
www.dbooks.org

https://www.dbooks.org/

Ionic 4 Succinctly

By

Ed Freitas

Foreword by Daniel Jebaraj

 3

Copyright © 2020 by Syncfusion, Inc.

2501 Aerial Center Parkway

Suite 200

Morrisville, NC 27560

USA

All rights reserved.

Important licensing information. Please read.

This book is available for free download from www.syncfusion.com on completion of a

registration form.

If you obtained this book from any other source, please register and download a free copy from

www.syncfusion.com.

This book is licensed for reading only if obtained from www.syncfusion.com.

This book is licensed strictly for personal or educational use.

Redistribution in any form is prohibited.

The authors and copyright holders provide absolutely no warranty for any information provided.

The authors and copyright holders shall not be liable for any claim, damages, or any other

liability arising from, out of, or in connection with the information in this book.

Please do not use this book if the listed terms are unacceptable.

Use shall constitute acceptance of the terms listed.

SYNCFUSION, SUCCINCTLY, DELIVER INNOVATION WITH EASE, ESSENTIAL, and .NET

ESSENTIALS are the registered trademarks of Syncfusion, Inc.

Technical Reviewer: James McCaffrey

Copy Editor: Courtney Wright

Acquisitions Coordinator: Tres Watkins, VP of content development, Syncfusion, Inc.

Proofreader: Jacqueline Bieringer, content producer, Syncfusion, Inc.

www.dbooks.org

http://www.syncfusion.com/
http://www.syncfusion.com/
http://www.syncfusion.com/
https://www.dbooks.org/

 4

Table of Contents

The Story Behind the Succinctly Series of Books .. 7

About the Author ... 9

Acknowledgments ..10

Ionic for Everyone ...11

Chapter 1 App Fundamentals..12

Project overview ...12

Chapter 2 Basic App and API Logic ...29

Quick intro ..29

Search.vue validation ...29

Summary ..41

Chapter 3 PWA Essentials ...42

Quick intro ..42

Characteristics of a PWA ..42

Essential components of a PWA ..42

Progressive by design ..43

Responsive by design ..43

Connectivity independent ...43

App-like behavior ..44

Why are PWAs needed? ..44

Requirements for building a PWA ...44

PWA advantages ..45

Quick peek into the finished PWA...45

Driven by fast-paced innovation ...47

PWAs are checked for high quality ...48

 5

Enter Lighthouse ..48

Summary ..50

Chapter 4 Scaffolding the PWA ...51

Quick intro ..51

Vue/PWA ..51

The manifest.json file..52

Creating the service worker ..54

Registering the service worker ...56

The generated service worker ..58

Polyfills and browser compatibility ..61

Summary ..64

Chapter 5 Building the PWA ..65

Quick intro ..65

Final main.js file ..65

Final App.vue file ..66

Final router.js file ..66

Final Home.vue file ...67

Final Search.vue file ...73

Final Info.vue file ..77

Final Clear.vue file ..87

Summary ..87

Chapter 6 Deploying the PWA ...88

Quick intro ..88

Setting Up Firebase Hosting ...88

Firebase setting files ..92

Building and deploying ...95

www.dbooks.org

https://www.dbooks.org/

 6

Testing with Lighthouse ..96

Performance improvement ...97

Redeploying the app ..99

Full project source code ... 100

Final thoughts ... 100

 7

The Story Behind the Succinctly Series
 of Books

Daniel Jebaraj, Vice President
Syncfusion, Inc.

taying on the cutting edge

As many of you may know, Syncfusion is a provider of software components for the
Microsoft platform. This puts us in the exciting but challenging position of always
being on the cutting edge.

Whenever platforms or tools are shipping out of Microsoft, which seems to be about
every other week these days, we have to educate ourselves, quickly.

Information is plentiful but harder to digest
In reality, this translates into a lot of book orders, blog searches, and Twitter scans.

While more information is becoming available on the Internet and more and more books are
being published, even on topics that are relatively new, one aspect that continues to inhibit us is
the inability to find concise technology overview books.

We are usually faced with two options: read several 500+ page books or scour the web for
relevant blog posts and other articles. Just as everyone else who has a job to do and customers
to serve, we find this quite frustrating.

The Succinctly series
This frustration translated into a deep desire to produce a series of concise technical books that
would be targeted at developers working on the Microsoft platform.

We firmly believe, given the background knowledge such developers have, that most topics can
be translated into books that are between 50 and 100 pages.

This is exactly what we resolved to accomplish with the Succinctly series. Isn’t everything
wonderful born out of a deep desire to change things for the better?

The best authors, the best content
Each author was carefully chosen from a pool of talented experts who shared our vision. The
book you now hold in your hands, and the others available in this series, are a result of the
authors’ tireless work. You will find original content that is guaranteed to get you up and running
in about the time it takes to drink a few cups of coffee.

Free forever
Syncfusion will be working to produce books on several topics. The books will always be free.
Any updates we publish will also be free.

S

www.dbooks.org

https://www.dbooks.org/

 8

Free? What is the catch?

There is no catch here. Syncfusion has a vested interest in this effort.

As a component vendor, our unique claim has always been that we offer deeper and broader
frameworks than anyone else on the market. Developer education greatly helps us market and
sell against competing vendors who promise to “enable AJAX support with one click,” or “turn
the moon to cheese!”

Let us know what you think

If you have any topics of interest, thoughts, or feedback, please feel free to send them to us at
succinctly-series@syncfusion.com.

We sincerely hope you enjoy reading this book and that it helps you better understand the topic
of study. Thank you for reading.

Please follow us on Twitter and “Like” us on Facebook to help us spread the
word about the Succinctly series!

mailto:succinctly-series@syncfusion.com
https://twitter.com/Syncfusion
https://www.facebook.com/Syncfusion

 9

About the Author

Ed Freitas is a consultant on software development applied to customer success, mostly related
to financial process automation, accounts payable processing, and data extraction.

He loves technology and enjoys playing soccer, running, traveling, life-hacking, learning, and
spending time with his family.

You can reach him at: https://edfreitas.me.

www.dbooks.org

https://edfreitas.me/
https://www.dbooks.org/

 10

Acknowledgments

Many thanks to all the people from the amazing Syncfusion team who helped this book become
a reality—especially Jacqueline Bieringer, Tres Watkins, and Graham High.

The manuscript manager and technical editor thoroughly reviewed the book's organization,
code quality, and overall accuracy—Jacqueline Bieringer from Syncfusion and Dr. James
McCaffrey from Microsoft Research. Thank you.

This book is dedicated to my father, who passed away when I was writing it. Not only did my
father give me the gift of life, but he also taught me the work ethic I have, to be entrepreneurial,
to always be learning, to not take things for granted, to not be afraid of being an immigrant, to
explore the world by living in different countries, to be responsible, to treat everyone with utmost
respect and to be respected, to help everyone that crosses your path in life, to seek the
common good, to seek the best in people, and to never take advantage of anyone for your
benefit and their detriment. He taught me that we all fail many times, but we can always get
back up and be better.

This year that you turned 81, you still wanted to start another adventure—if your body would
have been strong enough, I’m sure you would have done it and immigrated again to greener
fields. Your life was a living testament of all these values. You were amazing, and an inspiration.

All your love and dedication are something I will always cherish and never forget. Thank you,
Papa, for everything you did—in the name of your loving wife “Cuchi,” two sons, daughter, two
daughters-in-law, son-in-law, and four grandchildren. You will always be present in our
memories, our hearts, and in the memories of all the people that you positively influenced,
helped, and touched during your life with your kindness and wisdom, forged by the university of
life.

Descansa en paz mi viejito lindo, estaremos siempre contigo y tu con nosotros.

http://www.syncfusion.com/
https://jamesmccaffrey.wordpress.com/
https://jamesmccaffrey.wordpress.com/
https://www.microsoft.com/en-us/research/people/jammc/

 11

Ionic for Everyone

Ionic is one of the most exciting frameworks that exists for building cross-platform mobile apps.
It is an open-source UI toolkit that allows developers to build high-quality and high-performing
mobile apps using web technologies such as HTML, CSS, and JavaScript.

Ionic is primarily focused on the user interface—it is used for building and deploying apps that
work across multiple platforms, such as native iOS, Android, desktop, and the web, as
progressive web apps.

Ionic Succinctly covers the basics of the Ionic Framework using Angular. Ionic 4 is an evolution
of the original Ionic Framework and represents the culmination of more than two years of
research. It takes Ionic from a mobile-centric framework based on Angular into a powerful UI
design system and app development toolset that is JavaScript-framework agnostic.

The main idea behind the development of Ionic 4 was to make Ionic available for every web
developer. This was accomplished by rebuilding the framework as web components that use
custom elements and shadow DOM APIs, which are available in all modern mobile and desktop
browsers, targeting standard web APIs rather than third-party ones.

This means Ionic 4 departs from being a UI framework for building cross-platform mobile apps
with Angular using web technologies, to become a web-based UI design system and application
framework for any web developer, regardless of which JavaScript library or framework they
choose to work with.

One of the most interesting aspects of Ionic 4 is its excellent performance. Each component in
Ionic 4 is a web component that has been optimized for load and render performance. The
increased performance of Ionic 4 components makes the framework ideal for developing
progressive web apps, which are in high demand and popularity these days.

Ionic 4 can reach the performance standards set by Google for progressive web apps due to
asynchronous component loading and delivery—consisting of smart collections of tightly packed
components that are lazy-loaded and optimized for frequent use.

With Ionic 4 Succinctly, the objective is to focus on progressive web apps and see how we can
use Ionic 4 to build one, using Vue as our JavaScript framework—and departing from the
Angular-centric approach of Ionic Succinctly.

Throughout this book, we’ll see how progressive web apps and Vue have first-class support in
Ionic 4, and how they can be used to go beyond cross-platform mobile development.

www.dbooks.org

https://ionicframework.com/
https://en.wikipedia.org/wiki/Progressive_web_applications
https://www.syncfusion.com/ebooks/ionic_succinctly
https://vuejs.org/
https://www.dbooks.org/

 12

Chapter 1 App Fundamentals

Project overview

The application we’ll be building throughout this book is a progressive web app (PWA) that we
can use to track flight details. We’ll do this by using a package called @ionic/vue that will allow
us to use Ionic 4 components within our Vue app. Essentially, we’ll be building a PWA using
Vue based on Ionic 4 components with a mobile “look and feel” that can also work offline.

Throughout this book, we will build the application, deploy it via the Firebase development
platform, and implement PWA features by creating a service worker script. The service worker
will cache all application assets and requests that the application will retrieve from a flight
tracking API (that I built) for offline viewing later.

Installation

Before we can create our Ionic 4 PWA, we’ll need the Vue CLI (command line interface)
installed. This requires NPM (Node Package Manager), which requires installation of Node.js.

To install Node.js, simply go to the Node.js website and download the LTS (long-term support)
or the latest current version.

Figure 1-a: Node.js Website

The installation of Node.js is very simple and consists of a few steps that can be easily executed

using the intuitive step-by-step wizard. Figure 1-b shows an example of the installation process.

https://firebase.google.com/
https://developers.google.com/web/fundamentals/primers/service-workers
https://www.npmjs.com/
https://nodejs.org/en/

 13

Figure 1-b: Node.js Installation Wizard

Once we’ve installed Node.js, we need to install the Vue CLI globally on our system. We can do

this by opening the command line or terminal and typing the following command.

Code Listing 1-a: Install Vue CLI Command

npm install -g @vue/cli

You can run the following command to check which version of the Vue CLI was installed on your

machine.

Code Listing 1-b: Check Vue CLI Version

vue --version

With the Vue CLI installed, we are ready to create an application. In my case, I already had the

Vue CLI installed from a previous project, so your version might differ slightly from mine.

It is not mandatory to have the latest version of the Vue CLI installed to create the application

we’ll be building throughout this book, but it’s still good to be up to date.

Creating the app

Creating the application with the Vue CLI is very easy. All we need to do is run the following
command.

www.dbooks.org

https://www.dbooks.org/

 14

Code Listing 1-c: Creating the App with the Vue CLI

vue create flight-info-pwa

The name of our application will be flight-info-pwa. To execute the command, we’ll be required
to choose a preset. In my case, I’ve chosen the default preset (by pressing Enter), which
includes babel and eslint.

Figure 1-c: Choosing a Preset

Once selected, the Vue CLI installs the required modules. The creation of the application is then
finalized.

I’ll be using Visual Studio Code (VS Code) as my editor of choice, but feel free to use any other
that you feel comfortable with. VS Code is easy to install, and just as easy to use. Regardless of
the editor you choose to use, you’ll be able to follow along with all subsequent steps.

With the application created, go into the project root folder using the following command in the
command line.

Code Listing 1-d: Going into the Application Folder

cd flight-info-pwa

Once there, type code . from the command line to open VS Code on that directory. This is how
it looks on my machine.

https://code.visualstudio.com/

 15

Figure 1-d: The Application Opened with VS Code

We can close the command prompt we’ve opened and switch to the built-in terminal that ships
with VS Code by clicking on the Terminal menu item, and then on the New Terminal option.
We can see this as follows.

Figure 1-e: The Built-In Terminal in VS Code

From the built-in terminal, we can install any remaining components our application might
require.

Additional dependencies

One of those components is Vue Router—let’s get it installed. We can do this by running the
following command.

Code Listing 1-e: Installing Vue Router

vue add router

When running this command, you will be prompted to use the router’s history mode—when
prompted, enter Y (Yes).

The default mode for Vue Router is hash mode, which uses the URL hash to simulate a full
URL, so that the page won't be reloaded when the URL changes.

To avoid the hash, we can use the router's history mode, which leverages the
history.pushState API to achieve URL navigation without a page reload.

www.dbooks.org

https://router.vuejs.org/
https://developer.mozilla.org/en-US/docs/Web/API/History/pushState
https://www.dbooks.org/

 16

Once the command has finished executing, you should see the following output on the
Terminal tab in VS Code.

Figure 1-f: Terminal Output—After Installing Vue Router

With Vue Router installed, let’s next install the Ionic Vue (@ionic/vue) package, which is
essential if we want to develop an Ionic application using Vue. To do this, we need to execute
the following installation command.

Code Listing 1-f: Installing Ionic Vue

npm i @ionic/vue

Once it’s installed, you should see the following output on the Terminal tab within VS Code.

Figure 1-g: Terminal Output—After Installing Ionic Vue

Now, let’s run the application to see how it looks. We can do this by executing the following
command.

Code Listing 1-g: Running the App

npm run serve

After executing the command, the application will be shown in the browser; we can corroborate
this by checking the Terminal output.

 17

Figure 1-h: Terminal Output—App Running

If we open the browser and go to the URL indicated by the console output, we should be able to
see the application running.

Figure 1-i: App Opened in the Browser

As you can see, it’s just the default Vue app. There’s nothing in the app yet that relates to Ionic,
so we will have to set that up, which we will do next.

Adding Ionic: main.js and router.js

We are now ready to add Ionic 4 components to our application. To do this, let’s open the
main.js file, which sits under the src folder of our project, using VS Code.

www.dbooks.org

https://www.dbooks.org/

 18

Figure 1-j: The main.js File within the src Folder

The out-of-the-box code contained within main.js is shown in the following.

Code Listing 1-h: Default main.js Code

import Vue from 'vue'

import App from './App.vue'

import router from './router'

Vue.config.productionTip = false

new Vue({

 router,

 render: h => h(App)

}).$mount('#app')

To use Ionic, we need to add a reference to Ionic Vue, add the built-in Ionic styling, and
reference Ionic. These changes are highlighted in bold in Code Listing 1-i.

Code Listing 1-i: Modified main.js Code (Ionic Included)

import Vue from 'vue'

import App from './App.vue'

import router from './router'

import Ionic from '@ionic/vue'

import '@ionic/core/css/ionic.bundle.css'

Vue.use(Ionic)

Vue.config.productionTip = false

 19

new Vue({

 router,

 render: h => h(App)

}).$mount('#app')

These are all the changes required for the main.js file. Because we’ve added the
ionic.bundle.css reference to the main.js file, we need to install the Ionic Icons package by
running the following command.

Code Listing 1-j: Command to Install the Ionic Icons Package

npm install ionicons@4.5.9-1 --save-dev

Installing this package is necessary to avoid running into the Ionic/vue ionicons error #18640
issue, which is described here.

Next, we need to modify router.js, change the default Vue router, and replace it with the Ionic
router. Before we make any more changes, let’s have a look at how the out-of-the-box router.js
code looks.

Code Listing 1-k: Default router.js Code

import Vue from 'vue'

import Router from 'vue-router'

import Home from './views/Home.vue'

Vue.use(Router)

export default new Router({

 mode: 'history',

 base: process.env.BASE_URL,

 routes: [

 {

 path: '/',

 name: 'home',

 component: Home

 },

 {

 path: '/about',

 name: 'about',

 // route level code-splitting

 // this generates a separate chunk (about.[hash].js) for this route

 // which is lazy-loaded when the route is visited.

 component: () => import('./views/About.vue')

www.dbooks.org

https://github.com/ionic-team/ionic/issues/18640
https://www.dbooks.org/

 20

 }

]

})

All we need to do with this code is replace the Vue Router references with the Ionic Router
ones. The code changes are highlighted in bold in Code Listing 1-l.

Code Listing 1-l: Modified router.js Code

import Vue from 'vue'

import { IonicVueRouter } from '@ionic/vue'

import Home from './views/Home.vue'

Vue.use(IonicVueRouter)

export default new IonicVueRouter({

 mode: 'history',

 base: process.env.BASE_URL,

 routes: [

 {

 path: '/',

 name: 'home',

 component: Home

 }

]

})

Note the following changes:

• import Router from 'vue-router' was replaced with import {
IonicVueRouter } from '@ionic/vue'.

• Vue.use(Router) was replaced with Vue.use(IonicVueRouter).
• The ‘about’ route was removed from the code, since we won’t be using it.

By making these changes to main.js and router.js, we have added Ionic to our application.
However, if we view the application in the browser, it will appear as if nothing has changed. To
view the changes, we need to modify App.vue—which is what we will do next.

Modifying App.vue

The App.vue file is the main Vue component file of our application. It defines the main HTML
template and markup that our application will display when running.

Let’s have a look at how the out-of-the-box code of App.vue looks.

 21

Code Listing 1-m: Default App.vue Code

<template>

 <div id="app">

 <div id="nav">

 <router-link to="/">Home</router-link> |

 <router-link to="/about">About</router-link>

 </div>

 <router-view/>

 </div>

</template>

<style>

#app {

 font-family: 'Avenir', Helvetica, Arial, sans-serif;

 -webkit-font-smoothing: antialiased;

 -moz-osx-font-smoothing: grayscale;

 text-align: center;

 color: #2c3e50;

 margin-top: 60px;

}

</style>

Now, let’s modify the App.vue code, so we can later see Ionic in action. We’ll remove the
styling and the content of <div id="app">. Below is the modified App.vue code.

Code Listing 1-n: Modified App.vue Code

<template>

 <div id="app">

 <ion-app>

 <ion-vue-router/>

 </ion-app>

 </div>

</template>

If we now view the app in the browser, we will see the same content, but displayed differently.

www.dbooks.org

https://www.dbooks.org/

 22

Figure 1-k: The App Running (Different Layout)

Even though we added the ion-app and ion-vue-router components to the markup, we still

haven’t added any Ionic UI components. This is what we’ll do next.

Essential Ionic UI components

One of the most exciting parts of developing a new application is seeing how it takes shape—for
that, creating the UI is an essential aspect of an app’s development life cycle. To create the UI,
we need to modify the Home.vue file located within the views subfolder of our project.

First, let’s have a look at the out-of-the-box code contained within Home.vue.

Code Listing 1-o: Default Home.vue Code

<template>

 <div class="home">

 <HelloWorld msg="Welcome to Your Vue.js App"/>

 </div>

</template>

 23

<script>

// @ is an alias to /src

import HelloWorld from '@/components/HelloWorld.vue'

export default {

 name: 'home',

 components: {

 HelloWorld

 }

}

</script>

Let’s modify this code and add some fundamental UI components that will make the app look
like an Ionic application.

Code Listing 1-p: Modified Home.vue Code

<template>

 <div class="ion-page">

 <ion-header>

 <ion-toolbar>

 <ion-title>

 Flight Info

 </ion-title>

 </ion-toolbar>

 </ion-header>

 <ion-content class="ion-padding">My App</ion-content>

 </div>

</template>

<script>

export default {

 name: 'home',

 components: {

 }

}

</script>

As we can see, all the content of the main div was replaced with Ionic UI components, and its

class changed to ion-page—which is a placeholder for Ionic UI components.

The ion-page component is a placeholder for all Ionic UI components that are part of the same

UI view (also known as a page). Therefore, the main ion-header and ion-content

components are nested under ion-page.

www.dbooks.org

https://www.dbooks.org/

 24

Note how ion-toolbar is nested under ion-header, and how ion-title is nested under

ion-toolbar. The ability to nest Ionic UI components is one of the great features of building

UIs with Ionic, as it allows anyone to quickly scaffold a user interface by adding components to
others.

With the essential Ionic UI components added to Home.vue, it’s now time to understand how
the application will be structured into functional components.

Structuring the application

The application will have three main functional components, each of which will be an
independent .vue file. The first component will be called Search.vue and will be used to perform
flight information searches. The second component will be called Info.vue and will be used to
display flight information details resulting from a search. The third component will be called
Clear.vue and will be used to clear the flight information details retrieved and displayed from a
previous search.

We need to create these three Vue files within the components subfolder of our project. So,
with VS Code, go ahead and add these files.

Figure 1-l: Vue Components (VS Code)

As this is going to be a PWA, we’ll later create the service worker so the app can work offline.
We’ll later explore in depth all the technical details of PWAs. First, we’ll focus and finish all the
basic functional aspects of the app’s UI.

Search.vue UI

Let’s start off by creating the foundations of the first functional component of our application:
Search.vue.

Code Listing 1-q: Search.vue Code

<template>

 25

 <ion-grid>

 <form>

 <ion-col>

 <ion-item>

 <ion-label>Flight number: </ion-label>

 <ion-input name="flight"></ion-input>

 </ion-item>

 </ion-col>

 <ion-col>

 <ion-button type="submit" color="primary" expand="block">

 Search

 </ion-button>

 </ion-col>

 </form>

 </ion-grid>

</template>

<script>

export default {

 name: 'Search'

}

</script>

What we have done is added ion-grid component and nested a form component within it,

which will render this functional component’s UI layout.

The form is made up of two columns: the first column contains an ion-item with an ion-label

and ion-input, while the second column contains a search button, ion-button. The ion-
input component will be used to enter the light number the application will retrieve and display

information about. The functional component’s name has also been added within the script

section of the code.

With this done, we need to reference this functional component within Home.vue, so let’s have
a look.

Code Listing 1-r: Home.vue Referencing Search.vue

<template>

 <div class="ion-page">

 <ion-header>

 <ion-toolbar>

 <ion-title>

 Flight Info

 </ion-title>

 </ion-toolbar>

www.dbooks.org

https://www.dbooks.org/

 26

 </ion-header>

 <ion-content class="ion-padding">

 <Search />

 </ion-content>

 </div>

</template>

<script>

import Search from '../components/Search'

export default {

 name: 'home',

 components: {

 Search

 }

}

</script>

I’ve highlighted in bold the code changes to Home.vue, referencing Search.vue. First, the
Search component has been embedded within ion-content.

Within the script section, the Search component is referenced using an import statement.

Then, it was added to the components object.

If we now save the changes and check the application in the browser, we’ll see that Vue’s hot-
reloading mechanism has rebuilt the app with the saved changes, which we can see as follows.

Figure 1-m: The App Running with an Ionic “Look and Feel”

With these changes, the application has a modern, fresh, and Ionic look and feel to it—which is
what we want.

 27

Something I particularly like to do when developing PWAs is to visualize them in the browser
like they would look on a mobile device. I’m using Google Chrome as my predefined browser,
but you may use a different one if you prefer (except Edge or Internet Explorer—you’ll see why,
later); the steps should be similar.

With the Chrome Developer tools opened, click the Toggle device toolbar (highlighted in
Figure 1-n), which by default will display the app in Responsive mode.

Figure 1-n: The App Running in Mobile Responsive Mode (Google Chrome)

We now have the basic structure of the application ready. Even though we haven’t added any
markup or code to the functional components, Info.vue and Clear.vue, we have scaffolded the
foundation of our app with the markup we’ve just added to Home.vue and Search.vue.

Summary

Throughout this chapter, we have explored how to create the foundations of an Ionic application
from scratch using Vue.

We started by installing the development tools and libraries required, then the packages and
dependencies needed. We scaffolded the foundation of the application by modifying the app’s
main .vue and .js files. Finally, we created the files that will host the app’s functional
components and created the UI of one the app’s main functional components, Search.vue.

In the next chapters, we will add the markup and the underlying logic to the rest of the app’s
functional components, Info.vue and Clear.vue.

www.dbooks.org

https://www.dbooks.org/

 28

At that point, we’ll have a working application (without it being a PWA, which we will explore
later in Chapters 4, 5, and 6.

 29

Chapter 2 Basic App and API Logic

Quick intro

With the development environment set up, and application fundamentals covered, it’s now time
to create the rest of the app’s functional components and all the corresponding logic for each
one of them—this is what we’ll do throughout this chapter.

Search.vue validation

Now that we have the UI aspect of Search.vue covered, let’s add some logic to it. Note that if
you click the Search button, nothing happens.

We need to add logic that validates that the flight number being submitted is not an empty
string, and that it is also a valid flight number. This needs to be done before the form is
submitted, so that the flight number can be validated before calling the API that will return the
flight data.

Let’s start by adding some logic that validates the format of the flight number before it is
submitted to the flight tracking API. We can do this by using a regular expression.

Essentially, the Search.vue code remains the same; however, there is extra logic that has been
added to perform the flight number validation. These changes have been highlighted in bold in
Code Listing 2-a.

Code Listing 2-a: Search.vue—Flight Number Validation

<template>

 <ion-grid>

 <form @submit="onSubmit">

 <ion-col>

 <ion-item>

 <ion-label>Flight number: </ion-label>

 <ion-input :value="flight"

 @input="flight = $event.target.value"

 placeholder="such as: BA197"

 name="flight"></ion-input>

 </ion-item>

 </ion-col>

 <ion-col>

 <ion-button type="submit" color="primary" expand="block">

 Get Details

 </ion-button>

www.dbooks.org

https://en.wikipedia.org/wiki/Regular_expression
https://www.dbooks.org/

 30

 </ion-col>

 </form>

 </ion-grid>

</template>

<script>

export default {

 name: 'Search',

 data() {

 return {

 flight: ''

 }

 },

 methods: {

 onSubmit(e) {

 e.preventDefault()

 const isvf =

 /^(([A-Za-z]{2,3})|([A-Za-z]\d)|(\d[A-Za-z]))(\d{1,})([A-Za-z]?)$/

 .test(this.flight)

 if (isvf) {

 console.log('Valid flight number...')

 }

 else {

 this.displayAlert()

 }

 },

 displayAlert() {

 return this.$ionic.alertController.create(

 {

 header: 'Flight',

 message: 'Enter a valid flight number.',

 buttons: ['OK']

 }

).then(r => r.present())

 }

 }

}

</script>

The first change that we’ve made is to add the submit event to form, which is going to execute

the onSubmit method when the form gets submitted. This occurs when ion-button is clicked

(type="submit" triggers the submission of the form).

 31

The next change to note is with the ion-input component. If this were a regular Vue

application, we would use the v-model directive to bind the variable flight to the value of ion-
input. By using the v-model directive, we can achieve two-way data binding in Vue.

Since this is not a regular Vue application, but instead we are using Ionic, we cannot use the v-
model directive, so we assign the value of the flight variable to the value of ion-input. So

far, we have only achieved one-way data binding.

To achieve the other part of two-way data binding, on the input event of the ion-input

component, the entered value through ion-input ($event.target.value) is assigned to the

flight variable.

The next change to note is the data function, which returns an object with the flight variable

as an empty string. This is how the flight variable is initialized.

Then, we have the methods object, which is used to specify the methods that run the

component’s logic and validation. Within the methods object, we have the onSubmit method,

which contains the main validation logic.

The first thing that is done within the onSubmit method is to invoke e.preventDefault(),

which tells the browser that if the event does not get explicitly handled, its default action should
not be taken as it normally would be—thus the event continues to propagate with further
actions.

Next, within the onSubmit method, the regular expression that checks if the entered flight

number is valid is invoked by calling the test method. If the result of that test—which is the

value of the isvf variable—is true, then it is a valid flight number. Otherwise an alert is

displayed; this is done my calling the displayAlert method.

The logic within the displayAlert method is very easy to understand. The create method

from alertController is invoked by specifying the header, message, and buttons properties.

The create method returns a promise that triggers the display of the alert message by invoking

the present method from the promise’s response (r).

Now that we know how to validate the flight number, we need to be able to emit it upwards, so
the app can process it in Home.vue, and from there, run a function to make a request to a flight-
tracking API. Let’s see how we can do this.

Emitting the flight number

We can emit the flight number upwards by calling the $emit method. Let’s modify the onSubmit

method within Search.vue to do this.

Code Listing 2-b: Search.vue—Updated onSubmit Method

onSubmit(e) {

 e.preventDefault()

www.dbooks.org

https://ionicframework.com/docs/api/alert-controller
https://www.dbooks.org/

 32

 const isvf =

 /^(([A-Za-z]{2,3})|([A-Za-z]\d)|(\d[A-Za-z]))(\d{1,})([A-Za-z]?)$/

 .test(this.flight)

 if (isvf) {

 this.$emit('flight', this.flight)

 this.flight = ''

 }

 else {

 this.displayAlert()

 this.flight = ''

 }

}

The changes to the code are highlighted in bold in Code Listing 2-b. The emit gets done by
invoking $emit('flight', this.flight).

Once that is done, the value of the flight variable is cleared: this.flight = ''. To be on

the safe side, let’s also clear the value of this variable after invoking the displayAlert method.

This way, we can prevent emitting a previous or incorrect flight number.

Following is the updated Search.vue code, with the latest changes.

Code Listing 2-c: Search.vue—Updated Code

<template>

 <ion-grid>

 <form @submit="onSubmit">

 <ion-col>

 <ion-item>

 <ion-label>Flight number: </ion-label>

 <ion-input :value="flight"

 @input="flight = $event.target.value"

 placeholder="such as: BA197"

 name="flight"></ion-input>

 </ion-item>

 </ion-col>

 <ion-col>

 <ion-button type="submit" color="primary" expand="block">

 Get Details

 </ion-button>

 </ion-col>

 </form>

 </ion-grid>

</template>

 33

<script>

export default {

 name: 'Search',

 data() {

 return {

 flight: ''

 }

 },

 methods: {

 onSubmit(e) {

 e.preventDefault()

 const isvf =

 /^(([A-Za-z]{2,3})|([A-Za-z]\d)|(\d[A-Za-z]))(\d{1,})([A-Za-z]?)$/

 .test(this.flight)

 if (isvf) {

 this.$emit('flight', this.flight)

 this.flight = ''

 }

 else {

 this.displayAlert()

 this.flight = ''

 }

 },

 displayAlert() {

 return this.$ionic.alertController.create(

 {

 header: 'Flight',

 message: 'Enter a valid flight number.',

 buttons: ['OK']

 }

).then(r => r.present())

 }

 }

}

</script>

Receiving the flight number

Now that we’ve emitted the flight number from Search.vue, it’s time to receive and process it
within Home.vue. This is what we’ll do next.

www.dbooks.org

https://www.dbooks.org/

 34

Code Listing 2-d: Home.vue—Updated Code

<template>

 <div class="ion-page">

 <ion-header>

 <ion-toolbar>

 <ion-title>

 Flight Info

 </ion-title>

 </ion-toolbar>

 </ion-header>

 <ion-content class="ion-padding">

 <Search v-on:flight="flightDetails"/>

 </ion-content>

 </div>

</template>

<script>

import Search from '../components/Search'

export default {

 name: 'home',

 components: {

 Search

 },

 methods: {

 flightDetails(flight) {

 console.log('Flight details...')

 }

 }

}

</script>

I’ve highlighted the code changes in bold in Code Listing 2-d. All we do within the markup is
include the Search component with the v-on directive, so that when the flight event is

triggered, the flightDetails method can be executed.

Then, within the methods object, in the header of the flightDetails method, flight is

passed as a variable. This is because in Search.vue, this.flight was passed when the

flight event was emitted: this.$emit('flight', this.flight).

For now, within the implementation of the flightDetails method, all we do is output to the

Developer Tools console when the method executes.

 35

Figure 2-a: The App Running (Console Output)

Now that we know how to emit the flight number from Search.vue and receive it within
Home.vue, we can focus on calling the flight tracking API and retrieving flight information.

Flight information APIs

There are many websites that provide real-time flight tracking information, such as:
Flightradar24, FlightAware, and FlightStats.

In general (unlike most other APIs), flight tracking APIs are quite expensive to start with and
require an upfront investment, which usually means signing up for a business account—thus
being out of the reach of most independent software developers or enthusiasts.

Sites like Flightradar24 show flights all over the world in real time So, with the flight number, it’s
possible to know important information such as the flight date, origin, destination, departure
time, estimated arrival time, the type of aircraft, flight status, and the flight route followed by the
aircraft.

Essentially, it’s very useful information to have about any given flight. These sites gather the
information by using a combination of sources, such as data obtained from the airlines; data
from transmitting stations (radar sources); and data supplied by air traffic controllers, regulators,
and government organizations responsible for aviation and safety, like the Federal Aviation
Administration.

www.dbooks.org

https://www.flightradar24.com/
https://flightaware.com/
https://www.flightstats.com/v2
https://www.faa.gov/
https://www.faa.gov/
https://www.dbooks.org/

 36

If you have a look at the Flightradar24 website, you’ll see a world map with an impressive
number of airplanes being tracked on the map—each corresponding to a plane flying in real
time.

Figure 2-b: Flightradar24 Website

Given that working with sites like these is technically challenging, and that accessing this data
usually requires signing up for a business account and paying high API usage fees, we won’t be
using any of these sites. Instead, we’ll use a small API that I created, which sources the
information from other highly reliable and free alternative sources, such as OpenFlights.

For creating our PWA and testing it, the small Flight API I’ve written uses Firebase, which
contains a very small data set of flights that should be enough for testing the PWA. Although the
data set is quite small, the information is accurate and fully up to date, in real time.

The way my flight API works is that the data is retrieved, curated, and verified from various
sources as it is being requested—therefore, it is as accurate as the data provided by top sites
like Flightradar24 and others.

Creating this API was quite a technical challenge, and something I really enjoyed as a side
project for this book. However, I won’t cover the steps involved to create it, but will provide it as
an alternative to signing up for a business account on any of the paid sites. This way we can
focus on the logic of the PWA itself, which is within the scope of this book.

It’s also possible to add further data to the API by running an HTTPS request, which enables the
API service to retrieve the most recent flight data for a given flight.

https://www.flightradar24.com/
https://openflights.org/

 37

The API I created contains two parts. The first part consists of a service that retrieves the most
recent flight data for a specific flight number, through an HTTPS call—this runs on Firebase
Hosting and stores the information within Cloud Firestore.

The second part is a Firebase function invokable through an HTTPS request that queries the
Cloud Firestore database and returns a JSON response containing the flight data for a specific
flight number.

I won’t cover how the first part of the API was developed, as it goes beyond the scope of this
book, but I do provide the source code of the Firebase function that returns the JSON response
from the API, for educational purposes.

You might be asking yourself why I created this API instead of using another API for a much
simpler use case than searching for flight data.

The answer is that PWAs are about consuming APIs, and what makes a PWA interesting and
attractive is what data it can provide to its users—near real-time flight information is something
cool and very useful for this connected world we live in.

Ed’s real-time flight data

The real-time flight information retrieval API I created fetches flight data from nonproprietary
sources, and then it curates and validates the accuracy of the data. The data is then stored
within Cloud Firestore. This is how the site looks.

Figure 2-c: Ed’s Real-Time Flight Data (First Part of the API—Data Retrieval and Validation)

www.dbooks.org

https://firebase.google.com/docs/hosting
https://firebase.google.com/docs/hosting
https://firebase.google.com/docs/firestore
https://www.dbooks.org/

 38

The flight information is displayed as a table—there are no little airplanes on a map. However,
the data is up to date and accurate. It is retrieved, curated, and verified when the query is
executed.

The data might take a few seconds before it is displayed, but generally the process is quite fast,
and the data is as up to date and accurate as it would be from any of the paid sites.

This data is retrieved from the API by passing a flight number, highlighted in green in Figure 2-c.
This is what I call the first part of the API, which is responsible for data retrieval and validation.

Once the data is retrieved and verified, it is stored as JSON objects within Cloud Firestore so
that it can be queried by the PWA. This is what I call the second part of the API, which is what
the PWA will invoke and consume. The flight number is also passed as a query, as can be seen
in Figure 2-d.

Figure 2-d: Ed’s Real-Time Flight Data (Second Part of the API—Data Consumption)

The data consumption part of the API is actually very simple, and Code Listing 2-e shows all the
code required for it (this is not the case for the data retrieval and validation part, which we won’t
cover).

The code for the second part is basically a Node Express application that is executed by a
Firebase function. The steps necessary to build it aren’t covered as part of the scope of this
book, but Code Listing 2-e shows the code for educational purposes.

Code Listing 2-e: Data Consumption API Logic (Node / Express Firebase Function – index.js)

var functions = require('firebase-functions')

const admin = require('firebase-admin')

const express = require('express')

const cors = require('cors')

const app = express()

https://expressjs.com/
https://firebase.google.com/docs/functions

 39

var serviceAccount = require("./serviceAccountKey.json");

admin.initializeApp({

 credential: admin.credential.cert(serviceAccount),

 databaseURL: "https://flight-api-5c531.firebaseio.com"

});

const db = admin.firestore()

app.use(cors({ origin: true }))

app.get('/api/:fn', (req, res) => {

 (async () => {

 try {

 if (req.params.fn !== '') {

 let fn = req.params.fn.toLowerCase()

 const document = db.collection('flights').doc(fn)

 let item = await document.get()

 let response = item.data()

 return res.status(200).send(response)

 }

 else {

 return res.status(200).send('N/A')

 }

 } catch (error) {

 return res.status(500).send(error)

 }

 })()

 })

exports.app = functions.https.onRequest(app)

If you’ve done Node development before, notice how small this code is—that’s all it takes to get
the JSON data stored within Cloud Firestore that was retrieved, curated, and validated by the
initial part of the API.

API execution workflow

The PWAs we are building will only invoke the second part of the API, which returns a JSON
response that the app can consume.

Essentially, the PWA will execute a query like the following one, which retrieves the information
for a given flight number from Cloud Firestore using a Firebase function:

www.dbooks.org

https://www.dbooks.org/

 40

https://us-central1-flight-json.cloudfunctions.net/app/api/IBE2601

The last part of the query (highlighted in green) corresponds to the flight number that the PWA
will retrieve details about.

The flight information (which the PWA will query using the second part of the API) stored within
Cloud Firestore is not much, and it is limited to only a few flight numbers, such as: ibe2601,
ar1140, ba197, bel245, glo7730, hc404, hv6148, hv6150, kqa564, sas4424, ux193, vy1374, and
vy1375.

Flight numbers are treated as case-insensitive by both parts of the API, and internally they are
stored in lowercase within Cloud Firestore. So, flight numbers can be written in uppercase or
lowercase.

However, if you would like to get details for other flights and expand the flight data that the PWA
can query, for your own testing, you’ll need to follow these next steps.

First, check out the Flightradar24 website, choose one of the planes, and then copy the flight
number, which in the following example is RAM505.

Figure 2-e: Manually Getting a Flight Number from Flight Radar 24

Then, once copied, open the first part of the API that gathers, curates, and validates the flight
data, and enter the flight number (highlighted in green) as part of URL query parameter. In this
case it would be:

https://us-central1-flight-json.cloudfunctions.net/app/api/IBE2601
https://www.flightradar24.com/

 41

https://flight-api-5c531.web.app/?q=RAM505

The API will gather all the flight details for that flight number, validate and cross-check its
accuracy, and then store the information within Cloud Firestore.

By taking this step, you’ll be able to add more flight details to the Cloud Firestore database that
the API uses, which means that the PWA will have some more flight records to retrieve and
display.

 Note: If you call the first part of the API (the URL listed previously) and pass it an
existing (stored) flight number (also shown previously), then the existing flight data
will be refreshed with the most recent and up-to-date information for that particular
flight number, and updated within Cloud Firestore.

The flight details for flight number RAM505 can be later retrieved (either manually or by the
PWA) using the following URL: https://us-central1-flight-
json.cloudfunctions.net/app/api/RAM505.

 Note: The API is running on Firebase’s Spark (free) plan, which means that it is
limited on resources, for both usage and storage. So, please only add one or two
extra flight numbers at max while you are building your own version of the PWA. It is
also possible that I will (from time to time) delete the flight data stored within Cloud
Firestore to keep the API operational and not incur unexpected costs.

 Note: It is also possible that eventually, I might shut down the API completely,
several months after the book has been published. If the API is no longer active by
then, you may contact me directly, and I can provide insights or consultancy on how
you may set up your own.

Summary

Now that we have explored how the API works and how it can be used to retrieve flight
information, we need to expand the application’s logic to be able to make calls to the second
part of the API and display the results—which means that we’ll also have to add some extra UI
logic and functionality.

Before we do that, let’s explore in more detail the requirements for building a PWA, and the
essential characteristics that make an app a PWA. This is what we’ll do in the next chapter.

www.dbooks.org

https://us-central1-flight-json.cloudfunctions.net/app/api/RAM505
https://us-central1-flight-json.cloudfunctions.net/app/api/RAM505
https://www.dbooks.org/

 42

Chapter 3 PWA Essentials

Quick intro

With the foundation of our application covered, and after reviewing how the API works, it’s now
time to dig deeper into PWAs and the essential aspects that make them what they are.

Characteristics of a PWA

A progressive web app, commonly referred to as a PWA, is a great way for developers to make
their web application load faster and be higher performing. In a nutshell, PWAs are webpages
that are intended to be applications. They use recent web standards that allow for installation on
the user’s computer or mobile device.

A PWA delivers a native app-like experience to users. A great example is the Twitter mobile
app, which recently launched on https://mobile.twitter.com as a PWA built with React and Node.
Other well-known PWAs are: Forbes, The Weather Channel, and Alibaba.

Basically, a PWA is nothing more than a web application that can be installed on your system. It
works also offline when there is no internet connection, leveraging data cached during your last
interactions with the app. If you are on a desktop using Chrome and have the appropriate flags
turned on, you will be prompted to install the app when you visit the website.

PWAs are a trending and hot topic in web and mobile development nowadays, and are
considered a next step in user-friendly app experiences that dedicated app developers should
carefully explore and consider.

The great thing about developing PWAs is that, as a developer, you are still creating a web
application using the web technologies you are already familiar with, such as HTML, CSS, and
JavaScript. And beyond that, it also gives you the possibility to use your favorite framework,
such as Ionic, Vue, or any other.

PWAs are a fusion between the look and feel of a traditional mobile app, combined with the
challenges of programming a responsive modern-day website. PWAs provide a cutting-edge
experience for your users to access your content by driving higher-quality engagement.

PWAs, which are responsive websites with offline capabilities, structured as apps, rely on the
user’s browser capabilities. They can progressively enhance their built-in features automatically
to look and feel like a native app.

Essential components of a PWA

For an application to be a PWA, there are two fundamental components it needs to have:

https://mobile.twitter.com/
https://reactjs.org/

 43

• Manifest file: Used by the app to indicate features that a native app would have, such
as an app icon and home screen.

• Service worker(s): Used for processing background tasks and enabling offline support
by caching data fetched through HTTPS requests.

In what other ways do PWAs differ from native apps? A native app is a self-contained program
that resides within a mobile device, which works in a similar way as a program installed and
running on a desktop computer.

A PWA, on the other hand, has no native features, other than it displays like a mobile app; it is a
web app that executes via a browser. A PWA can have access to native features through its
host process, the web browser.

You might be asking yourself: Why are they called progressive, and what’s so special about
them beyond displaying like a native app and having offline support?

Progressive by design

PWAs are progressive because they do not have the restrictions of traditional apps, which can
only work on a specific platform. “Progressive” means that they should be able to work on as
many platforms as possible, performing the exact same way on each. PWAs should be able to
work the same way with every browser on every operating system. This is perhaps the most
essential and distinctive characteristic of a PWA.

The main aspect that should stand out for a PWA is its ability to have progressive
enhancements across most modern-day browsers and operating systems available on the
market.

Responsive by design

Another essential and distinctive characteristic of a PWA is that it needs to be responsive. A
PWA needs to be able to adjust and meet the requirements of the device being used—this is
known as responsive design. This makes PWAs accessible across multiple devices, such as
desktops, laptops, and phones and tablets, with different resolutions.

Connectivity independent

When you cannot visit Amazon.com and place an order, you know that your internet
connectivity is down. Something great about native apps is that they can mostly still function if
there is no internet connection.

A PWA must be able to allow users to interact with it, despite the connection to the internet
being down—thus, the app must be able to work offline.

www.dbooks.org

https://www.dbooks.org/

 44

This is achieved by the PWA, by caching the app data ahead of time, using a service worker—
this offers a programmatic way for caching the app’s data and resources, such as HTML, CSS,
JavaScript files, and the fonts and images used.

App-like behavior

Even though a PWA is built using web technologies, it should still give users the feeling that
they are using a native app—this is ultimately the biggest difference between a PWA and a
website or traditional web app.

There are many websites and web apps out there that are a collection of pages, even though
they might have sophisticated authentication, routing, and database features. For a web app to
be considered a PWA, it needs to include interactive features that keep the user engaged.

The PWA’s main page should be able to be added to the device’s home screen, allowing the
user to open it in the same way as a native app.

Why are PWAs needed?

Although technology has brought improvements to people’s life, one sometimes has the feeling
that there’s always something new to keep up with, which makes it more complex to understand
why we need some of these latest technologies in the first place.

PWAs help solve some of the problems that have come as a byproduct of the internet, such as
internet connection speed, slow website load times, and, to some extent, user engagement.
PWAs focus on solving these problems by:

• Providing a consistently fast experience for users, from the moment they download
the app until they start interacting with it. With a PWA, everything must be as fast as
possible, which is a key element to drive user engagement.

• Providing a reliable experience, which means that if the internet connection fails, the
app is still able to perform its job properly, if it has the data to do it.

• Providing a seamless experience, which means that users can also expect to have
some of the features that they have come to expect from native apps, such as push
notifications and access to some device functionalities.

• Driving engagement: By being available offline and providing notifications, PWAs can
keep users engaged.

Requirements for building a PWA

There are four minimum requirements for building a PWA, two of which we already briefly
covered:

• Manifest: A JSON file that provides meta information about the app. It has information
like the app’s icon, background color, name, and short name.

 45

• Service workers: Event-driven workers that run in the background. A service worker
acts as a proxy between the network and the application by intercepting network
requests, caching information in the background, and loading data for offline use.

• Icon: It provides an Add to Home Screen app icon that a user can use to install the
PWA on their device’s home screen.

• Served Over HTTPS: PWAs must be served over a secure network connection. With
services like Cloudflare and Lets Encrypt, it is quite easy to get an SSL certificate for any
site. By being secure, not only does a PWA follow best practices, but also helps
establish long-term trust with users and helps avoid middle-man attacks from unknown
sources.

PWA advantages

PWAs need to be safe and secure. PWAs should provide a familiar app experience for today’s
organizational and user demands. Safety is a hot and huge topic, particularly because users
and organizations alike are very sensitive to having their data compromised, lost, or stolen—
which, with the advent of GDPR, also means that everyone must comply or face huge fines.

PWAs are a great way to overcome safety and security concerns, as they are offered through
HTTPS, which provides major benefits for users, organizations, and developers alike.

Another advantage of PWAs is that they can be easily updated by developers, and these
updates can be deployed to users without requiring any app reinstall, as the app itself resides
on a web server and not the user’s device. These updates can be added directly by a remote
team of developers.

Users will notice new and improved features and will not have to go through the hassle of
approving the installation of patches or hot fixes in a traditional way. As new features come out,
they are automatically available.

Another great thing about PWAs is that they eliminate the fear of not having enough space for
the app. PWAs still require some space for offline data, resources, and content, but this is
relatively small compared to the space required by traditional native apps, which require a lot of
free space—not only for the data they use, but also for their binaries.

Because of these reasons, PWAs are arguably the next step in web application development,
interaction, and functionality, which makes the process of accessing the app convenient for
users.

This technology is quickly gaining more traction and adoption, becoming a powerful movement
and force in the world of software development.

Quick peek into the finished PWA

With all the theory behind what PWAs are, it’s now time to have a quick look at how the finished
application will look when running on Android. Notice how when running for the first time, the
app displays a message to the user to have the app added to the home screen.

www.dbooks.org

https://www.cloudflare.com/
https://letsencrypt.org/
https://www.dbooks.org/

 46

Figure 3-a: The Finished Flight Info PWA Running on an Android Device (Google Chrome)

Figure 3-b shows what the finished PWA looks like when running on Safari, using an iPhone, in
offline mode. It displays information from the app’s local cache, through a service worker.

 47

Figure 3-b: The Finished Flight Info PWA Running on an iPhone (Safari) in Offline Mode

Notice how the app has a similar look and feel on both platforms (Android and iOS), and how
certain UI features adjust automatically to the host system, such as the app’s title, which is
aligned to the left side of the screen on Android, and centered on iOS.

Driven by fast-paced innovation

PWAs are being driven by the fast-paced innovation happening at big companies such as
Google, and this is clearly highlighted throughout their web developer community and reflected
in their documentation.

The most recent trend in PWA development, at the time of writing of this book, is developing
and running PWAs on the desktop and on Chrome OS.

Microsoft is also betting huge on the future of PWAs and bringing them to the Windows desktop,
so it’s a growing trend. Even a whole section of the Windows Dev Center is dedicated to PWAs,
which is welcoming to see—and a sign that PWAs are here to stay.

www.dbooks.org

https://developers.google.com/web
https://developers.google.com/web/progressive-web-apps
https://en.wikipedia.org/wiki/Chrome_OS
https://developer.microsoft.com/en-us/windows/pwa
https://www.dbooks.org/

 48

PWAs are checked for high quality

PWAs don’t need to be deployed through Google Play or the Apple App Store. Application
stores not only serve as app supermarkets, but also ensure that apps go through rigorous
quality checks before they are published. This way, users know that the apps they install on
their devices are tested, safe, and can be trusted.

As PWAs are not available through application stores, how can they be checked for good
quality, ensuring that they not only live up to users’ expectations, but also to the standards that
the whole PWA movement has set forth?

Enter Lighthouse

The answer is Lighthouse, an open-source, automated tool that checks the quality of webpages
that intend to become a PWA. Lighthouse has many built-in audits for verifying performance,
accessibility, best-practices, SEO, and checking if a website meets the requirements needed to
be a fully functional PWA.

Lighthouse is also available as a Chrome extension that any developer can use to check if their
PWA is fully compliant, performing, and accessible.

Figure 3-c: The Google Lighthouse Chrome Extension

Checking if your app is compliant enough to be a PWA is as simple as clicking the Generate
report button. A PWA-compliant header report (specifically, the one for the finished PWA of this
book) looks as follows.

https://play.google.com/
https://www.apple.com/ios/app-store/
https://developers.google.com/web/tools/lighthouse
https://en.wikipedia.org/wiki/Search_engine_optimization
https://chrome.google.com/webstore/detail/lighthouse/blipmdconlkpinefehnmjammfjpmpbjk

 49

Figure 3-d: Lighthouse Report (Header) for the Finished Flight Info PWA

Notice how the header of the generated Lighthouse report displays the different categories
checked and assigns an overall score for each. Each section can be further inspected to
understand what details and requirements might be missing, and to see what can be further
optimized.

Figure 3-e: Details of a Lighthouse Report (PWA Section)

www.dbooks.org

https://www.dbooks.org/

 50

Summary

We now know what defines a PWA and what goals it should accomplish, not only from a
functional point of view, but also from a technical, safety, security, and user-engagement point
of view. The PWA checklist that specifies how exactly a fully compatible PWA should work is not
only a guideline, but a source of inspiration.

We are now in a position to continue and modify the application we have started by adding the
remaining functionality to make it a full-fledged PWA. That’s what the next chapter is all about.

https://developers.google.com/web/progressive-web-apps/checklist?utm_source=lighthouse&utm_medium=extension

 51

Chapter 4 Scaffolding the PWA

Quick intro

We’ve come a long way in a short time, and we are now ready to start scaffolding our PWA, as
well as registering the service worker and the rest of the settings that will allow the app to be
built as a PWA. That’s what this chapter is all about. Let’s explore the steps required to achieve
that.

Vue/PWA

To start enabling our application to become PWA-compliant, a fundamental step is installing the
@vue/pwa package. You can do this by invoking the following command from the command
line or the built-in terminal within VS Code.

Code Listing 4-a: Vue/PWA Package Install Command

vue add @vue/pwa

Once this package is installed, the necessary files and configuration settings will be available to
enable PWA features that the code will require, so the app can become a full-fledged PWA.

Some of the files installed after running the @vue/pwa package are a set of image icons for
different platforms, as you can see in Figure 4-a.

Figure 4-a: Icon Images Installed with the Vue/PWA Package

Another important change is the addition of the manifest.json file, located under the public
folder of the VS Code project. Let’s make some adjustments to it.

www.dbooks.org

https://www.dbooks.org/

 52

The manifest.json file

Open the manifest.json file, and let’s make some adjustments to the default settings. Let’s start
off by changing the short_name property to FlightInfo, which we can see as follows.

Figure 4-b: Changing the short_name Property (manifest.json)

Let’s also double-check that the start_url is set to ./index.html, which we can see as

follows.

Figure 4-c: The start_url Property (manifest.json)

Next, let’s adjust the background_color and theme_color properties to the following values,

shown in Figure 4-d.

 53

Figure 4-d: Changing the background_color and theme_color Properties (manifest.json)

Awesome—we now have the manifest.json file ready. Code Listing 4-b shows what it looks
like, with the changes highlighted in bold.

Code Listing 4-b: Modified / Final manifest.json File

{

 "name": "flight-info-pwa",

 "short_name": "FlightInfo",

 "icons": [

 {

 "src": "./img/icons/android-chrome-192x192.png",

 "sizes": "192x192",

 "type": "image/png"

 },

 {

 "src": "./img/icons/android-chrome-512x512.png",

 "sizes": "512x512",

 "type": "image/png"

 }

],

 "start_url": "./index.html",

 "scope": ".",

 "display": "standalone",

 "background_color": "#fff",

 "theme_color": "#3880ff"

}

www.dbooks.org

https://www.dbooks.org/

 54

Creating the service worker

One of the great things about the @vue/pwa package is that by using a configuration file called
vue.config.js, we can easily define several parameters, so that when we run or build the
application, it will automatically generate the app’s service worker—without us having to write
the code for it.

To do that, let’s define the content of vue.config.js. If this file was not created during the
installation of the @vue/pwa package, then in your project’s root folder, please manually create
it.

The vue.config.js file for our PWA must contain the following content.

Code Listing 4-c: The Content of the vue.config.js File

module.exports = {

 pwa: {

 appleMobileWebAppCapable: 'yes',

 appleMobileWebAppStatusBarStyle: 'blue',

 workboxPluginMode: 'GenerateSW',

 workboxOptions: {

 exclude: [

 /\.map$/,

 /manifest\.json$/

],

 navigateFallback: '/index.html',

 runtimeCaching: [

 {

 urlPattern: new RegExp('/offline'),

 handler: 'staleWhileRevalidate',

 },

 {

 urlPattern: new RegExp('/'),

 handler: 'staleWhileRevalidate',

 },

 {

 urlPattern: new RegExp('^https://cors-

 anywhere.herokuapp.com/https://us-central1-flight-

 json.cloudfunctions.net/app/api/'),

 handler: 'networkFirst',

 options: {

 networkTimeoutSeconds: 500,

 cacheName: 'flight-info-cache',

 cacheableResponse: {

 statuses: [0, 200, 404]

 }

 55

 }

 }

]

 }

 }

}

Let’s explore the most crucial settings within this configuration file.

Possibly the most important setting within the file is workboxPluginMode, which is set to

GenerateSW. This option literally means that the service worker (SW) will be automatically

generated during the process of building the application, which is done through the Workbox
webpack plugin.

Another value that can be used for the workboxPluginMode property is InjectManifest. The

GenerateSW value will create a service worker file for you and add it to the webpack asset

pipeline when the app is built.

On the other hand, using the InjectManifest value will create a list of URLs to precache and

add, but we’ll have to create the service worker code ourselves.

Given that this PWA has quite simple runtime configuration requirements, it’s better to use the
GenerateSW value for the workboxPluginMode property. More information about these

differences can be found on the official Workbox documentation site.

Next, the navigateFallback setting indicates that the PWA will default to the index.html page

if something goes wrong during runtime execution; this is the only HTML page that the
application will have.

The runtimeCaching array is also very important, especially the third and larger item of the

array that contains the definitions for the urlPattern that the app will be querying, which refers

to the API, but routed through a Cross-Origin Resource Sharing (CORS) proxy server hosted on
Heroku, to avoid running into same-origin request errors.

Basically, the API is invoked by routing it through the CORS proxy server as follows:

https://cors-anywhere.herokuapp.com/<< The API URL goes here>>

API URL: https://us-central1-flight-json.cloudfunctions.net/app/api/

If the app were to invoke the API URL directly, a same-origin request error would be returned—
this is because the PWA is hosted on a different URL than the API. The PWA runs on Firebase
Hosting, which has a different server address than the API, which runs as a Firebase function
on another server address.

If the PWA and the API have the same base URL, then there won’t be any need to use a proxy
server. The proxy server is used to avoid running into same-origin request errors, as both
services have different base URLs.

www.dbooks.org

https://developers.google.com/web/tools/workbox
https://webpack.js.org/
https://developers.google.com/web/tools/workbox/modules/workbox-webpack-plugin#configuration
https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS
https://cors-anywhere.herokuapp.com/
https://www.heroku.com/
https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS/Errors
https://cors-anywhere.herokuapp.com/
https://www.dbooks.org/

 56

The other reason using a CORS proxy server is useful is because during development and
testing, the PWA might be running on a local host address with a specific port number, and the
API might be running on the same local host, but on another port—which makes the base URL
of both different. To be able to invoke the API with different base URLs, and to avoid same-
origin request errors, the proxy server would have to be used.

Furthermore, although during development and testing the PWA will likely be executed from a
local host, the API might have been already deployed to Firebase functions, thus running in the
cloud. Therefore, the PWA would have to use the proxy server to invoke it and avoid same-
origin request errors.

In either case, using a CORS proxy server is good practice and prevents a lot of wasted time
troubleshooting connection errors during development, testing, and after the go-live.

The handler property with the value of networkFirst is used to indicate that the service

worker implements a network-first request strategy, which simply means that online users will
get the most up-to-date content by default, and that offline users will get a cached version of the
content if it has been previously downloaded and saved.

The information cached is then stored in a browser local database called flight-info-cache

by storing responses from the API that have HTTP(S) status codes corresponding to 0, 200,
and 404. More information about HTTP(S) response codes can be found here.

For offline compatibility, the stale-while-revalidate strategy is used—which means that any
cached version available will be used, and an updated version will be fetched next time. This is
implemented on the two other URL patterns by setting the value of the handler property to

staleWhileRevalidate.

Finally, the appleMobileWebAppCapable and appleMobileWebAppStatusBarStyle properties

are only specific to the WebKit web browser engine used by the Safari web browser on iOS.
The former indicates that the web application runs in full-screen mode, and the latter sets the
style of the bar for the app. More details about both settings can be found on the Apple
Developer documentation site.

Registering the service worker

Now that we know how we can use the vue.config.js file to generate the service worker using
the Workbox webpack plugin, let’s understand how we can register it when the PWA runs.
Creating it is no good if the service worker cannot be used.

To register the service worker, we need to use a file called registerServiceWorker.js, which
should have been created under the project’s src folder when we installed the @vue/pwa
package. If this file doesn’t exist, please create it using VS Code.

https://developers.google.com/web/fundamentals/instant-and-offline/offline-cookbook/#network-falling-back-to-cache
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status
https://developers.google.com/web/fundamentals/instant-and-offline/offline-cookbook/#stale-while-revalidate
https://webkit.org/
https://developer.apple.com/library/archive/documentation/AppleApplications/Reference/SafariHTMLRef/Articles/MetaTags.html

 57

Figure 4-e: The registerServiceWorker.js File (VS Code)

Code Listing 4-d shows the content of the registerServiceWorker.js file.

Code Listing 4-d: The Content of the registerServiceWorker.js File

import { register } from 'register-service-worker'

if ('serviceWorker' in navigator) {

 navigator.serviceWorker.

 register(`${process.env.BASE_URL}service-worker.js`)

}

if (process.env.NODE_ENV === 'production') {

 register(`${process.env.BASE_URL}service-worker.js`, {

 ready () {

 console.log(

 'App is being served from cache by a Service Worker.\n' +

 'For more details, visit https://goo.gl/AFskqB'

)

 },

 registered () {

 console.log('Service Worker has been registered.')

 },

www.dbooks.org

https://www.dbooks.org/

 58

 cached () {

 console.log('Content has been cached for offline use.')

 },

 updatefound () {

 console.log('New content is downloading.')

 },

 updated () {

 console.log('New content is available; please refresh.')

 },

 offline () {

 console.log('No internet connection found. App in offline mode.')

 },

 error (error) {

 console.error('Error during Service Worker registration:', error)

 }

 })

}

As we can see, the code is very simple. There are two if statements that are in charge of

executing the registration of the service worker when the app is in production mode, and if the

browser supports service workers—which is what 'serviceWorker' in navigator checks.

Then, there are specific events that get evoked on, during, and after the service worker
registration process. All that is done is to log messages to the console, to make sure every step
is executed correctly when the app is compiled and executed—as you can see in Figure 4-f.

Figure 4-f: Service Worker Registration Console Output (Chrome Developer Tools)

The generated service worker

Once the app has been built for production and distribution (which is done by running the npm
run build command), a dist folder will be created under the project root folder, which is what

will get deployed to Firebase Hosting.

Within the dist folder, there is a service-worker.js file that was automatically generated based
on the settings described in vue.config.js. This file should not be modified, as it gets recreated
every time that the app is rebuilt.

 59

Code Listing 4-e: The Generated service-worker.js File

/**

 * Welcome to your Workbox-powered service worker!

 *

 * You'll need to register this file in your web app and you should

 * disable HTTP caching for this file, too.

 * See https://goo.gl/nhQhGp

 *

 * The rest of the code is auto-generated. Please don't update this file

 * directly; instead, make changes to your Workbox build configuration

 * and re-run your build process.

 * See https://goo.gl/2aRDsh

 */

importScripts(

"https://storage.googleapis.com/workbox-cdn/releases/3.6.3/workbox-sw.js");

importScripts(

 "/precache-manifest.c4355da19e97306fb3d51dadf5baf4ff.js"

);

workbox.core.setCacheNameDetails({prefix: "flight-info-pwa"});

/**

 * The workboxSW.precacheAndRoute() method efficiently caches and responds

to

 * requests for URLs in the manifest.

 * See https://goo.gl/S9QRab

 */

self.__precacheManifest = [].concat(self.__precacheManifest || []);

workbox.precaching.suppressWarnings();

workbox.precaching.precacheAndRoute(self.__precacheManifest, {});

workbox.routing.registerNavigationRoute("/index.html");

workbox.routing.registerRoute(

 /\/offline/, workbox.strategies.staleWhileRevalidate(), 'GET');

workbox.routing.registerRoute(

 /\//, workbox.strategies.staleWhileRevalidate(), 'GET');

workbox.routing.registerRoute(

/^https:\/\/cors-anywhere.herokuapp.com\/https:\/\/us-central1-flight-

json.cloudfunctions.net\/app\/api\//,

workbox.strategies.networkFirst(

 { "cacheName":"flight-info-cache","networkTimeoutSeconds":500,

www.dbooks.org

https://www.dbooks.org/

 60

 plugins:

 [new workbox.cacheableResponse.Plugin(

 {"statuses":[0,200,404]})] }), 'GET'

);

As you can see, it’s just a code equivalent of the configuration settings described in
vue.config.js.

There are only two lines of code that stand out. One is the line that imports the Workbox library
from Google’s content delivery network:

importScripts("https://.../workbox-sw.js");

The other is the line that imports the precached application resources that was also
automatically generated during the build process:

importScripts(

 "/precache-manifest.c4355da19e97306fb3d51dadf5baf4ff.js"

);

If you open the precache-manifest file, you will notice that it is a very long file and contains
mostly references to CSS, JavaScript, and image files that the app will use. These are
downloaded and cached by the service worker when the app runs.

The JavaScript files referenced within the precache-manifest file are the app’s compiled code,
which is split into chunks and optimized for fast browser loading and performance. This is what
webpack does when the app is built using the npm run build command.

Here is what the precache-manifest file looks like.

https://en.wikipedia.org/wiki/Content_delivery_network

 61

Figure 4-g: The Generated precache-manifest File

Polyfills and browser compatibility

The @vua/pwa package is compatible with most modern browsers such as Chrome, Firefox,
and Safari. However, there are some known issues with Edge and Internet Explorer, which can
be seen as follows.

Figure 4-g: Known Issues with Edge (Using the @vue/pwa Package)

www.dbooks.org

https://github.com/GoogleChrome/lighthouse/issues/6342
https://www.dbooks.org/

 62

Therefore, it’s always good idea to modify the settings of the babel.config.js file (found under
the root folder of the VS Code project) by adding some extra polyfills, which provide extra
support for ES6 on older browsers.

You can add these polyfills by installing the @babel/polyfill package with the following
command.

Code Listing 4-f: Command to Install the @babel/polyfill Package

npm install --save @babel/polyfill

Once this package has been installed, it is automatically added to the package.json file found
under the project’s root folder. Code Listing 4-g shows the app’s package.json file.

Code Listing 4-g: The package.json File

{

 "name": "flight-info-pwa",

 "version": "0.1.0",

 "private": true,

 "scripts": {

 "serve": "vue-cli-service serve",

 "build": "vue-cli-service build",

 "lint": "vue-cli-service lint"

 },

 "dependencies": {

 "@babel/polyfill": "^7.6.0",

 "@ionic/vue": "0.0.4",

 "core-js": "^2.6.5",

 "i": "^0.3.6",

 "register-service-worker": "^1.6.2",

 "vue": "^2.6.10",

 "vue-router": "^3.0.3"

 },

 "devDependencies": {

 "@vue/cli-plugin-babel": "^3.11.0",

 "@vue/cli-plugin-eslint": "^3.11.0",

 "@vue/cli-plugin-pwa": "^3.11.0",

 "@vue/cli-service": "^3.11.0",

 "babel-eslint": "^10.0.1",

 "eslint": "^5.16.0",

 "eslint-plugin-vue": "^5.0.0",

 "ionicons": "^4.5.9-1",

 "vue-template-compiler": "^2.6.10"

 },

 "eslintConfig": {

https://en.wikipedia.org/wiki/Polyfill_(programming)
https://en.wikipedia.org/wiki/ECMAScript#ES2015

 63

 "root": true,

 "env": {

 "node": true

 },

 "extends": [

 "plugin:vue/essential",

 "eslint:recommended"

],

 "rules": {},

 "parserOptions": {

 "parser": "babel-eslint"

 }

 },

 "postcss": {

 "plugins": {

 "autoprefixer": {}

 }

 },

 "browserslist": [

 "> 1%",

 "last 2 versions"

]

}

If for some reason you have some of these packages missing, you can easily add them to your
project by running the following command from the project’s root folder. This will install all the
packages described within the package.json file shown in Code Listing 4-g.

Code Listing 4-h: Command to Install Missing Packages

npm install

Next, let’s update the babel.config.js file with the polyfill settings—it should look as follows.

Code Listing 4-i: Updated babel.config.js File with Polyfills

module.exports = {

 presets: [

 ['@vue/app', {

 polyfills: [

 'es6.promise',

 'es6.symbol'

]

 }]

www.dbooks.org

https://www.dbooks.org/

 64

]

}

These changes to the babel.config.js file might still not solve the known issues with Edge when
using the @vue/pwa package—these were still open with the core development team at the
time of writing of this book—however, it is always recommended to have enabled support for
older browsers.

Summary

With these settings changes in place, we are ready to update the logic of the app. We now have
the PWA infrastructure all set up, which needs to be completed with code that will allow the
application to have the desired functionality and the look and feel of a PWA. This is what we’ll
cover in the next chapter.

https://github.com/GoogleChrome/lighthouse/issues/6342

 65

Chapter 5 Building the PWA

Quick intro

We’ve now reached (in my opinion) the most fun part of the book—which is to add the
remaining logic that will make our application a true PWA. Behind us are all the tedious and
required configuration settings that helped us get to this stage. Now, let’s dive into the code.

Final main.js file

As its name implies, main.js is the app’s main code entry point, which gets injected into
index.html at build time by webpack. Let’s have a look at this file’s final code.

Code Listing 5-a: The Final main.js File

import Vue from 'vue'

import App from './App.vue'

import router from './router'

import Ionic from '@ionic/vue'

import '@ionic/core/css/ionic.bundle.css'

import './registerServiceWorker'

Vue.use(Ionic)

Vue.config.productionTip = true

new Vue({

 router,

 render: h => h(App)

}).$mount('#app')

It is essentially the same main.js that we previously wrote, except for one additional, but very
important, line that we were not able to previously add, which is:

import './registerServiceWorker'

This line references the registerServiceWorker.js file, which is responsible for registering the
service worker when the application runs.

It’s a small, but significant change, as it’s a requirement for any PWA to register the service
worker when it runs.

www.dbooks.org

https://www.dbooks.org/

 66

Final App.vue file

The App.vue file is the app’s main HTML markup file, and the only thing it does is contain a
reference to the ion-vue-router component—which we can see as follows.

Code Listing 5-b: The App.vue File

<template>

 <div id="app">

 <ion-app>

 <ion-vue-router/>

 </ion-app>

 </div>

</template>

Given the App.vue file references the ion-vue-router component, the next thing we need to

do is look at the router.js file.

Final router.js file

As its name implies, the router.js file handles the application’s routing, which in the case of this
PWA, is limited to Home.vue. Let’s have a look at the final code for router.js.

Code Listing 5-c: The router.js File

import Vue from 'vue'

import { IonicVueRouter } from '@ionic/vue'

import Home from './views/Home.vue'

Vue.use(IonicVueRouter)

export default new IonicVueRouter({

 mode: 'history',

 base: process.env.BASE_URL,

 routes: [

 {

 path: '/',

 name: 'home',

 component: Home

 }

]

})

 67

No changes here—all this file does is reference Home.vue, which is where the most interesting
code of the application resides.

Final Home.vue file

The Home.vue functional component is not only responsible for rendering most of the app’s UI,
but also calling the API and parsing and displaying the results. Essentially, it is the heart and
soul of our PWA. Let’s have a look at the code.

Code Listing 5-d: The Home.vue File

<template>

 <div class="ion-page">

 <ion-header translucent>

 <ion-toolbar>

 <ion-title>

 Flight Info

 </ion-title>

 </ion-toolbar>

 </ion-header>

 <ion-content fullscreen class="ion-text-center ion-padding">

 <Search v-on:flight="flightDetails"/>

 <ion-spinner

 v-if="!info && fn != null"

 name="dots" color="tertiary">

 </ion-spinner>

 <Info v-bind:fn="fn" v-bind:info="info" />

 <Clear v-bind:info="info" v-on:clear="clear" />

 </ion-content>

 </div>

</template>

<script>

import Search from '../components/Search'

import Info from '../components/Info'

import Clear from '../components/Clear'

export default {

 name: 'home',

 components: {

 Search,

 Info,

 Clear

 },

www.dbooks.org

https://www.dbooks.org/

 68

 data() {

 return {

 info: null,

 fn: null

 }

 },

 methods: {

 getJson(flight) {

 const proxy = 'https://cors-anywhere.herokuapp.com/'

 const site =

 'https://us-central1-flight-json.cloudfunctions.net/app/api/'

 fetch(`${proxy}${site}${flight}`)

 .then(r => r.json())

 .then(d => {

 this.info = d

 })

 .catch(err => console.log('HTTP-Error: ' + err))

 },

 async flightDetails(flight) {

 this.fn = flight

 await this.getJson(flight)

 if (this.info != null && this.info.length == 0) {

 this.info = null

 return this.$ionic.alertController.create({

 header: 'Flight',

 message: 'Flight ' + this.fn + ' not found.',

 buttons: ['OK']

 }).then(r => r.present())

 }

 },

 clear() {

 this.info = null

 this.fn = null

 }

 }

}

</script>

To understand what is going on, let’s first focus on the markup and then the code. So, let’s
revise each part separately and divided into smaller chunks—this way it will be easier to
understand.

 69

Code Listing 5-e: The Home.vue File (Markup Only)

<template>

 <div class="ion-page">

 <ion-header translucent>

 <ion-toolbar>

 <ion-title>

 Flight Info

 </ion-title>

 </ion-toolbar>

 </ion-header>

 <ion-content fullscreen class="ion-text-center ion-padding">

 <Search v-on:flight="flightDetails"/>

 <ion-spinner

 v-if="!info && fn != null"

 name="dots" color="tertiary">

 </ion-spinner>

 <Info v-bind:fn="fn" v-bind:info="info" />

 <Clear v-bind:info="info" v-on:clear="clear" />

 </ion-content>

 </div>

</template>

The markup is made up of two main sections—a header (ion-header) and content. The header

is made of an ion-title component embedded within an ion-toolbar component. It simply

displays the application title.

The content part is more interesting—this is wrapped within an ion-content component. Within

it, there is a Search, an ion-spinner (which by default is not visible), an Info, and a Clear

component.

To get a better sense of how this markup relates to the finished UI, let’s have a look at the
following diagram.

www.dbooks.org

https://www.dbooks.org/

 70

Figure 5-a: Relationship Between the Home.vue HTML and the App’s UI

When the Search component emits the flight event, the flightDetails method is executed.

This is what will make the call to the API and retrieve the flight details that are passed to the
Info component using the info object (which contains the flight details retrieved from the API).

The flight number (fn) is also passed to the Info component.

The ion-spinner component is only displayed when the flight number (fn) has been entered

by the user, and the info object doesn’t contain any data—which means that the app still needs

to retrieve the flight data from the API. This what the ion-spinner object looks like.

Figure 5-b: The ion-spinner Component (During the Flight Details Search)

The Clear component, which is essentially a button that is shown below the search results, is

only displayed when the info object contains data and is rendered as follows. The Clear

component emits a clear event that triggers the execution of the clear method, which clears

the search results retrieved from the API from the screen.

Figure 5-c: The Clear Component

Now that we understand how the UI works, let’s explore the code of Home.vue to understand
how the data is retrieved from the API and passed to the Search component.

 71

Code Listing 5-f: The Home.vue File (Code Only)

<script>

import Search from '../components/Search'

import Info from '../components/Info'

import Clear from '../components/Clear'

export default {

 name: 'home',

 components: {

 Search,

 Info,

 Clear

 },

 data() {

 return {

 info: null,

 fn: null

 }

 },

 methods: {

 getJson(flight) {

 const proxy = 'https://cors-anywhere.herokuapp.com/'

 const site =

 'https://us-central1-flight-json.cloudfunctions.net/app/api/'

 fetch(`${proxy}${site}${flight}`)

 .then(r => r.json())

 .then(d => {

 this.info = d

 })

 .catch(err => console.log('HTTP-Error: ' + err))

 },

 async flightDetails(flight) {

 this.fn = flight

 await this.getJson(flight)

 if (this.info != null && this.info.length == 0) {

 this.info = null

 return this.$ionic.alertController.create({

 header: 'Flight',

 message: 'Flight ' + this.fn + ' not found.',

 buttons: ['OK']

 }).then(r => r.present())

 }

www.dbooks.org

https://www.dbooks.org/

 72

 },

 clear() {

 this.info = null

 this.fn = null

 }

 }

}

</script>

Let’s revise this code from top to bottom to understand what each part does. The first three lines
import the Search, Info, and Clear components so they can be referenced and used both in

the HTML markup and within the code.

import Search from '../components/Search'

import Info from '../components/Info'

import Clear from '../components/Clear'

Then, these components are referenced within the components object—this way, they become

available within the code.

Next, we have the data function, which returns an object that contains the info and fn

properties. The info property will be used to store the flight data retrieved from the API, and the

fn property is used to keep the flight number for which the information is retrieved.

Within the methods object, there are three methods defined that make the core logic of the

application. The main method is flightDetails, which is asynchronous. The flightDetails

method calls the getJson method, which is the one that executes the call to the API.

The Clear method is invoked when the Clear button is clicked—all it does is initialize the values

of the info and fn properties, so a new search can take place.

The implementation of the flightDetails method is very straightforward. As you can see, it

makes a call to the getJson method by passing the flight and awaits its response—the result

that the API returns.

If no data is returned by the API (when the this.info != null && this.info.length == 0

condition evaluates to true), then a dialog message is displayed, which is done by calling the
following code.

this.$ionic.alertController.create({ header: 'Flight',

message: 'Flight ' + this.fn + ' not found.',

buttons: ['OK']}).then(r => r.present())

The getJson method is where the magic happens. By using the CORS proxy server, a call to

the API is made through the browser’s Fetch API, which in the code is done by calling fetch.

https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API

 73

When the Fetch API returns a response, the code contained within the first promise (first then

statement) is executed (r => r.json()), which returns the API’s response as a JSON object.

When that occurs, the second promise is executed (the second then statement). That JSON

response (represented by the variable d, which stands for data) is assigned to the info

property.

If there’s an error during the execution of any of the code contained within fetch, then an

exception is raised and caught by the following code: err => console.log('HTTP-
Error: ' + err), which simply outputs the error to the console.

That’s it—this is the main logic of our application. As you have seen, it wasn’t difficult at all. Now
let’s have a look at the Info and Clear components.

Final Search.vue file

The Search component is another fundamental part of the application, and it is quite

straightforward, as well. Let’s have a look.

Code Listing 5-g: The Search.vue File

<template>

 <ion-grid>

 <form @submit="onSubmit">

 <ion-col>

 <ion-item>

 <ion-label>Flight number: </ion-label>

 <ion-input :value="flight"

 @input="flight = $event.target.value"

 placeholder="such as: BA197"

 name="flight"></ion-input>

 </ion-item>

 </ion-col>

 <ion-col>

 <ion-button id="btn" type="submit"

 color="primary" expand="block">

 Get Details

 </ion-button>

 </ion-col>

 </form>

 </ion-grid>

</template>

<script>

export default {

www.dbooks.org

https://www.dbooks.org/

 74

 name: 'Search',

 data() {

 return {

 flight: ''

 }

 },

 methods: {

 onSubmit(e) {

 e.preventDefault()

 if (this.flight != '') {

 this.$emit('flight', this.flight)

 this.flight = ''

 }

 else {

 this.displayAlert()

 this.flight = ''

 }

 },

 displayAlert() {

 return this.$ionic.alertController.create(

 {

 header: 'Flight',

 message: 'Enter a flight number.',

 buttons: ['OK']

 }

).then(r => r.present())

 }

 }

}

</script>

Just like we did with Home.vue, let’s split the logic into two parts to understand it better: the
HTML markup that defines the UI and the code. Let’s check out the markup first.

Code Listing 5-h: The Search.vue File (Markup Only)

<template>

 <ion-grid>

 <form @submit="onSubmit">

 <ion-col>

 <ion-item>

 <ion-label>Flight number: </ion-label>

 <ion-input :value="flight"

 @input="flight = $event.target.value"

 75

 placeholder="such as: BA197"

 name="flight"></ion-input>

 </ion-item>

 </ion-col>

 <ion-col>

 <ion-button id="btn" type="submit"

 color="primary" expand="block">

 Get Details

 </ion-button>

 </ion-col>

 </form>

 </ion-grid>

</template>

The following diagram illustrates how this markup relates to the UI elements that make the
Search component.

Figure 5-d: Relationship Between the Search.vue HTML and the Search Component UI

The core of the Search UI is composed by a form, which is embedded within an ion-grid

component. When it is submitted, this form (which occurs when the Get details button is

clicked) triggers the execution of the submit event, which invokes the onSubmit method.

The ion-input component, which is contained within an ion-item and ion-col component,

captures the flight number entered by the user, and this value is assigned to the flight

variable.

www.dbooks.org

https://www.dbooks.org/

 76

Finally, the ion-button component, contained within an ion-col, can trigger the submit event

of the parent form, because its type is set to submit. Let’s have a look at the code.

Code Listing 5-i: The Search.vue File (Code Only)

<script>

export default {

 name: 'Search',

 data() {

 return {

 flight: ''

 }

 },

 methods: {

 onSubmit(e) {

 e.preventDefault()

 if (this.flight != '') {

 this.$emit('flight', this.flight)

 this.flight = ''

 }

 else {

 this.displayAlert()

 this.flight = ''

 }

 },

 displayAlert() {

 return this.$ionic.alertController.create(

 {

 header: 'Flight',

 message: 'Enter a flight number.',

 buttons: ['OK']

 }

).then(r => r.present())

 }

 }

}

</script>

The data function returns an object that has a single property called flight, which represents

the flight number.

Within the methods object, we have the onSubmit method, which emits the flight event that is

intercepted within Home.vue to make the call to the API when the flight number has been
entered by the user. If not, then a message dialog is displayed via the displayAlert method.

 77

Final Info.vue file

The Info component is responsible for displaying the flight details retrieved through the API.

Following is the full code of this component.

Code Listing 5-j: The Info.vue File

<template>

 <div>

 <ion-card color="success" padding="true" v-if="info != null">

 <table>

 <thead>

 <tr>

 <th>Date</th>

 <th>Flight</th>

 <th>Origin</th>

 <th>Destination</th>

 <th>Est. Depart.</th>

 <th>Departed</th>

 <th>Est. Arrival</th>

 <th>Status</th>

 <th>Aircraft</th>

 </tr>

 </thead>

 <tbody>

 <tr v-for="(itm, idx) in info.data.flights"

 v-bind:key="itm.date + '-' + itm.flight + '-' + idx">

 <td>{{itm.date}}</td>

 <td>{{itm.flight}}</td>

 <td>{{itm.departure}}</td>

 <td>{{itm.arrival}}</td>

 <td>{{itm.std}}</td>

 <td>{{itm.atd}}</td>

 <td>{{itm.sta}}</td>

 <td>{{itm.status}}</td>

 <td>{{itm.aircraft}}</td>

 <td></td>

 </tr>

 </tbody>

 </table>

 </ion-card>

 </div>

</template>

<script>

www.dbooks.org

https://www.dbooks.org/

 78

export default {

 name: 'Info',

 props: ['info', 'fn']

}

</script>

<style scoped>

 /*

 Generic styling, for desktops/laptops

 */

 table {

 width: 100%;

 border-collapse: collapse;

 text-align: center;

 }

 th {

 color: white;

 font-weight: bold;

 text-align: center;

 }

 td, th {

 padding: 6px;

 text-align: center;

 }

 /*

 Max width before this PARTICULAR table gets nasty.

 This query will take effect for any screen smaller than 760px

 and also iPads specifically.

 */

 @media

 only screen and (max-width: 760px),

 (min-device-width: 768px) and (max-device-width: 1024px) {

 /* Force table to not be like tables anymore */

 table, thead, tbody, th, td, tr {

 display: block;

 text-align: left;

 }

 /* Hide table headers (but not display: none; for accessibility) */

 thead tr {

 position: absolute;

 top: -9999px;

 79

 left: -9999px;

 text-align: left;

 }

 tr {

 border: 1px solid #fff;

 margin-bottom: 1%;

 margin-top: 1%;

 padding-top: 2%;

 padding-bottom: 2%;

 text-align: left;

 }

 td {

 /* Behave like a "row" */

 border: none;

 border-bottom: 0px solid #fff;

 position: relative;

 /* padding-left: 50%; */

 text-align: left;

 }

 td:before {

 /* Now like a table header */

 position: relative;

 /* Top/left values mimic padding */

 top: 0px;

 left: 6px;

 /* width: 45%; */

 padding-right: 10px;

 white-space: nowrap;

 font-weight: bold;

 text-align: left;

 }

 /*

 Label the data

 */

 td:nth-of-type(1):before { content: "Date:"; }

 td:nth-of-type(2):before { content: "Flight:"; }

 td:nth-of-type(3):before { content: "Origin:"; }

 td:nth-of-type(4):before { content: "Destination:"; }

 td:nth-of-type(5):before { content: "Est. Depart.:"; }

 td:nth-of-type(6):before { content: "Departed:"; }

www.dbooks.org

https://www.dbooks.org/

 80

 td:nth-of-type(7):before { content: "Est. Arrival:"; }

 td:nth-of-type(8):before { content: "Status:"; }

 td:nth-of-type(9):before { content: "Aircraft:"; }

 }

 /* Smartphones (portrait and landscape) ----------- */

 @media only screen

 and (min-device-width : 320px)

 and (max-device-width : 480px) {

 body {

 padding: 0;

 margin: 0;

 width: 320px; }

 }

 /* iPads (portrait and landscape) ----------- */

 @media only screen and (min-device-width: 768px) and

 (max-device-width: 1024px) {

 body {

 width: 495px;

 }

 }

</style>

As you have seen, most of the file content is HTML markup and CSS with very little code,
except for the definition of the info and fn properties, which contain the flight details and flight

number, respectively.

Let’s now explore how the data is displayed, which can be better understood with the following
diagram.

 81

Figure 5-e: Relationship Between the Info.vue HTML and the Info Component UI

The table that displays the flight data retrieved from the API through the info property is

contained within an ion-card component. Let’s explore the HTML markup in more detail.

Code Listing 5-k: The Info.vue File (Markup Only)

<template>

 <div>

 <ion-card color="success" padding="true" v-if="info != null">

 <table>

 <thead>

 <tr>

 <th>Date</th>

 <th>Flight</th>

 <th>Origin</th>

 <th>Destination</th>

 <th>Est. Depart.</th>

 <th>Departed</th>

 <th>Est. Arrival</th>

 <th>Status</th>

 <th>Aircraft</th>

 </tr>

 </thead>

 <tbody>

 <tr v-for="(itm, idx) in info.data.flights"

www.dbooks.org

https://www.dbooks.org/

 82

 v-bind:key="itm.date + '-' + itm.flight + '-' + idx">

 <td>{{itm.date}}</td>

 <td>{{itm.flight}}</td>

 <td>{{itm.departure}}</td>

 <td>{{itm.arrival}}</td>

 <td>{{itm.std}}</td>

 <td>{{itm.atd}}</td>

 <td>{{itm.sta}}</td>

 <td>{{itm.status}}</td>

 <td>{{itm.aircraft}}</td>

 <td></td>

 </tr>

 </tbody>

 </table>

 </ion-card>

 </div>

</template>

We can see that the first part of the table (thead) defines the table’s header, which essentially is

the name of the fields to display.

Then within tbody, we loop through each itm (which corresponds to a data row) for all the flight

details contained within info.data.flights, which represents the object structure of the API’s

JSON response.

Notice how for every data row (itm), we are also getting an index (idx), which we combine with

itm.date and itm.flight to create a unique key for every row within the table. Each field

value is then displayed, such as {{itm.departure}}.

The CSS styling is designed to work and be totally responsive in both desktop and mobile
modes. Code Listing 5-l shows the CSS classes and properties that apply for desktop mode.
I’ve added some comments to the code that make it easier to understand. Let’s have a look.

Code Listing 5-l: The Info.vue File (Desktop Mode CSS Only)

/*

Generic styling, for desktops/laptops

*/

table {

 width: 100%;

 border-collapse: collapse;

 text-align: center;

}

th {

 color: white;

 83

 font-weight: bold;

 text-align: center;

}

td, th {

 padding: 6px;

 text-align: center;

}

This styling is quite simple, but the idea is to align the table content centered, and the table can
adjust to various desktop resolutions. We can see an example of a desktop resolution in Figure
5-f.

Figure 5-f: App with Desktop Display Mode

Notice how the table’s content can adjust responsively to the screen’s resolution, without any
issues.

The nondesktop CSS is slightly more complex, so that the table can be displayed for any mobile
device resolution.

Code Listing 5-m: The Info.vue File (Mobile Mode CSS Only)

/*

Max width before this PARTICULAR table gets nasty.

This query will take effect for any screen smaller than 760px

www.dbooks.org

https://www.dbooks.org/

 84

and also iPads specifically.

*/

@media

 only screen and (max-width: 760px),

 (min-device-width: 768px) and (max-device-width: 1024px) {

 /* Force table to not be like tables anymore */

 table, thead, tbody, th, td, tr {

 display: block;

 text-align: left;

 }

 /* Hide table headers (but not display: none; for accessibility) */

 thead tr {

 position: absolute;

 top: -9999px;

 left: -9999px;

 text-align: left;

 }

 tr {

 border: 1px solid #fff;

 margin-bottom: 1%;

 margin-top: 1%;

 padding-top: 2%;

 padding-bottom: 2%;

 text-align: left;

 }

 td {

 /* Behave like a "row" */

 border: none;

 border-bottom: 0px solid #fff;

 position: relative;

 /* padding-left: 50%; */

 text-align: left;

 }

 td:before {

 /* Now like a table header */

 position: relative;

 /* Top/left values mimic padding */

 top: 0px;

 left: 6px;

 85

 /* width: 45%; */

 padding-right: 10px;

 white-space: nowrap;

 font-weight: bold;

 text-align: left;

 }

 /*

 Label the data

 */

 td:nth-of-type(1):before { content: "Date:"; }

 td:nth-of-type(2):before { content: "Flight:"; }

 td:nth-of-type(3):before { content: "Origin:"; }

 td:nth-of-type(4):before { content: "Destination:"; }

 td:nth-of-type(5):before { content: "Est. Depart.:"; }

 td:nth-of-type(6):before { content: "Departed:"; }

 td:nth-of-type(7):before { content: "Est. Arrival:"; }

 td:nth-of-type(8):before { content: "Status:"; }

 td:nth-of-type(9):before { content: "Aircraft:"; }

}

/* Smartphones (portrait and landscape) ----------- */

@media only screen

 and (min-device-width : 320px)

 and (max-device-width : 480px) {

 body {

 padding: 0;

 margin: 0;

 width: 320px; }

}

/* iPads (portrait and landscape) ----------- */

@media only screen and (min-device-width: 768px) and

 (max-device-width: 1024px) {

 body {

 width: 495px;

 }

}

Figure 5-g shows an example of how the app displays the data using a mobile responsive
resolution. Notice how the table data changes from a tabular to a columnar layout, where each
record becomes a card.

www.dbooks.org

https://www.dbooks.org/

 86

Figure 5-g: App with Mobile Mode Display

Let’s see how each card corresponds to a table row when we switch from one device resolution
to another.

Figure 5-h: Match Between the Data in Both Views (Mobile and Desktop)

 87

This CSS styling gives the app an edge—it can display the flight data in any resolution, on any
device. The styling is totally responsive and flexible.

Final Clear.vue file

We’re now on the last component of our application: Clear.vue, which simply contains a button
that removes the flight data displayed. Let’s have a quick look at it.

Code Listing 5-n: The Clear.vue File

<template>

 <ion-grid>

 <ion-col>

 <ion-button

 color="light"

 expand="block"

 v-if="info != null"

 @click="$emit('clear')"

 >Clear</ion-button>

 </ion-col>

 </ion-grid>

</template>

<script>

export default {

 name: 'Clear',

 props: ['info']

}

</script>

The code is very simple. The ion-button component is embedded within an ion-col and

ion-grid component, so that the button aligns perfectly with the Search and info

components.

The button is only displayed when the info property that contains the flight data is not empty

(null). This button emits a clear event when it is clicked—this event is intercepted within

Home.vue, and the data is cleared there.

Summary

That’s it—our PWA is ready from a code perspective, and we can run it locally by running the
npm run serve command. However, we still have one final step remaining before we can

deploy it to Firebase: get the Firebase tools installed. This is what we’ll do in the next chapter.

www.dbooks.org

https://www.dbooks.org/

 88

Chapter 6 Deploying the PWA

Quick intro

We’re on the last part of our journey—now, our PWA needs a place to live. The platform I’ve
chosen is Firebase, but you may choose and experiment with any other, such as Azure, AWS,
or Heroku. I highly encourage you to do that.

Let’s give Firebase a whirl—we’ll install the tools required to perform the deployment and deploy
our PWA to the cloud with Firebase Hosting.

Setting Up Firebase Hosting

Before you can install Firebase, you need to sign up for it. This is easy to do, and all you need is
your Google or Gmail account. If you are already signed in with either, the process is a breeze.

Once signed up, you can get set up with Firebase Hosting in three easy steps, as shown in the
following figures.

Figure 6-a: Setting Up Firebase (Step 1)

https://firebase.google.com/
https://azure.microsoft.com/
https://aws.amazon.com/
https://www.heroku.com/

 89

The setup steps are self-explanatory. First, we need to install Firebase Tools globally on our
machine. We can do this by running the following command.

Code Listing 6-a: Command to Install Firebase Tools

npm install -g firebase-tools

Next, we need to sign in and initialize Firebase, which we can do as follows.

Figure 6-b: Setting Up Firebase (Step 2)

When you execute the firebase login command, you’ll be prompted to sign in, which we can

see as follows.

www.dbooks.org

https://www.dbooks.org/

 90

Figure 6-c: Logging to Firebase—Command Line (Step 2)

Once signed in, we can run the firebase init command, which will guide us to initialize our

project with Firebase.

Figure 6-d: Initializing the Project with Firebase—Command Line (Step 3)

 91

We need to follow the steps indicated and answer each of the questions that the initialization
process asks.

Make sure that you choose the Hosting option from the following list when prompted. Use the
arrow key to go to the option, and then use the Spacebar key to select this option.

Figure 6-e: Selecting the Firebase Hosting Option—Command Line (Step 3)

After selecting the Hosting option, you will be asked to either create or use an existing project. I
chose to use an existing project, but in your case (unless you have already created the project
in the Firebase web console), choose Create a new project.

Figure 6-f: Creating a New Project—Command Line (Step 3)

Finally, when asked which directory to use as public, press Enter to finish the initialization
process.

Figure 6-g: Setting the Public Folder—Command Line (Step 3)

After doing this, the project will be initialized, as we can see in the following.

www.dbooks.org

https://www.dbooks.org/

 92

Figure 6-h: Firebase Project Initialization Finished—Command Line (Step 3)

Firebase setting files

Once Firebase has been installed and initialized, the index.html file within the project’s root
folder will be updated—here’s how mine looks after these steps.

Code Listing 6-b: The index.html (root folder) After Installing Firebase

<!DOCTYPE html>

<html>

 <head>

 <meta charset="utf-8">

 <meta name="viewport" content="width=device-width, initial-scale=1">

 <title>Welcome to Firebase Hosting</title>

 <!-- update the version number as needed -->

 <script defer src="/__/firebase/7.1.0/firebase-app.js"></script>

 <!-- include only the Firebase features as you need -->

 <script defer src="/__/firebase/7.1.0/firebase-auth.js"></script>

 <script defer src="/__/firebase/7.1.0/firebase-database.js"></script>

 <script defer src="/__/firebase/7.1.0/firebase-messaging.js"></script>

 <script defer src="/__/firebase/7.1.0/firebase-storage.js"></script>

 <!-- initialize the SDK after all desired features are loaded -->

 <script defer src="/__/firebase/init.js"></script>

 <style media="screen">

 body { background: #ECEFF1; color: rgba(0,0,0,0.87);

 font-family: Roboto, Helvetica, Arial, sans-serif;

 margin: 0; padding: 0; }

 #message { background: white; max-

 width: 360px; margin: 100px auto 16px;

 padding: 32px 24px; border-radius: 3px; }

 #message h2 { color: #ffa100; font-weight: bold; font-

 size: 16px; margin: 0 0 8px; }

 93

 #message h1 { font-size: 22px; font-

 weight: 300; color: rgba(0,0,0,0.6); margin: 0 0 16px;}

 #message p { line-height: 140%; margin: 16px 0 24px; font-

 size: 14px; }

 #message a { display: block; text-

 align: center; background: #039be5; text-transform: uppercase; text-

 decoration: none; color: white; padding: 16px; border-radius: 4px; }

 #message, #message a {

 box-shadow: 0 1px 3px rgba(0,0,0,0.12), 0 1px 2px rgba(0,0,0,0.24); }

 #load { color: rgba(0,0,0,0.4);

 text-align: center; font-size: 13px; }

 @media (max-width: 600px) {

 body, #message { margin-top: 0; background: white;

 box-shadow: none; }

 body { border-top: 16px solid #ffa100; }

 }

 </style>

 </head>

 <body>

 <div id="message">

 <h2>Welcome</h2>

 <h1>Firebase Hosting Setup Complete</h1>

 <p>You've successfully setup Firebase Hosting.</p>

 <a target="_blank"

 href="https://firebase.google.com/docs/hosting/">

 Open Hosting Documentation

 </div>

 <p id="load">Firebase SDK Loading…</p>

 <script>

 document.addEventListener('DOMContentLoaded', function() {

// // 🔥🔥🔥🔥🔥🔥🔥🔥🔥🔥🔥🔥🔥🔥🔥🔥🔥🔥🔥🔥🔥🔥🔥🔥🔥🔥🔥🔥🔥🔥🔥

// // The Firebase SDK is initialized and available here!

//

// firebase.auth().onAuthStateChanged(user => { });

// firebase.database().ref('/path/to/ref').on('value', snapshot => { });

// firebase.messaging().requestPermission().then(() => { });

// firebase.storage().ref('/path/to/ref').getDownloadURL().then(() => { });

//

// // 🔥🔥🔥🔥🔥🔥🔥🔥🔥🔥🔥🔥🔥🔥🔥🔥🔥🔥🔥🔥🔥🔥🔥🔥🔥🔥🔥🔥🔥🔥🔥

 try {

 let app = firebase.app();

 let features =

www.dbooks.org

https://www.dbooks.org/

 94

 ['auth', 'database', 'messaging', 'storage'].

 filter(feature => typeof app[feature] === 'function');

 document.getElementById('load').innerHTML =

 `Firebase SDK loaded with ${features.join(', ')}`;

 } catch (e) {

 console.error(e);

 document.getElementById('load').innerHTML =

 'Error loading the Firebase SDK, check the console.';

 }

 });

 </script>

 </body>

</html>

You will notice that some additional files to the project have been added, such as .firebaserc (a
list of project aliases) and firebase.json.

Let’s make a small modification to the firebase.json file so that when we deploy the app, we do
it with the files contained within the dist folder. These are the files that the webpack build
process will create.

Figure 6-i: Modifying the Public Parameter—firebase.json

 95

Set the public parameter within the firebase.json file to ./dist—this means that when we build
and deploy the application, the files that are deployed to the server will be the ones contained
within the dist folder.

Building and deploying

The final part of the process is to build the application and deploy it to Firebase Hosting. We can
do this by running the following commands, in this order.

Code Listing 6-c: Building the App

npm run build

This will create the production-ready code for the application within the dist folder. We can then
deploy the app by executing the following.

Code Listing 6-d: Deploying the App

firebase deploy

Once the command has executed, you should see, within the VS Code built-in terminal or
command prompt, the URL where the app was deployed to. In my case, this is: https://flightinfo-
cf715.firebaseapp.com/.

Figure 6-j: Command Line Output Post App Deployment

Firebase also provides an alternative URL for your app, which in my case is: https://flightinfo-
cf715.web.app/.

The subdomain is the same for both URLs (in my case, the name of the app’s subdomain is:
flightinfo-cf715), and the domain is either firebaseapp.com or web.app; both will resolve to
the same location where the PWA is hosted.

Awesome—we now have the application hosted on Firebase. Now, the moment of truth has
arrived.

www.dbooks.org

https://flightinfo-cf715.firebaseapp.com/
https://flightinfo-cf715.firebaseapp.com/
https://flightinfo-cf715.web.app/
https://flightinfo-cf715.web.app/
https://www.dbooks.org/

 96

Testing with Lighthouse

If you installed the Lighthouse Chrome extension, open your Chrome browser, navigate to the
app’s public URL, and click Generate report, as shown in Figure 6-k.

Figure 6-k: Lighthouse—Generate report Option

Lighthouse will do an exhaustive auditing of your app and determine how well-performing and
accessible it is, as well as whether it follows best practices, is SEO-optimized, and is eligible to
be a PWA. My initial results were as follows.

Figure 6-l: Initial Lighthouse Results

 97

Performance improvement

It seems that the app’s performance can be improved. Let’s inspect this metric in detail to
understand how we can improve it.

Figure 6-m: Initial Lighthouse Results (Performance Details)

We can see that the issues for the performance metric are all related to static content that is not
served through an efficient server cache policy. We can easily resolve this by making a small
change to the firebase.json file, as follows.

www.dbooks.org

https://www.dbooks.org/

 98

Figure 6-n: Updates to the firebase.json File—Improved Server Caching Policy

As a result of adding the settings highlighted above, any static resources will be cached the first
time the app runs—and these will only be refreshed when one or more static files change, or
after they have been cached for longer than the value of the max-age parameter.

Code Listing 6-e shows the full content of the firebase.json settings file after these
modifications.

Code Listing 6-e: Updated firebase.json File

{

 "hosting": {

 "public": "./dist",

 "ignore": [

 "firebase.json",

 "**/.*",

 "**/node_modules/**"

],

 "rewrites": [

 {

 "source": "**",

 "destination": "/index.html"

 }

],

 "headers": [

 {

 "source" : "**/*.@(jpg|jpeg|gif|png|css|js)",

 99

 "headers" : [{

 "key" : "Cache-Control",

 "value" : "max-age=31557600"

 }]

 }

]

 }

}

If we run the Lighthouse report again, we should see a significant improvement. Let’s have a
look.

Figure 6-o: Improved Lighthouse Report Results

How cool is that? By making a simple change to the firebase.json settings file, we’ve drastically
improved the app’s performance. We now have a PWA!

Redeploying the app

If we execute the npm run build command, followed by firebase deploy, and browse to the

app’s public URL, we can start to use our PWA.

www.dbooks.org

https://www.dbooks.org/

 100

Figure 6-p: The PWA on Android

Go ahead and enter some of those flight numbers that exist within the Cloud Firestore database
that the API uses, such as: ibe2601, ar1140, ba197, bel245, glo7730, hc404, hv6148, hv6150,
kqa564, sas4424, ux193, vy1374, and vy1375.

If you enter some of those flight numbers while you are connected to the internet, the app will
download and cache those flight details. Then, set your device to airplane mode and try again
by entering a flight number you had previously entered. The app should display the flight details,
but this time from the cache.

Full project source code

You can download the full source code for the PWA from this location. To optimize file and
download size, this source does not contain the node_modules folder; you will need to run the
npm install command from the project’s root folder to install all the dependencies required to

be able to run, build, and deploy the project.

Final thoughts

We now have a cool and working PWA from just a few lines of code—if you really think about it,
the code required to build this application was not much.

This was possible in part because we combined different frameworks and libraries, such as
Ionic with Vue, and used tools like Workbox and the @vue/pwa package, which gave us
development superpowers throughout this process.

https://1drv.ms/u/s!AgBX7xIEoO8BkZdvvqDp-j8RQugV-g?e=tYZhur

 101

After undergoing this journey, I became even more fascinated with PWAs. The great thing about
this technology is not only its potential—although they are quite new, the toolset for creating
PWAs is quite mature and stable, with no signs of slowing down.

PWAs are certainly on a growth path, and it’s worthwhile investing the time to dig deeper and
expand your knowledge even further.

I hope you have enjoyed and been inspired by this book, as much as I loved writing it. Go build
an amazing PWA, and if you do so, please let me know about it—I’d love to see those seeds
grow.

Until next time—thank you reading this book, and all the best. Fly high Papa—I love you.

www.dbooks.org

https://www.dbooks.org/

	Table of Contents
	The Story Behind the Succinctly Series of Books
	Information is plentiful but harder to digest
	The Succinctly series
	The best authors, the best content
	Free forever
	Free? What is the catch?
	Let us know what you think

	About the Author
	Acknowledgments
	Ionic for Everyone
	Chapter 1 App Fundamentals
	Project overview
	Installation
	Creating the app
	Additional dependencies
	Adding Ionic: main.js and router.js
	Modifying App.vue
	Essential Ionic UI components
	Structuring the application
	Search.vue UI
	Summary

	Chapter 2 Basic App and API Logic
	Quick intro
	Search.vue validation
	Emitting the flight number
	Receiving the flight number
	Flight information APIs
	Ed’s real-time flight data
	API execution workflow
	Summary

	Chapter 3 PWA Essentials
	Quick intro
	Characteristics of a PWA
	Essential components of a PWA
	Progressive by design
	Responsive by design
	Connectivity independent
	App-like behavior
	Why are PWAs needed?
	Requirements for building a PWA
	PWA advantages
	Quick peek into the finished PWA
	Driven by fast-paced innovation
	PWAs are checked for high quality
	Enter Lighthouse
	Summary

	Chapter 4 Scaffolding the PWA
	Quick intro
	Vue/PWA
	The manifest.json file
	Creating the service worker
	Registering the service worker
	The generated service worker
	Polyfills and browser compatibility
	Summary

	Chapter 5 Building the PWA
	Quick intro
	Final main.js file
	Final App.vue file
	Final router.js file
	Final Home.vue file
	Final Search.vue file
	Final Info.vue file
	Final Clear.vue file
	Summary

	Chapter 6 Deploying the PWA
	Quick intro
	Setting Up Firebase Hosting
	Firebase setting files
	Building and deploying
	Testing with Lighthouse
	Performance improvement
	Redeploying the app
	Full project source code
	Final thoughts

