Query the database
 jsonCities := dbCityList()

 ...
}

// Find all cities and return as JSON.
func dbCityList() []byte {
 var cities Cities
 var city City

 cityResults, err := database.Query("SELECT * FROM city")
 if err != nil {
 log.Fatal(err)
 }
 defer cityResults.Close()

 for cityResults.Next() {
 cityResults.Scan(&city.Id, &city.Name,
 &city.CountryCode, &city.District, &city.Population)
 cities = append(cities, city)
 }

 jsonCities, err := json.Marshal(cities)
 if err != nil {

http://localhost:8999/city

 55

As in Chapter 3, we’re using the Query method to pass SQL to our database server, then calling

Next on the result set to iterate through each row that the query returns, and we’re also calling

Scan to map the columns in each row to fields in our City struct.

Back in our handler, CityList, we’re writing out the appropriate JSON headers in the

response, then returning the JSON we received from dbCityList, as in Code Listing 21.

Code Listing 21: Returning the JSON Response Containing a List of Cities

Let’s look at another handler—CityDisplay. This handler accepts an id parameter for a

specific city that we then pass to the dbCityDisplay function in database.go. If all goes well,

we receive a JSON object that describes only that city and returns it in our response, as in Code
Listing 22.

Code Listing 22: Sending a JSON Response for a Single City

Code Listing 23 shows the dbCityDisplay function that provides the JSON data for a specific

city.

 fmt.Printf("Error: %s", err)
 }
 return jsonCities
}

func CityList(w http.ResponseWriter, r *http.Request) {
 // Query the database.
 jsonCities := dbCityList()

 // Format the response.
 w.Header().Set("Content-Type", "application/json")
 w.WriteHeader(http.StatusOK)
 w.Write(jsonCities)
}

func CityDisplay(w http.ResponseWriter, r *http.Request) {
 // Get URL parameter with the city ID to search for.
 vars := mux.Vars(r)
 cityId, _ := strconv.Atoi(vars["id"])

 // Query the database.
 jsonCity := dbCityDisplay(cityId)

 // Send the response.
 w.Header().Set("Content-Type", "application/json")
 w.WriteHeader(http.StatusOK)
 w.Write(jsonCity)
}

www.dbooks.org

https://www.dbooks.org/

 56

Code Listing 23: Finding a Single City by Using QueryRow

Note that dbCityDisplay expects to return only a single row from the database, so we’re using

QueryRow instead of Query. We don’t need to defer the closing of the record set because that’s

done explicitly when the query returns with either a single record or with no record. We need to
chain the call to Scan to the call to QueryRow because otherwise the recordset will be closed

before we have a chance to work with it.

CityAdd is a little more complex because we must read the JSON from the body of the request,

unmarshall it into a Go struct, then pass it to dbCityAdd to process it.

// Find a single city based on ID and return as JSON.
func dbCityDisplay(id int) []byte {
 var city City

 err := database.QueryRow("SELECT * FROM city WHERE ID=?",
id).Scan(&city.Id, &city.Name, &city.CountryCode, &city.District,
&city.Population)
 if err != nil {
 log.Fatal(err)
 }

 jsonCity, err := json.Marshal(city)
 if err != nil {
 fmt.Printf("Error: %s", err)
 }
 return jsonCity
}

 57

Code Listing 24: The CityAdd Function

Notice how we’re setting a 1MB limit on the amount of data we’ll accept from the client. The last
thing we want is some malicious user sending us a terabyte of data and crashing our server!

 Tip: Always limit the amount of data you will allow a client to send to your
application.

When we have the JSON in a Go struct, we can prepare a statement in SQL, then execute it
with the new city record we want to add. The benefit of preparing a statement in this way, by
using db.Prepare, is that it helps protect against SQL injection if the same malicious user tries

to sabotage us using another favorite hacker’s technique.

func CityAdd(w http.ResponseWriter, r *http.Request) {
 var city City

 // Read the body of the request.
 body, err := ioutil.ReadAll(io.LimitReader(r.Body, 1048576))
 if err != nil {
 panic(err)
 }
 if err := r.Body.Close(); err != nil {
 panic(err)
 }

 // Convert the JSON in the request to a Go type.
 if err := json.Unmarshal(body, &city); err != nil {
 w.Header().Set("Content-Type", "application/json")
 w.WriteHeader(422) // can't process!
 if err := json.NewEncoder(w).Encode(err); err != nil {
 panic(err)
 }
 }

 // Write to the database.
 addResult := dbCityAdd(city)

 // Format the response.
 w.Header().Set("Content-Type", "application/json")
 w.WriteHeader(http.StatusCreated)
 w.Write(addResult)
}

www.dbooks.org

https://www.dbooks.org/

 58

Code Listing 25: Using a Prepared Statement for the INSERT Operation

Note also that the INSERT operation on the database retrieves some useful information—namely

the ID of the recently added record and the number of records affected. We’re storing this in a
struct called DBUpdate so that we can return it to the CityAdd handler and, subsequently, to the

client (who may wish to act on the information).

The last of our handlers is CityDelete. Like CityDisplay, it requires users to enter the ID of

the city with which they want to work.

// Create a new city based on the information supplied.
func dbCityAdd(city City) []byte {

 var addResult DBUpdate

 // Create prepared statement.
 stmt, err := database.Prepare("INSERT INTO City(Name, CountryCode,
District, Population) VALUES(?,?,?,?)")
 if err != nil {
 log.Fatal(err)
 }

 // Execute the prepared statement and retrieve the results.
 res, err := stmt.Exec(city.Name, city.CountryCode,
 city.District, city.Population)
 if err != nil {
 log.Fatal(err)
 }
 lastId, err := res.LastInsertId()
 if err != nil {
 log.Fatal(err)
 }
 rowCnt, err := res.RowsAffected()
 if err != nil {
 log.Fatal(err)
 }

 // Populate DBUpdate struct with last Id and num rows affected.
 addResult.Id = lastId
 addResult.Affected = rowCnt

 // Convert to JSON and return.
 newCity, err := json.Marshal(addResult)
 if err != nil {
 fmt.Printf("Error: %s", err)
 }
 return newCity
}

 59

Code Listing 26: The CityDelete Function

The corresponding dbCityDelete function takes that ID and prepares a DELETE statement with

it. The database responds with the number of rows affected, and we can use the same
DBUpdate struct to present that information to the user.

Code Listing 27: The dbCityDelete Function

func CityDelete(w http.ResponseWriter, r *http.Request) {

 // Get URL parameter with the city ID to delete.
 vars := mux.Vars(r)
 cityId, _ := strconv.ParseInt(vars["id"], 10, 64)

 // Query the database.
 deleteResult := dbCityDelete(cityId)

 // Send the response.
 w.Header().Set("Content-Type", "application/json")
 w.WriteHeader(http.StatusOK)
 w.Write(deleteResult)
}

// Delete the city with the supplied ID.
func dbCityDelete(id int64) []byte {
 var deleteResult DBUpdate

 // Create prepared statement.
 stmt, err := database.Prepare("DELETE FROM City WHERE ID=?")
 if err != nil {
 log.Fatal(err)
 }

 // Execute the prepared statement and retrieve the results.
 res, err := stmt.Exec(id)
 if err != nil {
 log.Fatal(err)
 }
 rowCnt, err := res.RowsAffected()
 if err != nil {
 log.Fatal(err)
 }

 // Populate DBUpdate struct with last Id and num rows affected.
 deleteResult.Id = id
 deleteResult.Affected = rowCnt

 // Convert to JSON and return.
 deletedCity, err := json.Marshal(deleteResult)

www.dbooks.org

https://www.dbooks.org/

 60

And that’s really it!

The complete application

Let’s next examine a number of code listing examples that demonstrate the complete
application as we separate the various concerns into these modules:

• main.go

• router.go

• routes.go
• handlers.go
• database.go

• city.go

• dbupdate.go

Code Listing 28: main.go

 if err != nil {
 fmt.Printf("Error: %s", err)
 }
 return deletedCity
}

package main

import (
 "log"
 "net/http"
)

func main() {

 router := NewRouter()
 dbConnect()

 log.Fatal(http.ListenAndServe(":8999", router))
}

 61

Code Listing 29: router.go

Code Listing 30: routes.go

package main

import "github.com/gorilla/mux"

func NewRouter() *mux.Router {

 router := mux.NewRouter().StrictSlash(true)
 for _, route := range routes {
 router.
 Methods(route.Method).
 Path(route.Pattern).
 Name(route.Name).
 Handler(route.HandlerFunc)
 }

 return router
}

package main

import "net/http"

type Route struct {
 Name string
 Method string
 Pattern string
 HandlerFunc http.HandlerFunc
}

type Routes []Route

var routes = Routes{
 Route{
 "HomePage",
 "GET",
 "/",
 HomePage,
 },
 Route{
 "CityList",
 "GET",
 "/city",
 CityList,
 },
 Route{

www.dbooks.org

https://www.dbooks.org/

 62

Code Listing 31: handlers.go

 "CityDisplay",
 "GET",
 "/city/{id}",
 CityDisplay,
 },
 Route{
 "CityAdd",
 "POST",
 "/cityadd",
 CityAdd,
 },
 Route{
 "CityDelete",
 "GET",
 "/citydel/{id}",
 CityDelete,
 },
}

package main

import (
 "encoding/json"
 "fmt"
 "io"
 "io/ioutil"
 "net/http"
 "strconv"

 "github.com/gorilla/mux"
)

func HomePage(w http.ResponseWriter, r *http.Request) {
 fmt.Fprintln(w, "Welcome to the City Database!")
}

func CityList(w http.ResponseWriter, r *http.Request) {
 // Query the database.
 jsonCities := dbCityList()

 // Format the response.
 w.Header().Set("Content-Type", "application/json")
 w.WriteHeader(http.StatusOK)
 w.Write(jsonCities)
}

func CityDisplay(w http.ResponseWriter, r *http.Request) {

 63

 // Get URL parameter with the city ID to search for.
 vars := mux.Vars(r)
 cityId, _ := strconv.Atoi(vars["id"])

 // Query the database.
 jsonCity := dbCityDisplay(cityId)

 // Format the response.
 w.Header().Set("Content-Type", "application/json")
 w.WriteHeader(http.StatusOK)
 w.Write(jsonCity)
}

func CityAdd(w http.ResponseWriter, r *http.Request) {
 var city City

 // Read the body of the request.
 body, err := ioutil.ReadAll(io.LimitReader(r.Body, 1048576))
 if err != nil {
 panic(err)
 }
 if err := r.Body.Close(); err != nil {
 panic(err)
 }

 // Convert the JSON in the request to a Go type.
 if err := json.Unmarshal(body, &city); err != nil {
 w.Header().Set("Content-Type", "application/json")
 w.WriteHeader(422) // can't process!
 if err := json.NewEncoder(w).Encode(err); err != nil {
 panic(err)
 }
 }

 // Write to the database.
 addResult := dbCityAdd(city)

 // Format the response.
 w.Header().Set("Content-Type", "application/json")
 w.WriteHeader(http.StatusCreated)
 w.Write(addResult)
}

func CityDelete(w http.ResponseWriter, r *http.Request) {

 // Get URL parameter with the city ID to delete.
 vars := mux.Vars(r)
 cityId, _ := strconv.ParseInt(vars["id"], 10, 64)

www.dbooks.org

https://www.dbooks.org/

 64

Code Listing 32: database.go

 // Query the database.
 deleteResult := dbCityDelete(cityId)

 // Format the response.
 w.Header().Set("Content-Type", "application/json")
 w.WriteHeader(http.StatusOK)
 w.Write(deleteResult)
}

package main

import (
 "database/sql"
 "encoding/json"
 "fmt"
 "log"

 _ "github.com/go-sql-driver/mysql"
)

var database *sql.DB

// Connect to the "world" database.
func dbConnect() {
 db, err := sql.Open("mysql",
 "root:password@tcp(127.0.0.1:3306)/world")
 if err != nil {
 log.Println("Could not connect!")
 }
 database = db
 log.Println("Connected.")
}

// Find all cities and return as JSON.
func dbCityList() []byte {
 var cities Cities
 var city City

 cityResults, err := database.Query("SELECT * FROM city")
 if err != nil {
 log.Fatal(err)
 }
 defer cityResults.Close()

 for cityResults.Next() {
 cityResults.Scan(&city.Id, &city.Name,
 &city.CountryCode, &city.District, &city.Population)

 65

 cities = append(cities, city)
 }

 jsonCities, err := json.Marshal(cities)
 if err != nil {
 fmt.Printf("Error: %s", err)
 }
 return jsonCities
}

// Find a single city based on ID and return as JSON.
func dbCityDisplay(id int) []byte {
 var city City

 err := database.QueryRow("SELECT * FROM city WHERE ID=?",
id).Scan(&city.Id, &city.Name, &city.CountryCode, &city.District,
&city.Population)
 if err != nil {
 log.Fatal(err)
 }

 jsonCity, err := json.Marshal(city)
 if err != nil {
 fmt.Printf("Error: %s", err)
 }
 return jsonCity
}

// Create a new city based on the information supplied.
func dbCityAdd(city City) []byte {

 var addResult DBUpdate

 // Create prepared statement.
 stmt, err := database.Prepare("INSERT INTO City(Name, CountryCode,
District, Population) VALUES(?,?,?,?)")
 if err != nil {
 log.Fatal(err)
 }

 // Execute the prepared statement and retrieve the results.
 res, err := stmt.Exec(city.Name, city.CountryCode, city.District,
city.Population)
 if err != nil {
 log.Fatal(err)
 }
 lastId, err := res.LastInsertId()
 if err != nil {
 log.Fatal(err)

www.dbooks.org

https://www.dbooks.org/

 66

 }
 rowCnt, err := res.RowsAffected()
 if err != nil {
 log.Fatal(err)
 }

 // Populate DBUpdate struct with last Id and num rows affected.
 addResult.Id = lastId
 addResult.Affected = rowCnt

 // Convert to JSON and return.
 newCity, err := json.Marshal(addResult)
 if err != nil {
 fmt.Printf("Error: %s", err)
 }
 return newCity
}

// Delete the city with the supplied ID.
func dbCityDelete(id int64) []byte {
 var deleteResult DBUpdate

 // Create prepared statement.
 stmt, err := database.Prepare("DELETE FROM City WHERE ID=?")
 if err != nil {
 log.Fatal(err)
 }

 // Execute the prepared statement and retrieve the results.
 res, err := stmt.Exec(id)
 if err != nil {
 log.Fatal(err)
 }
 rowCnt, err := res.RowsAffected()
 if err != nil {
 log.Fatal(err)
 }

 // Populate DBUpdate struct with last Id and num rows affected.
 deleteResult.Id = id
 deleteResult.Affected = rowCnt

 // Convert to JSON and return.
 deletedCity, err := json.Marshal(deleteResult)
 if err != nil {
 fmt.Printf("Error: %s", err)
 }
 return deletedCity
}

 67

Code Listing 33: city.go

Code Listing 34: The dbUpdate Struct in dbupdate.go

Running the application

We can test the application from within a browser, but that will involve a bit of fiddling around
with the developer console and more clicks than necessary.

Instead, let’s use a command-line utility called curl (“client URL”).

If you have a Mac or Linux machine, curl is probably already available to you. If you have

Windows, perhaps the easiest way to access it is by downloading the Git Bash shell that
contains curl and a wealth of other useful Linux tools. There's even a native Bash shell for

Windows—see https://msdn.microsoft.com/en-us/commandline/wsl/about. It’s handy to have
around even if you don’t use Git. Another alternative (although, in my opinion, a more bloated
alternative) is Cygwin.

You can download Git Bash at https://git-for-windows.github.io/.

Displaying all cities

Open two shell windows.

Run the application in the first shell by executing go run *.go in the same folder as your

application modules, as in Figure 24.

package main

type City struct {
 Id int `json:"id"`
 Name string `json:"name"`
 CountryCode string `json:"country"`
 District string `json:"district"`
 Population int `json:"pop"`
}

type Cities []City

package main

type DBUpdate struct {
 Id int64 `json:"id"`
 Affected int64 `json:"affected"`
}

www.dbooks.org

https://msdn.microsoft.com/en-us/commandline/wsl/about
https://git-for-windows.github.io/
https://www.dbooks.org/

 68

Figure 23: Running the Application

Next, enter the following command in the second shell window:

curl -i localhost:8999/city

The -i flag instructs curl to include the HTTP header.

You should see a JSON representation of every city in the City table, as shown in Figure 25.

Figure 24: Requesting All Cities

 69

Displaying a specific city

With the application still running in the first shell window, enter the following in the second shell
window:

curl -i localhost:8999/city/1028

You should see details for the city with the ID of 1028—namely, Hyderabad in India. Enter some
random city IDs and see which cities are referenced.

Figure 25: Requesting a Specific City by ID

Adding a city

In the second shell window, enter the following:

curl -H "Content-Type: application/json" -d '{"name":"Whoville",
"country":"ITA", "district":"XXX", "pop":1}' http://localhost:8999/cityadd

Tip: Take care when entering the JSON object that represents the new city. JSON is
simple, but it is not forgiving if you forget to close quotes or braces, or if you put
quotes (that denote the string data type) around a value that is expected to be an
integer.

The record should be added to the database and you should receive the new record ID in the

response, as in Figure 27.

www.dbooks.org

http://localhost:8999/cityadd
https://www.dbooks.org/

 70

Figure 26: Adding a New City

In the previous example, the ID of my recently added record is 4093. Yours is probably different.
Rather than query the database again manually in order to see if the new record exists, you can
simply use the following:

curl -i localhost:8999/city/4093

However, take care to replace 4093 with whatever ID was assigned when you added the city.

Figure 27: Verification—New City Added to the Database

Deleting a city

In order to delete a city, you use a syntax similar to your search for a city by ID. Try using the
same city ID that you just added to the database. For example:

curl -i localhost:8999/citydel/4093

 71

If everything proceeds according to plan, you should get a DBUpdate object encoded as JSON,

which shows that a single row is affected, as in Figure 29.

Figure 28: Deleting a City

Congratulations! You have just written your first “real” web service using Go.

Of course, this is far from perfect, and if you were planning to put it into production, you would
probably want to do a fair bit of refactoring, implement better error handling, and so on.

However, the point of all this is to emphasize that Go is an excellent language for working on
this type of application. I’ve done similar work in other languages, including Node.js and Ruby,
and I am much happier working in Go. Everything seems more tidy and better thought out, in my
humble opinion.

Challenge step

If you’re up for a challenge, try to implement update functionality in the application—that is, to
put the U back into CRUD!

For starters, allow the client to submit a JSON city object that will first delete the existing record
(if there is a matching city ID), then add a new one and report success (or otherwise) in JSON
format, too.

Next, allow the client to submit some partial JSON along with the ID, then simply update an
existing record based on the fields that have changed. For example, the client might submit the
following:

{"id":4088,"name":"Whereville”,pop":2}

This will only update the Name and Population fields in the City table.

www.dbooks.org

https://www.dbooks.org/

 72

Chapter 6 Cookies and Sessions

As you are doubtlessly aware, HTTP is a stateless protocol. Each request by a client to a web
server is completely unrelated to any previous exchange between the two, and the
communication mechanism consists solely of request/response pairs. The server is not required
to retain any information regarding any previous requests.

The benefit of this approach is that the server doesn't need to assign memory to do so (because
it doesn’t “remember” any previous requests from the clients), and if the client connection dies,
the server doesn't have to do any cleanup.

The downside of this approach is that, well, the server doesn't remember anything. This can
make it tricky to build a rich, interactive web application because all too often we must send
extra information with each request so that the server knows enough about the state of the
client to provide a useful response.

The keys to making all this happen are cookies and sessions. Let's define both before we
demonstrate how to use them in our Go web applications.

Introducing cookies and sessions

What is a cookie?

A cookie is simply a little text file that a browser puts on the user’s computer. It stores
information that helps to maintain the illusion of a persistent connection.

Cookies are often used for authentication, storing site-visitor preferences, maintaining shopping
cart items, and identifying server sessions.

When the browser interacts with the web server, it passes the information in the cookie as part
of the request. Note that cookies are domain-specific. If a browser creates a cookie for
twitter.com, it cannot suddenly send that cookie to google.com.

Essentially, cookies are great for storing information about a user's interaction with a webpage
as he or she moves from one page to the next.

What is a session?

Sessions allow you to store information about the client’s interaction with a website just as
cookies do, but the data gets stored on the server instead of on the client.

 73

Sessions are a better alternative to stuffing lots of constantly changing information in cookies.
Instead, the client stores only a unique identifier (the “Session ID”) and passes the ID to the web
server with every request. The server uses the Session ID to look up information in its internal
database and retrieve variables relating to the user's use of the application.

What is a session cookie? Or a persistent cookie?

Uh-oh. Just to confuse you even further, there are not only cookies and sessions, but there is
also a session cookie!

With cookies, your application can set an expiry time. You might have seen this when the login
page for a website gives you the “Keep me logged in?” option.

If you set an expiry time, the browser saves the cookie to the local file system. This is called a
persistent cookie.

If you don’t set an expiry time, the browser usually keeps the cookie hanging around in memory,
and this is called a session cookie.

So, session cookies and persistent cookies are simply cookies, but with different expiration
times.

Working with cookies

Setting cookies

In order to write information to a cookie in Go, you use the net/http’s package’s SetCookie

function, whose signature looks like this:

http.SetCookie(w ResponseWriter, cookie *Cookie)

The w is the response to the request and cookie is a struct:

type Cookie struct {

 Name string

 Value string

 Path string
 Domain string

 Expires time.Time

 RawExpires string

 MaxAge int

 Secure bool

 HttpOnly bool
 Raw string

 Unparsed []string

}

www.dbooks.org

https://www.dbooks.org/

 74

The cookie can hold a lot of information, but the most important fields are:

• Name: A key for the cookie for referring to it in your code.
• Value: The cookie’s data.
• Expires: A Time value that denotes when the browser can delete it.

Other fields that might be useful for controlling access to the cookie are:

• Path
• Domain
• HttpOnly

For now, let’s keep it simple.

Here is an example of how you can set a cookie:

expiration := time.Now().Add(365 * 24 * time.Hour)
cookie := http.Cookie{Name: "username", Value: "jsmith", Expires: expiration}
http.SetCookie(w, &cookie)

 Tip: Go’s time functions are sophisticated but complex. For more information, see
the documentation at https://golang.org/pkg/time/.

Fetching cookies

In order to retrieve a cookie from a request, you can do the following:

cookie, _ := r.Cookie("username")
fmt.Fprint(w, cookie.)

Or, if several cookies are associated with a request, you can iterate through them, as follows:

for _, cookie := range r.Cookies() {
 fmt.Fprint(w, cookie.Name)
}

Using cookies

Let’s create a simple application that uses a cookie.

The following code checks to see if this is a visitor’s first visit to our site. If it is, it displays a
welcome message. If not, it displays the time of the last visit.

 75

Code Listing 35: Using a Cookie to Check Site Visitor Status

The first line of code in the handler tries to drop the cookie to the user’s browser. If it succeeds,
it records the current time in the cookie’s Value field and displays a “Welcome to the site!”

message. If there is an error, this will occur because the cookie already exists, which means all
it will do is update the time in the Value field and display it to users as the time they last visited.

If we run the application and visit the root of the application, we’ll see the message in Figure 30.

package main

import (
 "net/http"
 "strconv"
 "time"
)

func CheckLastVisit(w http.ResponseWriter, r *http.Request) {

 c, err := r.Cookie("lastvisit") //

 expiry := time.Now().AddDate(0, 0, 1)

 cookie := &http.Cookie{
 Name: "lastvisit",
 Expires: expiry,
 Value: strconv.FormatInt(time.Now().Unix(), 10),
 }

 http.SetCookie(w, cookie)

 if err != nil {
 w.Write([]byte("Welcome to the site!"))
 } else {
 lasttime, _ := strconv.ParseInt(c.Value, 10, 0)
 html := "Welcome back! You last visited at: "
 html = html + time.Unix(lasttime, 0).Format("15:04:05")
 w.Write([]byte(html))
 }
}

func main() {
 http.HandleFunc("/", CheckLastVisit)
 http.ListenAndServe(":8999", nil)
}

www.dbooks.org

https://www.dbooks.org/

 76

Figure 29: First Visit to the Site

If we refresh the page, we’ll see Figure 31.

Figure 30: Subsequent Visits to the Site

If you’re using Chrome, as I am, you can delete the cookie this way:

1. Open Developer Tools (Chrome menu > More Tools > Developer Tools).
2. Select the Network tab.
3. Expand the Cookies section under Storage in the left pane.
4. Right-click the domain (http://localhost:8999) and click Clear.

http://localhost:8999/

 77

Figure 31: Deleting the Cookie Using Chrome's Web Developer Tools

If you’re using Firefox, you can delete the cookie this way:

1. From the Firefox button or the Tools menu, go to the Options > Privacy panel.
2. Select Firefox Will: Use Custom Settings for History.
3. Click Show Cookies.
4. Use the search box to enter the domain name of your site under development

(http://localhost:8999) or drill down the folder lists to locate it.
5. Select the cookie in the list that you want to delete and click Remove Cookie.

If you delete the cookie and refresh the browser page, you’ll be presented with the “Welcome to
the site!” message again.

Working with sessions

In order to work with sessions in Go, I’m going to suggest that we revisit the Gorilla Web
Toolkit’s sessions module because, in my opinion, it’s a much cleaner implementation than the
native Go approach.

Install it from GitHub as follows:

go get github.com/gorilla/sessions

Basics

The following code demonstrates the basics of using the gorilla/sessions package to create

and authenticate a session, retrieve the session, set some values, then save the session.

www.dbooks.org

http://localhost:8999/
https://www.dbooks.org/

 78

Code Listing 36: Using gorilla/sessions

This code first initializes the session store by calling NewCookieStore with a secret key used to

authenticate the session.

Then, in our handler, we call the store’s Get function to retrieve the session called “session-

name.” If it finds that, we’ll have access to the session. If a session of that name does not exist,
one will be created.

 Tip: Session cookies created by Gorilla will last for a month by default. If this is too
long for your requirements, you can either set the MaxAge property in each session’s

package main

import (
 "net/http"

 "github.com/gorilla/mux"
 "github.com/gorilla/sessions"
)

var store = sessions.NewCookieStore(
 []byte("keep-it-secret-keep-it-safe"))

func handler(w http.ResponseWriter, r *http.Request) {
 session, err := store.Get(r, "session-name")
 if err != nil {
 http.Error(w, err.Error(),
 http.StatusInternalServerError)
 return
 }

 // Set some session values.
 session.Values["abc"] = "cba"
 session.Values[111] = 222
 // Save the session values
 session.Save(r, w)
}

func main() {
 router := mux.NewRouter()
 http.Handle("/", router)
 router.HandleFunc("/", handler)
 http.ListenAndServe(":8999", nil)
}

 79

Options or configure the session store so that all session cookies have the same
MaxAge value.

When we have a session, we can assign values using its Values property. The Values property

is a Go map, which is basically Go’s implementation of a hash table that allows you to set

properties using key/value pairs.

Next, we call the session’s Save method to save the session in the response.

 Tip: Always save the session values before returning the response. Otherwise, the
response won’t receive the session cookie.

That’s Gorilla’s basic implementation of sessions. However, gorilla/sessions also gives us extra,
useful functionality that we will look at next.

Flash messages

Gorilla borrowed the idea of flash messages from Ruby. A flash message is simply a session
value that exists until it is read.

We use flash messages to temporarily store data between requests, such as a success or error
message during the form submission process, in order to avoid it being duplicated in error later.

We add a flash message using the session’s AddFlash method and retrieve the flash messages

by calling session.Flash.

We won’t dwell too much on flash messages here—just be aware that they exist. Code Listing
37 demonstrates how to get and set flash messages.

Code Listing 37: Using Flash Messages in gorilla/sessions

package main

import (
 "fmt"
 "net/http"
 "time"

 "github.com/gorilla/mux"
 "github.com/gorilla/sessions"
)

var store = sessions.NewCookieStore(
 []byte("keep-it-secret-keep-it-safe"))

func handler(w http.ResponseWriter, r *http.Request) {
 session, err := store.Get(r, "session-name")
 if err != nil {

www.dbooks.org

https://www.dbooks.org/

 80

 http.Error(w, err.Error(),
 http.StatusInternalServerError)
 return
 }

 // Get any previous flashes.
 if flashes := session.Flashes(); len(flashes) > 0 {
 // Do something with them
 for f := range flashes {
 fmt.Println(flashes[f])
 }
 } else {
 // Set a new flash.
 session.AddFlash("Flash! Ah-ah, savior of the universe!"
 + time.Now().String())
 }
 session.Save(r, w)
}

func main() {
 router := mux.NewRouter()
 http.Handle("/", router)
 router.HandleFunc("/", handler)
 http.ListenAndServe(":8999", nil)
}

 81

Chapter 7 Development Techniques

If you’ve stuck around this long, you should now have a good grasp of the various bits and
pieces that go toward creating a web application in Go. In this chapter, I want to cover a couple
of techniques that will help you debug and test your Go web applications.

Logging

Any application that grows beyond the trivial will need good logging in order to enable its
developers to locate and fix errors.

Basic logging

Go’s log package lets you write to all the standard devices, custom files, or any destination that

supports the io.Writer interface. So far, we’ve only logged to stdout (via fmt.Println, etc),

but that’s not a realistic option for production applications. So, let’s consider how we might log
output to files and be specific about which file gets which type of log message.

In the following code, we create an application that will log notices to notices.log, warnings to

warnings.log, and errors to errors.log.

Code Listing 38: Logging to Different Files Based on the Type of Information

package main

import (
 "log"
 "os"
)

var (
 Notice *log.Logger
 Warning *log.Logger
 Error *log.Logger
)

func main() {
 noticeFile, err := os.OpenFile("notice.log",
 os.O_RDWR|os.O_APPEND, 0660)
 defer noticeFile.Close()
 if err != nil {
 log.Fatal(err)
 }
 warnFile, err := os.OpenFile("warnings.log",

www.dbooks.org

https://www.dbooks.org/

 82

Note that in the above code listing, 0660 is the file mode argument that enables reading and

writing of the file to users and groups. For more information on file mode 0660 (and file modes

in general), see http://www.filepermissions.com/file-permission/0660.

The output is as shown in Code Listing 39.

Code Listing 39: Log File Output

However, none of that is very useful for logging web requests, which any decent web server can
do. So, let’s consider another approach for this.

 os.O_RDWR|os.O_APPEND, 0660)
 defer warnFile.Close()
 if err != nil {
 log.Fatal(err)
 }
 errorFile, err := os.OpenFile("error.log",
 os.O_RDWR|os.O_APPEND, 0660)
 defer errorFile.Close()
 if err != nil {
 log.Fatal(err)
 }

 Notice = log.New(noticeFile, "NOTICE: ", log.Ldate|log.Ltime)
 Notice.SetOutput(noticeFile)
 Notice.Println("This is basically F.Y.I.")

 Warning = log.New(warnFile, "WARNING: ", log.Ldate|log.Ltime)
 Warning.SetOutput(warnFile)
 Warning.Println("Perhaps this needs your attention?")

 Error = log.New(errorFile, "ERROR: ", log.Ldate|log.Ltime)
 Error.SetOutput(errorFile)
 Error.Println("You REALLY should fix this!")
}

http://www.filepermissions.com/file-permission/0660

 83

Logging web requests

Let’s revisit the RESTful web service that we created in Chapter 5. Remember how we split the
routes from the router into routes.go and router.go, respectively? Let’s look again at a

number of code listing examples and separate the various concerns into these modules:

• router.go

• routes.go

• logger.go

• logger.go containing Logger middleware

• Logger middleware added to routers

Code Listing 40: router.go

Code Listing 41: routes.go

package main

import "github.com/gorilla/mux"

func NewRouter() *mux.Router {

 router := mux.NewRouter().StrictSlash(true)
 for _, route := range routes {
 router.
 Methods(route.Method).
 Path(route.Pattern).
 Name(route.Name).
 Handler(route.HandlerFunc)
 }

 return router
}

package main

import "net/http"

type Route struct {
 Name string
 Method string
 Pattern string
 HandlerFunc http.HandlerFunc
}

type Routes []Route

www.dbooks.org

https://www.dbooks.org/

 84

Managing routes in this way makes decorating them with middleware very easy, as we
discussed in Chapter 2. Consider this new addition to our web service application, shown in
Code Listing 42.

Code Listing 42: logger.go, Containing Logger Middleware

var routes = Routes{
 Route{
 "HomePage",
 "GET",
 "/",
 HomePage,
 },
 Route{
 "CityList",
 "GET",
 "/city",
 CityList,
 },
 Route{
 "CityDisplay",
 "GET",
 "/city/{id}",
 CityDisplay,
 },
 Route{
 "CityAdd",
 "POST",
 "/cityadd",
 CityAdd,
 },
 Route{
 "CityDelete",
 "GET",
 "/citydel/{id}",
 CityDelete,
 },
}

package main

import (
 "log"
 "net/http"
 "time"
)

func Logger(inner http.Handler, name string) http.Handler {

 85

The new file logger.go contains a function called Logger. We can pass our handlers to

Logger, which will then automatically provide logging and timing information.

Middleware is pretty cool, right?

We can apply this middleware to our handlers by modifying the NewRouter function in

router.go.

Code Listing 43: Adding Logger Middleware to Our Routers

 return http.HandlerFunc(func(w http.ResponseWriter,
 r *http.Request) {
 startTime := time.Now()

 inner.ServeHTTP(w, r)

 log.Printf(
 "%s\t%s\t%s\t%s",
 r.Method,
 r.RequestURI,
 name,
 time.Since(startTime),
)
 })
}

package main

import (
 "net/http"

 "github.com/gorilla/mux"
)

func NewRouter() *mux.Router {

 router := mux.NewRouter().StrictSlash(true)
 for _, route := range routes {

 var handler http.Handler
 handler = route.HandlerFunc
 handler = Logger(handler, route.Name)

 router.
 Methods(route.Method).
 Path(route.Pattern).
 Name(route.Name).
 Handler(handler)

www.dbooks.org

https://www.dbooks.org/

 86

Next, when we launch the application and create a request, our console displays log messages
as in Figure 33.

Figure 32: Testing the Logger Middleware

Testing

Testing is baked into the Go language, with the testing package in the standard library.

Testing offers the ability to run tests by executing the go test command.

And better still, Go testing is quite simple and intuitive. In order to write a test, you need only to
import the testing package and write a test function.

All test functions in Go begin with the word “Test” and receive a single parameter of type
*testing.T:

package foo

import "testing"

func TestSomething(t *testing.T) {
 // do your testing here...
}

When you have written a test and saved it in a file with a name ending in _test.go, you next

exercise it by running go test in the same directory.

Let’s look at an example of how it all works.

We’ll create a very simple function that calculates the average of a slice of numbers in a
function called Average, in a package called math, in a file called average.go.

 }

 return router
}

 87

Code Listing 44: The Average Function in the Math Package

Code Listing 45 shows the main function in main.go that we would normally use to invoke our

Average function.

Code Listing 45: main.go, in Package Main

Next, we can create a function called TestAverage in a file called average_test.go, also in

math, in order to test the function.

Code Listing 46: The Code to Test the Average Function in the Math Package

package math

func Average(nums []float64) float64 {
 total := float64(0)
 for _, x := range nums {
 total += x
 }
 return total / float64(len(nums))
}

package main

import (
 "fmt"

 "github.com/marklewin/go-web-succinctly/ch07/testing/math"
)

func main() {
 nums := []float64{1, 2, 3, 4}
 avg := math.Average(nums)
 fmt.Println(avg)
}

package math

import "testing"

func TestAverage(t *testing.T) {
 var v float64
 v = Average([]float64{1, 2, 3, 4, 5})
 if v != 3.0 {
 t.Error("Expected 3.0, got ", v)
 }

www.dbooks.org

https://www.dbooks.org/

 88

Now, run the test from the same directory in which the files reside. Use the -v flag in go test

for verbose output.

Figure 33: Executing the Test Successfully

In this instance, all the tests in the math package passed (although currently there is only the

one).

What if our test fails? Let’s simulate that. In this instance, it is our test, rather than the code we
are testing, that’s at fault—it’s expecting a different value from the correct one.

Code Listing 47: Sabotaging the TestAverage Function

Figure 35 demonstrates what a failed test looks like.

}

package math

import "testing"

func TestAverage(t *testing.T) {
 var v float64
 v = Average([]float64{1, 2, 3, 4, 5})
 if v != 4.0 {
 t.Error("Expected 4.0, got ", v)
 }
}

 89

Figure 34: A Failed Test

Hopefully, you won’t experience too many failing tests during your Go web development
adventures, but better to know in development rather than in production!

Whatever happens, I wish you a very happy and productive time as a Go web developer!

www.dbooks.org

https://www.dbooks.org/

	Table of Contents
	The Story Behind the Succinctly Series of Books
	taying on the cutting edge
	Information is plentiful but harder to digest
	The Succinctly series
	The best authors, the best content
	Free forever
	Free? What is the catch?
	Let us know what you think

	About the Author
	Acknowledgements

	Chapter 1 Introduction
	Who is this e-book for?
	Why use Go for web development?
	Concurrency
	Modularity
	Compilation
	The net/http package

	Setting up your development environment
	Installing the Go tools
	Windows
	Mac OS X
	Linux, Unix, and FreeBSD
	Custom installation locations

	Creating a workspace

	Code examples

	Chapter 2 Serving and Routing
	Go as a simple web server
	Simple serving and routing
	Middleware

	More advanced serving and routing with the Gorilla Web Toolkit
	Installing and referencing the gorilla/mux package
	Using gorilla/mux
	Returning errors

	Chapter 3 Accessing Data
	Getting a driver for your database
	sql.DB
	Retrieving data from the database
	Tidying up the output

	Chapter 4 Templates
	Introducing templates
	Reworking the data access application using a template
	Using embedded methods in templates
	Using conditionals in templates

	Chapter 5 Creating a RESTful JSON API
	RESTful APIs
	Our RESTful web service
	Serving and routing
	The complete application
	Running the application
	Displaying all cities
	Displaying a specific city
	Adding a city
	Deleting a city

	Challenge step

	Chapter 6 Cookies and Sessions
	Introducing cookies and sessions
	What is a cookie?
	What is a session?
	What is a session cookie? Or a persistent cookie?

	Working with cookies
	Setting cookies
	Fetching cookies
	Using cookies

	Working with sessions
	Basics
	Flash messages

	Chapter 7 Development Techniques
	Logging
	Basic logging
	Logging web requests

	Testing

