

1

www.dbooks.org

https://www.dbooks.org/

Ionic Succinctly

By
Ed Freitas

Foreword by Daniel Jebaraj

3

Copyright © 2018 by Syncfusion, Inc.

2501 Aerial Center Parkway

Suite 200

Morrisville, NC 27560

USA

All rights reserved.

Important licensing information. Please read.

This book is available for free download from www.syncfusion.com on completion of a

registration form.

If you obtained this book from any other source, please register and download a free copy from

www.syncfusion.com.

This book is licensed for reading only if obtained from www.syncfusion.com.

This book is licensed strictly for personal or educational use.

Redistribution in any form is prohibited.

The authors and copyright holders provide absolutely no warranty for any information provided.

The authors and copyright holders shall not be liable for any claim, damages, or any other

liability arising from, out of, or in connection with the information in this book.

Please do not use this book if the listed terms are unacceptable.

Use shall constitute acceptance of the terms listed.

SYNCFUSION, SUCCINCTLY, DELIVER INNOVATION WITH EASE, ESSENTIAL, and .NET

ESSENTIALS are the registered trademarks of Syncfusion, Inc.

Technical Reviewer: James McCaffrey

Copy Editor: Courtney Wright

Acquisitions Coordinator: Tres Watkins, content development manager, Syncfusion, Inc.

Proofreader: Jacqueline Bieringer, content producer, Syncfusion, Inc.

www.dbooks.org

http://www.syncfusion.com/
http://www.syncfusion.com/
http://www.syncfusion.com/
https://www.dbooks.org/

4

Table of Contents

The Story Behind the Succinctly Series of Books .. 7

About the Author ... 9

Acknowledgements ..10

Introduction ...11

Chapter 1 Setting up Ionic ...13

Who is this book for? ..13

Why a complete framework rewrite? ...13

Nice-to-haves ...14

Installing Ionic-Angular ...14

Creating a new Ionic project ...16

Testing the scaffolded app ...18

Live or Hot Reload ..20

Ionic View and Ionic Pro ...20

Deploying to Ionic Pro ..24

Summary ..29

Chapter 2 Project Structure ...30

Quick intro ..30

The \src folder ..30

The \src\app folder ...31

The \src\assets folder ...32

The \src\pages folder ..32

The \src\theme folder..33

The files within the \src folder ...33

The \node_modules folder ..35

5

The \www folder ...35

The \ (root) folder ..35

Summary ..35

Chapter 3 Starting the App ..36

Quick intro ..36

Overview ..36

Navigation stack ...36

Main difference from Ionic for AngularJS ..37

App navigation overview ...37

Creating the app’s main page ...38

Visual Studio Code Ionic plugins ..41

Creating pages with the CLI ...41

Wiring up the new pages ..43

Summary ..46

Chapter 4 Building the App ...47

Quick intro ..47

Before we start ...47

The Library page ..47

Making a nicer card ..50

Updating the Library page ..52

Updating the Paths page ..56

Updating the Books page ...60

The Book Overview page ...63

NavParams ..63

Updating the Book Overview page ...65

Adding navParams to the Books page ..67

www.dbooks.org

https://www.dbooks.org/

6

Adding navParams to the Paths page ..72

Updating the Book Detail page ...76

Full source code ...78

Summary ..78

Chapter 5 Further Resources ..79

Quick intro ..79

Exploring the documentation ..79

Native plugins ...80

Search bar ..81

Adding the search functionality ...83

Full, updated source code ..90

Other topics to explore ...90

Summary ..91

7

The Story Behind the Succinctly Series
 of Books

Daniel Jebaraj, Vice President
Syncfusion, Inc.

taying on the cutting edge

As many of you may know, Syncfusion is a provider of software components for the
Microsoft platform. This puts us in the exciting but challenging position of always
being on the cutting edge.

Whenever platforms or tools are shipping out of Microsoft, which seems to be about
every other week these days, we have to educate ourselves, quickly.

Information is plentiful but harder to digest

In reality, this translates into a lot of book orders, blog searches, and Twitter scans.

While more information is becoming available on the Internet and more and more books are
being published, even on topics that are relatively new, one aspect that continues to inhibit us is
the inability to find concise technology overview books.

We are usually faced with two options: read several 500+ page books or scour the web for
relevant blog posts and other articles. Just as everyone else who has a job to do and customers
to serve, we find this quite frustrating.

The Succinctly series

This frustration translated into a deep desire to produce a series of concise technical books that
would be targeted at developers working on the Microsoft platform.

We firmly believe, given the background knowledge such developers have, that most topics can
be translated into books that are between 50 and 100 pages.

This is exactly what we resolved to accomplish with the Succinctly series. Isn’t everything
wonderful born out of a deep desire to change things for the better?

The best authors, the best content

Each author was carefully chosen from a pool of talented experts who shared our vision. The
book you now hold in your hands, and the others available in this series, are a result of the
authors’ tireless work. You will find original content that is guaranteed to get you up and running
in about the time it takes to drink a few cups of coffee.

S

www.dbooks.org

https://www.dbooks.org/

8

Free forever

Syncfusion will be working to produce books on several topics. The books will always be free.
Any updates we publish will also be free.

Free? What is the catch?

There is no catch here. Syncfusion has a vested interest in this effort.

As a component vendor, our unique claim has always been that we offer deeper and broader
frameworks than anyone else on the market. Developer education greatly helps us market and
sell against competing vendors who promise to “enable AJAX support with one click,” or “turn
the moon to cheese!”

Let us know what you think

If you have any topics of interest, thoughts, or feedback, please feel free to send them to us at
succinctly-series@syncfusion.com.

We sincerely hope you enjoy reading this book and that it helps you better understand the topic
of study. Thank you for reading.

Please follow us on Twitter and “Like” us on Facebook to help us spread the
word about the Succinctly series!

mailto:succinctly-series@syncfusion.com
https://twitter.com/Syncfusion
https://www.facebook.com/Syncfusion

9

About the Author

Ed Freitas is a consultant on software development applied to customer success, mostly related
to financial process automation, accounts payable processing, and data extraction.

He’s enjoys playing soccer, running, traveling, life hacking, learning, and spending time with his
family. You can find him at http://edfreitas.me.

www.dbooks.org

http://edfreitas.me/
https://www.dbooks.org/

10

Acknowledgements

Many thanks to all the people who contributed to this book and the amazing Syncfusion team
that helped it become a reality—especially Jacqueline Bieringer, Tres Watkins, Darren West,
and Graham High.

The manuscript manager and technical editor thoroughly reviewed the book's organization,
code quality, and overall accuracy—Jacqueline Bieringer from Syncfusion and James
McCaffrey from Microsoft Research. Thank you all.

This book is dedicated to Lala, whose love and support is always there for me, and my little
princess angel Mi Chelin, who inspires me every day and lights my path ahead—God bless you
always.

http://www.syncfusion.com/
https://jamesmccaffrey.wordpress.com/
https://jamesmccaffrey.wordpress.com/
https://www.microsoft.com/en-us/research/people/jammc/

11

Introduction

The Ionic Framework is a free and open-source SDK for developing amazing native, cross-
platform mobile apps (for both Android and iOS) and Progressive Web Apps with ease, using
familiar web technologies like HMTL, JavaScript, and CSS.

Historically, when mobile app developers wanted to deploy their application on multiple
platforms, they had to write one version for Android using Java, another for iOS using Objective-
C, and maybe even a specific version for Windows Mobile using C#.

This multiversioned approach is not well suited for code reusability or maintenance, and to
some extent is rather inefficient in terms of resource management, with few companies being
able to afford such an endeavor.

Ionic, on the other hand, enables developers to build an app once—using web development
tools that most are already familiar with—to deploy to multiple platforms.

Ionic is not the only framework in the market that allows developers to write code once and
deploy to multiple platforms. Others, such as Xamarin and NativeScript, can also achieve this;
however, one of Ionic’s key differentiators is that it has always been built (since version 1) on
top of Angular. Ionic 1 was built on top of Angular 1, Ionic-Angular on top of Angular 2, and so
on.

Not only does Ionic allow developers to reuse their knowledge of general web technologies, but
it also gives developers a chance to specifically leverage their existing know-how of the Angular
framework—which is beneficial for enjoying all the usability and performance improvements of
Angular 2+.

Also, by supporting Angular, Ionic developers are not only part of the thriving Ionic community,
but also part of the broader Angular one as well—this is awesome.

Another key facet of Ionic is that it is capable of seamlessly integrating with Cordova, which
enables developers to access and use native features on the device through JavaScript or
TypeScript code.

In a nutshell, Cordova—which is specifically designed to be used for mobile apps being built
using HTML, JavaScript, and CSS—is a JavaScript API that wraps itself around native APIs,
allowing developers to use features such as geolocation, the device camera, the accelerometer,
vibrating the device, and much more. All these features have native APIs that must be invoked,
so Cordova’s job is to standardize these calls and provide a set of JavaScript classes and
methods that seamlessly wrap around these native API functionalities, so they can be invoked
from JavaScript code.

Apps built with Cordova are truly native mobile apps that can be deployed to an app store—not
mobile-optimized web apps that look good on mobile web browsers. Further, Cordova has been
around for years, it has a huge and thriving ecosystem, it is stable and mature, and it is widely
used—which is one of the reasons it is used inside the Ionic framework, through the Ionic Native
library.

www.dbooks.org

https://ionicframework.com/
https://www.xamarin.com/
https://www.nativescript.org/
https://angular.io/
https://angularjs.org/
https://cordova.apache.org/
https://www.typescriptlang.org/
https://www.dbooks.org/

12

Ionic-Angular, which is the specific version of the framework we’ll cover throughout this book, is
a complete rewrite of the very successful Ionic 1 framework.

To summarize, Ionic is an open source SDK/framework that rides over the AngularJS web
application framework and the Apache Cordova cross-platform mobile app framework, and
executes in a Node.js runtime environment. Ionic is programmed using mostly TypeScript
language and the JSON data format.

The goal of this book is to give you a good start with the Ionic-Angular framework, so that you
can jump straight into mobile app development with ease, using your existing web development
experience. Some basic knowledge of Angular will help you make the most out of this book.

This book will be quite hands-on, and the examples should be easy and fun to follow. We’ll be
using Visual Studio Code as our editor of choice, and TypeScript as our programming language.

So, without further ado, let’s dive right into the fascinating Ionic-Angular ecosystem. Thanks for
reading!

https://code.visualstudio.com/

13

Chapter 1 Setting up Ionic

Who is this book for?

This book is aimed at developers who have no previous experience with Ionic—even no
previous experience with Ionic 1. However, it does help a bit if you do have some previous
experience with the framework, Angular, or TypeScript—although these are not must-haves.

This book is not a migration manual from Ionic 1, and it’s perfectly alright if you are starting out
with Ionic-Angular (version 2 or higher of the Ionic framework) from scratch.

Why a complete framework rewrite?

There are several reasons why the Ionic team did a complete rewrite of the Ionic framework.
Probably the most important one is that Ionic-Angular is built with the most recent versions of
Angular, which is a massive departure from Angular 1 (also known as AngularJS).

Basically, building on top of the latest Angular versions enabled Ionic-Angular to benefit from
various improvements, including increases in performance and a more standardized way of
writing and building apps, especially when using TypeScript—like being able to use dependency
injection, components, and modules.

For instance, version 1 of the Ionic framework used UI router for navigation. Even though UI
router is quite powerful, in Ionic-Angular this has been taken a step further in order to achieve a
more natural way of moving from screen to screen.

Another awesome feature in Ionic-Angular is that the framework is capable of detecting if your
app is running on an Android or iOS device, and thus render the respective platform theme
automatically.

Furthermore, the Ionic team continues to improve the way the internal build system works by
using tools like Gulp for building, serving, and performing live reload when a file is changed.

Also, by using TypeScript for compilation, SASS for CSS extension and optimization, and NPM
for package management, the Ionic team has made this newest version a truly modern and
enjoyable mobile app development platform. They have looked at optimizing as much as they
could without compromising efficiency and the overall developer experience.

Some of these optimizations are related to better caching, faster navigation between screens,
and also the use of internal virtual lists to enable scrolling of very long lists—in order to have
native-like performance.

All these improvements make Ionic-Angular a wonderful new version of the framework—one
that many developers love.

www.dbooks.org

https://gulpjs.com/
http://sass-lang.com/
https://www.dbooks.org/

14

Ionic-Angular is a framework that is in constant evolution—at an incredibly fast pace. So it is
highly likely that between the time this book was written and the time you read it, some code or
project structure for a new scaffolded app might be slightly or quite different from what is
described here. Nevertheless, you should be able to easily find your way around, as it’s been
written and reviewed to be as up-to-date as possible.

Nice-to-haves

In order to make the most of this book, there are a couple of technologies that would be good
for you to be familiar with: TypeScript and a recent version of Angular. All the code in this book
will make use of them. TypeScript will be installed when installing Ionic, which is really handy.

But don’t worry—not having any previous knowledge of them is not a showstopper. If you are a
software developer experienced with other web technologies, you should also be able to pick
this up fairly quickly, and without too much effort.

Luckily, the Succinctly series has you covered, and there’s an awesome book written by Steve
Fenton called TypeScript Succinctly that can get you up-to-speed with this technology in no
time.

Furthermore, Angular 1 is covered extensively by AngularJS Succinctly, which is brilliantly
authored by Frederik Dietz, and Angular 2 is nicely and easily explained in Angular 2 Succinctly
by Joseph D. Booth. Some familiarity with Angular’s dependency injection and how data binding
works is beneficial.

If you feel that you need to refresh your TypeScript and Angular know-how—or get started from
scratch—these are magnificent resources that I highly encourage you to have a look at.

Installing Ionic-Angular

In order to really get started, the next thing we need to do is install Ionic-Angular. All
developments done in Ionic are based around a Node.js command line tool called Ionic CLI, so
first, we need to download Node.js and grab the appropriate installer for our operating system.
Whether you’re on a Windows PC or Mac, Node.js will work just fine.

https://www.syncfusion.com/resources/techportal/details/ebooks/typescript
https://www.syncfusion.com/resources/techportal/details/ebooks/angularjs
https://www.syncfusion.com/resources/techportal/details/ebooks/Angular2_Succinctly
https://nodejs.org/

15

Figure 1-a: The Node.js Home Page

On the Node.js home page, download the appropriate installer for your operating system—in my
case, I’ve downloaded the LTS (Long Term Support) version recommended for most users.

The Node.js website has detected that I’m on a Windows 64-bit machine, and has presented me
with the option to download the appropriate runtime for Windows 64 bits.

Installing Node.js basically consists of downloading the installer package and clicking through
the prompts in order to get it installed quickly—it’s as simple as that.

Figure 1-b: The Node.js Installer on Windows

With Node.js installed, we can focus on getting Ionic-Angular up and running. In order to do that,
open the command prompt as an Admin user—in my case, I use this lovely emulator on top of
the Windows command prompt. Type in the following command.

www.dbooks.org

http://cmder.net/
https://www.dbooks.org/

16

Code Listing 1-a: The Ionic and Cordova Installation Command

npm install -g ionic cordova

Figure 1-c: Installing Ionic and Cordova

We have to execute this NPM (Node Package Manager) command, because in order to create
Ionic projects, we need to install the Ionic Command Line Interface (CLI), and also Cordova
globally. You can find more details on Ionic’s official documentation.

Once the command has successfully executed, we are ready to start creating apps with Ionic.

Creating a new Ionic project

In order to start working with Ionic, we need to create a new Ionic project—this can be done by
using the Ionic CLI.

Let’s type in the following command in order to start a new project, which we’ll build throughout
this book. Make sure you run this command from the folder where your project’s source code
will be stored.

Code Listing 1-b: Creating a new Ionic App

ionic start IonicAppSuccinctly sidemenu --ts

This command will create a subfolder called IonicAppSuccinctly, which will contain all the
app’s code.

The --ts option indicates that we will be using TypeScript as our language of choice instead of

the default, JavaScript. The sidemenu option indicates that the app will have a swipeable menu

layout on the side.

Before the command execution actually starts, you might be prompted to answer if you would
like this app with Cordova to target native iOS and Android.

https://ionicframework.com/docs/intro/installation/

17

Feel free to respond with Yes or No—in my case, I’ve chosen No. Once you do that, installing
the project dependencies might take several minutes.

After the project dependencies have been installed, you might also be asked to install the free
Ionic Pro SDK and connect your app. Feel free to respond with Yes or No—in my case, I’ve
chosen Yes.

After Ionic Pro has been installed—if you’ve chosen Yes—you might be asked to confirm the
name of the app that you’d like the CLI to create. In my case, I’ve chosen IonicAppSuccinctly.

There are other available project templates besides sidemenu—more information can be found

in the official Ionic documentation.

When this command first executes, it creates the folder IonicAppSuccinctly, then downloads the
template information, and finally, goes into the folder and executes npm install in order to

install all the dependencies required by the project, which are specified in the package.json file.

If for some reason the execution of the npm install command fails, simply go into the

IonicAppSuccinctly subfolder and manually execute npm install in order to try again.

Figure 1-d: Running the “npm install” Command Manually

If you take a look inside the \IonicAppSuccinctly subfolder, you should see the following files (or
similar).

Figure 1-e: The IonicAppSuccinctly Project Files

At this stage, Ionic has created a project structure for us, which we will use as the foundation to
build our app.

Let’s quickly look at the scaffolded folder and file structure by opening the project in Visual
Studio Code (VS Code). If you don’t have it installed, now is probably a good time to do so. You
don’t have to necessarily use VS Code, and can use any editor of your choice, such as Atom or
Sublime.

www.dbooks.org

https://ionicframework.com/docs/intro/tutorial/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://atom.io/
https://www.sublimetext.com/
https://www.dbooks.org/

18

Figure 1-f: The IonicAppSuccinctly Project Structure in VS Code

We’ll later explore this project structure in more detail, so for now let’s not worry too much about
it.

Testing the scaffolded app

Now that we’ve created the Ionic project that will eventually become our application, let’s see
how we can test it using a browser and see how it looks. This is the simplest and most common
way of quickly checking things.

We can do this by typing in the following command from the \IonicAppSuccinctly project
subfolder—you’ll need to cd into \IonicAppSuccinctly.

Code Listing 1-c: The “ionic serve” Command

ionic serve

This command will basically compile the TypeScript and SCSS (Sassy CSS) code—the one that
the Ionic CLI has scaffolded for us—and then launch a web server locally. Let’s go ahead and
do that to see what happens.

19

Figure 1-g: The Ionic App in Chrome

We can see that Ionic has started up a web server on http://localhost:8100 on my machine
(the port number might be different on yours).

If your browser’s window is fully maximized, you may have noticed that the app looks a bit
strange because it’s not really designed for a desktop browser.

What you might want to do in that case is press the F12 key (if you are using Chrome or Edge
as your browser)—this will open up the Developer Tools. Then, toggle the device toolbar and
select a mobile display—this is illustrated in the figure that follows.

You may also choose to dock the Developer Tools panel to either the left or right side of your
screen (according to your preference) so you can get more of a feeling that you are actually
viewing it on a mobile device.

Figure 1-h: Adjusting the View Using Chrome Developer Tools

If you are using other browsers, similar options likely exist—so please check their respective
documentation or Help.

www.dbooks.org

https://www.dbooks.org/

20

As you can see, the application renders nicely on a Nexus 5X virtual device layout. You can
also test it on any other emulated device.

Live or Hot Reload

One really cool feature that helps a lot during development is what we usually refer to as Live or
Hot Reload, which is the ability to reload automatically in the browser a page that has been just
edited and saved.

To demonstrate this, I will open up VS Code and go to the src\pages\home folder, then open
up the home.html file and change the default text from Ionic Menu Starter to Ionic App
Succinctly.

Once you have done this, go ahead and check how the app looks in the browser. Ionic should
have automatically reloaded the page, and it should now reflect the changes you just made,
after saving the file. Let’s have a look.

Figure 1-i: The App after a Live Reload

This is a great feature that gives us the ability to quickly test the look and feel of the app and
iterate through UI changes quickly. If we want to close the app and web server, we can press
Ctrl + C from the command line.

As an additional note, throughout most of this book we’ll be using the ionic serve command in

order to test our app, since it is quick and easy to use.

Nevertheless, let’s quickly explore how we can test the app with Ionic View.

Ionic View and Ionic Pro

Ionic View is a tool that allows us to quickly test and run Ionic apps on an actual device without
having to deploy the app. It’s ideal when you want to share your Ionic app within your
organization or with testers without any provisioning.

Ionic View and Ionic Pro are rapidly evolving tools, so it is possible that by the time you read
this, some of the screens might look slightly different. In any case, you should be able to find
your way around easily with the instructions that follow.

https://ionicframework.com/products/view

21

Ionic View is basically a native app that can be installed from the App Store or Google Play, and
runs your Ionic app’s code on your device.

In order to use Ionic View, we have to install the Ionic View app itself on the device and deploy
our Ionic app to Ionic Pro, which you can think of as Ionic’s cloud.

From your mobile device, go to the Ionic View website and install the respective version for
either your iOS or Android device. I’ll be testing using an iPhone 5.

Figure 1-j: The Ionic View Site Seen from My iPhone

I’ll install the iOS version on my device, which has a slightly different look and feel to it than the
older (legacy) version, so the screen shots you will see will reflect this UI. The Android version
can be found here.

The older iOS version and the legacy Android version were designed to work with an older
version of Ionic Cloud, compatible with an older version of the Ionic CLI that uses the obsolete
ionic upload command. This was part of the old Ionic Cloud product, replaced by Ionic Pro.

I strongly suggest you do not use any legacy versions and follow along with these steps with the
latest version of Ionic View—compatible with Ionic Pro.

Once you have the Ionic View app installed on your device, the next thing to do is create an
account on Ionic Pro so we can upload our app to it.

After creating an account and logging in for the first time, you will see a screen similar to the one
in Figure 1-k. Select the type of plan to use—I’ll be using the Kickstarter Edition for the
purpose of the app we’ll be building throughout this book.

www.dbooks.org

https://ionicframework.com/products/view
https://itunes.apple.com/us/app/ionic-view-test-share-ionic-apps/id1271789931
https://play.google.com/store/apps/details?id=com.ionicframework.view
https://itunes.apple.com/us/app/ionic-view/id849930087?ls=1&mt=8
https://play.google.com/store/apps/details?id=com.ionic.viewapp
https://docs.ionic.io/tools/view/#upload
https://dashboard.ionicjs.com/signup
https://www.dbooks.org/

22

Figure 1-k: Setting Up an Account on Ionic Pro

Once you’ve selected the type of account, you’ll be prompted to create a new app. Click Create
app in order to finalize the process—with that done, you’ll see the following.

Figure 1-l: The App on Ionic Pro

With our app created in Ionic Pro, all we need to do is link to it and upload the code by following
the instructions listed in the previous figure—which in my case, are the following ones.

23

Figure 1-m: Instructions for Connecting an Existing App to Ionic Pro

When executing these commands, run the command line from the same root folder where the
package.json file is located.

When we execute ionic link --pro-id…, our local app is linked to the app repository we’ve

just created on Ionic Pro. This command requires that we enter our Ionic Pro credentials, which
are the same ones used when signing up.

Code Listing 1-d: The “ionic link” Command

ionic link --pro-id 184dc006

You’ll likely be asked to configure SSH settings when executing this command. To make the
process easy and straightforward, I strongly suggest you select the option Automatically setup
a new SSH key pair for Ionic Pro when prompted.

An SSH key is required in order to push your app’s code securely to Ionic Pro. You can find
more info about this topic in Ionic’s official documentation.

The following output is what I got when I executed this command on my machine—you might
have a similar output.

www.dbooks.org

https://dashboard.ionicjs.com/settings/ssh-keys
https://www.dbooks.org/

24

Figure 1-n: Connecting our Existing App to Ionic Pro

Deploying to Ionic Pro

The ionic link --pro-id command has been executed successfully.

According to the instructions shown in Figure 1-m, the next thing we should do is execute the
git push ionic master command.

There’s a small but important step missing—which it’s assumed that most developers with git
experience would automatically notice—before actually executing git push (people without any

git experience might not notice this at all).

This missing step is that we actually need to commit our code first before pushing it. In order to
do this, we need to make a small change to our code. In my case, I’ll make a small modification
to the index.html file found under the \IonicAppSuccinctly/src folder by changing the text
found on the <title> tag.

Once you’re done, save the changes. Let’s commit the code—we can do this by running the
following command: git add . followed by git commit -m "init".

Code Listing 1-e: The “git add” Command

git add .

Code Listing 1-f: The “git commit” Command

git commit -m "init"

25

This will commit any changes done to the master git repository—now we are ready to git push

our code.

So, execute git push ionic master in order to upload our app’s code to the cloud.

Code Listing 1-g: The “git push” Command

git push ionic master

Once you’ve done that, you should see an output similar to the following.

Figure 1-o: Pushing our Existing App Code to Ionic Pro

Awesome—our app is now being deployed to the cloud and hosted on Ionic Pro.

If we browse to the URL mentioned on the output of the command prompt (as seen in Figure 1-
o), we can actually follow the build process taking place—here’s mine.

www.dbooks.org

https://www.dbooks.org/

26

Figure 1-p: The App Code Build Process

We are almost ready to check our app with Ionic View, but before we can do that we need to get
the app’s shareable ID. You can find it by clicking Share App on the Ionic Pro dashboard, and
then clicking the PUBLIC VIEW APP tab, as seen in the following figure.

Figure 1-q: The Share App Option

Finally, we also need to make the Master channel public. We can do this from the Ionic Pro
dashboard by going into Channels and clicking on Master.

27

Figure 1-r: Deployment Channels in Ionic Pro

Once you’ve clicked Master, a pop-up window will appear. Go to the SETTINGS tab, and then
click Make public.

Figure 1-s: The Master Channel Settings in Ionic Pro

On your device, open the Ionic View application you previously installed, and go to the settings
tab to enter your Ionic Pro credentials.

Figure 1-t shows how this looks from my device—it might look similar on yours.

www.dbooks.org

https://www.dbooks.org/

28

Figure 1-t: Settings Tab on the Ionic View App on My Device

Tap Add Account and enter your Ionic Pro email address and password. With this done, Ionic
View is now linked to your Ionic Pro account. Next, tap the middle icon (which looks like an eye)
and enter the app ID code.

Figure 1-u: Entering the App ID on Ionic View on My Device

29

Once done, tap VIEW APP to see the app running on Ionic View. Once you’ve tapped the VIEW
APP button, you should see the name IonicAppSuccinctly on the list—tap it in order to load
the application on your device. Here is how it looks on my iPhone.

Figure 1-v: The App Running on Ionic View

We’ve quickly seen how we can use Ionic Pro and Ionic View to deploy and test our Ionic app,
respectively.

If we have other apps to view within Ionic View, we can simply go back to the app list and exit
the current application we are viewing by shaking our device when the Ionic View app is
running—very handy!

We’ve just scratched the surface of what is possible with Ionic Pro and gone through the steps
required to have our code deployed in the cloud so it can be tested with the Ionic View app.

Ionic Pro’s main feature is that it makes it easy to push remote app updates in real-time without
going through traditional App Store release processes.

Summary

In this chapter, we jumped right into the Ionic ecosystem and scaffolded the basic structure of
the application we’ll be building throughout this book.

We also installed the necessary tooling and went through the steps required to test our
application, both in the browser, and using the Ionic View app—which also introduced us to
Ionic’s cloud, Ionic Pro.

In the next chapter, we’ll explore the scaffolded project structure in detail in order to understand
it well and be able to expand the app’s functionality later.

We’ll skip how to test the app on an emulator, as this requires setting up various SDKs, which is
a complicated process. However, I encourage you to check Ionic’s official documentation on this
subject.

Later in the upcoming chapters, we’ll see how Ionic-Angular components work so we can start
to build our scaffolded app from the ground up.

www.dbooks.org

http://ionicframework.com/docs/intro/installation/
https://www.dbooks.org/

30

Chapter 2 Project Structure

Quick intro

In the previous chapter, we were able to create our Ionic app using a predefined template,
which we will be using as the base for the solution we’ll be working on throughout this book.

In order to make things fun, I thought of creating an app that would allow us to browse and
search through the Succinctly series library, as well as organize the books into learning paths.
So that’s the app we’ll be building—let’s get started!

The \src folder

Now that we’ve looked at how we can deploy and test our app on Ionic Pro, let’s focus on the
app structure and the code that was created for us by the Ionic CLI. So open up VS Code in
order to explore the folder structure.

The \src folder is where we’ll be spending most of our time when developing any Ionic-Angular
application. Here’s where any initialization code goes.

Within the \src folder is where all the application’s source files are found, including images,
styles, HTML markup, and code files (such as TypeScript or JavaScript). By default, the \src
folder is organized as follows.

Figure 2-a: The App’s \src Folder Structure

31

Let’s quickly go over this structure in order to understand how things have been organized. The
\src folder is split into various subfolders, each with a defined purpose.

The \src\app folder

The \src\app folder contains the application’s main module and component. Ionic applications
are organized into modules that use one or more components.

Within the \src\app folder, main.ts is the entry point for our Ionic application—it is responsible for
importing the app’s main module, which corresponds to app.module.ts. We can see this in the
following code listing.

Code Listing 2-a: main.ts

import { platformBrowserDynamic } from '@angular/platform-browser-

dynamic';

import { AppModule } from './app.module';

platformBrowserDynamic().bootstrapModule(AppModule);

Within app.module.ts, there are references to the app’s main component, app.component.ts,
and to the two predefined pages that our application has—the Home and List pages. We can
see this as follows.

Code Listing 2-b: Component References in app.module.ts

import { MyApp } from './app.component';

import { HomePage } from '../pages/home/home';

import { ListPage } from '../pages/list/list';

Here comes the interesting part—the app’s main component, app.component.ts, is actually
associated with two other files: app.html and app.scss, which correspond to the application’s
main view and style, respectively. The app.scss file is used for setting styling rules that apply to
the application in general; you can find more information here.

If we open app.component.ts, we can see that it references app.html as its view template—as
follows.

Code Listing 2-c: app.component.ts Referencing app.html

@Component({

 templateUrl: 'app.html'

})

So you can think of the /\src/\app as the repository that contains the application’s main
component—and the module loads it, which references the rest of the app’s parts.

www.dbooks.org

http://ionicframework.com/docs/theming/
https://www.dbooks.org/

32

The \src\assets folder

This folder basically contains static assets, such as icons and images that the application will
use. By default, it contains an \icon folder that includes the app’s favicon and a \imgs folder that
contains the app’s logo. Here we can add any assets that our application will use.

The \src\pages folder

As its name clearly implies, this folder contains the navigation pages our application actually
uses.

Each navigation page has a separate subfolder. By default, the template that was created by
the Ionic CLI has two pages: one called home, and the other called list—respectively found
under the home and list folders.

Under each of these subfolders, each navigation page is actually made up of several files: an
HTML (.html), a style sheet (.scss), a TypeScript component (.ts) code file, and most recently, a
TypeScript (.module.ts) code file.

Let’s have a look at home.ts—you should be able to see code similar to the following.

Code Listing 2-d: home.ts

import { Component } from '@angular/core';

import { IonicPage, NavController, NavParams } from 'ionic-angular';

@IonicPage()

@Component({

 selector: 'page-home',

 templateUrl: 'home.html'

})

export class HomePage {

 constructor(public navCtrl: NavController, public navParams: NavParams)

 { }

 ionViewDidLoad() {

 console.log('ionViewDidLoad HomePage');

 }

}

Notice that because Ionic-Angular is a very quickly evolving framework, the Ionic team is always
incorporating the latest Angular framework changes into Ionic-Angular, so it is possible that
between small updates to the Ionic CLI—when you scaffold a new project—the out-of-the-box
code might look slightly different to what is listed in the previous code listing.

33

So it is possible that the scaffolded code for home.ts might instead look similar to the following
one. In my case, the CLI has scaffolded the code for home.ts as follows.

Code Listing 2-e: Another Possible Version of home.ts

import { Component } from '@angular/core';

import { NavController } from 'ionic-angular';

@Component({

 selector: 'page-home',

 templateUrl: 'home.html'

})

export class HomePage {

 constructor(public navCtrl: NavController) {

 }

}

Ionic apps follow the Model-view-controller (MVC) design pattern. As we can see, a reference to
home.html is found within home.ts. The HTML file represents the home page’s view, while the
TypeScript file (home.ts) is the controller, which contains the Angular component.

The Angular component is represented by the HomePage class, which has a constructor that

receives an Ionic NavController object as a parameter. You can find more information about

the NavController class here.

The style sheet (.scss) file is specific to the view, and it is compiled down to CSS by Ionic when
the application is built.

The \src\theme folder

Next on our list is the \src\theme folder, which defines the Ionic theming used by the application.
We don’t need to touch this folder or the variables.scss file unless we want to use a different
theme—you can find more information about this topic here.

The files within the \src folder

The last part of the \src folder that we need to talk about is regarding the files that reside in its
root, which are: index.html, manifest.json, and service-worker.js.

As you would expect, the index.html file defines the runtime entry point to the Single Page
Application (SPA) that contains the entire Ionic app. In essence, what Ionic does is create an
SPA that is then transformed into a native mobile app when deployed to iOS or Android.

The reason there’s a manifest.json file is that with Ionic, the apps we build are by default easily
upgradable to Progressive Web Apps (PWAs).

www.dbooks.org

https://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93controller
http://ionicframework.com/docs/api/navigation/NavController/
http://ionicframework.com/docs/theming/theming-your-app/
https://en.wikipedia.org/wiki/Single-page_application
https://developers.google.com/web/progressive-web-apps/
https://www.dbooks.org/

34

This means that even if the app is not compiled into a mobile app for a specific platform, it can
still be installed on the home screen of the mobile device as a PWA.

This requires that we use a web manifest file. Our manifest file looks like this.

Code Listing 2-f: manifest.json

{

 "name": "Ionic",

 "short_name": "Ionic",

 "start_url": "index.html",

 "display": "standalone",

 "icons": [{

 "src": "assets/imgs/logo.png",

 "sizes": "512x512",

 "type": "image/png"

 }],

 "background_color": "#4e8ef7",

 "theme_color": "#4e8ef7"

}

This manifest file is then tied up with the app’s main runtime entry point, the index.html file, as
follows.

Code Listing 2-g: The index.html Referencing the manifest.json File

<link rel="manifest" href="manifest.json">

The service-worker.js file is like any other JavaScript file, with the exception that it runs in the
background and is triggered via events—this is what is known as a Service Worker.

Service Workers are incredibly powerful, and honestly, incredibly confusing to some extent.
They provide the app’s offline functionality, push notifications, background content updating,
caching, and other background features. At a high level, they run behind the scenes,
independently of the app, in response to various events like network requests, push
notifications, and connectivity changes.

The service-worker.js file created by the Ionic CLI provides a basic structure for how to organize
these types of tasks—you can find more information about this topic here.

If you would like to better understand Ionic’s philosophy for enabling PWAs out of the box, I
recommend you read this excellent blog post, which explains it all.

https://developers.google.com/web/fundamentals/engage-and-retain/web-app-manifest/?hl=en
https://developers.google.com/web/fundamentals/getting-started/primers/service-workers#what_is_a_service_worker
https://blog.ionic.io/what-is-a-progressive-web-app/

35

The \node_modules folder

This folder contains the Node.js packages that the application uses—which were installed when
we ran the npm install command. These packages are specified within the package.json file

found on the app’s root folder.

The \www folder

This folder is where Ionic will deploy the application once it has been transpiled and built.

The \ (root) folder

The app’s root folder contains some very important files, without which the application wouldn’t
be able to do much.

The package.json file contains the name of the Node.js modules that the app uses, whereas
files such as tsconfig.json and tslint.json contain general TypeScript configuration and linting
settings, respectively. Linting is the process of checking TypeScript or JavaScript code for
readability, maintainability, and functionality errors.

Other files in the root folder, such as .gitignore, .editorconfig, and ionic.config.json, provide
essential configuration settings that are specific for Git, editing, and Ionic, respectively.

Finally, the package-lock.json file is automatically generated for any operations where the Node
Package Manager (NPM) modifies either the \node_modules folder, or the package.json file.

The purpose of the package-lock.json file is to describe the exact folder tree that was
generated, so that subsequent installs are able to generate identical trees, regardless of
intermediate dependency updates. You can find more information here.

Summary

With the project structure covered, we are now ready to start exploring Ionic’s navigation
system, and later, its components—which are both essential in order to start making the
necessary modifications to our application.

Sounds exciting! So let’s not wait any longer, and start exploring Ionic’s navigation system in
order to kickstart our app.

www.dbooks.org

https://docs.npmjs.com/files/package-lock.json
https://www.dbooks.org/

36

Chapter 3 Starting the App

Quick intro

We’ve managed to cover a bit of ground—we’ve gotten Ionic up and running, and also explored
the project structure that the Ionic CLI created for us.

However, in order to be able to expand our application and give it the functionality we want to
achieve, we’ll need to understand how Ionic’s navigation system works. This will be the focus of
this chapter. With this said, let’s jump right in and begin exploring Ionic’s fascinating and well-
designed navigation system.

Overview

Navigation in Ionic-Angular is completely different from how it was in Ionic 1, as it has been
rewritten from the ground up.

In Ionic-Angular, the foundation of the navigation system is known as the navigation stack—
which is what we’ll need to understand first. Understanding how the navigation stack works will
help us modify our app and put the necessary views in place that our application will eventually
use.

Like with any navigation system, we’ll also explore how to pass parameters between views.

Navigation stack

As the name implies, Ionic’s navigation system is based on the concept of a stack, which means
that views are mounted one on top of the other.

This stack provides an API for navigation that Ionic-Angular apps use; however, Ionic is doing a
bit more than just providing us a stack to mount our app’s views. Behind the scenes, Ionic helps
improve our app’s performance for us by caching pages in the DOM.

When a user triggers an action on our app that opens a view, a new page is pushed onto the
stack in forward navigation, and then popped off the stack when navigating backward. In
essence, this is the typical mechanism of how a navigation stack works.

Nowadays, many applications will use just a single navigation stack, known as the root stack.
Nevertheless, Ionic supports multiple navigation stacks—a tabbed layout contains its own
navigation stack, which is totally independent of the root stack.

Figure 3-a is an illustration of how a typical navigation stack would look to the naked eye, if we
could actually see how views are internally organized.

37

Figure 3-a: A Typical Navigation Stack

Notice how pages stack up one on top of the other. The most recent page (in purple) sits at the
top, while the first one opened by the user (in blue) is right at the bottom of the stack.

Main difference from Ionic for AngularJS

In Ionic 1 (with AngularJS), the navigation system was based on the UI Router component,
which revolved around the usage of URLs for navigation. Despite URLs not being fully required
in Ionic 1’s navigation system, as named routes could also be used, Ionic-Angular completely
departed from this. The navigation works based on a stack, so URLs don’t matter at all any
more, at least for basic navigation.

Ionic-Angular still supports URLs, but for deep linking, which is the capability of allowing a user
to jump straight into a view contained deeper inside the app, such as one that could be
launched from a web browser.

App navigation overview

In order to better understand the navigation system of the app we will be building, it’s best to
sketch it out in a simple diagram.

In Figure 3-b, the app’s main page will consist of a list of the books present in the Succinctly
series. From there, there will be two possible routes to navigate—either to the overview of a
specific book (and its details), or to the learning path associated to that book, which will include
a list of related books.

From the list of related books, it will be also possible to navigate directly to the overview of a
specific book and to its details.

www.dbooks.org

https://www.dbooks.org/

38

Figure 3-b: Our App’s Pages

Before we even start to implement this navigation system, we first need to generate several
pages for these screens.

Let’s start with the library page, since this is going to serve as the home page of our app.

Creating the app’s main page

From here on, we’ll start to write code. I usually prefer to use lighter themes when writing code
(rather than darker ones)—that’s just a personal preference, so I’ll change my Visual Studio
Code theme to a lighter one, which you’ll notice on the screen shots that will follow.

To create the app’s main page, navigate in Visual Studio Code to the \src\pages folder and
create a new folder under it, called library.

This will be the main page for our application, which corresponds to the Succinctly Library
page from Figure 3-b.

Figure 3-c: The “library” Folder

With this folder created, let’s create a TypeScript file in the new directory that is going to serve
as our component. We’ll call this file library.ts.

39

Figure 3-d: The library.ts File

After creating this file, let’s go ahead and add the following boilerplate code. This will be the
base for this component.

Code Listing 3-a: Boilerplate Code for library.ts

import { Component } from '@angular/core';

import { IonicPage, NavController, NavParams } from 'ionic-angular';

@IonicPage()

@Component({

 templateUrl: 'library.html',

})

export class LibraryPage {

constructor(public navCtrl: NavController, public navParams: NavParams)

{ }

ionViewDidLoad() {

 console.log('ionViewDidLoad LibraryPage');

 }

}

This code simply creates a TypeScript Angular component that references an HTML file, which
will contain the layout for this page. We’ll add extra features as we go.

www.dbooks.org

https://www.dbooks.org/

40

Creating this component also requires we create the corresponding HTML file for it, which we’ll
call library.html. We can create this file in the same \library folder.

Once you have created this file, please add the following boilerplate code to it.

Code Listing 3-b: Boilerplate Code for library.html

<ion-header>

 <ion-nav-bar>

 <ion-title>Succinctly Library</ion-title>

 </ion-nav-bar>

</ion-header>

<ion-content padding>

</ion-content>

Looking at this code, we can see that we have an ion-header with an ion-nav-bar

component, in which we have placed the page’s title.

It is suggested that Ionic-Angular pages have a corresponding NgModule. This means we

should manually also create a library.module.ts file; however, using the syntax described in
Code Listing 2-e eliminates the need to have a .module.ts file for every page.

There’s a way to automatically generate a .module.ts file (and all the files corresponding to a
new page). This can be achieved by running the ionic generate page »page name»
command.

For now, let’s manually create a library.module.ts file in the \library folder with the following
boilerplate code.

Code Listing 3-c: Boilerplate Code for library.module.ts

import { NgModule } from '@angular/core';

import { IonicPageModule } from 'ionic-angular';

import { LibraryPage } from './library';

@NgModule({

 declarations: [

 LibraryPage,

],

 imports: [

 IonicPageModule.forChild(LibraryPage),

],

})

export class LibraryPageModule {}

41

We’ve now created the basic code templates for our main page. Before we create other pages,
let’s quickly have a look at how to make our Ionic-Angular development life easier.

Visual Studio Code Ionic plugins

Visual Studio Code is a great development environment, and as such, it has a vast ecosystem
of third-party plugins that make a developer’s life much easier.

To make my Ionic-Angular development easier, I’ve installed some plugins through the
Extension option by typing in ionic or ionic2, as seen in the following figure.

Figure 3-e: Ionic Extensions for Visual Studio Code

Once the plugins are installed, you’ll see a small button next to each of the ones you installed
with a request to Reload Visual Studio Code.

To work with the plugins, click any of the Reload buttons—this will close the current running
instance of Visual Studio Code and open up a new one.

We now have some cool Ionic plugins installed that we can work with.

Creating pages with the CLI

I’m a bit of an old-school person, which means I like to actually write code from scratch.
Nowadays, however, many tools—including the Ionic CLI—are able to generate boilerplate code
by simply running a command. Let me show you how you can do this with Ionic-Angular.

I’ll open the command prompt and navigate to the folder where I have the code for the app we
are building. All I need to do in order to generate a new page is enter the following command.

www.dbooks.org

https://www.dbooks.org/

42

Code Listing 3-d: Ionic Generate Page Command

ionic generate page paths

The keyword paths is the actual name of the directory that will be generated by the Ionic CLI.

Once the command has successfully executed, we’ll see an output similar to this.

Figure 3-f: Ionic CLI Command Successfully Executed

How cool is that? If we now inspect the folder structure within Visual Studio Code, we can see
that the following files were added.

Figure 3-g: The “Paths” Page Files

The paths files correspond to the Learning Paths page from Figure 3-b. With this one out of
the way, let’s create the remaining pages for our app with the Ionic CLI.

Let’s create the Books page—we can do this by executing the following command.

Code Listing 3-e: Generate the Books Page

ionic generate page books

The next one is the Book Overview page. We can generate it by running the following
command.

Code Listing 3-f: Generate the Book Overview Page

ionic generate page bookoverview

The last page we need to generate for our app is the Book Detail page. So let’s create it with
the following command.

Code Listing 3-g: Generate the Book Details Page

ionic generate page bookdetail

43

If you like, you can also automatically generate the Library page files by running the following
command. But before you do that, remove the library.* files you created previously.

Code Listing 3-h: Generate the Library Page

ionic generate page library

All the pages that our application will use have now been generated. We can inspect their files
by going into their respective folders in Visual Studio Code.

Wiring up the new pages

Now that we have all the pages our app will need, we need to remove the references to the two
pages that came out of the box, and that the CLI generated for us when the application was
created: Home and List.

In order to do this, open the app.component.ts file under the \src\app folder, remove the
references to the home and list pages, and add the references to some of the pages we’ve
created, such as: Library, Paths, and Books.

We also need to point the rootPage variable to LibraryPage instead of HomePage.

Furthermore, this.pages (which is used for the side menu) has also been updated.

The updated app.component.ts file should now look as follows.

Code Listing 3-i: The Updated app.component.ts File

import { Component, ViewChild } from '@angular/core';

import { Nav, Platform } from 'ionic-angular';

import { StatusBar } from '@ionic-native/status-bar';

import { SplashScreen } from '@ionic-native/splash-screen';

import { LibraryPage } from '../pages/library/library';

import { PathsPage } from '../pages/paths/paths';

import { BooksPage } from '../pages/books/books';

@Component({

 templateUrl: 'app.html'

})

export class MyApp {

 @ViewChild(Nav) nav: Nav;

 rootPage: any = LibraryPage;

 pages: Array<{title: string, component: any}>;

www.dbooks.org

https://www.dbooks.org/

44

 constructor(public platform: Platform, public statusBar: StatusBar,

 public splashScreen: SplashScreen) {

 this.initializeApp();

 this.pages = [

 { title: 'Paths', component: PathsPage },

 { title: 'Books', component: BooksPage }

];

 }

 initializeApp() {

 this.platform.ready().then(() => {

 this.statusBar.styleDefault();

 this.splashScreen.hide();

 });

 }

 openPage(page) {

 this.nav.setRoot(page.component);

 }

}

Now, run the ionic serve command and open your browser to see how it looks. In my case, I

see the following.

Figure 3-h: A Runtime Error

Oops! Wait, what happened here?

We are getting this error because we also need to edit the app.module.ts file, remove the old
references to the Home and List pages, and add the references to the Library page.

45

Here’s what the updated app.module.ts file looks like.

Code Listing 3-j: The Updated app.module.ts File

import { BrowserModule } from '@angular/platform-browser';

import { ErrorHandler, NgModule } from '@angular/core';

import { IonicApp, IonicErrorHandler, IonicModule } from 'ionic-angular';

import { MyApp } from './app.component';

import { LibraryPage } from '../pages/library/library';

import { StatusBar } from '@ionic-native/status-bar';

import { SplashScreen } from '@ionic-native/splash-screen';

@NgModule({

 declarations: [

 MyApp,

 LibraryPage

],

 imports: [

 BrowserModule,

 IonicModule.forRoot(MyApp),

],

 bootstrap: [IonicApp],

 entryComponents: [

 MyApp,

 LibraryPage

],

 providers: [

 StatusBar,

 SplashScreen,

 {provide: ErrorHandler, useClass: IonicErrorHandler}

]

})

export class AppModule {}

What I’ve done is update the NgModules declarations and entryComponents arrays with the

Library page name.

Because we are running the ionic serve command, it is performing live, reloading when any

changes take place. Let’s now have a look at the browser.

Figure 3-i: The App’s Updated UI (1)

www.dbooks.org

https://www.dbooks.org/

46

The Library page is now set as our app’s home page, based on the changes we’ve recently
made.

However, as you can appreciate, there’s not much of a user interface yet. To speed things up a
bit, simply open up the home.html file, copy its content, and replace the content of library.html
with the content you copied.

Have a look at your browser—now the UI should look as follows.

Figure 3-i: The App’s Updated UI (2)

Given that we previously updated this.pages on app.component.ts with the names of the main

pages we created with the CLI—specifically, Paths and Books—the side menu should now
look as follows.

Figure 3-j: The Updated Side Menu

We now have all our new pages wired up to the original scaffolded project we created using the
CLI.

Summary

In this chapter, we’ve quickly looked at how the navigation stack in Ionic-Angular works and
started off our project by adding the pages we’ll need in order to build our app.

We also wired these pages up to the project that was originally scaffolded by adding the
necessary references to the app.component.ts and app.module.ts files.

We are now ready to actually build our app—this is what we’ll do in the next chapter. Let’s get
our hands dirty.

47

Chapter 4 Building the App

Quick intro

One of the things I love most about Ionic is how easy it is to cover a lot of ground with barely
any information overload. So far, we’ve seen how to scaffold a project, add pages, and wire
those pages up, and also how to do testing with Ionic View and the browser, and deploy to Ionic
Pro.

That’s actually an impressive feat on its own, considering that it’s all been outlined in a small
number of pages. This is only possible because the framework accommodates for this level of
brevity without sacrificing on essential content.

But like everything in life, the best way to learn something new—no matter how concise the
content might be—is by building something. That’s what we’ll be doing throughout this chapter.

To make the most of this chapter, I highly advise you to check the great Ionic component
documentation as we go along, also, which you can find here.

At the end of this chapter, you can find the link to download the full source code of this app.

Before we start

But before we start, I want to mention that I like to keep things simple—because it not only
allows for easier knowledge retention, but also limits the scope to just the necessary essentials
required to get something done.

With this philosophy in mind, let’s create our Succinctly Library app by keeping it as simple as
possible. This means our app won’t use a database or perform AJAX requests, so all the data
required will be hard-coded.

Of course, you may later modify the app to make it more complex and include such features, but
that’s something I’ll totally leave up to you.

The Library page

The app’s Library page will be the main entry point to the application. As we’ve recently seen, it
contains the side menu with the links to the other main pages of the app.

I’m a big fan of having a side menu in an app; however, I believe that the main content of the
Library page should include some cards that also point or reference the other main pages of
the app, such as Books and Paths—so let’s add some cards to the Library page in order to
achieve this.

www.dbooks.org

https://ionicframework.com/docs/components/
https://www.dbooks.org/

48

In order to add some data that we’ll display on these cards, we’ll need to open up the library.ts
file and add the following code.

Code Listing 4-a: Card Data on the library.ts File

cardData = [

 {title: 'Paths', description: 'Learning paths',

 pushPage: 'PathsPage'},

 {title: 'Books', description: 'Books in the library',

 pushPage: 'BooksPage'}

];

This code can be added to the LibraryPage class just before the constructor. This is how the

updated library.ts file with this code now looks:

Code Listing 4-b: Updated library.ts File

import { Component } from '@angular/core';

import { IonicPage, NavController, NavParams } from 'ionic-angular';

import { PathsPage } from '../../pages/paths/paths';

import { BooksPage } from '../../pages/books/books';

@IonicPage()

@Component({

 selector: 'page-library',

 templateUrl: 'library.html',

})

export class LibraryPage {

 cardData = [

 {title: 'Paths', description: 'Learning paths',

 pushPage: 'PathsPage'},

 {title: 'Books', description: 'Books in the library',

 pushPage: 'BooksPage'}

];

 constructor(public navCtrl: NavController, public navParams: NavParams)

 { }

 ionViewDidLoad() {

 console.log('ionViewDidLoad LibraryPage');

 }

}

We’ll use the cardData object within the library.html file in order to build a couple of cards to

display within the UI. Let’s do this next.

49

Let’s open up library.html and add the following code within the ion-content tag.

Code Listing 4-c: The ion-card Markup

<ion-list *ngFor="let card of cardData" no-padding>

 <ion-card>

 <div class="card-title"

 [navPush]=card.pushPage>{{card.title}}

 </div>

 </ion-card>

</ion-list>

Let’s quickly examine this. We’ve added the ion-list component in order to be able to iterate

through the various elements of the cardData object—this can be achieved by using ngFor.

Each element of cardData, represented by the card object, is then referenced within the ion-
card component. The card.pushPage property is used to allow the user to navigate to the page

that corresponds to card.title.

After making this change, this is how the library.html file looks:

Code Listing 4-d: The Updated library.html File

<ion-header>

 <ion-navbar>

 <button ion-button menuToggle>

 <ion-icon name="menu"></ion-icon>

 </button>

 <ion-title>Succinctly Library</ion-title>

 </ion-navbar>

</ion-header>

<ion-content padding>

 <h3>Welcome to the Succinctly Series</h3>

 <ion-list *ngFor="let card of cardData" no-padding>

 <ion-card>

 <div class="card-title"

 [navPush]=card.pushPage>{{card.title}}</div>

 </ion-card>

 </ion-list>

 <button ion-button secondary menuToggle>Toggle Menu</button>

</ion-content>

We can preview the UI changes in the browser by running the ionic serve command.

www.dbooks.org

https://www.dbooks.org/

50

Figure 4-a: The Updated Library Page

In order to test Ionic-Angular’s navigation features, let’s click on either the Paths or the Books
card. As expected, and as seen in Figure 4-b, the corresponding page is displayed and added
to the navigation stack. This is possible because card.pushPage references the page that Ionic

will mount.

Figure 4-b: The Mounted Paths Page

We can unmount the current page on the navigation stack and return to the previous one—in
this case, the Library page—by simply clicking the back arrow button.

We now have our Library page working; however, we can still improve the way the card
component looks, so let’s do that next.

Making a nicer card

As the saying goes, “looks are not everything, but they do matter.” In today’s highly competitive
app market, users are spoiled with choice, and nice-looking, appealing apps have a better
chance of remaining on people’s devices than ones that have less appealing UIs.

Therefore, it is somewhat important to create a good user experience, and in order to do that,
having a relatively appealing UI is key.

As the card component will be an essential part of our application, and probably used on most
of the app’s pages, it’s worthwhile to spend some time creating a nicer-looking card. This will
not only make our app look better, but will also provide the user a better experience.

Let’s go ahead and do that. The following code will be the base for our new and improved card.

Code Listing 4-e: A Nicer Card

<ion-card>

 <ion-item>

51

 <h2>Card Header</h2>

 <p>Card Short Description</p>

 </ion-item>

 <ion-card-content>

 <ion-card-title>

 Card Title

 </ion-card-title>

 <p>

 Card Long Description

 </p>

 </ion-card-content>

 <ion-row>

 <button ion-button [navPush]=card.pushPage>{{card.title}}</button>

 </ion-row>

</ion-card>

Let’s now take this code and replace the previous card within the library.html file. The
library.html file will now look as follows.

Code Listing 4-f: The Updated library.html File

<ion-header>

 <ion-navbar>

 <button ion-button menuToggle>

 <ion-icon name="menu"></ion-icon>

 </button>

 <ion-title>Succinctly Library</ion-title>

 </ion-navbar>

</ion-header>

<ion-content padding>

 <h3>Welcome to the Succinctly Series</h3>

 <ion-list *ngFor="let card of cardData" no-padding>

 <ion-card>

 <ion-item>

 <h2>Card Header</h2>

 <p>Card Short Description</p>

 </ion-item>

 <ion-card-content>

 <ion-card-title>

 Card Title

 </ion-card-title>

www.dbooks.org

https://www.dbooks.org/

52

 <p>

 Card Long Description

 </p>

 </ion-card-content>

 <ion-row>

 <button ion-button

 [navPush]=card.pushPage>{{card.title}}

 </button>

 </ion-row>

 </ion-card>

 </ion-list>

 <button ion-button secondary menuToggle>Toggle Menu</button>

</ion-content>

Let’s now execute the ionic serve command to see how this looks.

Figure 4-c: The Updated Library Page

That looks a bit nicer than the previous version of the card, as it contains an image (which we
still need to specify), various text elements, and a button.

Not super sexy yet from a UI point of view, but at least something that provides a bit more
information and a better experience to the user.

With this new card structure and outline, let’s add the card elements required for the Paths and
Books pages and upgrade the look and feel of the Library page.

Updating the Library page

Now that we’ve got a new card style, let’s finalize updating the Library page. From a UI
perspective, the HTML markup of the Library page is pretty much done; however, we need
make those text elements dynamic for each card.

53

Let’s start doing this by expanding the cardData object within the library.ts file and replacing it

with the code that follows.

Code Listing 4-g: The Updated cardData Object

cardData = [

 { img: '../../assets/imgs/logo.png',

 header: 'Paths',

 short: 'Learning paths',

 title: '',

 description: 'Paths are books organized by related topics',

 buttontxt: 'Explore Paths',

 pushPage: 'PathsPage'

 },

 { img: '../../assets/imgs/azure.jpg',

 header: 'Books',

 short: 'Books to read',

 title: '',

 description: 'Over 130 books on technologies that matter',

 buttontxt: 'Browse Books',

 pushPage: 'BooksPage'

 }

];

As you may have noticed in Code Listing 4-g, I’ve also dropped a couple of images into the
\assets\imgs\ folder. So, after updating the cardData object, our library.ts file now looks as

follows.

Code Listing 4-h: The Updated library.ts File

import { Component } from '@angular/core';

import { IonicPage, NavController, NavParams } from 'ionic-angular';

import { PathsPage } from '../../pages/paths/paths';

import { BooksPage } from '../../pages/books/books';

@IonicPage()

@Component({

 selector: 'page-library',

 templateUrl: 'library.html',

})

export class LibraryPage {

 cardData = [

 { img: '../../assets/imgs/logo.png',

 header: 'Paths',

 short: 'Learning paths',

www.dbooks.org

https://www.dbooks.org/

54

 title: '',

 description: 'Paths are books organized by related topics',

 buttontxt: 'Explore Paths',

 pushPage: 'PathsPage'

 },

 { img: '../../assets/imgs/azure.jpg',

 header: 'Books',

 short: 'Books to read',

 title: '',

 description: 'Over 130 books on technologies that matter',

 buttontxt: 'Browse Books',

 pushPage: 'BooksPage'

 }

];

 constructor(public navCtrl: NavController, public navParams: NavParams)

 { }

 ionViewDidLoad() {

 console.log('ionViewDidLoad LibraryPage');

 }

}

The updated markup, library.html, now looks as follows.

Code Listing 4-i: The Updated library.html File

<ion-header>

 <ion-navbar>

 <button ion-button menuToggle>

 <ion-icon name="menu"></ion-icon>

 </button>

 <ion-title>Succinctly Library</ion-title>

 </ion-navbar>

</ion-header>

<ion-content padding>

 <h3>Welcome to the Succinctly Series</h3>

 <ion-list *ngFor="let card of cardData" no-padding>

 <ion-card>

 <ion-item>

 <h2>{{card.header}}</h2>

 <p>{{card.short}}</p>

 </ion-item>

55

 <ion-card-content>

 <ion-card-title>{{card.title}}</ion-card-title>

 <p>{{card.description}}</p>

 </ion-card-content>

 <ion-row center>

 <ion-col text-center>

 <button ion-button [navPush]=card.pushPage>

 {{card.buttontxt}}

 </button>

 </ion-col>

 </ion-row>

 </ion-card>

 </ion-list>

</ion-content>

Let’s execute the ionic serve command again in order to see how these changes look.

Figure 4-d: The Updated Library Page

Awesome! Our app looks much better than it did—small changes can go a long way.

With our Library page out of the way, let’s focus on updating our Paths page.

www.dbooks.org

https://www.dbooks.org/

56

Updating the Paths page

As mentioned earlier, we are going to be hardcoding the data that our application will be using.
The Paths page is nothing more than a small collection of topics into which books are
organized—topics that are related to each other, thus forming a learning path.

In order to organize the book topics into paths, we need to create a pathData object within the

paths.ts file that will indicate which book topics correspond to which learning path.

Let’s define the pathData object as follows.

Code Listing 4-j: The pathData Object

pathData = [

 { name: 'Database',

 books: [

 { title: 'Force.com Succinctly', page: this.pg },

 { title: 'Azure Cosmos DB and DocumentDB Succinctly',

 page: this.pg }

]

 },

 { name: 'Web Development',

 books: [

 { title: 'Force.com Succinctly', page: this.pg }

]

 },

 { name: 'Cloud',

 books: [

 { title: 'Azure Cosmos DB and DocumentDB Succinctly',

 page: this.pg }

]

 },

 { name: 'Microsoft & .NET',

 books: [

 { title: 'Microsoft Bot Framework Succinctly', page: this.pg },

 { title: 'Twilio with C# Succinctly', page: this.pg },

 { title: 'Customer Success for C# Developers Succinctly',

 page: this.pg },

 { title: 'Data Capture and Extraction with C# Succinctly',

 page: this.pg },

]

 },

 { name: 'Mobile Development',

 books: [

 { title: 'Twilio with C# Succinctly', page: this.pg }

]

57

 },

 { name: 'Miscellaneous',

 books: [

 { title: 'Customer Success for C# Developers Succinctly',

 page: this.pg }

]

 }

];

What we’ve done here is created a number of categories (learning paths), and under each,
defined a number of books that correspond to them. Each book points to the Book Overview
page—this is defined with this.pg.

To keep things simple—given that there are over 130 books in the series—I’ve just added the
titles I’ve written, that have been published at the time of writing of this book.

With the pathData JSON data object defined, our paths.ts file now looks as follows.

Code Listing 4-k: The Updated paths.ts File

import { Component } from '@angular/core';

import { IonicPage, NavController, NavParams } from 'ionic-angular';

@IonicPage()

@Component({

 selector: 'page-paths',

 templateUrl: 'paths.html',

})

export class PathsPage {

 pg = 'BookoverviewPage';

 pathData = [

 { name: 'Database',

 books: [

 { title: 'Force.com Succinctly', page: this.pg },

 { title: 'Azure Cosmos DB and DocumentDB Succinctly',

 page: this.pg }

]

 },

 { name: 'Web Development',

 books: [

 { title: 'Force.com Succinctly', page: this.pg }

]

 },

 { name: 'Cloud',

 books: [

www.dbooks.org

https://www.dbooks.org/

58

 { title: 'Azure Cosmos DB and DocumentDB Succinctly',

 page: this.pg }

]

 },

 { name: 'Microsoft & .NET',

 books: [

 { title: 'Microsoft Bot Framework Succinctly', page: this.pg },

 { title: 'Twilio with C# Succinctly', page: this.pg },

 { title: 'Customer Success for C# Developers Succinctly',

 page: this.pg },

 { title: 'Data Capture and Extraction with C# Succinctly',

 page: this.pg },

]

 },

 { name: 'Mobile Development',

 books: [

 { title: 'Twilio with C# Succinctly', page: this.pg }

]

 },

 { name: 'Miscellaneous',

 books: [

 { title: 'Customer Success for C# Developers Succinctly',

 page: this.pg }

]

 }

];

 constructor(public navCtrl: NavController, public navParams: NavParams)

 { }

 ionViewDidLoad() {

 console.log('ionViewDidLoad PathsPage');

 }

}

Let’s now work on updating the UI of the Paths page. In order to do that, open up the
paths.html file. Let’s replace the existing markup with the following.

Code Listing 4-l: The Updated paths.html File

<ion-header>

 <ion-navbar>

 <ion-title>Paths</ion-title>

 </ion-navbar>

59

</ion-header>

<ion-content padding>

 <ion-list *ngFor="let path of pathData" no-padding>

 <ion-card>

 <ion-item>

 <ion-row center>

 <ion-col text-center>

 <h1>{{path.name}}</h1>

 </ion-col>

 </ion-row>

 </ion-item>

 <ion-list *ngFor="let book of path.books" no-padding>

 <ion-card-content>

 <ion-row center>

 <ion-col text-center>

 <h2>{{book.title}}</h2>

 </ion-col>

 </ion-row>

 <ion-row center>

 <ion-col text-center>

 <button ion-button [navPush]=book.page>

 Check book

 </button>

 </ion-col>

 </ion-row>

 </ion-card-content>

 </ion-list>

 </ion-card>

 </ion-list>

</ion-content>

As we can see, I’ve added some markup to the paths.html file so it looks relatively nice and is
still simple enough to be easily read and understood.

I’ve added two ngFor loops—one that loops over the learning paths, and another that loops

through the book titles of each learning path.

The rest of the code is simply regular markup that uses common standard Ionic components
such as ion-card, ion-item, ion-card-content, ion-row, and ion-col, among regular

HTML markup.

If we now execute the ionic serve command, our Paths page looks as follows.

www.dbooks.org

https://www.dbooks.org/

60

Figure 4-e: The Updated Paths Page

With a little code, we now have a good-looking page and the books organized by learning paths.

Updating the Books page

Let’s now move on and update the Books page, which will be quite similar to the Paths page.
The difference is that the Books page will only contain information about the books within the
library, without specifying which learning path they relate to.

You can think of the Books page as a trimmed-down version of the Paths path—instead of
using two instances of ngFor in our markup, we’ll require only one to loop around all the book

titles.

First of all, let’s define a booksData object within the books.ts file as follows.

Code Listing 4-m: The booksData Object

booksData = [

 { title: 'Force.com Succinctly', page: this.pg },

 { title: 'Azure Cosmos DB and DocumentDB Succinctly',

 page: this.pg },

 { title: 'Microsoft Bot Framework Succinctly', page: this.pg },

 { title: 'Twilio with C# Succinctly', page: this.pg },

 { title: 'Customer Success for C# Developers Succinctly',

 page: this.pg },

61

 { title: 'Data Capture and Extraction with C# Succinctly',

 page: this.pg }

];

With the booksData object defined, let’s now update the books.ts file accordingly.

Code Listing 4-n: The Updated books.ts File

import { Component } from '@angular/core';

import { IonicPage, NavController, NavParams } from 'ionic-angular';

@IonicPage()

@Component({

 selector: 'page-books',

 templateUrl: 'books.html',

})

export class BooksPage {

 pg = 'BookoverviewPage';

 booksData = [

 { title: 'Force.com Succinctly', page: this.pg },

 { title: 'Azure Cosmos DB and DocumentDB Succinctly',

 page: this.pg },

 { title: 'Microsoft Bot Framework Succinctly', page: this.pg },

 { title: 'Twilio with C# Succinctly', page: this.pg },

 { title: 'Customer Success for C# Developers Succinctly',

 page: this.pg },

 { title: 'Data Capture and Extraction with C# Succinctly',

 page: this.pg }

];

 constructor(public navCtrl: NavController, public navParams: NavParams)

 { }

 ionViewDidLoad() {

 console.log('ionViewDidLoad BooksPage');

 }

}

Let’s now work on updating the UI of the Books page. In order to do that, open the books.html
file. Let’s replace the existing markup with the following.

Code Listing 4-o: The Updated books.html File

<ion-header>

www.dbooks.org

https://www.dbooks.org/

62

 <ion-navbar>

 <ion-title>Books</ion-title>

 </ion-navbar>

</ion-header>

<ion-content padding>

 <ion-list *ngFor="let book of booksData" no-padding>

 <ion-card>

 <ion-card-content>

 <ion-row center>

 <ion-col text-center>

 <h2>{{book.title}}</h2>

 </ion-col>

 </ion-row>

 <ion-row center>

 <ion-col text-center>

 <button ion-button [navPush]=book.page>

 Check book

 </button>

 </ion-col>

 </ion-row>

 </ion-card-content>

 </ion-card>

 </ion-list>

</ion-content>

As you can see, just like the Paths page, this page uses Ionic framework components such as
ion-card, ion-item, ion-card-content, ion-row, and ion-col, among standard HTML

markup.

To see how the Books page looks, let’s execute the ionic serve command as we normally

do.

63

Figure 4-f: The Updated Books Page

Great—we’ve finished the Books page. Next on our list is the Book Overview page.

The Book Overview page

We’ve reached an interesting milestone in building our app. Until now, all the pages we’ve
created and updated have been pretty much self-contained, meaning that the objects and
variables they use are found within the same Angular component that defines the page itself.

With the Book Overview page, this won’t be the case any longer. Because we have several
book titles in our application’s library, it’s not practical to create an individual page for each one.

For a moment, just imagine we actually have all the Succinctly series titles in our app’s list. We
would need to create more than 130 pages—this would not be practical or feasible.

In other words, the Book Overview page must be a generic page, to which we could pass as
parameters the details of the book that we want the page to display.

Before we go and update the Book Overview page, we first need to talk a bit about navigation
parameters within Ionic pages—also known as navParams.

NavParams

Navigation parameters, just like the name implies, let us pass information from one page to
another. This is incredibly useful, and defines the process of how we can send record-specific
data to a page—which is exactly what we need in order to make the Book Overview page
generic enough that it can be used to display data from any given book.

www.dbooks.org

https://www.dbooks.org/

64

This also means we’ll have to slightly modify the Paths and Books pages in order to pass the
necessary navigation parameters for the books listed on both these pages.

But before we make any adjustments to the Paths and Books pages, let’s first understand how
navigation parameters actually work, and how they can be passed, by looking at some generic
code samples.

The first way to specify navigation parameters is by adding a navParams directive, as can be

seen in the following code.

Code Listing 4-p: The navParams Directive

<button ion-button [navPush]=book.page [navParams]=book.params>

 Check book

</button>

We are able to assign a book.params object to the navParams directive, thus passing the

required navigation parameters to book.page.

The other way we can achieve this is by code, as shown in the following example.

Code Listing 4-q: Passing navParams by Code

pushPage() {

 this.navCtrl.push(OtherPage, {name: 'Force.com Succinctly',

 author: 'Ed Freitas', url: 'https://…'});

}

Now that we know how to pass parameters to the page we are navigating to, how do we
actually receive those parameters and do something with them?

The answer is very simple: basically, each Ionic-Angular page component constructor receives
a navParams parameter, which contains all the navigation parameters passed on to the page.

All Ionic-Angular page components have this constructor. Here’s an example.

Code Listing 4-r: Page Component Constructor

constructor(public navCtrl: NavController, public navParams: NavParams)

{ }

Now that we know how to pass on parameters to pages and use them, we can appreciate how
essential they are for us to be able to make pages generic.

Now, we’re ready to get back to work and update the Book Overview page.

65

Updating the Book Overview page

As its name implies, the Book Overview page will contain just a short overview of the book with
some basic information, such as the author’s name, date published, and the number of pages.

To understand the hierarchical structure of how the Book Overview (and also later, the Book
Detail) page will display book information, let’s look at the following diagram.

Figure 4-g: Hierarchical Book Information

With this in mind, let’s update this page accordingly—we can do this by adding this basic
information to the page’s existing HTML markup, as follows.

Code Listing 4-s: Updated bookoverview.html File

<ion-header>

 <ion-navbar>

 <ion-title>Overview</ion-title>

 </ion-navbar>

</ion-header>

<ion-content padding>

 <ion-card>

 <ion-card-content>

 <ion-row center>

 <ion-col text-center>

 <h1>{{book.title}}</h1>

 </ion-col>

 </ion-row>

 <ion-row center>

 <ion-col text-center>

www.dbooks.org

https://www.dbooks.org/

66

 <h2>Author: {{book.overview.author}}</h2>

 </ion-col>

 </ion-row>

 <ion-row center>

 <ion-col text-center>

 <h3>Published:

 {{book.overview.published}}</h3>

 </ion-col>

 </ion-row>

 <ion-row center>

 <ion-col text-center>

 <h3>{{book.overview.numpages}} pages</h3>

 </ion-col>

 </ion-row>

 <ion-row center>

 <ion-col text-center>

 <button ion-button

 [navPush]= book.overview.details.page

 [navParams]=book>

 Book details

 </button>

 </ion-col>

 </ion-row>

 </ion-card-content>

 </ion-card>

</ion-content>

Based on this example, we can see that the page is using a book data object that contains the

book’s information. The properties specific to the book’s overview, such as date published,
number of pages, and author, are grouped under the book.overview property.

We can see that this page invokes the Book Details page—this is done by assigning
book.overview.details.page to navPush.

Notice that the whole book object is passed to the Book Details page through navParams.

It’s cool that we have our Book Overview page UI ready, but how does the BookoverviewPage

class actually process the navParams passed from the Books or Paths pages?

This is possible because the navParams.data object—which contains the actual data passed

through the navigation parameters—is assigned to a book object within the constructor of the

BookoverviewPage class, as we can see in the following code.

67

Code Listing 4-t: Updated bookoverview.ts File

import { Component } from '@angular/core';

import { IonicPage, NavController, NavParams } from 'ionic-angular';

@IonicPage()

@Component({

 selector: 'page-bookoverview',

 templateUrl: 'bookoverview.html',

})

export class BookoverviewPage {

 public book;

 constructor(public navCtrl: NavController, public navParams: NavParams)

 {

 this.book = navParams.data;

 }

 ionViewDidLoad() {

 console.log('ionViewDidLoad BookoverviewPage');

 }

}

This explains how the Book Overview page is able to receive and use the navParams sent by

the invoking page.

However, we still do not know how the Books or Paths page actually invoke the Book
Overview page, and what exactly is passed as navParams—this is what we’ll explore next.

Adding navParams to the Books page

To be able to invoke the Book Overview page from the Books page, we need to be able to
assign the book object to navParams.

So, in essence, our Books page HTML markup should now look as follows.

Code Listing 4-u: Updated books.html File

<ion-header>

 <ion-navbar>

 <ion-title>Books</ion-title>

 </ion-navbar>

</ion-header>

<ion-content padding>

www.dbooks.org

https://www.dbooks.org/

68

 <ion-list *ngFor="let book of booksData" no-padding>

 <ion-card>

 <ion-card-content>

 <ion-row center>

 <ion-col text-center>

 <h2>{{book.title}}</h2>

 </ion-col>

 </ion-row>

 <ion-row center>

 <ion-col text-center>

 <button ion-button

 [navPush]=book.page [navParams]=book>

 Overview

 </button>

 </ion-col>

 </ion-row>

 </ion-card-content>

 </ion-card>

 </ion-list>

</ion-content>

As you can see, the only thing new is that on the button, the book object is being assigned to

navParams—which is what the BookoverviewPage class later uses.

That’s cool—however, let’s not forget that the Paths page also invokes the Book Overview
page, so in essence, both the Books and Paths pages should share the book object—as both

pages need to use it. Any change to the book object would affect both pages.

To achieve this, we need to modify the books.ts file and make the book object accessible to the

Paths page. But because we have more than one book object, what we really have is an array

of book objects.

So let’s define a BooksData array within books.ts that will contain the various book objects that

our application will handle.

Code Listing 4-v: The BookData Array

export let BooksData = [

{ title: 'Force.com Succinctly', page: 'BookoverviewPage',

overview: { author: 'Ed Freitas', numpages: 100,

published: 'December 08, 2017',

details: { page: 'BookdetailPage',

pic:

'https://cdn.syncfusion.com/content/images/downloads/ebook/ebook-

cover/forcedotcomsuccinctly.jpg?v=09012018021233',

69

url: 'https://www.syncfusion.com/ebooks/forcedotcomsuccinctly' } } },

{ title: 'Azure Cosmos DB and DocumentDB Succinctly',

page: 'BookoverviewPage',

overview: { author: 'Ed Freitas', numpages: 103,

published: 'May 23, 2017',

details: { page: 'BookdetailPage',

pic:

'https://cdn.syncfusion.com/content/images/downloads/ebook/ebook-

cover/Azure_Cosmos_DB_and_DocumentDB_Succinctly.jpg?v=09012018021233',

url:

'https://www.syncfusion.com/ebooks/azure_cosmos_db_and_documentdb_succinctl

y' } } },

{ title: 'Microsoft Bot Framework Succinctly', page: 'BookoverviewPage',

overview: { author: 'Ed Freitas', numpages: 109,

published: 'May 02, 2017',

details: { page: 'BookdetailPage',

pic: 'https://cdn.syncfusion.com/content/images/downloads/ebook/ebook-

cover/Microsoft_Bot_Framework_Succinctly.jpg?v=09012018021233',

url:

'https://www.syncfusion.com/ebooks/azure_cosmos_db_and_documentdb_succinctl

y' } } },

{ title: 'Twilio with C# Succinctly', page: 'BookoverviewPage',

overview: { author: 'Ed Freitas', numpages: 107,

published: 'April 03, 2017',

details: { page: 'BookdetailPage',

pic: 'https://cdn.syncfusion.com/content/images/downloads/ebook/ebook-

cover/Twilio_with_C_sharp_Succinctly.jpg?v=09012018021233',

url: 'https://www.syncfusion.com/ebooks/twilio_with_c_sharp_succinctly' } }

},

{ title: 'Customer Success for C# Developers Succinctly', page:

'BookoverviewPage',

overview: { author: 'Ed Freitas', numpages: 97,

published: 'October 03, 2016',

details: { page: 'BookdetailPage',

pic: 'https://cdn.syncfusion.com/content/images/downloads/ebook/ebook-

cover/Customer_Success_Succicntly.jpg?v=09012018021233',

url:

'https://www.syncfusion.com/ebooks/customer_success_for_c_sharp_developers'

} } },

www.dbooks.org

https://www.dbooks.org/

70

{ title: 'Data Capture and Extraction with C# Succinctly', page:

'BookoverviewPage',

overview: { author: 'Ed Freitas', numpages: 85,

published: 'September 19, 2016',

details: { page: 'BookdetailPage',

pic: 'https://cdn.syncfusion.com/content/images/downloads/ebook/ebook-

cover/Data_Capture_And_Extraction_Succinctly.jpg?v=09012018021233',

url:

'https://www.syncfusion.com/ebooks/data_capture_and_extraction_with_c_sharp

_succinctly' } } }

];

Notice that each book object within the BooksData array contains general information, but also

an overview object, and within that, a details object. So, essentially, every instance of

BooksData array—each book object—contains the book’s general information, the book’s

overview (which is used by the BookoverviewPage class), and the book’s details (which will be

used by the BookdetailPage class—we’ll see this shortly).

This is how the modified books.ts file now looks.

Code Listing 4-w: Updated books.ts File

import { Component } from '@angular/core';

import { IonicPage, NavController, NavParams } from 'ionic-angular';

export let BooksData = [

{ title: 'Force.com Succinctly', page: 'BookoverviewPage',

overview: { author: 'Ed Freitas', numpages: 100,

published: 'December 08, 2017',

details: { page: 'BookdetailPage',

pic:

'https://cdn.syncfusion.com/content/images/downloads/ebook/ebook-

cover/forcedotcomsuccinctly.jpg?v=09012018021233',

url: 'https://www.syncfusion.com/ebooks/forcedotcomsuccinctly' } } },

{ title: 'Azure Cosmos DB and DocumentDB Succinctly',

page: 'BookoverviewPage',

overview: { author: 'Ed Freitas', numpages: 103,

published: 'May 23, 2017',

details: { page: 'BookdetailPage',

pic:

'https://cdn.syncfusion.com/content/images/downloads/ebook/ebook-

cover/Azure_Cosmos_DB_and_DocumentDB_Succinctly.jpg?v=09012018021233',

71

url:

'https://www.syncfusion.com/ebooks/azure_cosmos_db_and_documentdb_succinctl

y' } } },

{ title: 'Microsoft Bot Framework Succinctly', page: 'BookoverviewPage',

overview: { author: 'Ed Freitas', numpages: 109,

published: 'May 02, 2017',

details: { page: 'BookdetailPage',

pic: 'https://cdn.syncfusion.com/content/images/downloads/ebook/ebook-

cover/Microsoft_Bot_Framework_Succinctly.jpg?v=09012018021233',

url:

'https://www.syncfusion.com/ebooks/azure_cosmos_db_and_documentdb_succinctl

y' } } },

{ title: 'Twilio with C# Succinctly', page: 'BookoverviewPage',

overview: { author: 'Ed Freitas', numpages: 107,

published: 'April 03, 2017',

details: { page: 'BookdetailPage',

pic: 'https://cdn.syncfusion.com/content/images/downloads/ebook/ebook-

cover/Twilio_with_C_sharp_Succinctly.jpg?v=09012018021233',

url: 'https://www.syncfusion.com/ebooks/twilio_with_c_sharp_succinctly' } }

},

{ title: 'Customer Success for C# Developers Succinctly', page:

'BookoverviewPage',

overview: { author: 'Ed Freitas', numpages: 97,

published: 'October 03, 2016',

details: { page: 'BookdetailPage',

pic: 'https://cdn.syncfusion.com/content/images/downloads/ebook/ebook-

cover/Customer_Success_Succicntly.jpg?v=09012018021233',

url:

'https://www.syncfusion.com/ebooks/customer_success_for_c_sharp_developers'

} } },

{ title: 'Data Capture and Extraction with C# Succinctly', page:

'BookoverviewPage',

overview: { author: 'Ed Freitas', numpages: 85,

published: 'September 19, 2016',

details: { page: 'BookdetailPage',

pic: 'https://cdn.syncfusion.com/content/images/downloads/ebook/ebook-

cover/Data_Capture_And_Extraction_Succinctly.jpg?v=09012018021233',

url:

'https://www.syncfusion.com/ebooks/data_capture_and_extraction_with_c_sharp

_succinctly' } } }

www.dbooks.org

https://www.dbooks.org/

72

];

@IonicPage()

@Component({

 selector: 'page-books',

 templateUrl: 'books.html',

})

export class BooksPage {

 booksData = BooksData;

 constructor(public navCtrl: NavController, public navParams: NavParams)

 { }

 ionViewDidLoad() {

 console.log('ionViewDidLoad BooksPage');

 }

}

Notice how the BooksData array is assigned to the booksData object, which is used in

books.html within the ngFor directive on the ion-list component, in order to iterate through

each of the books.

Adding navParams to the Paths page

To be able to invoke the Books Overview page from the Paths page, we need to be able to
assign the book object to navParams.

The Paths page HTML markup should now look as follows.

Code Listing 4-x: Updated paths.html File

<ion-header>

 <ion-navbar>

 <ion-title>Paths</ion-title>

 </ion-navbar>

</ion-header>

<ion-content padding>

 <ion-list *ngFor="let path of pathData" no-padding>

 <ion-card>

 <ion-item>

 <ion-row center>

 <ion-col text-center>

 <h1>{{path.name}}</h1>

73

 </ion-col>

 </ion-row>

 </ion-item>

 <ion-list *ngFor="let book of path.books" no-padding>

 <ion-card-content>

 <ion-row center>

 <ion-col text-center>

 <h2>{{book.title}}</h2>

 </ion-col>

 </ion-row>

 <ion-row center>

 <ion-col text-center>

 <button ion-button [navPush]=book.page

 [navParams]=book>

 Check book

 </button>

 </ion-col>

 </ion-row>

 </ion-card-content>

 </ion-list>

 </ion-card>

 </ion-list>

</ion-content>

Now that we’ve assigned the book object to navParams, let’s refactor a bit the code we

previously wrote for paths.ts.

We need to do this in order to make use of the BooksData array that we created within books.ts,

so we can use it inside paths.ts. We can do this by also importing BooksData within our

BooksPage import clause. The following is the refactored paths.ts file.

Code Listing 4-y: Updated paths.ts File

import { Component } from '@angular/core';

import { IonicPage, NavController, NavParams } from 'ionic-angular';

import { BooksPage, BooksData } from '../../pages/books/books';

@IonicPage()

@Component({

 selector: 'page-paths',

 templateUrl: 'paths.html',

})

export class PathsPage {

 pg = 'BookoverviewPage';

www.dbooks.org

https://www.dbooks.org/

74

 pathData = [

 { name: 'Database',

 books: [

 BooksData[0],

 BooksData[1]

]

 },

 { name: 'Web Development',

 books: [

 BooksData[0]

]

 },

 { name: 'Cloud',

 books: [

 BooksData[1]

]

 },

 { name: 'Microsoft & .NET',

 books: [

 BooksData[2],

 BooksData[3],

 BooksData[4],

 BooksData[5]

]

 },

 { name: 'Mobile Development',

 books: [

 BooksData[3]

]

 },

 { name: 'Miscellaneous',

 books: [

 BooksData[5]

]

 }

];

 constructor(public navCtrl: NavController, public navParams: NavParams)

 { }

 ionViewDidLoad() {

 console.log('ionViewDidLoad PathsPage');

 }

}

75

Notice that I’ve refactored the books array objects within pathData by using the BooksData

object imported from the Books page. This way, we don’t need to repeat any book data.

In a real-life scenario, you’ll probably fetch a similar data structure like BooksData from a web

server using a RESTful API, with an AJAX request through an Angular service. However, the
same focus on modularity and reusability should be kept.

We have now updated all the existing pages that invoke the Book Overview page. The only
remaining bit of our application is to update the Book Detail page, which we’ll do shortly.

Before we do that, let’s run the ionic serve command once again to check how the Book

Overview page looks when accessed from the Paths page.

Figure 4-h: The Book Overview Page Invoked from the Paths Page

Now, let’s do the same thing, but by navigating to the Book Overview page from the Books
page.

Figure 4-i: The Book Overview Page Invoked from the Books Page

We can see that we were able to navigate to the Book Overview page for two different books:
one through the Paths page, and the other through the Books page.

The only thing we need to do to finalize our application is update the Book Detail page, which is
what we’ll do next.

www.dbooks.org

https://www.dbooks.org/

76

Updating the Book Detail page

We’re on the last stretch of this app. The Book Detail page, as its name clearly implies, is
responsible for displaying the properties of the details object for each book.

In order to do that, let’s modify our existing bookdetail.html file and add the following markup.

Code Listing 4-z: Updated bookdetail.html File

<ion-header>

 <ion-navbar>

 <ion-title>Details</ion-title>

 </ion-navbar>

</ion-header>

<ion-content padding>

 <ion-card>

 <ion-card-content>

 <ion-row center>

 <ion-col text-center>

 <button ion-button>

 Get book (For future use)</button>

 </ion-col>

 </ion-row>

 </ion-card-content>

 </ion-card>

</ion-content>

As you’ve probably noticed, we are only displaying the pic property. This is because I’d like to

leave you a challenge to figure out on your own.

The challenge is to use the templateUrl property and add it to the button, so that when clicking

on it in a browser window, it can be opened and you can grab the book directly from the
Syncfusion website.

I’ll give you a hint—you’ll be able to do this by launching in App Browser—this is possible by
using the InAppBrowser Cordova plugin. More details can be found here, so feel free to have a
look.

With the UI of the Book Detail page done, let’s now move on and focus on the bookdetail.ts file,
and update it accordingly. We can see the updated code in Code Listing 4-aa.

Code Listing 4-aa: Updated bookdetail.ts File

import { Component } from '@angular/core';

import { IonicPage, NavController, NavParams } from 'ionic-angular';

https://ionicframework.com/docs/native/in-app-browser/

77

@IonicPage()

@Component({

 selector: 'page-bookdetail',

 templateUrl: 'bookdetail.html',

})

export class BookdetailPage {

 public book;

 constructor(public navCtrl: NavController, public navParams: NavParams)

 {

 this.book = navParams.data;

 }

 ionViewDidLoad() {

 console.log('ionViewDidLoad BookdetailPage');

 }

}

All we are really doing here is getting the navParams.data object (the actual navigation

parameters received from the Book Overview page) and assigning the parameters to the book

object, which is what the bookdetail.html uses.

Let’s now execute the ionic serve command once again in order to view the changes we’ve

done.

Figure 4-j: The Book Detail Page

www.dbooks.org

https://www.dbooks.org/

78

Awesome—we now have a fully working app. We’ve gone through all the steps in order to
create a small, but fully working Ionic application—congrats!

Full source code

You can download the full source code of this app here. Please note that this includes the
complete project, which can be opened in your development environment of choice—in my
case, I used Visual Studio Code.

Also note that this project doesn’t include the \node_modules folder, so in order to install the
required Node.js modules, you need to go into the project folder and run the npm install –g
ionic cordova command.

Summary

This has been a long but interesting chapter, as we’ve seen how to navigate through the various
app pages and give the application its character and functionality.

Given the breadth of the Ionic framework, it’s impossible to cover it all in one short book.
However, with the step-by-step approach we’ve taken to build this app, we’ve explored most of
the essentials you’ll need in order to get off the ground with this framework and create your own
app.

In the next and final chapter, we’ll quickly review various Ionic resources that should help you
expand your understanding of this framework, so you can keep exploring it on your own.

https://onedrive.live.com/?cid=01efa00412ef5700&id=1EFA00412EF5700%21279243&authkey=!AOvpprc9uWdh-OU

79

Chapter 5 Further Resources

Quick intro

There’s so much more to the Ionic framework that I’d probably need at least two or three more
books to cover it all, and who knows—I might write a follow-up on this topic in the future. But for
now, I think we’ve managed to achieve the goal of covering how to get started and build
something without adding unnecessary complexity.

In any case, I’d like to quickly go over some extra Ionic framework resources and details that
might come in handy while you keep exploring this fascinating ecosystem on your own.

Exploring the documentation

Needless to say, the Ionic documentation is the definitive resource from all points of view. It is
organized into various sections that make it incredibly easy for anyone to find relevant
information.

Figure 5-a: Screenshot of the Ionic Documentation Site

Here are the main sections the documentation covers:

• Introduction: Getting started with the framework.

• UI Components: Reference guide for all the available components.

• API Reference: Up-to-date details of all the methods, properties, and events.

• Ionic Native: How to integrate native functionalities and use plugins.

• Theming: How to change the look and feel of your app.

• Ionicons (Icons): Extensive information on all Ionic custom-designed icon resources.

• CLI: Complete information on how to use the Command Line Interface.

Beyond these topics, the documentation site also provides an extensive FAQ and hosts a forum
where users ask all sort of questions of the Ionic technical team and get feedback on their
queries.

Overall, the documentation is an invaluable resource.

www.dbooks.org

https://ionicframework.com/docs/
https://www.dbooks.org/

80

Native plugins

An Ionic app running on a browser will not have access to the hardware on the device. A great
thing about Ionic is that it has plugins to get around these limitations.

These plugins are usually referred to as native plugins because they give you access to the
hardware present on the device.

Figure 5-b: A “Plugin” Icon

As time has passed, these plugins have expanded beyond offering only access to the hardware,
by also providing many different features that you would expect from a mobile app.

Many of these plugins can only be tested directly on a device, and may fail while being tested
on a browser. The reason is that many of these plugins might be looking for a hardware
functionality that only exists on the device itself.

One of the most well-known or often-used plugins is the one that provides access to the
device’s camera. Although we won’t be adding any further code to our application to make use
of the camera, it’s useful to know which commands you may use in case you feel like playing
around with it.

Code Listing 5-a: Commands to Install the Camera Plugin

ionic cordova plugin add cordova-plugin-camera
npm install --save @ionic-native/camera

The execution of these commands lets us install the necessary Cordova plugin that gives us
access to our device’s camera, allowing us to capture still images and video.

Once installed, you can use the following code in order to import the plugin and inject the
Camera object—this is done within a TypeScript file.

Code Listing 5-b: Importing the Camera Plugin

import { Camera, CameraOptions } from '@ionic-native/camera';

export class SomeClass {

 constructor(private camera: Camera)

 { }

81

}

The example that follows illustrates how we can supply the camera options to the getPicture

method.

Code Listing 5-c: Supplying the Camera Options to the getPicture Method

const options = CameraOptions = {

 destinationType: this.camera.DestinationType.DATA_URL,

 mediaType: this.camera.MediaType.PICTURE

};

this.camera.getPicture(options).then((imageData) => {

 let base64Image = 'data:image/jpeg;base64,' + imageData

 }, (err) => {

});

The camera options allow us to control such things as the image or the video, instead.

There are many other plugins as well—a common one is the push plugin. The use of plugins
within Ionic is done with the Ionic Native library.

Ionic Native is a TypeScript wrapper for Cordova/PhoneGap plugins that make it easy to add
any native functionality you need to your Ionic mobile app.

I highly encourage you to investigate all the possibilities of using native plugins by checking out
the official Ionic Native documentation.

Search bar

Something we can potentially add to our application is a search bar, which has become an
expected component in most apps these days.

If we look at the app’s main screen, it’s not easy to find any of the books that are listed within
the library quickly.

In order to find a book, we have to either browse through the Paths or Books pages—which is
great, but if we had to browse through 100 or more books, it would be a bit tedious.

To make it easier to search for a specific book, let’s add the search bar to the Library page of
the app—this will allow us to navigate to the Book Overview page of that book directly.

Here’s how an Ionic search bar looks within the markup code.

www.dbooks.org

https://ionicframework.com/docs/native/
https://www.dbooks.org/

82

Code Listing 5-d: An Ionic Search Bar

<ion-searchbar placeholder="Search titles, press enter"

 [(ngModel)]="queryText" (search)="updateBooks()">

</ion-searchbar>

As we can see, the search bar has some attributes: the placeholder, the ngModel query text,

and the search, which is the method that will get executed when Enter is pressed.

Before we actually add any functionality, let’s see how it looks on the screen. We can do this by
adding that code to the library.html file as follows, and then running the ionic serve

command.

Code Listing 5-e: The Updated library.html File

<ion-header>

 <ion-navbar>

 <button ion-button menuToggle>

 <ion-icon name="menu"></ion-icon>

 </button>

 <ion-title>Succinctly Library</ion-title>

 </ion-navbar>

</ion-header>

<ion-content padding>

 <ion-searchbar placeholder="Search titles, press enter "

 [(ngModel)]="queryText" (search)="updateBooks()">

 </ion-searchbar>

 <ion-list *ngFor="let card of cardData" no-padding>

 <ion-card>

 <ion-item>

 <h2>{{card.header}}</h2>

 <p>{{card.short}}</p>

 </ion-item>

 <ion-card-content>

 <ion-card-title>

 {{card.title}}

 </ion-card-title>

 <p>{{card.description}}</p>

 </ion-card-content>

 <ion-row center>

 <ion-col text-center>

 <button ion-button [navPush]=card.pushPage>

 {{card.buttontxt}}

 </button>

83

 </ion-col>

 </ion-row>

 </ion-card>

 </ion-list>

</ion-content>

The following screenshot shows how the Library page now looks.

Figure 5-c: The Library Page with a Search Bar

We now have a nice-looking search bar, but it doesn’t do anything yet. Next, we’ll add the actual
search functionality to it.

Adding the search functionality

With the library.html file updated, the next thing we have to do is add the logic for our search
functionality.

This means we’ll have to update the library.ts file first, and then also update books.ts, as well.
Let’s first define the logic behind the updateBooks method, as follows.

Code Listing 5-f: The updateBooks Method

existsIn(str)

www.dbooks.org

https://www.dbooks.org/

84

{

 let res = false;

 for (var i = 0; i < this.booksData.length; i++) {

 if (this.booksData[i].title.toLowerCase().

 indexOf(str.toLowerCase()) >= 0) {

 res = true;

 break;

 }

 }

 return res;

}

itemExists(haystack, needle)

{

 for (var i = 0; i < haystack.length; i++) {

 if (haystack[i].title.toLowerCase().

 indexOf(needle.toLowerCase()) >= 0) {

 if (!this.existsIn(haystack[i].title)) {

 this.booksData.push(haystack[i]);

 }

 }

 }

}

updateBooks()

{

 this.booksData = [];

 if (this.queryText !== undefined) {

 let qry = this.queryText.toLowerCase();

 this.itemExists(BooksData, qry);

 if (this.booksData.length > 0) {

 this.navCtrl.push(BooksPage, this.booksData);

 }

 }

}

The updateBooks method basically checks if this.queryText exists as one of the book titles.

This is done by the itemExists method, which essentially loops through all the elements of the

BooksData array and verifies which of those titles contains this.queryText.

If the itemExists method is able to find a match, then it verifies that the matching element of

BooksData doesn’t exist yet within this.booksData—so that no repeated elements are added

to this.booksData.

85

The this.booksData array is what will be passed on as navParams to the Books page when

Enter is pressed.

As you can see, all this logic is pretty straightforward and uncomplicated. Now that this has
been explained, let’s have a look at the updated library.ts file.

Code Listing 5-g: The Updated library.ts File

import { Component } from '@angular/core';

import { IonicPage, NavController, NavParams } from 'ionic-angular';

import { PathsPage } from '../../pages/paths/paths';

import { BooksPage, BooksData } from '../../pages/books/books';

@IonicPage()

@Component({

 selector: 'page-library',

 templateUrl: 'library.html',

})

export class LibraryPage {

 queryText: string;

 booksData = [];

 cardData = [

 { img: '../../assets/imgs/logo.png',

 header: 'Paths',

 short: 'Learning paths',

 title: '',

 description: 'Paths are books organized by related topics',

 buttontxt: 'Explore Paths',

 pushPage: 'PathsPage'

 },

 { img: '../../assets/imgs/azure.jpg',

 header: 'Books',

 short: 'Books to read',

 title: '',

 description: 'Over 130 books on technologies that matter',

 buttontxt: 'Browse Books',

 pushPage: 'BooksPage'

 }

];

 existsIn(str) {

 let res = false;

 for (var i = 0; i < this.booksData.length; i++) {

 if (this.booksData[i].title.toLowerCase().

www.dbooks.org

https://www.dbooks.org/

86

 indexOf(str.toLowerCase()) >= 0) {

 res = true;

 break;

 }

 }

 return res;

 }

 itemExists(haystack, needle) {

 for (var i = 0; i < haystack.length; i++) {

 if (haystack[i].title.toLowerCase().

 indexOf(needle.toLowerCase()) >= 0) {

 if (!this.existsIn(haystack[i].title)) {

 this.booksData.push(haystack[i]);

 }

 }

 }

 }

 updateBooks() {

 this.booksData = [];

 if (this.queryText !== undefined) {

 let qry = this.queryText.toLowerCase();

 this.itemExists(BooksData, qry);

 if (this.booksData.length > 0) {

 this.navCtrl.push(BooksPage, this.booksData);

 }

 }

 }

 constructor(public navCtrl: NavController, public navParams: NavParams)

 { }

 ionViewDidLoad() {

 console.log('ionViewDidLoad LibraryPage');

 }

}

As we can see, besides the updateBooks method-related modifications, the only other changes

within the library.ts file are that we imported the original BooksData array from the Books page,

declared queryText, and initialized this.booksData.

In order for this to actually work, we need to make the Books page aware that it may receive
data from the Library page through the search bar.

87

So on the constructor of the books.ts file, we need to add some code in order to verify

whether the navParams.data is actually not empty.

By default, the Books page displays all the books in the library, so when it is invoked from the
Library page with the BROWSE BOOKS button, all the elements of the BooksData array are

displayed. This means that, in this case, navParams.data is empty.

However, when the Books page is invoked from the search bar on the Library page, only a
subset of the BooksData array is passed on to the Books page as navParams—which means

that navParams.data is not empty.

Therefore, the constructor needs to be modified to handle this new scenario, as follows.

Code Listing 5-h: The Updated Constructor of books.ts

constructor(public navCtrl: NavController, public navParams: NavParams)

{

 this.booksData = !this.isEmpty(navParams.data) ?

 navParams.data : BooksData;

}

To check whether navParams.data is empty, we’ll need to invoke another method, called

isEmpty, which is coded as follows.

Code Listing 5-i: The isEmpty Method

isEmpty(obj)

{

 for (var key in obj) {

 if (obj.hasOwnProperty(key))

 return false;

 }

 return true;

}

This method simply loops through each of the key-value pairs of the object and checks whether
a key has a corresponding value—hasOwnProperty.

With this additional logic, the updated books.ts file now looks as follows.

Code Listing 5-j: The Updated books.ts File

import { Component } from '@angular/core';

import { IonicPage, NavController, NavParams } from 'ionic-angular';

export let BooksData = [

{ title: 'Force.com Succinctly', page: 'BookoverviewPage',

www.dbooks.org

https://www.dbooks.org/

88

overview: { author: 'Ed Freitas', numpages: 100,

published: 'December 08, 2017',

details: { page: 'BookdetailPage',

pic: 'https://cdn.syncfusion.com/content/images/downloads/ebook/ebook-

cover/forcedotcomsuccinctly.jpg?v=09012018021233',

url: 'https://www.syncfusion.com/ebooks/forcedotcomsuccinctly' } } },

{ title: 'Azure Cosmos DB and DocumentDB Succinctly', page:

'BookoverviewPage',

overview: { author: 'Ed Freitas', numpages: 103,

published: 'May 23, 2017',

details: { page: 'BookdetailPage',

pic: 'https://cdn.syncfusion.com/content/images/downloads/ebook/ebook-

cover/Azure_Cosmos_DB_and_DocumentDB_Succinctly.jpg?v=09012018021233',

url:

'https://www.syncfusion.com/ebooks/azure_cosmos_db_and_documentdb_succinctl

y' } } },

{ title: 'Microsoft Bot Framework Succinctly', page: 'BookoverviewPage',

overview: { author: 'Ed Freitas', numpages: 109,

published: 'May 02, 2017',

details: { page: 'BookdetailPage',

pic: 'https://cdn.syncfusion.com/content/images/downloads/ebook/ebook-

cover/Microsoft_Bot_Framework_Succinctly.jpg?v=09012018021233',

url:

'https://www.syncfusion.com/ebooks/azure_cosmos_db_and_documentdb_succinctl

y' } } },

{ title: 'Twilio with C# Succinctly', page: 'BookoverviewPage',

overview: { author: 'Ed Freitas', numpages: 107,

published: 'April 03, 2017',

details: { page: 'BookdetailPage',

pic: 'https://cdn.syncfusion.com/content/images/downloads/ebook/ebook-

cover/Twilio_with_C_sharp_Succinctly.jpg?v=09012018021233',

url: 'https://www.syncfusion.com/ebooks/twilio_with_c_sharp_succinctly' } }

},

{ title: 'Customer Success for C# Developers Succinctly', page:

'BookoverviewPage',

overview: { author: 'Ed Freitas', numpages: 97,

published: 'October 03, 2016',

details: { page: 'BookdetailPage',

pic: 'https://cdn.syncfusion.com/content/images/downloads/ebook/ebook-

cover/Customer_Success_Succicntly.jpg?v=09012018021233',

89

url:

'https://www.syncfusion.com/ebooks/customer_success_for_c_sharp_developers'

} } },

{ title: 'Data Capture and Extraction with C# Succinctly', page:

'BookoverviewPage',

overview: { author: 'Ed Freitas', numpages: 85,

published: 'September 19, 2016',

details: { page: 'BookdetailPage',

pic: 'https://cdn.syncfusion.com/content/images/downloads/ebook/ebook-

cover/Data_Capture_And_Extraction_Succinctly.jpg?v=09012018021233',

url:

'https://www.syncfusion.com/ebooks/data_capture_and_extraction_with_c_sharp

_succinctly' } } }

];

@IonicPage()

@Component({

 selector: 'page-books',

 templateUrl: 'books.html',

})

export class BooksPage {

 booksData = BooksData;

 isEmpty(obj) {

 for (var key in obj) {

 if (obj.hasOwnProperty(key))

 return false;

 }

 return true;

 }

 constructor(public navCtrl: NavController, public navParams: NavParams)

 {

 this.booksData = !this.isEmpty(navParams.data) ?

 navParams.data : BooksData;

 }

 ionViewDidLoad() {

 console.log('ionViewDidLoad BooksPage');

 }

}

www.dbooks.org

https://www.dbooks.org/

90

We are done making all the changes needed to have our search bar ready. Let’s now run the
ionic serve command and check out our search bar’s functionality.

In order to test things properly, I’ll type in C# and press Enter. I should expect to get three
results—let’s see if that’s the case.

Figure 5-d: The Search Bar Results

Great—it works as expected. By simply adding an extra bit of functionality and reusing the code
we already had, we were able to add a really cool and useful feature to our application.

Full, updated source code

The full, updated source code of our application, including the most recent changes with the
search bar, can be downloaded here.

Other topics to explore

Although we’ve covered quite a lot of ground, there’s still a lot to explore and learn about the
amazing Ionic ecosystem.

The following is a list of items I suggest you look at and investigate on your own time. Although
the list is far from being conclusive, it includes some nice aspects that, in my opinion, are worth
delving into:

• Geolocation with Ionic Native.

• Vibration and motion detection with Ionic Native.

https://onedrive.live.com/?cid=01efa00412ef5700&id=1EFA00412EF5700%21279244&authkey=!AMb_5820aKKz-a0

91

• Barcode scanning using Ionic Native.

• Notifications with Ionic Native.

• Integrating SQLite into your app.

• Deployment and testing on native platforms: iOS and Android.

Summary

Ionic is a mature, solid, easy-to-learn, and state-of-the-art development framework for mobile
and Progressive Web Apps. What can be done with this framework with a few lines of code is
remarkable.

The goal of this book was to walk you through a simple but interesting example on how to build
a useful application with Ionic, without requiring any previous knowledge of Ionic 1 or Angular. I
think we achieved this objective and had some fun along the way.

This book is by no means an Ionic “bible,” as the length, depth, and extension of the framework
would require many more pages than what we could cover at this point in time—but we did
manage to introduce and show what you can do with this framework with a few simple steps.

I really hope you enjoyed reading this book as much as I enjoyed writing it, and I hope this
serves as a source of inspiration for you to keep exploring this fascinating technology.

Thank you, and until next time, all the best.

www.dbooks.org

https://www.dbooks.org/

	Table of Contents
	The Story Behind the Succinctly Series of Books
	Information is plentiful but harder to digest
	The Succinctly series
	The best authors, the best content
	Free forever
	Free? What is the catch?
	Let us know what you think

	About the Author
	Acknowledgements
	Introduction
	Chapter 1 Setting up Ionic
	Who is this book for?
	Why a complete framework rewrite?
	Nice-to-haves
	Installing Ionic-Angular
	Creating a new Ionic project
	Testing the scaffolded app
	Live or Hot Reload
	Ionic View and Ionic Pro
	Deploying to Ionic Pro
	Summary

	Chapter 2 Project Structure
	Quick intro
	The \src folder
	The \src\app folder
	The \src\assets folder
	The \src\pages folder
	The \src\theme folder
	The files within the \src folder
	The \node_modules folder
	The \www folder
	The \ (root) folder
	Summary

	Chapter 3 Starting the App
	Quick intro
	Overview
	Navigation stack
	Main difference from Ionic for AngularJS
	App navigation overview
	Creating the app’s main page
	Visual Studio Code Ionic plugins
	Creating pages with the CLI
	Wiring up the new pages
	Summary

	Chapter 4 Building the App
	Quick intro
	Before we start
	The Library page
	Making a nicer card
	Updating the Library page
	Updating the Paths page
	Updating the Books page
	The Book Overview page
	NavParams
	Updating the Book Overview page
	Adding navParams to the Books page
	Adding navParams to the Paths page
	Updating the Book Detail page
	Full source code
	Summary

	Chapter 5 Further Resources
	Quick intro
	Exploring the documentation
	Native plugins
	Search bar
	Adding the search functionality
	Full, updated source code
	Other topics to explore
	Summary

