

Created with a trial version of Syncfusion Essential PDFCreated with a trial version of Syncfusion Essential PDF

www.dbooks.org

https://www.dbooks.org/

2

MongoDB 3 Succinctly

By
Zoran Maksimovic

Foreword by Daniel Jebaraj

3

Copyright © 2017 by Syncfusion, Inc.

2501 Aerial Center Parkway

Suite 200

Morrisville, NC 27560

USA

All rights reserved.

Important licensing information. Please read.

This book is available for free download from www.syncfusion.com on completion of a

registration form.

If you obtained this book from any other source, please register and download a free copy from

www.syncfusion.com.

This book is licensed for reading only if obtained from www.syncfusion.com.

This book is licensed strictly for personal or educational use.

Redistribution in any form is prohibited.

The authors and copyright holders provide absolutely no warranty for any information provided.

The authors and copyright holders shall not be liable for any claim, damages, or any other

liability arising from, out of, or in connection with the information in this book.

Please do not use this book if the listed terms are unacceptable.

Use shall constitute acceptance of the terms listed.

SYNCFUSION, SUCCINCTLY, DELIVER INNOVATION WITH EASE, ESSENTIAL, and .NET

ESSENTIALS are the registered trademarks of Syncfusion, Inc.

Technical Reviewer: James McCaffrey

Copy Editor: Courtney Wright

Acquisitions Coordinator: Hillary Bowling, online marketing manager, Syncfusion, Inc.

Proofreader: Jacqueline Bieringer, content producer, Syncfusion, Inc.

www.dbooks.org

http://www.syncfusion.com/
http://www.syncfusion.com/
http://www.syncfusion.com/
https://www.dbooks.org/

The World's Best  

for Building
UI Component Suite  

SHOPMART

Dashboard

Top Sale Products

Search for something...

Orders

Products

Customers

Log Out

Message

Users

Teams

Setting Apple iPhone 13 Pro
Mobile

Apple Macbook Pro
Laptop

Galaxy S22 Ultra
Mobile

Dell Inspiron 55

$999.00
+12.8%

$1299.00
+32.8%

$499.99
+22.8%

$899.00

Sales Overview

$51,456

Monthly

Filters John Watson

OTHER

Online Orders Total usersoffline Orders

23456 9789945345 9565

Invoices

#1208

Order id

Jan 21, 2022 Olive Yew

Date Client name

$1,534.00

Amount Status

New Invoice

Completed

$1500
Cash

100K

50K

25K

0

10 May 11 May 12 May Today

27

M

3

10

17

24

31

26

S

2

9

16

23

30

28

T

4

11

18

25

1

29

W

January 2022

5

12

19

26

2

30

T

6

13

20

27

3

31

F

7

14

21

28

4

1

S

8

15

22

29

5

Completed

In Progress

120

24

Order Delivery Stats

Sales

Analytics

Laptop: 56%

Mobile: 25%Accessories: 19%

Laptop AccessoriesMobile

Revenue by Product Categories

Powerful Apps

1,700+ components for
mobile, web, and
desktop platforms

Hassle-free licensing

Uncompromising
quality

Support within 24 hours
on all business days

28000+ customers
20+ years in

business

Trusted by the world's leading companies

syncfusion.com/communitylicense

Get your .NET and JavaScript UI ComponentsFree

4.6 out of

5 stars

https://www.syncfusion.com/products/communitylicense?utm_source=ebooks-pdf&utm_medium=listing&utm_campaign=mongodb_3_succinctly-ebooks-pdf

4

Table of Contents

The Story Behind the Succinctly Series of Books .. 8

About the Author ..10

Introduction ...11

Purpose of the book ...11

Target audience ...11

Additional information and resources ..11

Source code ..11

MongoDB groups and communities ...11

Software requirements ...12

Conventions used in the book ..12

Source code ..12

Resources ...13

MongoDB version ..13

Chapter 1 MongoDB Overview ..14

NoSQL and document databases ...14

Scalability ..14

Implementations ..15

NoSQL: What is missing? ..15

Database structure ...16

Documents ..16

Collections ...17

Thinking in documents ..17

Referencing documents ...18

Embedding documents ..18

www.dbooks.org

https://www.dbooks.org/

5

Document design strategy ...19

Pluggable storage engine ...20

Sharding ...20

Conclusion ...21

Chapter 2 MongoDB Installation ...22

Installation on Windows (single node) ..22

MongoDB installation ...22

Single node installation on Linux (Ubuntu) ..24

What comes with the MongoDB installation? ..25

Chapter 3 The Mongo Shell ...29

Searching for help ..29

Databases ..31

Database creation ..31

Dropping databases ...32

Collections ..33

Capped collections ..35

Conclusion ...36

Chapter 4 Manipulating Documents ...37

Simple data retrieval ..37

Inserting a document ...37

Updating a document ...41

Deleting a document ..44

Chapter 5 Data Retrieval ..46

Querying a collection ..46

Projections ...50

Sorting ...51

6

Limiting the output ...52

Cursor ..52

Aggregations ..53

The aggregation pipeline ...54

MapReduce ...58

Single-purpose aggregation operations ...62

Conclusion ...65

Chapter 6 Basic MongoDB with C# ...66

Connecting to the database ..67

Authentication ..68

Database operations ..69

Referencing a database ...69

Database creation ..70

Getting the list of databases ..70

Deleting a database ...71

Working with collections ...72

Chapter 7 Data Handling in C# ..74

Data representation ..74

Object mapping..75

Chapter 8 Inserting Data in C# ..81

Chapter 9 Find (Query) Data in C# ..86

Returning all data from a collection ..86

Projecting data ...89

Aggregation ...91

LINQ ..92

Update data ..93

www.dbooks.org

https://www.dbooks.org/

7

FindOneAndUpdate ...95

ReplaceOne ...95

Delete data ...96

Conclusion ...98

Chapter 10 Binary Data (File Handling) in C# ...99

Uploading files ..99

Uploading files from a stream .. 101

Downloading files ... 103

DownloadAsBytes .. 103

Download to a stream .. 104

Chapter 11 Back Up and Restore .. 106

Back up .. 106

Restore .. 107

Final Words ... 109

8

The Story Behind the Succinctly Series
 of Books

Daniel Jebaraj, Vice President
Syncfusion, Inc.

taying on the cutting edge

As many of you may know, Syncfusion is a provider of software components for the
Microsoft platform. This puts us in the exciting but challenging position of always
being on the cutting edge.

Whenever platforms or tools are shipping out of Microsoft, which seems to be about
every other week these days, we have to educate ourselves, quickly.

Information is plentiful but harder to digest

In reality, this translates into a lot of book orders, blog searches, and Twitter scans.

While more information is becoming available on the Internet and more and more books are
being published, even on topics that are relatively new, one aspect that continues to inhibit us is
the inability to find concise technology overview books.

We are usually faced with two options: read several 500+ page books or scour the web for
relevant blog posts and other articles. Just as everyone else who has a job to do and customers
to serve, we find this quite frustrating.

The Succinctly series

This frustration translated into a deep desire to produce a series of concise technical books that
would be targeted at developers working on the Microsoft platform.

We firmly believe, given the background knowledge such developers have, that most topics can
be translated into books that are between 50 and 100 pages.

This is exactly what we resolved to accomplish with the Succinctly series. Isn’t everything
wonderful born out of a deep desire to change things for the better?

The best authors, the best content

Each author was carefully chosen from a pool of talented experts who shared our vision. The
book you now hold in your hands, and the others available in this series, are a result of the
authors’ tireless work. You will find original content that is guaranteed to get you up and running
in about the time it takes to drink a few cups of coffee.

S

www.dbooks.org

https://www.dbooks.org/

9

Free forever

Syncfusion will be working to produce books on several topics. The books will always be free.
Any updates we publish will also be free.

Free? What is the catch?

There is no catch here. Syncfusion has a vested interest in this effort.

As a component vendor, our unique claim has always been that we offer deeper and broader
frameworks than anyone else on the market. Developer education greatly helps us market and
sell against competing vendors who promise to “enable AJAX support with one click,” or “turn
the moon to cheese!”

Let us know what you think

If you have any topics of interest, thoughts, or feedback, please feel free to send them to us at
succinctly-series@syncfusion.com.

We sincerely hope you enjoy reading this book and that it helps you better understand the topic
of study. Thank you for reading.

Please follow us on Twitter and “Like” us on Facebook to help us spread the
word about the Succinctly series!

mailto:succinctly-series@syncfusion.com
https://twitter.com/Syncfusion
https://www.facebook.com/Syncfusion

10

About the Author

Zoran Maksimovic is a solution architect and software developer with over 16 years of
professional experience. He is passionate about programming and web platforms, especially
Microsoft technologies. Among other things, he is specialized and has interest in Microsoft.NET,
OOD, TDD, DDD (Domain Driven Development), CQRS/ES, and event streaming. He is also a
certified Scrum Master.

He spent most of his professional life working as a consultant on various projects for clients
based in Switzerland, Italy, Germany, and France.

In his spare time, he contributes to his personal blog and is active on Twitter as @zoranmax.

Zoran is also the author of the ServiceStack Succinctly e-book.

When not coding or spending time with his family, he enjoys guitar playing, baroque music,
good food, and Italian wine. He is married and the father of Alexei, Xenia, and Sofia.

For more info, visit http://zoran.me.

www.dbooks.org

http://www.agile-code.com/
https://twitter.com/zoranmax
https://www.syncfusion.com/resources/techportal/details/ebooks/servicestack
http://zoran.me/
https://www.dbooks.org/

11

Introduction

Purpose of the book

The purpose of this book is to make you aware of the MongoDB NoSQL database so you can
start working with this database in the fastest way.

My hope is that after reading this book, you will have enough knowledge to start coding and
using the technology effectively.

Target audience

This book is intended for software developers who are already working with relational databases
and want to know a bit more about MongoDB. Readers with a good understanding of database
concepts, the Microsoft.NET Framework (most of the examples are written in C#), and JSON
will benefit the most. Some shortcuts have been taken in this book, as the intention is not to go
too deep into the content, but rather to show the various options, possibilities, and concepts.

Additional information and resources

Additional information about MongoDB can be found directly on the MongoDB website.

If you want to know more about the technologies mentioned in this book, see the following
resources:

 Database

 JSON

 BSON

 NoSQL

 C# language

Source code

MongoDB is an open-source database written in C++, and at the time of writing, it’s hosted here
on GitHub.

MongoDB groups and communities

There are several groups on the web where additional information is hosted and shared, and
common questions are answered. The following table contains a few that you might find useful.

http://www.mongodb.com/
https://en.wikipedia.org/wiki/Database
http://json.org/
http://bsonspec.org/
https://en.wikipedia.org/wiki/NoSQL
https://en.wikipedia.org/wiki/C_Sharp_(programming_language)
https://en.wikipedia.org/wiki/C_Sharp_(programming_language)
https://github.com/mongodb/mongo

12

Table 1: MongoDB additional information

MongoDB https://www.mongodb.org/community

MongoDB University https://university.mongodb.com

Twitter https://twitter.com/mongodb

StackOverflow http://stackoverflow.com/questions/tagged/mongodb

Google Plus https://plus.google.com/communities/115421122548465808444

Meetup http://www.meetup.com/pro/mongodb

Software requirements

To get the most out of this book and the included examples, you will need to have the Microsoft
Visual Studio IDE installed on your computer, and Microsoft.NET v4 or later. At the time of
writing, the most current available and stable edition of Visual Studio is Visual Studio 2015. You
can download Visual Studio Community Edition 2015 for free directly from the Microsoft
website. Please pay attention to the licensing notes, as some restrictions might apply depending
on the usage.

All of the examples in this book have been written and tested by installing MongoDB on
Microsoft Windows 10 (on the local machine) and using Microsoft Visual Studio 2015.

Conventions used in the book

There are specific formats that you will see throughout this book to illustrate tips and tricks or
other important concepts.

 Note: This will identify things to note throughout the book.

 Tip: This will identify tips and tricks throughout the book.

Source code

C# is used in a lot of the source code examples as follows:

Code Listing 1: C# code style

[SomeAttribute]
public class MongoDbConnector
{
 public string Connection { get; set; }

www.dbooks.org

https://www.mongodb.org/community
https://university.mongodb.com/
https://twitter.com/servicestack
http://stackoverflow.com/questions/tagged/mongodb
https://plus.google.com/communities/115421122548465808444
http://www.meetup.com/pro/mongodb
https://www.visualstudio.com/downloads
https://www.visualstudio.com/downloads
https://www.dbooks.org/

13

Or simply a command prompt (or terminal) code:

Code Listing 2: Command prompt code style

Resources

The code mentioned in this book can be checked out from this website.

MongoDB version

All of the examples and explanations apply to version 3.4.1 of MongoDB, which is the latest
stable version at the time of writing.

}

C:\mongodb\bin> mongod

https://bitbucket.org/syncfusiontech/mongodb3

14

Chapter 1 MongoDB Overview

MongoDB is an open-source document database that provides high performance, high
availability, and automatic scaling. MongoDB is available under the General Public License
(GPL) for free, and it’s also available under commercial license as part of the commercial
offering of the company. In this book, we will discuss the functionalities offered by the free
version.

MongoDB is one of many implementations of the so-called NoSQL databases, and it’s currently
one of the biggest players in this segment of the market.

NoSQL and document databases

If you are new to the NoSQL world, we need to introduce a few concepts.

Broadly speaking, there are three categories of databases:

 RDBMS (relational database management system)

 OLAP (online analytical processing)

 NoSQL

As developers, we are typically more familiar with the relational databases, such as Microsoft
SQL Server, Oracle, MySQL, and Postgres, and with the way those databases organize data in
a tabular format. It is also true that, historically, relational databases are most widely used,
especially in the corporate world.

NoSQL (originally referring to "non SQL," "non-relational," or "not only SQL") is another type of
database that offers a mechanism for storing and retrieving data, and it usually handles data in
a different way than relational databases.

NoSQL databases exist in order to solve particular problems for particular domains, and are not
a “silver bullet” for any kind of issue, as they have their pros and cons. Some of the main
problems that NoSQL databases try to solve are issues of scalability and quantity of data.

In regards to the CAP theorem, NoSQL databases often compromise consistency in favor of
availability and partition tolerance. In the NoSQL world, the “eventual consistency” is often used
to achieve speed and scalability.

Scalability

One of the advantages the NoSQL databases have is the support for horizontal scalability (or
scaling out), which is available—but more limited and expensive—in the RDBMS systems.
Horizontal scalability means that we can expand the capacity of the system by adding more
servers (nodes). The performance is then almost linearly proportional to the number of nodes
that are part of the system.

www.dbooks.org

https://en.wikipedia.org/wiki/Relational_database_management_system
https://en.wikipedia.org/wiki/Online_analytical_processing
https://en.wikipedia.org/wiki/NoSQL
https://en.wikipedia.org/wiki/CAP_theorem
https://en.wikipedia.org/wiki/Scalability
https://www.dbooks.org/

15

This idea of horizontal scalability is different from vertical scalability, where typically in order to
handle more data, we are upgrading the server itself by adding more memory, HDD space,
CPU, etc.

Scaling out is generally the cheaper and more flexible choice because it uses regular
commodity hardware, while scaling up is typically much more expensive because the cost of the
hardware tends to exponentially increase as it becomes more sophisticated, and in the end its
expansion has more limitations.

MongoDB MongoDB MongoDB MongoDB MongoDB

Figure 1: Horizontal Scalability

Implementations

NoSQL databases include a wide variety of implementations (typically not encompassing the
tabular format) that were developed in response to a rise in the volume of data. Listed here are
the various flavors:

 Document databases pair each key with a complex data structure known as a
document (MongoDB, Couchbase Server, CouchDB, RavenDB, and others).

 Key-value stores are the simplest NoSQL databases. Every single item in the database
is stored as an attribute name (or "key"), together with its value (DynamoDB, Windows
Azure Table Storage, Riak, Redis, LevelDB, Dynomite).

 Wide-column stores such as Cassandra and HBase are optimized for queries over
large datasets, and store columns of data together, instead of rows.

 Graph stores are used to store information about networks, such as social connections.
Graph stores include Neo4J and HyperGraphDB.

NoSQL: What is missing?

Compared to the RDBMS, usually in the NoSQL databases there is no or little support for the
following:

 Limited or no support for JOINS (INNER, OUTER, etc.): The access to the data is
done at the document level, and therefore the handling of the links between objects has
to be done at the application level.

16

 No complex transactions support: NoSQL databases are often supporting eventual
consistency transactions, and are typically not supporting batches of updates, but work
on single items.

 No support for constraints: Constraints are not implemented at the database level, but
at the application level.

Database structure

MongoDB, as we mentioned previously, is a document database, and it’s quite simple when it
comes to the data representation. The database in its simplest form consists of two items:
document, which contains data, and collection, which is a container of documents.

Documents

A document is a data structure composed of field and value pairs. Document is basically a

JSON object that MongoDB stores on disk in binary (BSON) format.

Figure 2 shows an example of a document representing a user. It is not different from any JSON

representation, so you should be familiar with the format. As we are going to see later, there are
some conventions used, such the _id field, which is the primary key of this document, and in

that sense, <User1> is simply a value of the primary key.

{
 _id: <User1>,
 username: "johndoe",
 firstname: "john",
 lastname: "doe",
 age: 20,
 groups: ["politics","news"]
}

{
 _id: <User1>,
 username: "johndoe",
 firstname: "john",
 lastname: "doe",
 age: 20,
 groups: ["politics","news"]
}

{
 _id: <User1>,
 username: "johndoe",
 firstname: "john",
 lastname: "doe",
 age: 20,
 groups: ["politics","news"]
}

Figure 2: Example of a very simple document.

BSON is a binary-encoded serialization representation of the JSON. However, BSON supports
more data types than JSON (for example, the Date type), and it can be compared to Google’s

ProtoBuf. (You can find more information about the BSON format here.)

 Tip: In the RDBMS world, we can think of a document as representing a “record” of
a table.

There is one hard limit of the document size, which is a maximum of 16 megabytes. This limit
hasn’t changed, even on the latest version of the database. That makes sense, as the maximum
size limitation ensures that a single document cannot use an excessive amount of RAM or
bandwidth. To store documents larger than the maximum size, MongoDB provides the GridFS

API, which will be discussed in Chapter 10.

www.dbooks.org

https://en.wikipedia.org/wiki/Relational_database#Constraints
http://www.json.org/
https://developers.google.com/protocol-buffers
http://bsonspec.org/
https://www.dbooks.org/

17

Collections

MongoDB stores documents in collections. A collection can be seen as analogous to a table in
RDBMS. Every document in the collection, unless otherwise specified, has an _id automatically

assigned by the database. One thing to note is that the collection is not like a table in which the
set of columns (attributes) has to be predefined; collections are schema-less; therefore, a
collection can contain any kind of content. However, it is not very practical to have disparate
sets of data all in one collection (as this is technically possible), unless in some very particular
use cases (data collection, logs, etc). Typically, what happens is that the objects are serialized
at the application level and then stored in the database. Therefore, even though the schema is
not enforced, some sort of control over the data in a collection will exist.

Thinking in documents

One of the biggest and most fundamental differences between relational databases and
MongoDB is data modeling and the way to represent the structure of the data.

Collection Documents

Collection

Collection

1 to *

1 to *

1 to *

1 to *

Documents

1 to *

Documents

1 to *

Mongo DB
Database

Figure 3: MongoDB data structure organization.

In MongoDB, data relationships can be represented either by embedded documents or by
references. References pretty much correspond to the usage of foreign keys in RDMBS;
however, the support for joins in MongoDB exists, but is quite limited.

Technically there is a way to join the two collections by using the lookup functionality in the

aggregation framework, or via LINQ queries (which underneath use the aggregation framework

in order to construct queries).

18

Referencing documents

Referencing documents can be seen as a standard way of normalizing data in the RDMBS,
where the tables are linked by the foreign key. MongoDB, in this sense, is not any different.

In a nutshell, by normalizing data into individual collections, we are able to link the data in a very
efficient manner by using the primary key (as a foreign key).

Let’s consider the example shown in Figure 4, where we have a user document linked to an
address and to a contact. We can see how the user_id (primary key of the user document) is

used to link the documents together.

By using this way of linking collections together, we are forced to issue multiple queries in order
to retrieve information, as there is no equivalent way of joining information together as we would
in a RDMBS. (However, there is the $lookup command, which acts as a LEFT JOIN, introduced

in version 3.2 of MongoDB.)

user document:
{
 _id: <User1>,
 username: "johndoe",
 firstname: "john",
 lastname: "doe"
}

address document:
{
 _id: <address1>,
 user_id: <User1>,
 city: "Zürich",
 country: "Switzerland"
}

contact document:
{
 _id: <contact1>,
 user_id: <User1>,
 phone: "+41 123-123-123",
 email: "jd@jd.com"
}

Figure 4: Referencing documents.

Embedding documents

By embedding documents, we are able to concatenate all the content into one document.

The same example can be represented simply, as shown in Figure 5. MongoDB offers a way to
update the address or contact information directly, but this also means issuing an update to a
document.

www.dbooks.org

https://www.dbooks.org/

19

user document:
{
 _id: <User1>,
 username: "johndoe",
 firstname: "john",
 lastname: "doe"
 address: {
 city: "Zürich",
 country: "Switzerland"

},
 contact: {

 phone: "+41 123-123-123",
 email: "jd@jd.com"

 }
}

Embedded Address

Embedded contact

Figure 5: Embedding documents.

Document design strategy

As we have seen, there are mainly two ways of linking the documents. However, the need for
one or the other would have to be carefully weighed, as it obviously can have some side effects.
Here are some recommendations to follow:

 Embed as much as possible: The document database should eliminate quite a lot of

joins, and therefore, the option we have is to put as much as possible in a single

document. This way, the advantage is that saving and retrieving a document is atomic

and very fast. There is no need to normalize data. Therefore, embed as much as

possible, especially the data that is not being used by other documents.

 Normalize: Normalize data that can be referred to from multiple places into its own

collection. This means creating reusable collections (for example, country or user).

This is a more efficient way to handle duplicate values in only one place.

 Document size: The maximum document size in MongoDB is 16 MB. The limit is

imposed mainly in order to ensure that a single document cannot use an excessive

amount of RAM or bandwidth. This is quite a large quantity of text data (just think how

much data is usually displayed on a single web page). In most cases, this limit is not a

problem; however, it’s good to keep it in mind and avoid premature optimizations.

20

 Complex data structures and queries: MongoDB can store arbitrary, deep-nested

data structures, but cannot search them efficiently. If your data forms a tree, forest, or

graph, you effectively need to store each node and its edges in a separate document.

 Consistency: MongoDB makes a trade-off between efficiency and consistency. The rule

is that changes to a single document are atomic, while updates to multiple documents

should never be assumed to be atomic. When designing the schema, consider how to

keep your data consistent. Generally, the more that you keep in a document, the better,

as stated in the first point of this list.

Pluggable storage engine

As modern applications need to support a variety of workloads with different price and
performance profiles—from low-latency, in-memory read-and-write applications, to real-time
analytics—MongoDB started offering support for pluggable storage engines to achieve the goal
of having the same programming API model, but with different implementations.

At the time of writing, MongoDB supports the following engines:

 MongoDB built-in engine: MMAPv1 engine, which is an improved version of the engine
used in prior MongoDB releases.

 MongoDB built-in default engine: The new WiredTiger storage engine, which provides
significant benefits in terms of lower storage costs (better compression), greater
hardware utilization, higher throughput, and more predictable performance than the
related MMAP engine. Some benchmarks are showing from 7-10x higher performance
of this engine.

 MongoDB engine (only enterprise edition): The in-memory storage engine designed
to serve ultra-high throughput.

 Facebook is supporting MongoRocks, a MongoDB storage engine based on Facebook’s
RocksDB-embedded database project.

With these choices in mind, developers can choose the appropriate engine based on their
application needs.

Sharding

We have seen that one of the advantages of the NoSQL database is the ability to scale
horizontally, and the technique used in MongoDB is sharding.

www.dbooks.org

https://www.mongodb.com/blog/post/performance-testing-mongodb-30-part-1-throughput-improvements-measured-ycsb?jmp=blog
https://docs.mongodb.com/manual/core/inmemory
https://github.com/mongodb-partners/mongo-rocks
https://www.dbooks.org/

21

MongoDB
(mongod)

Application MongoDB
Shell

mongos

MongoDB
(mongod)

MongoDB
(mongod)

MongoDB
(mongod)

Figure 6: Sharding.

Sharding is a type of database partitioning that separates large databases the into smaller,

faster, more easily managed parts (data shards).

In other words, instead of having to run a huge database on one server, MongoDB offers the
ability to separate the load and partition (divide) the data into smaller chunks that could run
independently on their own. When writing and reading data from the database, the MongoDB
engine will make sure the data gets collected or distributed to the nodes in question accordingly.

Conclusion

In this chapter, we have seen what MongoDB is and how it correlates to the relational database.
We looked at the database structure, and how the data gets organized within the database. The
emphasis has been placed on the fact that documents are quite different from the normal
tabular form.

In the end, we saw how to install the database and which tools come as part of the database.
We are now ready to start using the database and its features.

22

Chapter 2 MongoDB Installation

MongoDB is a cross-platform database, and the current version supports a variety of operating
systems—pretty much all main Linux distributions, Microsoft Windows, and OSX.

As the idea of this book was to use Microsoft.NET and MongoDB, we will only briefly touch on
Linux installation as a reference, and we will mainly concentrate on running and configuring
MongoDB on Microsoft Windows. While all concepts apply equally on every platform, it’s not in
the scope of this book to get into particular platform details.

For Mac and Windows platforms, you can download MongoDB and install it directly from the
project website.

In this book, we will be covering the MongoDB Community Server, which is a free version of
MongoDB.

Installation on Windows (single node)

Examples in this book were tested in Microsoft Windows 10; the exact version downloaded and
used is version 3.4.1 for “Windows Server 2008 R2 64-bit and later, with SSL support x64.”

MongoDB can run as a standalone application or as a Windows service. For learning purposes,
it is interesting to see MongoDB running as the standalone application (console), as it outputs
some debug information that can be useful. Otherwise, on production systems, it’s highly
recommended to run it as a Windows service.

MongoDB installation

1. Install the MongoDB by double-clicking on the downloaded file. Follow the installer

instructions and choose the custom installation.

a. Install MongoDB in the c:\mongodb folder. (You can choose any folder you like;

for this book’s purpose, I’ve chosen this path.)

b. Choose all the features available.

2. We need to manually create the directory where the database data will reside. The

default location where MongoDB will place the files is c:\data\db, so, let’s just keep these

default settings and create the folder by running md c:\data\db on the command line.

The location of this folder can be changed by using the --dbpath option when starting

the database.

3. The same thing applies to the application logs. The default place that MongoDB will be

looking at is c:\data\log. So, let’s run the md c:\data\log on the command line. This

option can be controlled by using the --logpath option. Let’s use the default and create

this folder.

www.dbooks.org

https://www.mongodb.org/downloads#production
https://www.dbooks.org/

23

Running MongoDB as a standalone application

Starting the database is as simple as running the following command.

Code Listing 3: Starting MongoDB

C:\mongodb\bin>mongod

After running this command (which stands for “mongo daemon”) for the first time, you might be
asked to open the firewall. Accept this option.

The output will be similar to the following in Figure 7, from which we may learn quite a few
things (as highlighted).

 MongoDB operates by default on port: 27017.

 The database engine used by default is wiredTiger.

 Logs are enabled.

 Last message: “waiting for connections on port 27017” means that the database is ready
to be used.

Installing MongoDB as a Windows service

By running the following command, where we specify explicitly where to place the logs, we will
install MongoDB as a Windows Service. Make sure to run the command prompt with
administrator rights.

In order to install MongoDB on Windows as a service, keeping the previously used settings is as
simple as adding the --install parameter and the location of the log specified by the value of

--logpath.

Figure 7: Starting MongoDB.

24

Code Listing 4: Installing MongoDB as a Windows service

C:\mongodb\bin>mongod --logpath c:\data\log\log.log –-install

If the installation is successful, you will see MongoDB in the Windows Services panel, as shown
in Figure 8.

For more information about installing MongoDB on Windows with the full option list, see this
tutorial.

Figure 8: MongoDB service after complete installation.

Single node installation on Linux (Ubuntu)

Here we will demonstrate how to install MongoDB on Ubuntu (version 16.04 at the time of
writing) by using the popular apt package management tool.

Using the terminal window, let’s follow the following steps:

1. Import the public key used by the apt package manager.

Code Listing 5: Importing the public key

sudo apt-key adv --keyserver hkp://keyserver.ubuntu.com:80 --recv EA312927

2. Create a list file for MongoDB.

Code Listing 6: List file creation

echo "deb http://repo.mongodb.org/apt/ubuntu xenial/mongodb-org/3.2
multiverse" | sudo tee /etc/apt/sources.list.d/mongodb-org-3.2.list

3. Reload local package database.

Code Listing 7: Reload local package database

sudo apt-get update

4. Install the MongoDB package.

www.dbooks.org

http://docs.mongodb.org/manual/tutorial/install-mongodb-on-windows
http://docs.mongodb.org/manual/tutorial/install-mongodb-on-windows
https://www.dbooks.org/

25

At this step, after preparing the apt package manager, we can install the latest version of
MongoDB by running:

Code Listing 8: Install MongoDB package

sudo apt-get install -y mongodb-org

Or, alternatively, install a specific version of MongoDB (in our case, version 3.4.10).

Code Listing 9: Installing a specific version of MongoDB

sudo apt-get install -y mongodb-org=3.4.10 mongodb-org-server=3.4.10
mongodb-org-shell=3.4.10 mongodb-org-mongos=3.4.10 mongodb-org-tools=3.4.10

5. Make sure the file /lib/systemd/system/mongod.service is present and that it contains
the following content:

Code Listing 10: MongoDB configuration file content

[Unit]
Description=High-performance, schema-free document-oriented database
After=network.target
Documentation=https://docs.mongodb.org/manual

[Service]
User=mongodb
Group=mongodb
ExecStart=/usr/bin/mongod --quiet --config /etc/mongod.conf

[Install]
WantedBy=multi-user.target

6. At this point, we can start MongoDB and test that it works correctly.

Code Listing 11: Starting the MongoDB

sudo service mongod start

Let’s check to see if it’s possible to connect to the database:

Code Listing 12: Starting the client via terminal

mongo

This command should successfully connect to the “test” database.

What comes with the MongoDB installation?

We have just seen how to install MongoDB, together with the database itself. There are also a
few extra components that are part of the installation package. In this chapter, we are going to
go through the list and explain briefly what each of them does.

26

Figure 9: MongoDB installed utilities.

Don’t worry if you’re not familiar with some of the concepts (such as GridFS) that we haven’t

touched yet—we’ll be looking into those in the next chapters.

Table 2: MongoDB installation files

Component Category Description

mongod Core Process The core database process.
It is responsible for running
(hosting) the mongodb

instance on a single
machine. This process is
responsible for handling
connections, requests, data
access, and any other
operations typical of a
database.

mongos Core Process Short for “MongoDB Shard,”
mongos is a service that sits

between the application and
the MongoDBs. It
communicates with the
configuration server to
determine where the

www.dbooks.org

https://docs.mongodb.org/manual/reference/program/mongod
https://docs.mongodb.org/manual/reference/program/mongos
https://www.dbooks.org/

27

Component Category Description

requested data lives (on
which shard). It then
fetches, aggregates, and
returns the data in JSON
form.

mongo Core Process An interactive JavaScript
shell interface to MongoDB
that provides an interface for
system administrators and
allows any kind of operation
against the MongoDB
instance.

mongodump Binary Import/Export A utility for creating a binary
export of the contents of a
database.

mongorestore Binary Import/Export Writes data from a binary
database dump created
by mongodump to a

MongoDB instance.

bsondump Binary Import/Export bsondump is a diagnostic

tool for inspecting BSON
files, and it converts BSON
files into human-readable
formats, including JSON,
which is very useful for
reading the output files
generated by mongodump.

mongooplog Binary Import/Export A simple tool that polls
operations from the
replication oplog of a

remote server, and applies
them to the local server.

mongoimport Data Import/Export Imports content from
a JSON, CSV, or TSV
export created by
mongoexport.

mongoexport Data Import/Export Produces a JSON or CSV
export of data stored in a
MongoDB instance.

mongostat Diagnostics Provides a quick overview of
the status of a currently

https://docs.mongodb.org/manual/reference/program/mongo
https://docs.mongodb.org/manual/reference/program/mongodump
https://docs.mongodb.org/manual/reference/program/mongorestore
https://docs.mongodb.org/manual/reference/program/mongodump/#bin.mongodump
https://docs.mongodb.org/manual/reference/program/bsondump
https://docs.mongodb.org/manual/reference/glossary/#term-bson
https://docs.mongodb.org/manual/reference/glossary/#term-json
https://docs.mongodb.org/manual/reference/program/mongodump/#bin.mongodump
https://docs.mongodb.org/manual/reference/program/mongooplog
https://docs.mongodb.org/manual/reference/glossary/#term-replication
https://docs.mongodb.org/manual/reference/glossary/#term-oplog
https://docs.mongodb.org/manual/reference/program/mongoimport
https://docs.mongodb.org/manual/reference/mongodb-extended-json/
https://docs.mongodb.org/manual/reference/program/mongoexport/#bin.mongoexport
https://docs.mongodb.org/manual/reference/program/mongoexport
https://docs.mongodb.org/manual/reference/program/mongostat

28

Component Category Description

running mongod or mongos

instance. It allows the
monitoring of the MongoDB.
It provides information such
as the server status,
database statistics, and
collection statistics.

mongotop Diagnostics Another monitoring tool that
provides the method to track
the amount of time a
MongoDB instance spends
reading and writing data. It
provides statistics per
collection.

mongoreplay Diagnostics A traffic capture and replay
tool for MongoDB that you
can use to inspect and
record commands sent to a
MongoDB instance, and
then replay those
commands back onto
another host at a later time.

mongoperf Diagnostics A utility that checks disk I/O
performance independently
of MongoDB.

mongofiles GridFS Manipulates files stored in
the MongoDB instance
in GridFSobjects from the

command line. It is
particularly useful, as it
provides an interface
between objects stored in
your file system and
GridFS.

www.dbooks.org

https://docs.mongodb.org/manual/reference/program/mongotop
https://docs.mongodb.com/manual/reference/program/mongoreplay/
https://docs.mongodb.org/manual/reference/program/mongoperf
https://docs.mongodb.org/manual/reference/program/mongofiles
https://docs.mongodb.org/manual/reference/glossary/#term-gridfs
https://www.dbooks.org/

29

Chapter 3 The Mongo Shell

Some of the first things a developer might try to find out is how to run queries and administer the
database.

MongoDB comes with a set of utilities, all of them installed in the bin folder. One of the utilities
is mongo.exe, also known as the “mongo shell,” which is an interactive JavaScript interface to

the database. The mongo shell is used to query or manipulate data, as well as to perform
administrative operations.

To start the mongo shell, we have to simply type mongo in the command prompt. Obviously, in

order for the shell to work, the database has to be up and running.

Code Listing 13: Starting the Mongo Shell

C:\mongodb\bin>mongo
MongoDB shell version v3.4.1
connecting to: mongodb://127.0.0.1:27017
MongoDB server version: 3.4.1

Once in the shell, we are automatically connected to the database instance on the local
machine (localhost), and by definition the default port 27017 is used.

 Tip: By including the c:\mongodb\bin directory in the system variable path,
referencing mongodb utilities is much easier across the system.

If the database is not located on the local machine (which will almost always be the case in any
production system), we can specify the remote server name (--host), port, and the username

and password, as shown in the example that follows:

Code Listing 14: Connecting to the MongoDB remote server

C:\mongodb\bin>mongo --host <remoteServerName> --port 27017 –-u <username>
--p <password>

By default, MongoDB has no default user or password. These can be created with the
db.createUser command.

Searching for help

One of the first things that can be done in the mongo shell is to check for help, which is
available by simply typing help in the shell. Help will bring the list of available commands on the

various objects such as database, collection, users, etc.

https://docs.mongodb.org/manual/reference/program/mongo/#bin.mongo

30

Figure 10: Showing help.

When you type db.help(), all of the operations available on the database object will be shown.

The same logic would apply for other objects as well.

Figure 11: Showing help at the database level.

www.dbooks.org

https://www.dbooks.org/

31

Databases

The MongoDB shell doesn’t explicitly provide commands for creating databases. When you
insert at least one document into a collection, MongoDB will create a database if one doesn’t
exist.

First, let’s see how to get the list of databases in MongoDB by running the show dbs command:

Figure 12: Getting the list of databases.

In the freshly installed MongoDB, there will be only one database, called local. Every mongod

instance has its own local database, which stores data used in the replication process, and
other instance-specific data.

You might also see an admin database being shown, depending on whether the security has

been applied. The admin database will hold the information about users and passwords. In my

case, there is no security applied.

Database creation

Just to play a bit with the shell, we will create a database called mydb by trying to insert a

document. This action will make MongoDB create a database. To navigate to our new
database, use the use mydb command. Even though the database doesn’t exist yet, the shell

will allow us to switch to it.

So, as an exercise, let’s insert a fictitious user entry into the mydb database in the users

collection:

Code Listing 15: Inserting a new document

As we can see in Figure 13, the result shows WriteResult({“nInserted” : 1 }), which tells

us that one row has been written. All good so far.

 Note: Inserting documents will be further explained in one of the following
chapters.

As the last step, let’s check to see if the database is now being created by running show dbs
once again:

db.users.insert({firstname: 'john', lastname: 'doe'})

32

Figure 13: Creation of the database by inserting data into collection.

Congratulations, you successfully created your first MongoDB database!

Dropping databases

Sometimes there is a need to delete a database that has already been created. The MongoDB
db.dropDatabase() command is used for this purpose.

In order to delete a database, we have to call the use database command. Once the shell

switches to the selected database, we can call the db.dropDatabase() command, which will

effectively delete the database.

Figure 14: Deleting a database.

As in the previous case when we inserted an entry in the collection, the shell returns the result
of the command, telling us that the command succeeded.

www.dbooks.org

https://www.dbooks.org/

33

Collections

When we created the database, we inserted the first document in the users collection. To show

that the users collection is there, we can use the command show collections, which is very

similar to the one used to show the database list.

Figure 15: Showing the list of collections.

We can see that the users collection is available.

An alternative to this would be to run the db.getCollectionNames() command, which then

returns a BSON document.

Figure 16: Alternative way of showing collections.

To create a collection, we can simply run the following command (the semicolon terminator is
optional for single commands):

34

Code Listing 16: Creating Collections signature

Name is a mandatory parameter, while options is not. There are various options that can be set,

such as capped, autoIndexId, and size; we will be looking into those in the next chapter.

In order to create the collection called person, we need to run the following command:

Code Listing 17: Create Collection called person

And to drop a collection, we would simply call drop, which will empty the collection and

completely delete it from the database.

Code Listing 18: Dropping a person collection

Figure 17: Creating and dropping a collection.

db.createCollection(name, options);

db.createCollection(“person”);

db.person.drop();

www.dbooks.org

https://www.dbooks.org/

35

 Tip: As a reminder: if you need to know which operations are available when
working with collections, you can always refer to the help by using the
db.<collectionName>.help() command, which will return a list of available
commands.

Capped collections

Capped collections are a special kind of collection: fixed-size, circular collections.

 Fixed-size refers to the fact that there is a predefined (configurable) limit on the
maximum number of items this table will support.

 Circular refers to the fact that once the maximum amount is reached, the oldest of the
items gets deleted to make room to the new one.

One of the interesting properties of capped collections is that the collection itself preserves the
order in which the items get inserted. This is a very important aspect, especially if this kind of
table gets used for a logging-type of problem where the order of entries should be preserved.
On the other hand, it has some limitations: we cannot remove a document from a capped
collection, and updates on the documents won’t work if an update or a replacement operation
changes the document size.

Graphically, we can represent a capped collection as seen in Figure 18.

Document 1 Document 2 Document 3 Document 4 Document n...

Figure 18: Capped Collection.

Capped collections can be used for several purposes, such as:

 Logging (for example, the latest activity performed on the website).

 Caching (preserving the latest items).

 Acting as a queue: Capped collection might be also used to act as a queue where the
first-in-first-out logic applies.

Creating a capped collection

Capped collections are created in the same way as normal collections, but specifying the
options parameter:

36

Code Listing 19: Creating capped collections

There are 14 optional parameters. Three of the most common are:

 Capped: True sets the type of the collection as capped (the default is false).
 Size: Sets the maximum size in bytes for this particular collection.
 Max: Specifies the maximum number of documents allowed for the given collection.

Figure 19: Creation of a capped collection.

Conclusion

In this chapter, we have seen what the MongoDB shell is and how to perform basic operations,
such as the creation of a database or collections, with some more detail on collections
themselves.

In the following chapters, we will see how to use the MongoDB shell further.

db.createCollection(“LogCollection”, { capped:true, size:10000, max:1000}) ;

www.dbooks.org

https://www.dbooks.org/

37

Chapter 4 Manipulating Documents

Now that we are able to find out the available collections, let’s take a look at the following
commands, which are used for manipulating the documents:

 Insert

 Update

 Remove

Simple data retrieval

Before we actually start with these operations, let’s look at how to query the database in the
simplest terms, as this method will be used as an example in upcoming chapters.

The MongoDB shell offers the ability to query for data; this is mainly achieved by using the
db.<collection>.find() method.

The db.collection.find() will retrieve all the documents in a given collection (actually, the

top 20). For more information, please see the full chapter on how to find and project data in
MongoDB.

Inserting a document

There are several ways to insert data into a MongoDB collection.

Table 3: Methods of document creation

db.<collection>.insert() Inserts a document or collection of documents into
a collection. Returns a BulkWriteResult object

back to the caller.

db.<collection>.insertOne() New in v3.2. Inserts a single document into a
collection.

db.<collection>.insertMany()

New in version 3.2. Inserts multiple documents
into a collection. Returns a document containing
the object IDs and information if the insert is
acknowledged.

db.<collection>.save()

Updates an existing document or inserts a new
document, depending on its document parameter.

Returns a WriteResult object.

The goal in the following example is to add a new user in the users collection.

38

As we have seen, it’s fairly easy to insert a simple document representing the user.

Figure 20: Inserting a user.

Using a single line vs multiline when specifying a JSON string doesn’t really make any
difference. The important point is to close the function with the right parenthesis. As soon as the
document is inserted, the MongoDB shell informs us with the number of affected rows in the
form of WriteResult ({ “nInserted”: 1 }).

Just to prove that we have inserted two users, we can call db.users.count(), which will return

the count of documents currently present in the users collection.

It is also possible to insert more than one document at a time, by using an array of JSON
documents and passing this as a parameter to the insert function. In JSON, brackets [] are

used to specify an array of objects.

www.dbooks.org

https://www.dbooks.org/

39

Figure 21: Inserting multiple documents into a collection.

It’s also possible to use the db.users.save() to insert a new document into the collection. In

reality, the save() command can be used both for inserting or updating documents.

If a document does not exist with the specified _id value, the save() method performs an insert

with the specified fields in the document; otherwise, an update is performed, replacing all fields
in the existing record with the fields from the document.

Let’s see an example of how to use the save() command to insert data into a collection. It’s

pretty much straightforward, and it looks very similar to the previous examples.

Figure 22: Inserting data into a collection by using save().

40

Document primary key

When we retrieved the item from the users collection, you might have noticed that there is a

field called _id, which we did not explicitly mention when we inserted the document.

As in any database, MongoDB provides a way of handling the primary keys for the documents.
Documents stored in a collection require a unique _id field that acts as a primary key. We can

explicitly set the value of the _id; alternatively, the database will assign one by default.

MongoDB uses the ObjectId type as the default to store the value for the _id field; however,

the _id field may contain values of any BSON data type, other than an array.

The ObjectId is a BSON type, and its value consists of 12 bytes, where the first four bytes are

a timestamp that reflect the ObjectId’s creation, specifically:

 a 4-byte value representing the seconds since the Unix epoch
 a 3-byte machine identifier
 a 2-byte process ID
 a 3-byte counter, starting with a random value

So, it’s a very good candidate for a unique value. Let’s look at a small example on how to force
our own primary key:

Code Listing 20: Inserting user data by forcing the primary key

Assigning an _id is as easy as handling any other attribute. As you can see in Figure 23,

duplicate primary keys will be avoided.

Figure 23: Duplicate primary keys not allowed.

db.users.insert({_id: 1, firstname: 'john', lastname: 'doe'})

www.dbooks.org

https://docs.mongodb.com/manual/reference/glossary/#term-id
https://docs.mongodb.com/manual/reference/glossary/#term-primary-key
https://docs.mongodb.com/manual/reference/bson-types/#objectid
https://docs.mongodb.com/manual/reference/bson-types/
https://en.wikipedia.org/wiki/Unix_time
https://www.dbooks.org/

41

Updating a document

MongoDB allows you to change existing documents in the following ways:

 Update the value of an existing field.
 Change the document by adding or removing attributes (fields).
 Replace the document entirely.

To manipulate the documents, MongoDB mainly offers three different flavors of the update()

methods to be performed at the collection level.

Table 4: MongoDB document update methods

db.<collection>.update() Modifies document(s) in a collection. The method
can modify specific fields of an existing document or
documents or replace an existing document entirely.

db.<collection>.updateOne() New as of v3.2. Updates one document within a
collection.

db.<collection>.updateMany() New as of version 3.2. Updates multiple documents
within a collection.

Updating a value of an existing attribute

The following seems to be the most obvious operation to perform, so let’s try to change the
firstname of a user in the users collection. In order to do this, let’s just create a new user with

a simpler _id, by running the following command:

Code Listing 21: Creating a user with a fixed primary key

Once the user is in the collection, we can quickly query the collection and check if the user has
been properly inserted by running the find() method. The find() method will return the full list

of items in the collection.

Code Listing 22: Searching for user data (basic usage)

You should be able to see the user with the primary key _id = 1.

In order to change the firstname of the user, we can use the following command:

db.users.insert({_id: 1, firstname: 'john', lastname: 'doe'})

db.users.find()

42

Code Listing 23: Update user's firstname

The first parameter (in red) represents the filter that will be applied to items with the update, a bit
like a WHERE clause when updating records in the RDBMS.

The second parameter (in blue) defines the operation to be performed. In our case, we use the
operator $set in order to set the value of the firstname.

If the field we are passing is not in the document, it will be automatically created. If we would
like to add the age of the user, then it becomes as simple as:

Code Listing 24: Updating user's age

On the command line, you should see something similar to the following:

Figure 24: Applying the update methods.

To give an idea of which parameters the update() method supports, let’s take a look at the

general method signature:

Code Listing 25: Collection update method signature

db.users.update(
 { _id : 1}, //filter
 { $set: { firstname: "andrew" } } //update action
)

db.users.update({ _id : 1}, { $set: { age: 40 } })

db.collection.update(
 <query>,
 <update>,
 {
 upsert: <boolean>,

www.dbooks.org

https://www.dbooks.org/

43

Table 5: Update method's options

query Defines the selection criteria for the update. This
corresponds pretty much to the WHERE clause in the

RDBMS.

update Specifies the action to be executed on the document
that matches the query criteria. This is where we
can update a field or create a new one.

update-options In the third parameter, there are few options that can
be specified:

upsert: If set to true, it creates a new document in

case no documents have been found by the query
criteria. By default, it is set to false.

multi: If set to true, it updates multiple documents;

otherwise, only one.

writeConcern: Defines how the database will

handle the write part. For instance, we can define
the timeout for the query, or the acknowledgment
that the data has been propagated to one or more
nodes (in case of a multinode setup).

Update operators

There are quite a few update operators that can be used to manipulate values. We have already
seen the usage of the $set operator, which performs the change on the document by setting

the value explicitly, but there are others:

Table 6: Update operators

$set Sets the value of a field in a document.

$unset Removes the specified field from a document.

$min Updates the field if the value is less than the existing field value.

$setOnInsert Sets the value of a field if an update results in an insert of a document.
Has no effect on update operations that modify existing documents.

$max Updates the field if the value is greater than the existing field value.

 multi: <boolean>,
 writeConcern: <document>
 }
)

44

$rename Renames a field.

$mul Multiplies the value of the field by a specified amount.

$inc Increases (increments) the value by a specific amount.

$currentDate Sets the value of a field to the current date.

If we are dealing with an array of items (a collection of items), then there are several more
operators, including:

Table 7: Update operators for arrays

$pull
Removes all list elements that match a specified query.

$push
Adds an item to an array.

$addToSet
Adds an item to an array only if the item does not already exist.

For the full list of available operators, please visit the official MongoDB documentation or check
the available options directly in the MongoDB shell with the following command:

Code Listing 26: Use of help on a collection

Also, check the method signatures for the these update methods.

Deleting a document

In a very similar way as it happens for updates, MongoDB offers various ways for deleting
documents. The methods follow pretty much the same principle.

Table 8: Data removal methods

db.<collection>.drop() Completely empties the collection by deleting the
collection itself. While this is not exactly deleting a
document, it can be considered as a way of cleaning
up the data.

db.<collection>.remove() Deletes a single document or multiple documents
that match a specified filter.

db.<collection>.deleteOne() Deletes at most a single document that matches a
specified filter, even though multiple documents may

db.users.help()

www.dbooks.org

https://docs.mongodb.com/v3.4/reference/operator/update
https://www.dbooks.org/

45

match the specified filter. It will delete the first
document.

db.<collection>.deleteMany() Deletes all documents that match a specified filter.

Let’s demonstrate a deletion of a single document by using the deleteOne method. The

signature of the deleteOne method is as follows. It accepts the filter and the writeConcern as

discussed previously. WriteConcern is not mandatory, and if not specified, will take the default

values.

Code Listing 27: DeleteOne method signature

Let’s assume we already have an entry in the users table, and we try to delete it. This might

look like the following:

Figure 25: Deleting a document.

What is interesting here is the filter part, where we specify the document to be deleted. In our
case, this is directly the primary key, _id = 1.

db.collection.deleteOne(<filter>, writeConcern: <document>)

46

Chapter 5 Data Retrieval

We briefly mentioned how to retrieve data in the previous chapter, in order to support operations
such as create, delete, and update. MongoDB is quite rich when it comes to data retrieval, as
you will see.

Querying a collection

The starting point for the data retrieval is the db.<collection>.find() method. By just quickly

using the help() method, we can see that the find() method offers several other modifiers for

performing any kind of query over a collection.

It is possible to sort and apply the filters to the search itself. The following image shows the

modifiers the find() contains:

Figure 26: Find() method.

By definition, the queries are issued on a single collection; therefore, joining to other tables, as
we would expect at this stage, is not possible. In order to achieve this, we need to either use the
aggregation or the MapReduce mechanism, which will be discussed in the coming chapters.

www.dbooks.org

https://www.dbooks.org/

47

In order to perform a query, we would usually need to specify a filter, unless we are retrieving all
the documents of a collection. MongoDB uses some comparison operators that really come in
handy for data comparison and matching:

Table 9: Query comparison operators

Name Description

$eq Matches values that are equal to a specified value.

$gt Matches values that are greater than a specified value.

$gte Matches values that are greater than or equal to a specified value.

$lt Matches values that are less than a specified value.

$lte Matches values that are less than or equal to a specified value.

$ne Matches all values that are not equal to a specified value.

$in Matches any of the values specified in an array.

$nin Matches none of the values specified in an array.

And in addition to these, we have some logical operators, such as:

Table 10: Logical operators

Name Description

$or Joins query clauses with a logical OR; returns all documents that match

the conditions of either clause.

$and Joins query clauses with a logical AND; returns all documents that

match both the conditions.

$not Joins query clauses with a logical AND; returns all documents that

match the conditions of both clauses.

$nor
Joins query clauses with a logical NOR; returns all documents that fail to

match both clauses.

For additional information, you may check the reference card directly on the MongoDB website.

Using the method find() without any parameter will simply return anything available in the

given collection. While this is useful in some simple scenarios, the tendency is to search for
specific information by matching some of the attributes (fields) of a document to be returned.
This is achieved by specifying the <query filter>, the first parameter of the method.

The basic signature of the find() method accepts two parameters. Both parameters are

optional:

https://docs.mongodb.com/manual/reference/operator/query/lt/#op._S_lt
https://docs.mongodb.com/manual/reference/operator/query/lte/#op._S_lte
https://docs.mongodb.com/manual/reference/operator/query/ne/#op._S_ne
https://docs.mongodb.com/manual/reference/operator/query/in/#op._S_in
https://docs.mongodb.com/manual/reference/operator/query/nin/#op._S_nin
https://docs.mongodb.com/manual/reference/operator/query/lt/#op._S_lt
https://www.mongodb.com/lp/misc/quick-reference-cards?jmp=docs&_ga=1.174940578.1222174542.1479160331

48

Code Listing 28: Collection find method signature

Query filter: Represents the filter that is going to be applied while searching for data (exactly

the same thing as the WHERE clause in the RDBMS database).

Projection: Provides a mechanism of specifying which data we want to return back. If we only

want to return a specific field(s), this is the place to specify it.

As an example, if we were to retrieve users whose firstname and lastname match a given

value, we would use the following notation (the formatting on multiple lines is simply for better
readability):

Code Listing 29: Usage of an AND operator on a query

Square brackets would contain an array of arguments. As demonstrated in Figure 27, we can
see that the query returned the document that matches the values we specified.

Figure 27: Searching for firstname and lastname.

At the same time, if we were to combine the $and and $or, the following query is made:

Code Listing 30: Usage of AND and OR on a query

db.collection.find(<query filter> , <projection>)

db.users.find(
{
 $and: [
 { firstname: "john" },
 { lastname : "doe" }
]
 });

db.users.find(
{
 $and: [

www.dbooks.org

https://www.dbooks.org/

49

When this runs in the MongoDB shell, the result is as follows:

Figure 28: Specifying the filter containing AND and OR.

At the same time, if we want to use some comparison operators, the basic usage is to place the
operator inside the curly brackets together with the value in question:

Code Listing 31: Searching for a user where the id is greater than 1

This query searches for items where the _id value is greater than 1.

Table 11: Examples of query filters

Name Description

{lastname : “doe”} Docs in which lastname is equal to doe, or an

array containing the value doe.

{age: 10, lastname: “doe”} Docs in which age is equal to 10 and lastname is

equal to doe.

{age: {$gt: 10}} Docs in which age is greater than 10. Also

available: $lt (<), $gte (>=), $lte (<=), and

$ne (!=).

 { firstname: "john" },
 { lastname : "doe" }
],
 $or: [
 { _id : 1 }
]
});

db.users.find({ _id : {$gt: 1} });

50

Name Description

{lastname: {$in: [“doe”,
“foo”]}}

Docs in which lastname is either doe or foo.

{a: {$all: [10, “hello”]}}
Docs in which a is an array containing both 10 and

hello.

{“name.lastname": “doe”}.
Docs in which name is an embedded document

with lastname equal to doe.

{a: {$elemMatch: {b: 1, c:
2}}}

Docs in which a is an array that contains an

element with both b equal to 1 and c equal to 2.

{$or: [{a: 1}, {b: 2}]} Docs in which a is 1 or b is 2.

{a: /^m/}
Docs in which a begins with the letter m. One can

also use the regex operator: {a: {$regex:
“^m”}}.

{a: {$mod: [10, 1]}}
Docs in which a remainder after division with 10 is

1.

{a: {$type: 2}}

Docs in which a is a string. (See bsonspec.org for

more.) { $text: { $search: “hello” } }

Docs that contain hello on a text search.

Requires a text index.

Projections

Let’s imagine a situation in which we have a document with a very large number of attributes
(fields), but we only need to return one or two. This can be done by specifying the projection
parameter in the find() method.

In the this chapter, we have seen how to filter for some data, and we have also seen that all the
attributes get returned.

The projection is actually very simple; we simply need to specify the list of attributes that we
want to be included or excluded in the output. And this works as follows:

In order to return only the firstname attribute from the query, we will specify the following:

Code Listing 32: Finding all users and returning the firstname only

The number 1 in this case actually means true or include, and 0 means false or exclude.

db.users.find({ }, {_id: 0, firstname: 1});

www.dbooks.org

http://bsonspec.org/
https://www.dbooks.org/

51

The _id field will be always returned, unless explicitly excluded from the query.

Figure 29: Returning only the firstname from the query.

Sorting

In order to sort out the result, we can use the sort() modifier on top of the find(). This looks

like the following:

Code Listing 33: Specifying the sorting

The sort() modifier accepts a list of fields on which we can assign two values, negative (-1) or

positive (1), where:

 Negative (-1): descending order

 Positive (1): ascending order

Figure 30: Sorting by descending or ascending order.

db.users.find({}, {}).sort({ _id : -1});

52

Limiting the output

In order to limit the number of documents being returned, we can use the limit() modifier. By

specifying the value on the limit(), only that number of documents will be returned.

Code Listing 34: Limiting the number of documents returned by a query

In this example, only the first 10 documents will be returned.

Cursor

When invoking the find() method, a cursor is being returned, and it can be used to iterate

through documents quite easily, as demonstrated in Code Listing 35.

The query returns all the documents, and we are using the cursor to implement some specific
logic at a document level. Our example here is used purely to demonstrate few things:

 We can iterate through documents.
 We can instantiate a single document.
 We can access document internal values.

Code Listing 35: Iterating through the cursor

In the MongoDB shell, we can see that “John” and “Mike” are returned as part of the query.

db.users.find({}, {}).limit(10);

var cursor = db.users.find({}, {});

while (cursor.hasNext()) {

 var document = cursor.next();

 if(document) {
 var firstname = document.firstname;
 print (tojson(firstname));
 }
};

www.dbooks.org

https://www.dbooks.org/

53

Figure 31: cursor in MongoDB shell.

The same can be achieved by using the forEach() function that will iterate through all the

documents. It makes it a bit easier to code, but is substantially the same as the previous
technique.

Code Listing 36: Using forEach on a cursor

Aggregations

What we saw in the previous chapter was mainly related to retrieving documents from a given
collection by filtering and projecting. What we haven’t seen is the way to aggregate data; and
this is simply because the find() method doesn’t offer a way to do this.

The MongoDB documentation defines aggregations as follows: Aggregations are operations
that process data records and return computed results.

Therefore, MongoDB offers a way to perform operations (computations) and to group values
together in order to return a single result. With this functionality, we are able to perform any kind
of analytic tasks on the data available in the database.

If you are coming from the RDBMS world, this is pretty much corresponding to the way of using
operations around GROUP BY (sum(), avg(), count(), etc.).

MongoDB offers three ways to achieve this:

 Aggregation pipeline

var cursor = db.users.find({}, {});

cursor.forEach(function(document) {
 var firstname = document.firstname;
 print (tojson(firstname));
});

54

 Map-reduce function

 Single-purpose aggregation methods

The aggregation pipeline

The MongoDB Aggregation Framework offers a way of processing documents in various stages
(as a pipeline). Each stage transforms the documents as they are passing through the pipeline.

When executing a pipeline, MongoDB pipes operators into each other. If you are familiar with
the Linux concept of a pipe, then that’s the closest analogy. In a nutshell, this means that the
output of an operator becomes the input of the following operator. The result of each operator
is a new collection of documents. For instance, one possible pipeline would be as follows:

Figure 32: Aggregation pipeline example.

We can add as many operators in the pipeline as we like; we can also add the same operator
more than once, and at a different position in the pipeline.

Figure 33: Aggregation example with repeating operators.

When it comes to implementation, MongoDB offers the aggregate() function that accepts the

list of stages to be applied. The application of stages happens as a sequence is passed to the
method. The method signature is as follows:

Code Listing 37: Aggregate method signature.

Possible stages are described in the following table from the MongoDB documentation, so let’s
dive into more details:

Table 12: Pipeline operators

Operator Description SQL
equivalent

$project Changes each document in the stream, such as by adding
new fields or removing existing fields. For each input
document, outputs one document.

SELECT

$match Filters the document stream to allow only matching
documents to pass unmodified into the next pipeline

WHERE

collection $project $match $group = result

collection $project $match $group $project $group = result

db.collection.aggregate([{ <stage 1> }, { <stage 2>}, …]);

www.dbooks.org

https://docs.mongodb.com/manual/reference/operator/aggregation/
https://docs.mongodb.com/manual/reference/operator/aggregation/project/#pipe._S_project
https://docs.mongodb.com/manual/reference/operator/aggregation/match/#pipe._S_match
https://www.dbooks.org/

55

Operator Description SQL
equivalent

stage. $match uses standard MongoDB queries. For each

input document, outputs either one document (a match) or
zero documents (no match).

$redact Reshapes each document in the stream by restricting the
content for each document based on information stored in the
documents themselves. Incorporates the functionality
of $project and $match. Can be used to implement field-

level redaction. For each input document, outputs either one
document or zero documents.

N/A

$limit Passes the first n documents unmodified to the pipeline

where n is the specified limit. For each input document,

outputs either one document (for the first n documents) or

zero documents (after the first n documents).

LIMIT or
TOP xxx

$skip Skips the first n documents where n is the specified skip

number, and passes the remaining documents unmodified to
the pipeline. For each input document, outputs either zero
documents (for the first n documents) or one document (if

after the first documents).

LIMIT
..OFFSET

$unwind Deconstructs an array field from the input documents to
output a document for each element. Each output document
replaces the array with an element value. For each input
document, outputs n documents where n is the number of

array elements and can be zero for an empty array.

N/A

$group Groups input documents by a specified identifier expression
and applies the accumulator expression(s), if specified, to
each group. Consumes all input documents and outputs one
document per each distinct group. The output documents
only contain the identifier field and, if specified, accumulated
fields.

GROUP BY

$sample Randomly selects the specified number of documents from
its input.

N/A

$sort Reorders the document stream by a specified sort key. Only
the order changes; the documents remain unmodified. For
each input document, outputs one document.

ORDER BY

$geoNear Returns an ordered stream of documents based on the
proximity to a geospatial point. Incorporates the functionality
of $match, $sort, and $limit for geospatial data. The

output documents include an additional distance field and
can include a location identifier field.

N/A

https://docs.mongodb.com/manual/reference/operator/aggregation/redact/#pipe._S_redact
https://docs.mongodb.com/manual/reference/operator/aggregation/limit/#pipe._S_limit
https://docs.mongodb.com/manual/reference/operator/aggregation/skip/#pipe._S_skip
https://docs.mongodb.com/manual/reference/operator/aggregation/unwind/#pipe._S_unwind
https://docs.mongodb.com/manual/reference/operator/aggregation/group/#pipe._S_group
https://docs.mongodb.com/manual/reference/operator/aggregation/sample/#pipe._S_sample
https://docs.mongodb.com/manual/reference/operator/aggregation/sort/#pipe._S_sort
https://docs.mongodb.com/manual/reference/operator/aggregation/geoNear/#pipe._S_geoNear

56

Operator Description SQL
equivalent

$lookup Performs a left-outer join to another collection in
the same database to filter in documents from the “joined”
collection for processing.

JOIN

$out Writes the resulting documents of the aggregation pipeline to
a collection. To use the $out stage, it must be the last stage

in the pipeline.

SELECT

$indexStats

Returns statistics regarding the use of each index for the
collection.

EXPLAIN

To demonstrate the usage of the aggregation, we need to have some data to work against;
therefore, we will be working on a collection of books, which will be in a very simple format: title,
author, number of pages, and language.

So, let’s populate the database with some sample data:

Code Listing 38: Simple data to be used for aggregation

Let’s try to return the book with the largest number of pages, per language.

In order to achieve this, one of the strategies would be to:

1. Group the documents by language (in blue), by specifying the item on which the
grouping will be performed.

2. Use the $max operator to find out which book has the largest number of pages (in
red) for that given language.

Code Listing 39: Data aggregation (grouping)

db.books.insert(
[
 {_id: 1, title: "Anna Karenina", author: "Leo Tolstoy", pages : 500,
language: "russian"},
 {_id: 2, title: "Madame Bovary", author: "Gustave Flaubert", pages :
450, language: "french"},
 {_id: 3, title: "War and Peace", author: "Leo Tolstoy", pages : 470,
language: "russian"},
 {_id: 4, title: "The Great Gatsby", author: "F. Scott Fitzgerald", pages
: 300, language: "english"},
 {_id: 5, title: "Hamlet", author: "William Shakespeare", pages : 150,
language: "english"}
]);

db.books.aggregate(
 [
 {
 $group:

www.dbooks.org

https://docs.mongodb.com/manual/reference/operator/aggregation/lookup/#pipe._S_lookup
https://docs.mongodb.com/manual/reference/operator/aggregation/out/#pipe._S_out
https://docs.mongodb.com/manual/reference/operator/aggregation/indexStats/#pipe._S_indexStats
https://www.dbooks.org/

57

One thing to note in this query is that we are using the $field notation to refer to the value of

the field being processed ($max : "$pages").

Execution returns the result shown in Figure 34.

Figure 34: Data aggregation (grouping).

In order to apply the stages concept described at the beginning of the chapter, let’s simply add
one more requirement: let’s make the previous calculation, but only apply it to the English
language. That means we are not interested in knowing anything about languages other than
English.

We can rewrite the query and divide it into two stages:

1) $match: We are filtering out all the items we don’t want to perform the calculation on.

That means we limit our data to only “english language” before starting the calculation.

2) $group: Everything is as before; the only difference is that the input to this stage would

be consisting of books only written in English.

Now, the query looks as follows:

Code Listing 40: Data aggregation (grouping) with filtering ($match)

 {
 _id: {language: "$language"},
 pages: { $max: "$pages" }
 }
 }
]
);

db.books.aggregate(
 [
 {

58

As shown in the MongoDB shell result, we can only see the values for english. All the rest is

not visible.

Figure 35: Aggregated Pipeline: group books by prefiltering collection.

The interesting point in the query above is the order of the operations we used. We could have
certainly moved the $match part to be after the $group, in which case the result would be

exactly the same. What would change is the processing of the data between stages. For
instance, it makes sense to filter as much as possible before performing calculations, as the
amount of work to be done by the engine would be smaller than if we only filtered the result at
the end. This part about efficiency should be always considered when writing queries.

MapReduce

MapReduce is yet another way of aggregating data, and it is typically used for processing a
large amount of data in order to obtain a condensed view of the same.

Every MongoDB collection has a mapReduce() command as part of it, with the following

signature:

 $match : { language : "english" }
 },
 {
 $group:
 {
 _id: {language: "$language"},
 pages: { $max: "$pages" },
 title: { $first: "$title"}
 }
 },
]
);

www.dbooks.org

https://www.dbooks.org/

59

Code Listing 41: MapReduce method’s signature

Map and reduce are actually JavaScript functions, which we have to define.

Map

The map function is responsible for transforming each input document into zero or more

documents. The context of the map function is the collection itself; therefore, you can use this

within the function. Emit() is responsible for creating the output. The map function can be also

seen as a mechanism of a GROUP BY in the RDBM world. The main goal is to return values

normalized and grouped by a common key, which can be any of the properties of the collection,

and a set of values that belong to this key.

Code Listing 42: Basic map function

For Microsoft.NET developers, the output of the map function can be seen as
IDictionary<object, IList<object>>, or a key associated with a set of values.

We can call emit() more than once if we want, or do any logic to manipulate the data we want
to group.

 Note: If an item contains only one record after the map() command is executed,
MongoDB won’t perform any reduce function, as it’s already considered to be
reduced.

db.<collection>.mapReduce (
 mapFunction,
 reduceFunction,
 {
 <out>,
 <query>,
 <sort>,
 <limit>,
 <finalize>,
 <scope>,
 <jsMode>,
 <verbose>,
 <bypassDocumentValidation>
 }
);

var map = function(){
 /* emit values for each document */
 emit(key, <values>);
}

60

Reduce

The reduce function simply gathers results and does something with them, such as reducing or

grouping the items based on the same key, and doing something with the values, such as
calculating the sum or quantity. The basic signature is as follows:

Code Listing 43: Basic reduce function definition

If we execute the same example as we have done previously with the aggregation pipeline (to
get the books with the largest number of pages), then the mapReduce would look similar to the

following:

Code Listing 44: MapReduce full example

var reduce = function(key, value){
 /* reduce emitted values into result */
 return {result1: one, result2: two};
}

/* 1. defining the map function */
var map = function() {
 emit(this.language,
 {
 pages: this.pages,
 title: this.title
 });
};

/* 2. defining the reduce function */
var reduce = function(key, values) {

 var max = values[0].pages;
 var title = values[0].title;

 values.forEach(function(value) {
 if(value.pages > max){
 max = value.pages;
 title = value.title;
 }
 });

 return {pages: max, title: title} ;
};

/* 3. calling the map reduce against the books collection a*/
db.books.mapReduce(map, reduce, {out: { reduce:"biggest_books" }});

/* 4. Retrieving the result */
db.biggest_books.find();

www.dbooks.org

https://www.dbooks.org/

61

The output of this query is as follows, and it’s pretty much the same as the previously obtained
one:

Code Listing 45: MapReduce data returned (result)

About the sequence of the execution:

1. In step 1, we define the map function. For every row in the books table, the function will
return an object that will contain the key = language itself, and the values associated will
be the book title and the number of pages.

Code Listing 46: Example of data returned

2. In step 2, we define a reduce function. The reduce function’s responsibility is to loop

through the array of values and find out which number of pages has the biggest value. In
order to return the values of the title, we have to map the title as well on every loop cycle.

3. Finally, we call the mapReduce() function, where the functions declared previously are set
as arguments. One interesting aspect of this query is that it outputs the result in a new table
called biggest_books.

As part of the output options, we could also choose to return the result as a cursor, in which
case we would have something like the following:

Code Listing 47: MapReduce with cursor

Once we have the values cursor filled in, we can iterate through values as we did in the

previous chapter where we discussed cursors.

For extensive information about MapReduce in MongoDB, see the official documentation.

{ "_id" : "english", "value" : { "pages" : 300, "title" : "The Great Gatsby" } }
{ "_id" : "french", "value" : { "pages" : 450, "title" : "Madame Bovary" } }
{ "_id" : "russian", "value" : { "pages" : 500, "title" : "Anna Karenina" } }

{ english } => [
 { pages: 300, title: "The Great Gatsby"},
 { pages: 150, title: "Hamlet"}
]
{ russian } => [
 { pages: 500, title: "Anna Karenina"},
 { pages: 470, title: "War and Peace"}
]
{ french } => [{pages: 450, title: "Madame Bovary"}]

 var values = db.books.mapReduce(map, reduce, {out: { inline: 1 }});

print(tojson(values));

https://docs.mongodb.com/v3.4/reference/method/db.collection.mapReduce

62

Single-purpose aggregation operations

MongoDB also offers some more aggregation commands that can be directly executed against
a collection.

Table 13: "Simple" aggregation commands

Name Description

count Counts the number of documents that match the query; optional
parameters are: limit, skip, hint, maxTimeMS.

distinct Displays the distinct values found for a specific key in a collection.

group Groups documents in a collection by the specified key and performs
simple aggregation.

Count

Count is a very simple function to execute against a collection. By just calling the count()

function, we get back the result.

Code Listing 48: Count method signature

As we can see in Figure 36, we can also specify the query that acts as a data filter.

Figure 36: Counting books with or without query.

There are also a few options that can be specified, such a limit, skip, and maxTimeMS (max

time in milliseconds), that could help us further specify the options of the count.

Keep in mind that count() can also be used on a cursor after we use the find() function.

db.books.count(query, options);

www.dbooks.org

https://www.dbooks.org/

63

Figure 37: Using count() after searching for data (cursor).

Distinct

Distinct will return the list of distinct values as specified in the field parameter. Query can

also be used to further specify the data worked against.

Code Listing 49: Distinct method signature

Figure 38: Returning distinct values from a collection.

Group

The group method groups documents in a collection by the specified keys and performs simple

aggregation functions, such as computing counts and sums. The method is analogous to a
SELECT <...> GROUP BY statement in SQL. The group() method returns an array.

The signature of the method is as follows:

Code Listing 50: Group method signature

Let’s explain the most useful parts of the method:

db.books.distinct(field, query);

db.<collection>.group ({ key, reduce, initial [, keyf] [, cond] [,
finalize]})

64

Table 14: Group method parameters

Name Description

key Represents the field or fields to group. This will be used as a key of the
group, to which all of the other values will be referenced.

reduce An aggregation function that operates on documents during the
grouping operation. These functions may return a sum or a count. The
function takes two arguments: the current document, and an
aggregation result document for that group.

initial Initializes the aggregation result document.

keyf Optional. Alternative to the key field. Specifies a function that creates a
“key object” for use as the grouping key. Use keyf instead of key to

group by calculated fields rather than existing document fields.

cond Optional. Contains the query if we want to work only against a subset
of data.

finalize Optional. Before the result is returned, it can perform formatting of the
data. It’s the last method executed within the query.

Let’s see the example of if we were to calculate the sum of all of the pages per given language:

Code Listing 51: Grouping example

As executed in the shell, it looks like the following:

db.books.group (
{
 key : {language: 1 },
 reduce : function(currentDocument, result) {
 result.total += currentDocument.pages;
 },
 initial: {total: 0}
});

www.dbooks.org

https://www.dbooks.org/

65

Figure 39: Grouping by language and summing up the number of pages.

Conclusion

In this chapter, we have briefly seen how MongoDB is rich with functionalities when it comes to
querying and aggregating data. For the sake of brevity, we haven’t seen all the cases, as this
probably would require a document on its own. However, I hope that with this the reader can at
least identify the elements that might be needed. For further information, see either the official
documentation or the myriad of blog posts that explain some corner cases.

66

Chapter 6 Basic MongoDB with C#

Over the years, as MongoDB has become more of a mainstream database, a large number of
technologies have been embraced and extended so that there is a possibility of interaction. It’s
perfectly normal to interact with MongoDB from Java, Microsoft.NET, Node.js, and many other
platforms.

In this chapter, we will be discussing how Microsoft.NET and C# can be used to manipulate
data in MongoDB. The idea is to show some basic operations (and bring some building blocks),
and then later on to dive into a more complex solution.

To be able to use MongoDB from Microsoft.NET, we need a specific driver. In this book, we will
be using the official driver supplied by MongoDB.

The driver can be downloaded from the MongoDB website. However, the preferred way to
install the driver is by using the NuGet package, which is available with the following command:

Code Listing 52: Install MongoDB driver on NuGet

There are several other official (legacy) MongoDB drivers available on NuGet; however, the
previously mentioned package is the latest supported, and it should be used for any new
project. At the time of writing this book, the latest version of the driver is 2.4, which requires at
least Microsoft.NET v4.5 to be used; however, it also supports the .NET Core.

Table 15: C# driver versions

C#/.NET Driver
Version

MongoDB
2.4

MongoDB
2.6

MongoDB
3.0

MongoDB
3.2

MongoDB
3.4

Version 2.4
 ✓ ✓

Version 2.3
✓ ✓ ✓ ✓ ✓

Version 2.2
✓ ✓ ✓ ✓

Since version 2.0 of the driver, there has been support for async API. This feature allows us to

use the resource more efficiently. Compared to the previous version, this version brings a new,
more simplified API to work with. For instance, instead of having overloaded methods, there are
now Option classes that allow having the different overloads configured in such a way.

The driver implements the three most important top-level interfaces:

Install-Package MongoDB.Driver

www.dbooks.org

https://docs.mongodb.org/ecosystem/drivers/csharp
https://www.dbooks.org/

67

Table 16: MongoDB driver's main interfaces

IMongoClient
Defines the root object that will interact with the MongoDB
server. Responsible for connecting, monitoring, and performing
operations against the server.

IMongoDatabase Represents a database in the MongoDB server instance.

IMongoCollection Represents a collection in the MongoDB database.

In the upcoming chapters, we will take a look at how to use the classes implementing the above
interfaces.

Connecting to the database

In this chapter, you will learn how to connect to a MongoDB database and perform basic
operations such as referencing, creating, and deleting (dropping) the database.

Connecting to the database is very simple and it involves using an instance of the
MongoClient.

 Note: As we have seen in previous chapters, unless otherwise configured,
MongoDB runs on port 27017 by default.

The first thing to do is to install MongoDB C# driver by running Install-Package
MongoDB.Driver directly in Visual Studio, using the Package Manager Console.

The easiest way, without using any additional settings, is to create an instance of the
MongoClient class and pass the connectionString as the argument. Note that the

configuration string has the format of “mongodb://servername:port”.

Code Listing 53: Connecting to MongoDB without authentication

using System;
using MongoDB.Driver;

public static void ConnectWithoutAuthentication()
{
 string connectionString = "mongodb://localhost:27017";

 MongoClient client = new MongoClient(connectionString);

 Console.WriteLine("Connected");
}

68

The connection string can contain quite a few parameters, such as a list of hosts in case we use
a MongoDB cluster, or to specify connection options. The full signature is as follows:

Code Listing 54: MongoDB connection string

mongodb://[username:password@]host1[:port1][,hostN[:portN]]]
[/[database][?options]]

Creating an instance of the MongoClient automatically creates a connection to the MongoDB.

MongoClient in the background uses a connection pool.

The MongoDB recommendation is to create only one instance of the MongoClient per

application so that the connection can be better reused. The MongoClient instance can be

safely configured as a singleton lifetime if an inversion of control (IoC) framework is used.

Authentication

MongoDB itself supports several authentication mechanisms, such as SCRAM-SHA-1,

MONGODB-CR, X.509 Certificate, LDAP Proxy, and Kerberos. By default, the SCRAM-SHA-1 is

used. Sending the username and password is as easy as creating an instance of
MongoCredential and supplying the database, username, and password, and wrapping it

within an instance of the MongoClientSettings to be passed to the MongoClient. This is the

second overload that can be used. It’s probably more complex to describe than to see in action,
as follows:

Code Listing 55: Connecting to MongoDB with authentication

using MongoDB.Driver;

public static void ConnectWithAuthentication()
{
 string dbName = "ecommlight";
 string userName = "some_user";
 string password = "pwd";

 var credentials = MongoCredential.CreateCredential(dbName, userName, password);

 MongoClientSettings clientSettings = new MongoClientSettings()
 {
 Credentials = new[] { credentials },
 Server = new MongoServerAddress("localhost", 27017)
 };

 MongoClient client = new MongoClient(clientSettings);

 Console.WriteLine("Connected as {0}", userName);
}

www.dbooks.org

https://docs.mongodb.com/manual/reference/operator/aggregation/
https://www.dbooks.org/

69

As quickly referenced, MongoDB has a rich model of authentication mechanism, which goes far
beyond the scope of this book. For more detailed information about the various authentication
methods, see this documentation.

Database operations

Through the MongoDB driver, it is possible to create, list, or drop a database, which we will
demonstrate in this section.

Referencing a database

Creating a reference to a database is a basic operation that will be needed in almost all the data
manipulation examples. The hierarchy defined in MongoDB is:

Server > Database > Collection > Document > Data

In order to get to the data, there should be a reference to the database, and then all the way
down.

In order to keep the examples easy and simplify the code, we will create a simple method that
will return an instance of MongoClient, which will then be used instead of manually creating the

connection every time.

Code Listing 56: Generic method of instantiating MongoClient

public static MongoClient GetMongoClient(string hostName)
{
 string connectionString = string.Format("mongodb://{0}:27017", hostName);
 return new MongoClient(connectionString);
}

We use the GetDatabase() method to get a reference to a database directly from the

MongoClient instance, as follows:

Code Listing 57: Generic method of getting the database reference

public static IMongoDatabase GetDatabaseReference(string hostName, string
dbName)

{
 MongoClient client = GetMongoClient(hostName);
 IMongoDatabase database = client.GetDatabase(dbName);

 return database;
}

GetDatabase() returns an object that implements the IMongoDatabase interface, in this case

MongoDatabaseImpl, which is the concrete implementation.

http://mongodb.github.io/mongo-csharp-driver/2.3/reference/driver/authentication

70

Database creation

MongoDB driver doesn’t have an explicit method to create a database, but this can be done by
referencing a database, as we have seen in the GetDatabaseReference method.

If the database name does not exist, MongoDB driver will create it automatically the first time we
add a document to it, or by simply creating a new collection.

Code Listing 58: Create a new database in C#

public static IMongoDatabase CreateDatabase(string databaseName, string collectionName)
{
 MongoClient client = GetMongoClient(hostName);
 IMongoDatabase database = client.GetDatabase(databaseName);
 database.CreateCollection(collectionName);
 return database;
}

Which we can call:

Code Listing 59: Calling CreateDatabase method

public static void Main(string[] args)
{
 CreateDatabase("newDatabaseName", "newCollectionName");
}

Getting the list of databases

Getting the list of databases is straightforward. In the same style as getting the reference to the
single database, we can call ListDatabases() or ListDatabasesAsync() on the

MongoClient instance and obtain an instance of the BsonDocument, which will contain the

basic information about the databases available on the server. Both of the methods would return
an instance of an object that implements IAsyncCursor; however, the Async version would

return the Task<IAsyncCursor>. Let’s see this in an example:

Code Listing 60: Show list of available databases

using System;
using MongoDB.Driver;
using System.Threading.Tasks;

public static async Task GetListOfDatabasesAsync()
{
 MongoClient client = GetMongoClient("localhost");

 Console.WriteLine("Getting the list of databases asynchronously…");
 using (var cursor = await client.ListDatabasesAsync())
 {
 await cursor.ForEachAsync(d => Console.WriteLine(d.ToString()));
 }
}

www.dbooks.org

https://www.dbooks.org/

71

public static void GetListOfDatabasesSync()
{
 MongoClient client = GetMongoClient("localhost");

 Console.WriteLine("Getting the list of databases synchronously…");
 var databases = client.ListDatabases().ToList();
 databases.ForEach(d => Console.WriteLine(d.GetElement("name").Value));
}

The output in this case is as follows:

Figure 40: Returning the list of databases via C#.

I would like to emphasize the fact that in the first case (where we use the async method), a

BsonDocument is returned and printed out to console. Being in JSON format, it’s very easily

recognized.

In the second case, by using Console.WriteLine(d.GetElement("name").Value)), we only

return the name portion of it.

Deleting a database

To delete a database from MongoDB server, we call the DropDatabase() or

DropDatabaseAsync() method from MongoClient object.

Code Listing 61: Deleting the database (sync and async versions)

public static void DropDatabase(string databaseName)
{
 MongoClient client = GetMongoClient("localhost");
 client.DropDatabase(databaseName);
}

public static async void DropDatabaseAsync(string databaseName)
{
 MongoClient client = GetMongoClient("localhost");
 await client.DropDatabaseAsync(databaseName);

72

}

Working with collections

As we have seen in the previous chapters, we can list and manipulate the collections by using
the MongoDB shell. This is also possible by using the C# driver. In the following examples, we
will show how to list, create, and drop a collection.

There are mainly three methods available on the IMongoDatabase:

 CreateCollection and CreateCollectionAsync: Creates a new collection if not

already available.

 ListCollections and ListCollectionsAsync: Lists the already available collections

on the database.

 DropCollection and DropCollectionAsync: Deletes (drops) a collection from the

given database.

We can summarize all the operations within the CreateListAndDropCollections method as

follows:

Code Listing 62: Show the list of available collections

public static void CreateListAndDropCollections(string databaseName)
{
 var database = GetDatabaseReference(hostName, databaseName);
 var collectionName = "some_collection";

 //create a new collection.
 database.CreateCollection(collectionName);

 //showing the list of collections before deleting.
 ListCollections(hostName, databaseName);

 //delete a collection.
 database.DropCollection(collectionName);

 //showing the list of collections after deleting.
 ListCollections(hostName, databaseName);
}

public static void ListCollections(string hostName, string databaseName)
{
 var database = GetDatabaseReference(hostName, databaseName);

 var collectionsList = database.ListCollections();

 Console.WriteLine("List of collections in the {0} database:",

database.DatabaseNamespace);

www.dbooks.org

https://www.dbooks.org/

73

 foreach (var collection in collectionsList.ToList())
 {
 Console.WriteLine(collection.ToString());
 }
}

And by calling the previous code from:

Code Listing 63: Calling the method to show collections

The output in this case is as follows:

Figure 41: List of available collections.

Keep in mind that creating a collection will cause an error if the collection already exists.

public static void Main(string[] args)
{
 var newDatabaseName = "newDbName";

 CreateListAndDropCollections(newDatabaseName);
}

SHOPMART

Dashboard

Top Sale Products

Search for something...

Orders

Products

Customers

Log Out

Message

Users

Teams

Setting Apple iPhone 13 Pro
Mobile

Apple Macbook Pro
Laptop

Galaxy S22 Ultra
Mobile

Dell Inspiron 55

$999.00
+12.8%

$1299.00
+32.8%

$499.99
+22.8%

$899.00

Sales Overview

$51,456

Monthly

Filters John Watson

OTHER

Online Orders Total usersoffline Orders

23456 9789945345 9565

Invoices

#1208

Order id

Jan 21, 2022 Olive Yew

Date Client name

$1,534.00

Amount Status

New Invoice

Completed

$1500
Cash

100K

50K

25K

0

10 May 11 May 12 May Today

27

M

3

10

17

24

31

26

S

2

9

16

23

30

28

T

4

11

18

25

1

29

W

January 2022

5

12

19

26

2

30

T

6

13

20

27

3

31

F

7

14

21

28

4

1

S

8

15

22

29

5

Completed

In Progress

120

24

Order Delivery Stats

Sales

Analytics

Laptop: 56%

Mobile: 25%Accessories: 19%

Laptop AccessoriesMobile

Revenue by Product Categories

Powerful Apps

1,700+ components for
mobile, web, and
desktop platforms

Hassle-free licensing

Uncompromising
quality

Support within 24 hours
on all business days

28000+ customers
20+ years in

business

syncfusion.com/communitylicense

Get your .NET and JavaScript UI ComponentsFree

The World's Best

  

for Building
UI Component Suite

Trusted by the world's leading companies

4.6 out of

5 stars

www.dbooks.org

https://www.syncfusion.com/products/communitylicense?utm_source=ebooks-pdf&utm_medium=listing&utm_campaign=mongodb_3_succinctly-ebooks-pdf
https://www.dbooks.org/

74

Chapter 7 Data Handling in C#

Data representation

Before starting with various examples, we should spend a few words on the BSON representation

of the data as stored in the MongoDB database, which is achieved through the BsonDocument

object. There is a very high chance of encountering the BsonDocument when working with the

driver, so it’s crucial to understand what it is and what it represents.

We can think of BsonDocument as an equivalent to a table row in an RDBMS database, as it

represents the document as it is stored in the database. This is also a way to dynamically
express the data being returned or passed to the database.

The following code shows an example of creating a new BsonDocument, in our case

representing the movie The Seven Samurai. As we would expect, the document is declaring the
attributes Name, Director, Actors, and Year, with the respective values. The array of values is

being injected by using another structure, the BsonArray object, and the items of the array are

themselves declared as BsonDocument (a sort of a subdocument).

Code Listing 64: BsonDocument creation

BsonDocument sevenSamurai = new BsonDocument()
{
 { "Name" , "The Seven Samurai" },
 { "Director" , "Akira Kurosawa" },
 { "Actors", new BsonArray {
 new BsonDocument("Name", "Toshiro Mifune"),
 new BsonDocument("Name", "Takashi Shimura")}},
 { "Year" , 1954 }
};

In the MongoDB C# driver, using the BsonDocument as a means of sending or returning data is

perfectly legal, and is fully supported. BsonDocument can be directly used when we want to

work on a “lower” level with the data, without the need for deserialization seen in other formats,
such as POCO (“plain old CLR object”), or when the schema is fluid and dynamic. However,
most applications are built with a schema modeled in the application itself rather than the
database. In these cases, it is likely that the application uses classes. Therefore, an alternative
to the BsonDocument is to work directly with C# POCO objects.

Code Listing 65: C# representation of the BsonDocument

public class Movie
{
 public string MovieId { get; set; }
 public string Name { get; set; }
 public string Director { get; set; }
 public Actor[] Actors { get; set; }
 public int Year { get; set; }

75

}

public class Actor
{
 public string Name { get; set; }
}

The following instance of the Movie class corresponds exactly to the previously shown

BsonDocument that represents the same movie.

Code Listing 66: Creation of a movie object in C#

Movie sevenSamurai = new Movie()
{
 Name = "Seven Samurai",
 Director = "Akira Kurosawa",
 Year = 1954,
 Actors = new Actor[]()
 {
 new Actor { Name = "Toshiro Mifune"},
 new Actor { Name = "Takashi Shimura"},
 }
};

Object mapping

The MongoDB driver offers a few ways of controlling the mapping of the values from the
database to the POCO class, and vice versa. This is very important in case the names of the
attributes as shown in the class differ from what is really stored (persisted) in the database, so it
is crucial that there is a mechanism through which we can control exactly what comes in and
out.

Serialization is the process of mapping an object to a BSON document that can be saved in
MongoDB, and deserialization is the reverse process of reconstructing an object from a BSON
document. For that reason, the serialization process is also often referred to as object mapping.
The default BSON serializer available as part of the driver will take care of this conversion under
the hood.

The MongoDB driver mainly supports two ways of mapping properties from and to the BSON
representation: using the .NET attributes assigned to the class members, and using the
BsonClassMap class.

We will use the previous Media and Actor classes in order to show the various options. One of

the most frequently used options is property mapping, which means making sure that each
member of the class is mapped to a particular value, but is not limited to it.

Let’s see what the Movie class would look like when “decorated” with some extra (previously

mentioned) attributes. Please note that there are two additional attributes, Age and Metadata,

which will be explained further down the line.

www.dbooks.org

https://www.dbooks.org/

76

Code Listing 67: POCO object with BSON attributes

An alternative to these attributes is the BsonClassMap, which is the entry point for the mapping.

 Tip: BsonClassMap should be called only once per application.

BsonElement attribute

The BsonElement attribute will make sure to map the class property to a given name, which

means that when the class gets (de)serialized, the names specified as the parameter will be
used. As an example, the property Director, when serialized, will actually be stored in

MongoDB as directorName rather than with the property name that would be the default

behavior.

If we were to use the BsonClassMap, we could achieve the same property-name mapping by

chaining the SetElementName method on the MapProperty method.

Code Listing 68: Mapping done via BsonClassMap

BsonClassMap.RegisterClassMap<Movie>(movie =>
{
 movie.MapProperty(p => p.Name).SetElementName("name");

[BsonIgnoreExtraElements]
public class Movie
{
 [BsonId(IdGenerator = typeof(StringObjectIdGenerator))]
 public string MovieId { get; set; }

 [BsonElement("name")]
 public string Name { get; set; }

 [BsonElement("directorName")]
 public string Director { get; set; }

 [BsonElement("actors")]
 public Actor[] Actors { get; set; }

 [BsonElement("year")]
 public int Year { get; set; }

 [BsonIgnore]
 public int Age
 {
 get { return DateTime.Now.Year - this.Year; }
 }

 [BsonExtraElements]
 public BsonDocument Metadata { get; set; }
}

77

 movie.MapProperty(p => p.Director).SetElementName("directorName");
 movie.MapProperty(p => p.Year).SetElementName("year");
 movie.MapProperty(p => p.Actors).SetElementName("actors");
});

BsonId attribute

The BsonId attribute does mainly two things. It makes the property act as a primary key of the

class and, on the other side, it allows us to assign the IdGenerator to the property. In our case,

it maps the MovieId property, which (when serialized) will be transformed into the standard _id,

as we have seen previously. IdGenerator is responsible for assigning the new value to the

class when this is serialized. There are several serializers that are already part of the MongoDB
C# driver, such as BsonObjectIdGenerator, CombGuidGenerator, GuidGenerator,

ObjectIdGenerator, StringObjectIdGenerator, and ZeroIdChecker<T>. We are using the

StringObjectIdGenerator, as in our case the MovieId is of type string; if it were of type

ObjectID, then we would need to choose among the other generators.

We can also create our own unique key generators by implementing the IIdGenerator

interface. What follows is a very naïve implementation of the primary key where we use the
Movie_ prefix followed by a Guid:

Code Listing 69: Example of a custom ID generator

public class MovieIdGenerator : IIdGenerator
{
 public object GenerateId(object container, object document)
 {

 return "Movie_" + System.Guid.NewGuid().ToString();
 }

 public bool IsEmpty(object id)
 {
 return id == null || string.IsNullOrEmpty(id.ToString());
 }
}

Which then would be used as follows:

Code Listing 70: Using the custom ID generator via attributes

public class Movie
{
 [BsonId(IdGenerator = typeof(MovieIdGenerator))]
 public string MovieId { get; set; }
…

If we were to use the mapping class, then instead of using the MapProperty method, we would

use the MapIdProperty. MapIdProperty has the ability to set the IdGenerator by using the

SetIdGenerator method.

Code Listing 71: Setting the custom generator in the BsonClassMap

BsonClassMap.RegisterClassMap<Movie>(movie =>

www.dbooks.org

https://www.dbooks.org/

78

{
 movie.MapIdProperty(p => p.MovieId).SetIdGenerator(new MovieIdGenerator());
});

BsonIgnore attribute

BsonIgnore will simply make sure that the BSON serializer will ignore and not serialize the

element to the BSON format. So, in our case the Age property will be never stored into the

database, and the mapper will simply not fill this property if the value is available in the
database. The corresponding notation of the BsonClassMap uses the UnmapProperty method.

Code Listing 72: Making the attribute not BSON serializable (ignored)

BsonClassMap.RegisterClassMap<Movie>(movie =>
{
 movie.UnmapProperty(p => p.Age);
});

BsonIgnoreExtraElements attribute

When a BSON document is deserialized back to a POCO, the name of each element is used to
look up a matching field or property; when deserializer doesn’t find the mapping property, it
throws an exception. This is when the BsonIgnoreExtraElements attribute becomes very

handy, as it will ignore those extra properties and won’t try to link them back to the class.

The SetIgnoreExtraElements method on BsonClassMap achieves the same.

Code Listing 73: Instructing the serializer to ignore extra elements

BsonClassMap.RegisterClassMap<Movie>(movie =>
{
 movie.SetIgnoreExtraElements(true);
});

BsonExtraElements attribute

This attribute is one of the two ways of allowing the mapping of extra elements (those that are
not part of the original object) dynamically. In fact, this is the way to mix static and dynamic
data. In order for this to work, the dynamic property in a class should be of type BsonDocument.

In our Movie class, we have the Metadata property that is of type BsonDocument.

The corresponding BsonClassMap method to be used is the MapExtraElementsMember.

Code Listing 74: Enabling the mapping of extra elements

BsonClassMap.RegisterClassMap<Movie>(movie =>
{
 movie.MapExtraElementsMember(p => p.Metadata);
});

The following is the example of how the movie will be serialized if we specify the Metadata as a

new BsonDocument.

79

Code Listing 75: Instance of a movie to be serialized

Movie theGodFather = new Movie()
{
 Name = "The Godfather",
 Director = "Francis Ford Coppola",
 Year = 1972,
 Actors = new Actor[]
 {
 new Actor { Name = "Marlon Brando" },
 new Actor { Name = "Al Pacino" },
 },
 Metadata = new BsonDocument("href", "http://thegodfather.com")
};

It will be stored in the database, such as the following:

Code Listing 76: Serialized movie

{
 "_id" : "587a4496c6d11b31a0a6b829",
 "name" : "The Godfather",
 "directorName" : "Francis Ford Coppola",
 "actors" : [
 {
 "Name" : "Marlon Brando"
 },
 {
 "Name" : "Al Pacino"
 }
],
 "year" : 1972,
 "href" : "http://thegodfather.com"
}

We can clearly see that the href looks like an ordinary attribute, and the Metadata property, as

it is in the C# file, is not even mentioned.

If we would omit the BsonExtraElements attribute, then the class would be serialized as

follows:

Code Listing 77: Serialized movie without BsonExtraElements specified

{
 "_id" : "587a45d9c6d11b40944c32f6",
 "name" : "The Godfather",
 "directorName" : "Francis Ford Coppola",
 "actors" : [
 {
 "Name" : "Marlon Brando"
 },
 {

www.dbooks.org

https://www.dbooks.org/

80

 "Name" : "Al Pacino"
 }
],
 "year" : 1972,
 "Metadata" : {
 "href" : "http://thegodfather.com"
 }
}

Please note the difference from the previous example. Now, the Metadata attribute is shown.

81

Chapter 8 Inserting Data in C#

In this exercise, we will insert some data into the database called moviesDb. As we will be

looking at two ways of inserting data, we will store the data into two collections (movies_bson

for BsonDocument-based objects and movies_poco for data based on a POCO model).

Technically, there should be no difference once the data is saved.

In order to do this, we need some sample data, as defined in the GetBsonMovies() method,

which returns an array of BsonDocuments.

Code Listing 78: Return a BsonDocument array of movies

public static BsonDocument[] GetBsonMovies()
{
 BsonDocument sevenSamurai = new BsonDocument()
 {
 { "name" , "The Seven Samurai" },
 { "directorName" , " Akira Kurosawa" },
 { "actors", new BsonArray {
 new BsonDocument("name", "Toshiro Mifune"),
 new BsonDocument("name", "Takashi Shimura")}},
 { "year" , 1954 }
 };

 BsonDocument theGodfather = new BsonDocument()
 {
 { "name" , "The Godfather" },
 { "directorName" , "Francis Ford Coppola" },
 { "actors", new BsonArray {
 new BsonDocument("name", "Marlon Brando"),
 new BsonDocument("name", "Al Pacino"),
 new BsonDocument("name", "James Caan")} },
 { "year" , 1972 }
 };

 return new BsonDocument[] { sevenSamurai, theGodfather };
}

We can insert the data by using the InsertMany or InsertManyAsync methods available at the

collection level. The GetDatabaseReference method has been mentioned previously, and this

is just a helper method to automate the referencing of a database.

In a case of inserting one document, we would use the InsertOne or InsertOneAsync method

as opposed to the above-mentioned one.

www.dbooks.org

https://www.dbooks.org/

82

Code Listing 79: Inserting a movie into the database

public static async Task Insert<T>(T[] movies, string dbName, string tableN
ame)
{
 var db = DatabaseHelper.GetDatabaseReference("localhost", dbName);

 var moviesCollection = db.GetCollection<T>(tableName);
 await moviesCollection.InsertManyAsync(movies);
}

The insert method is a generic method accepting a different kind of movie array, as we will be

using the same method to send the list of movies based on POCO objects.

 Tip: The general rule for using any method in MongoDB C# driver is to use the
async method if available, rather than the synchronous ones. This book might not
always follow this rule.

We call the Insert method as follows:

Code Listing 80: Calling the inserting method

BsonDocument[] movies = MovieManager.GetBsonMovies();
MovieManager.Insert<BsonDocument>(movies, "moviesDb", "movies_bson").Wait()
;

Don’t be confused by the MovieManager class, which is created as a helper class and contains

the methods GetBsonMovies and Insert<T>(..).

After running this code, the result will be as follows when querying the movies_bson collection.

83

Figure 42 Movies from Bson format as stored in the database

As we have seen previously, the alternative method to the BsonDocument is to use POCO

classes representing the objects, in which case we would first declare an array of Movie

objects.

Code Listing 81 Get the list of Movies as array

public static Movie[] GetMovieList()
{
 Movie sevenSamurai = new Movie()
 {
 Name = "Seven Samurai",
 Director = "Akira Kurosawa",
 Year = 1954,
 Actors = new Actor[]
 {
 new Actor {Name = "Toshiro Mifune"},
 new Actor {Name = "Takashi Shimura"},
 }
 };

 Movie theGodFather = new Movie()
 {
 Name = "The Godfather",
 Director = "Francis Ford Coppola",

www.dbooks.org

https://www.dbooks.org/

84

 Year = 1972,
 Actors = new Actor[]
 {
 new Actor {Name = "Marlon Brando"},
 new Actor {Name = "Al Pacino"},
 },
 Metadata = new BsonDocument("href", "http://thegodfather.com")
 };
 return new Movie[] { sevenSamurai, theGodFather };
}

However, before calling the Insert<Movie>() method, as we have seen previously, we need to

call the RegisterClassMap, which will make the driver aware of the mapping between the

POCO object and the desired serialization. The full code of the mapper and calling of the
insert method follows.

Code Listing 82: Full object-to-BSON mapping

public class BsonMapper
{
 public static void Map()
 {
 if (!BsonClassMap.IsClassMapRegistered(typeof(Movie)))
 {
 BsonClassMap.RegisterClassMap<Movie>(movie =>
 {
 movie.MapIdProperty(p => p.MovieId)
 .SetIdGenerator(new StringObjectIdGenerator());
 movie.MapProperty(p => p.Name).SetElementName("name");
 movie.MapProperty(p => p.Director).SetElementName("director
Name");
 movie.MapProperty(p => p.Year).SetElementName("year");
 movie.MapProperty(p => p.Actors).SetElementName("actors");
 movie.UnmapProperty(p => p.Age);
 movie.MapExtraElementsMember(p => p.Metadata);
 movie.SetIgnoreExtraElements(true);
 });
 }

 if (!BsonClassMap.IsClassMapRegistered(typeof(Actor)))
 {
 BsonClassMap.RegisterClassMap<Actor>(actor =>
 {
 actor.MapProperty(p => p.Name).SetElementName("name");
 });
 }

 }
}

How does the code look from the caller perspective?

85

Code Listing 83: Inserting movies by using POCO class mapping

private static void Main(string[] args)
{
 Movie[] movies = MovieManager.GetMovieList();
 BsonMapper.Map(); //map the class to the MongoDB representation.
 MovieManager.Insert<Movie>(movies, "moviesDb", "movies_poco").Wait();
}

Just to make a difference, we are storing the data to the movies_poco collection. This is purely

for showing the functionality. The two methods are identical, and in a production system, we
would use the same collection.

Let’s also pay attention to the BsonMappe.Map() call. This should be executed only once,
when the application starts.

The result of inserting the two movies is as follows. The conclusion is that the result obtained
with the two methods is exactly the same.

Figure 43: Movies as inserted in the database.

www.dbooks.org

https://www.dbooks.org/

86

Chapter 9 Find (Query) Data in C#

In the previous chapters, we have gone through data retrieval and the various possibilities. We
have also seen that the find() method was one of the very important entry points.

The MongoDB C# driver offers the Find and FindAsync methods to issue a query to retrieve

data from a collection. As was the case when using the MongoDB shell, all queries made by
using Find have the scope of a single collection.

The FindAsync method returns query results in a IAsyncCursor, while the Find method

returns an object that implements the IFindFluent interface. To avoid iterating through the list,

we can use the ToListAsync method to return the results as a list. This also means that all the

documents will be held in memory; therefore, one must pay attention to the quantity of data
being returned.

Returning all data from a collection

To return all the data from a collection, we simply don’t have to specify any filter when calling
the FindAsync() method. The following snippet shows a method that queries the collection and

then uses the returned cursor object to iterate through the associated items. The important thing
in this particular case is that the filter is actually a BsonDocument, which in this case is empty.

Code Listing 84: Finding movies as BsonDocuments

public async static void FindMoviesAsDocuments(string dbName, string collNa
me)
{
 var db = DatabaseHelper.GetDatabaseReference("localhost", dbName);
 var collection = db.GetCollection<BsonDocument>(collName);
 var filter = new BsonDocument();
 int count = 0;
 using (var cursor = await collection.FindAsync<BsonDocument>(filter))
 {
 while (await cursor.MoveNextAsync())
 {
 var batch = cursor.Current;
 foreach (var document in batch)
 {
 var movieName = document.GetElement("name").Value.ToString(
);
 Console.WriteLine("Movie Name: {0}", movieName);
 count++;
 }
 }
 }
}

87

/* Calling the method*/
MovieManager.FindMoviesAsDocuments(databaseName, "movies_bson");

/* Returns the following output*/

Movie Name: The Seven Samurai
Movie Name: The Godfather

Note that the result returned actually contains the BsonDocuments, and in order to get the

values from the particular field, we need to use document.GetElement("name").Value.

If we were to query by using the Movie POCO object, then the search would look just a bit

different. I’ve highlighted the differences in grey in the following code snippet.

Code Listing 85: Finding documents by using strongly typed movie collections

public async static void FindMoviesAsObjects(string dbName, string collName
)
{
 var db = DatabaseHelper.GetDatabaseReference("localhost", dbName);
 var collection = db.GetCollection<Movie>(collName);
 var filter = new BsonDocument();
 int count = 0;
 using (var cursor = await collection.FindAsync<Movie>(filter))
 {
 while (await cursor.MoveNextAsync())
 {
 var batch = cursor.Current;
 foreach (var movie in batch)
 {
 Console.WriteLine("Movie Name: {0}", movie.Name);
 count++;
 }
 }
 }
}

/* Calling the method*/
MovieManager.FindMoviesAsObjects(databaseName, "movies_poco");

/* Returns the following output*/

Movie Name: The Seven Samurai
Movie Name: The Godfather

Now that we have seen the basics, we can extend the example to contain the definition of the
filter. The MongoDB C# driver offers the FilterDefinitionBuilder, which can help in

defining the proper query without going into too many details of the MongoDB semantics (as we
had to do by using the MongoDB shell). FilterDefinition supports both BsonDocument

notation (name–value) and .NET expressions (lambda). The entry point for defining queries is

www.dbooks.org

https://www.dbooks.org/

88

the Builders<T> class. As we will see, Builders<T> can support various types of operations

such as filtering, sorting, or defining projections.

Let’s quickly see some basic examples by using Eq, which stands for equal.

Code Listing 86: Statically typed vs. BsonDocument filter definition

/* Filter to retrieve movies where the name equals to "The Godfather" */
var expresssionFilter = Builders<Movie>.Filter.Eq(x => x.Name, "The Godfath
er");

/* Filter to retrieve movies where the name equals to "The Godfather"
 * by using BsonDocument notation */
var bsonFilter = Builders<BsonDocument>.Filter.Eq("name", "The Godfather");

Builder is quite flexible, and it allows defining all the supporting MongoDB query operators

such as Equal, Greater Than, Less Than, and Contains. It is also possible to create various

combinations between Or and And. The following code shows an example of an Or operator:

Code Listing 87: Building a filter by using the Or operator

/* find movies where the name is "The Godfather" OR "The Seven Samurai" */
var filter = Builders<Movie>.Filter.Or(new[]
{
 new ExpressionFilterDefinition<Movie>(x => x.Name == "The Godfather"),
 new ExpressionFilterDefinition<Movie>(x => x.Name == "The Seven Samurai
")
});

It is also very useful to know that is possible to use the C# operators & (binary AND) and |

(binary OR) to build more complex and compile-time safe queries, such as the following:

Code Listing 88: Using C# conditional operators to build a filter

/* find movies where the name is "The Godfather" OR year > 1900 */
var builder = Builders<Movie>.Filter;
var query = builder.Eq("name", movieName) | builder.Gt("year", 1900);
var result = await collection.Find(query).ToListAsync();

By using this simple technique, we can change our original query so that we return the movies
with a given name. The slight difference from the previous example is that we are converting the
result to a list by using the ToListAsync() method.

In addition, we are also showing here how we can use the Builder to specify the sorting, which

can be used to concatenate the various field sorting. In our case, we order Ascending by Name,

and then Descending by Year.

Code Listing 89: Sorting the result

var collection = db.GetCollection<Movie>(collName);

var filter = Builders<Movie>.Filter.Eq(x => x.Name, movieName);

89

var movies = await collection.Find(filter).ToListAsync();
var sort = Builders<Movie>.Sort.Ascending(x => x.Name).Descending(x => x.Ye
ar);

foreach (var movie in movies)
{

Console.WriteLine("Match found: movie with name '{0}' exists", movie.Name);
}

The Find method also supports expressions as parameters, so this is also a valid query—and

perhaps faster to write, as it doesn’t need the Builders to be used.

Code Listing 90: Find with lambda expressions

var collection = db.GetCollection<Movie>(collName);

var movies = collection.Find(x => x.Name == "The Godfather");

Projecting data

In the RDBMS, one of the most natural things to do is to return just a subset of data for a given
query. In MongoDB, this is called a projection of data. There are few ways of constructing the
return data, but the best thing would be to start with an example, which we will then enhance
slowly.

We can say that the main entry point for the projections is the Builders object—the same one

used previously for filtering. Builders offers the possibility to define what data will be returned

through the object ProjectionDefinition. There are two kinds of projections: one in which we

know what the object to be returned (mapped to) is, and one in which we don’t have the object
representation of the data returned from the database.

Code Listing 91: Projection definition examples

/* using the ProjectDefinition object to specify an object that will only
return the _id and year as two attributes. */
ProjectionDefinition<Movie> projection = new BsonDocument("year", 1);

/* using the strongly typed Builders object to specify the return
attributes. */

var projection = Builders<Movie>.Projection
 .Include("name")
 .Include("year")
 .Exclude("_id");
// or
var projection = Builders<Movie>.Projection
 .Include(x => x.Name)
 .Include(x => x.Year)
 .Exclude(x => x.MovieId);

www.dbooks.org

https://www.dbooks.org/

90

// or
var projection = Builders<Movie>.Projection.Expression(x =>
 new { X = x.Name, Y = x.Year });

An example of specifying the return data in BsonDocument format is as follows:

Code Listing 92: Projection as BsonDocument

The structure being returned would be as follows:

Code Listing 93: data returned as defined by the projection

Item retrieved { "name" : "The Seven Samurai", "year" : 1954 }
Item retrieved { "name" : "The Godfather", "year" : 1972 }

If we would like to have a strongly typed object, then it is as easy as specifying the
Project<Movie> instead of Project<BsonDocument>. In the projection definition, we can use

the expressions, which simplifies things since we don’t have to remember the serialized
attribute’s name.

Code Listing 94: Projection defined as strongly typed Movie object

var collection = db.GetCollection<Movie>(collName);

var projection = Builders<Movie>.Projection
 .Include(x => x.Name)
 .Include(x => x.Year)
 .Exclude(x => x.MovieId);

var data = await collection.Find(new BsonDocument())
 .Project<Movie>(projection)
 .ToList();

var collection = db.GetCollection<Movie>(collName);

var projection = Builders<Movie>.Projection
 .Include("name")
 .Include("year")
 .Exclude("_id");

var data = collection.Find(new BsonDocument())
 .Project<BsonDocument>(projection)
 .ToList();

foreach (var item in data)
{
 Console.WriteLine("Item retrieved {0}", item.ToString());
}

91

foreach (Movie item in data)
{
 Console.WriteLine("Item retrieved {0}", item.ToString());
}

The objects returned will be of type Movie; however, only the name and year attributes will be

populated with data, and other attributes will have the default value.

The async version of the method behaves a bit differently, and returns IAsyncCursor. In

addition, there is no Project method, but the projection should be passed as part of the

options.

Code Listing 95: Async version of the strongly typed projection definition

var collection = db.GetCollection<Movie>(collName);

var projection = Builders<Movie>.Projection
 .Include(x => x.Name)
 .Include(x => x.Year)
 .Exclude(x => x.MovieId);

var options = new FindOptions<Movie, BsonDocument>
{
 Projection = projection
};

var cursor = await collection.FindAsync(new BsonDocument(), options);
var data = cursor.ToList();

foreach (var item in data)
{
 Console.WriteLine("Item retrieved {0}", item.ToString());
}

Aggregation

In one of the previous chapters, we explained the aggregation and aggregation pipeline as it
happens when using the MongoDB shell. As expected, the same can be done in C#.

The entry point of the functionality is the Aggregate method, which then can be expanded to

specify the pipeline and the various options—pretty much what we have already gone through.

The following example shows how it is possible to group by a given field and calculate the
count, in our case a count of the movies per year.

Code Listing 96: Aggregation of data by grouping

public static void AggregateMovies(string dbName, string collName)
{
 var db = DatabaseHelper.GetDatabaseReference("localhost", dbName);

www.dbooks.org

https://www.dbooks.org/

92

 var collection = db.GetCollection<Movie>(collName);

 var data = collection.Aggregate()
 .Group(new BsonDocument
 {
 { "_id", "$year" },
 { "count", new BsonDocument("$sum", 1) }
 });

 foreach (var item in data.ToList())
 {
 Console.WriteLine("Item retrieved {0}", item.ToString());
 }
}

This query will return the _id, which will be the value of the year (hence the $ sign in front of the

attribute), and the count attribute with the actual value.

Code Listing 97: Aggregation result

Item retrieved { "_id" : 1972, "count" : 2 }
Item retrieved { "_id" : 1954, "count" : 1 }

It is also possible to specify the various stages in the aggregation pipeline. Therefore, we can
add the Match before executing the grouping in order to prefilter the data we want to work

against.

Code Listing 98: Aggregation by prefiltering the data to be grouped

In this particular case, the Match works as we would normally filter the data. We have used the

Where method in order to filter only the movies whose names include Godfather.

LINQ

The driver contains an implementation of LINQ that targets the underlying aggregation
framework. The rich query language available in the aggregation framework maps very easily to
the LINQ expression tree. This makes it possible to use the LINQ statements in order to perform
queries.

var aggregate = collection.Aggregate()
 .Match(Builders<Movie>.Filter.Where(x => x.Name.Contains("Godfather")))
 .Group(new BsonDocument
 {
 {"_id", "$year"},
 {"count", new BsonDocument("$sum", 1)}
 });

var results = aggregate.ToList();

93

The entry point is the AsQueriable() method that offers a world of possibilities in order to

perform queries as we got used to with LINQ. AsQueriable is available at the collection level.

There is support for the filtering, sorting, projecting, and grouping of data, and some basic
functionality of joining to other collections.

Here’s a quick example showing that both styles of LINQ are supported. The following code
transforms the collection into AsQueriable and selects only the Name and Age from a movie.

Therefore, we have only two attributes returned. This makes the projection of data very easy!

Code Listing 99: Using LINQ queries

var collection = db.GetCollection<Movie>(collName);

var query = from p in collection.AsQueryable()
 select new { p.Name, p.Age };

// both queries are equivalent.

var query = collection.AsQueryable().Select(p => new { p.Name, p.Age });

Applying a Where clause is as easy as calling the Where extension method.

Code Listing 100: LINQ query, data filtering by Where clause

var collection = db.GetCollection<Movie>(collName);

var query = collection.AsQueryable().Where(p => p.Age > 21);

Pagination becomes very easy with the Take and Skip methods.

Code Listing 101: Usage of Take and Skip

var collection = db.GetCollection<Movie>(collName);

var movies = collection.AsQueryable().Skip(10).Take(10).ToList();

Take will return a limited number of documents (in our case 10), while Skip makes sure to

bypass the given number of documents. In our case, the documents from 11 to 20 will be
returned.

Update data

The MongoDB C# driver offers quite a few ways to update the data. Here are just a few of the
useful methods on a collection that can make it easy to search and manipulate documents:

Table 17: Update document methods

FindOneAndUpdate

FindOneAndUpdateAsync

Updates one document based on a filter and, as a result,
returns the updated document before or after the change.

www.dbooks.org

https://www.dbooks.org/

94

UpdateMany

UpdateManyAsync

Updates multiple documents based on a filter and returns
the UploadResult.

UpdateOne

UpdateOneAsync

Updates one document based on a filter and, as a result,
returns the UpdateResult.

ReplaceOne

ReplaceOneAsync

Replaces an entire document.

FindOneAndReplace

FindOneAndReplaceAsync

Replaces one document based on a filter and, as a result,
returns the replaced document before or after the change.

At first sight, the two methods FindOneAndUpdate and UpdateOne might seem to be pretty

much identical; however, their use cases might differ. One returns a full document before or
after the update operation, while the other just returns the information about the operation itself.
If the data does not need to be returned, then UpdateOne is probably more efficient, as it

doesn’t have to perform another query and return data.

Updating a document doesn’t differ very much from what we have already seen, as the patterns
are pretty much the same: use the Builders object to define the query on which the update

operation will be performed, and at the same time, use the Builders object to define what kind

of update operation will be applied.

Let’s go through the three different methods and show how it works in practice. The following
example uses the UpdateOne method. As mentioned previously, we can see that in order to

update the document by using the Builers<T>.Filter, we need to specify the query to find

the document to be updated. Additionally, the interesting part is to define the update statement

that happens through the Set() method, which can be written by using either the lambda

expression and the value (as specified for the Year), or by manually supplying the name and

the value. It is possible to specify more than one update by chaining multiple Set methods.

Code Listing 102: Updating a movie

public static void UpdateMovie(string dbName, string collName)
{
 var db = DatabaseHelper.GetDatabaseReference("localhost", dbName);
 var collection = db.GetCollection<Movie>(collName);

 var builder = Builders<Movie>.Filter;
 var filter = builder.Eq("name", "The Godfather");
 var update = Builders<Movie>.Update
 .Set("name", "new name")
 .Set(d => d.Year, 1900);

 UpdateResult result = collection.UpdateOne(filter, update);

 Console.WriteLine(result.ToBsonDocument());
}

95

UpdateMany comes with exactly the same signature; however, it would update multiple

documents at the time.

FindOneAndUpdate

On the other side, FindOneAndUpdate becomes quite interesting with the options it can be

supplied with. It makes it possible to do the following:

 Specify the projection: We can specify which attributes will be returned and excluded.

 Specify the return document: We can specify if we want the movie object in the state
before or after the update has been performed.

Here is an example of using the FindOneAndUpdate method.

Code Listing 103: Example of using the FindOneAndUpdate

var filter = Builders<Movie>.Filter.Eq("name", "The Godfather");
var update = Builders<Movie>.Update
 .Set("name", "new name")
 .Set(d => d.Year, 1900);

var updateOptions = new FindOneAndUpdateOptions<Movie, Movie>()
{
 ReturnDocument = ReturnDocument.After,
 Projection = Builders<Movie>
 .Projection
 .Include(x => x.Year)
 .Include(x => x.Name)
};

Movie movie = collection.FindOneAndUpdate(filter, update, updateOptions);

As part of the update options, we have specified the Projection, which means that only the

attributes specified as part of it will be returned by the method after the movie has been
updated. So, when the Movie object is returned, it will be filled in only with the _id, year, and

name. The rest of the attributes will have the default value. It is possible to choose between

ReturnDocument.After and ReturnDocument.Before, which are the instructions to return the

status of the movie before or after the update, respectively.

ReplaceOne

We use the ReplaceOne method to replace the entire document. Bear in mind that the _id field

cannot be replaced, as it is immutable. The replacement document can have fields different
from the original document. In the replacement document, you can omit the _id field, since the

_id field is immutable. If you do include the _id field, it must be the same value as the existing

value.

www.dbooks.org

https://www.dbooks.org/

96

In the following example, we are showing how to replace a document. First, we are retrieving an
already existing document from the database that will be replaced. In addition, there is a new
instance of the Movie, which happens to be a different movie from the original. At the end, we

call the ReplaceOneAsync method.

ReplaceOneAsync returns the ReplaceOneResult object, which contains properties such as

MatchedCount and ModifiedCount that tell if the object to be modified has been found and

modified.

Code Listing 104: Example of ReplaceOneAsync usage

var collection = db.GetCollection<Movie>(collName);

var builder = Builders<Movie>.Filter;
var filter = builder.Eq("name", "The Godfather");

//find the ID of the Godfather movie...
var theGodfather = await collection.FindAsync(filter);
var theGodfatherMovie = theGodfather.FirstOrDefault();

Movie replacementMovie = new Movie
{
 MovieId = theGodfatherMovie.MovieId,
 Name = "Mad Max: Fury Road",
 Year = 2015,
 Actors = new[]
 {
 new Actor {Name = "Tom Hardy"},
 new Actor {Name = "Charlize Theron"},
 },
 Director = "George Miller"
};
ReplaceOneResult r = await collection.ReplaceOneAsync(filter, replacementMo
vie);

Console.WriteLine(r.ToBsonDocument());

Delete data

In a very similar way to the update options, the MongoDB C# driver supports a few ways to
delete data. The following methods on the collection can make it quite easy to delete the
already existing documents:

Table 18: Methods that delete a document

FindOneAndDelete

FindOneAndDeleteAsync

Deletes the first document in the collection that matches the
filter. The sort parameter can be used to influence which
document is updated.

97

DeleteMany

DeleteManyAsync

Removes all documents that match the filter from a
collection.

DeleteOne

DeleteOneAsync

Deletes the first matching document based on a filter and,
as a result, returns the UpdateResult.

DeleteOne and DeleteMany are pretty similar in their implementation. Both return the

DeleteResult, which will inform us of the successful removal of the document through its

DeletedCount property. Both of them accept either an expression or, as we have seen

previously, a FilterDefinition that can be constructed using the Builders mechanism.

The following example uses the lambda expression as the DeleteOneAsync parameter:

Code Listing 105: Example of using the DeleteOneAsync and DeleteManyAsync

var collection = db.GetCollection<Movie>(collName);

DeleteResult result = await collection.DeleteOneAsync(m => m.Name == "The S
even Samurai");

//or

var result = await collection.DeleteManyAsync(m => m.Name == "The Seven Sam
urai" || m.Name == "Cabaret");

Here is an example that uses the Builders:

Code Listing 106: DeleteManyAsync with the specified filter

FindOneAndDelete is a bit different, as it also offers the possibility to return the data as part of

the deleting operation. It accepts the FindOneAndDeleteOptions to be passed in, with the

ability to specify the sorting, which is the sorting on the collection before the delete happens
(remember, only one document will be deleted), and the projection, which will return the data of
the deleted document (obviously in the state it was in before being deleted).

Here’s an example of how to use the FindOneAndDeleteAsync method:

Code Listing 107: FindOneAndDeleteAsync with options defined

var coll = db.GetCollection<Movie>(collName);

var options = new FindOneAndDeleteOptions<Movie, BsonDocument>
{

var collection = db.GetCollection<Movie>(collName);

var builder = Builders<Movie>.Filter;
var filter = builder.Eq("name", "The Godfather");
var result = await collection.DeleteManyAsync(filter);

www.dbooks.org

https://www.dbooks.org/

98

 Sort = Builders<Movie>.Sort.Ascending(x => x.Name),
 Projection = Builders<Movie>.Projection.Include(x => x.MovieId)
};
var result = await coll.FindOneAndDeleteAsync(m => m.Name == "Cabaret", opt
ions);

This will return a BsonDocument that contains only the attribute _id.

Conclusion

In this lengthy chapter, we have seen the most important aspects when it comes to manipulating
data in MongoDB. Certainly, not every possible mechanism has been mentioned, as there are
many other hidden features. I tried to illustrate the features that are going to be used the most
and that have patterns we can follow.

After reading this chapter, the hope is that you have become aware of various possibilities and
techniques for effectively using the MongoDB driver.

99

Chapter 10 Binary Data (File Handling) in C#

In Chapter 1, we mentioned the fact that the BSON documents stored in the MongoDB
database have a hard limit of 16 megabytes. This is for both memory usage and performance
reasons. MongoDB offers a possibility, however, to store files larger than 16 megabytes.

GridFS is a MongoDB specification and a way of storing binary information larger than the

maximum document size. GridFS It is kind of a file system to store files, but its data is stored

within MongoDB collections.

When the file is uploaded to GridFS, instead of storing a file in a single document, GridFS

divides a file into parts called chunks. Each chunk is a separate document and has a maximum
of 255 kilobytes of data. When the file is downloaded (retrieved) from GridFS, the original

content is reassembled.

GridFS by default uses two collections to store the file’s metadata (fs.files) and chunks

(fs.chunks). As happens for any other document in MongoDB, each chunk is identified by its

unique _id, which is of type ObjectId field. The fs.files acts as a parent document. The

files_id assigned to a chunk holds a reference to its parent.

Doc.PDF
1

Doc.PDF
1

MongoDB
C#

Driver

GridFS
API

Doc.PDF

Doc.PDF
metadata

fs.files

Doc.PDF
1

fs.chunks

Figure 44: GridFS chunks.

When working in C#, we have to always use an object called GridFSBucket in order to interact

with the underlying GridFS system. We should avoid directly accessing the underlying
collections.

In order to use the GridFS from the MongoDB driver, we have to install the
MongoDB.Driver.GridFS package from NuGet.

Uploading files

There are mainly two ways of uploading a file: either by specifying the location on the disk (from
the client), or by submitting the data to a Stream object that the driver supplies.

www.dbooks.org

https://www.dbooks.org/

100

One of the easiest ways to upload a file is by using the byte array. We will store the file in the
database called file_store.

In the following example, we can see that we are instantiating a new instance of the
GridFSBucket object, which will then be responsible for uploading the file via the

UploadFromBytes method. To get the file byte data, we simply use the .NET standard

File.ReadAllBytes method from the System.IO namespace.

Code Listing 108: Storing a file into MongoDB via GridFSBucket

public static void UploadFile()
{
 var database = DatabaseHelper.GetDatabaseReference("localhost", "file_s
tore");

 IGridFSBucket bucket = new GridFSBucket(database);

 byte[] source = File.ReadAllBytes("sample.pdf");

 ObjectId id = bucket.UploadFromBytes("sample.pdf", source);

 Console.WriteLine(id.ToString());
}

This code generates the result shown in Figure 45. We can see that one entry in the fs.files

collection has been created, and one entry (for the sake of space, we cannot see the full
content) in the fs.chunks. We can also see that the chunk itself contains a pointer to the

fs.files metadata through the files_id property.

The result returned by the method is the newly created ObjectId.

101

Figure 45: Database after uploading the file

Uploading files from a stream

There are also other ways of uploading the files, such as uploading from a file stream. The idea
here is that instead of returning the byte array of a file, we supply the input information in the
form of a Stream object.

Code Listing 109: Uploading a file from a stream

public static void UploadFileFromAStream()
{
 var database = DatabaseHelper.GetDatabaseReference("localhost", "file_s
tore");

 IGridFSBucket bucket = new GridFSBucket(database);
 Stream stream = File.Open("sample.pdf", FileMode.Open);

 var options = new GridFSUploadOptions()
 {
 Metadata = new BsonDocument()
 {
 {"author", "Mark Twain"},
 {"year", 1900}
 }
 };

www.dbooks.org

https://www.dbooks.org/

102

 var id = bucket.UploadFromStream("sample.pdf", stream, options);

 Console.WriteLine(id.ToString());
}

In pretty much the same way as before, when updating a byte array by opening a file through
File.Open, we obtain the stream object and pass it to the GridFSBucket.

One interesting thing is that there is another parameter available to pass the options to the
UploadFromStream, where we can add some metadata to the file being uploaded. The

metadata is again a BsonDocument, and it can have any structure we like.

After running the previous code, we get the following stored in the database. We can see that
the metadata is now shown in the fs.files collection. The fs.chunks, as displayed in Figure

46, doesn’t show the data attribute (which contains the byte code) intentionally.

Figure 46: File uploaded with metadata

One very important thing to mention is the fact that if the file with the same name gets sent to
the GridFS, then this file will be treated as a new version of that particular file.

103

Downloading files

There are a few ways to download a file from GridFS; the two main approaches are

downloading the file as a byte array, and receiving back a Stream object from the driver.

It’s possible to download files by using one of the following methods:

Table 19: Methods for downloading files

DownloadAsBytes
DownloadAsBytesAsync

Downloads a file stored in GridFS and returns it as a
byte array.

DownloadAsBytesByName
DownloadAsBytesByNameAsync

Downloads a file stored in GridFS and returns it as a
byte array.

DownloadToStream
DownloadToStreamAsync

Downloads a file stored in GridFS and writes the
contents to a stream.

DownloadToStreamByName
DownloadToStreamByNameAsync

Downloads a file stored in GridFS and writes the
contents to a stream.

DownloadAsBytes

One of the easiest ways to download files is to receive back the byte array. However, a bit of
attention needs to be paid to the fact that the data of the byte array will be held in memory, so
downloading large files can result in a high usage of memory.

Code Listing 110: Example of DownloadAsBytesAsync method

public static async Task DownloadFile()
{
 var database = DatabaseHelper.GetDatabaseReference("localhost", "file_s
tore");
 var bucket = new GridFSBucket(database);

 var filter = Builders<GridFSFileInfo<ObjectId>>

.Filter.Eq(x => x.Filename, "sample2.pdf");

 var searchResult = await bucket.FindAsync(filter);
 var fileEntry = searchResult.FirstOrDefault();

 byte[] content = await bucket.DownloadAsBytesAsync(fileEntry.Id);

 File.WriteAllBytes("C:\\temp\\sample2.pdf", content);
}

www.dbooks.org

https://www.dbooks.org/

104

As the DownloadAsBytes requires the ObjectId of the file to be downloaded, we need to find

some information about the file itself before calling the method. As we have done previously, we
are creating a filter that will retrieve a file by searching by name. A particularity of the filter is that
it uses GridFSFileInfo<ObjectId> as the generic parameter. This helps us to have strongly

typed attributes of the file (x.Filename).

After receiving the data, we can safely save the file on the disk by calling the static methods in
the standard .NET File class.

At the same time, downloading by name is very similar, with the only difference being that the
name is being passed as the input parameter rather than the ObjectId. As we happen to know

the name of the file, we don’t need to search for its existence before downloading.

Code Listing 111: Example of DownloadAsBytesByNameAsync method

Download to a stream

Downloading to a stream is not that much different from the previously described methods.
Obviously, the big difference is the object returned back, in this case, a Stream. In the following

code, we are showing how to use the DownloadToStreamAsync method in order to download

and store the data as a file.

Code Listing 112: Example usage of DownloadtoStreamAsync method

public static async Task DownloadFileToStream()
{
 var database = DatabaseHelper.GetDatabaseReference("localhost", "file_s
tore");

 IGridFSBucket bucket = new GridFSBucket(database);

 var filter = Builders<GridFSFileInfo<ObjectId>>

.Filter.Eq(x => x.Filename, "sample2.pdf");

public static async Task DownloadFileAsBytesByName()
{
 var database = DatabaseHelper.GetDatabaseReference("localhost", "file_s
tore");

 IGridFSBucket bucket = new GridFSBucket(database);

 byte[] content = await bucket.DownloadAsBytesByNameAsync("sample2.pdf")
;

 File.WriteAllBytes("C:\\temp\\sample2.pdf", content);

 System.Diagnostics.Process.Start("C:\\temp\\sample2.pdf");
}

105

 var searchResult = await bucket.FindAsync(filter);
 var fileEntry = searchResult.FirstOrDefault();

 var file = "c:\\temp\\mystream.pdf";
 using (Stream fs = new FileStream(file, FileMode.CreateNew, FileAccess.
Write))
 {
 await bucket.DownloadToStreamAsync(fileEntry.Id, fs);

 fs.Close();
 }
}

As we did for DownloadAsBytes, we require the ObjectId of the file to download; therefore, we

are performing a search beforehand.

The interesting part of this method is the fact that the Stream gets created beforehand, and the

stream is closed afterward. One very important aspect is that the stream management is left to
the application itself.

Here is an example that uses the DownloadToStreamByNameAsync:

Code Listing 113: Example of using DownloadToStreamByNameAsync method

var file = "c:\\temp\\mystream2.pdf";
using (Stream fs = new FileStream(file, FileMode.CreateNew, FileAccess.Writ
e)
)
{
 await bucket.DownloadToStreamByNameAsync("sample2.pdf", fs);

 fs.Close();
}

www.dbooks.org

https://www.dbooks.org/

106

Chapter 11 Back Up and Restore

In this chapter, you will learn how to back up and restore a database in MongoDB.

Back up

MongoDB provides a tool called mongodump.exe to back up your MongoDB database. By

calling the mongodump --help, you will get quite a big list of options that can be used.

The most basic example would be backing up a database into a specific folder, which can be
achieved as follows:

Code Listing 114: mongodump usage

Where:

 -h represents the host where the MongoDB runs.

 --db represents the database to be backed up.

 -o contains the output folder.

Figure 47: Backup command.

After running the command on the filesystem, we can see that the data has been exported
correctly, and that MongoDB has created a folder called mydb.

mongodump -h localhost --db mydb -o c:\backup

107

Figure 48: Backup folder.

The backup folder contains two types of files: .bson, which contains a bson copy of the data

(bson being in binary format is not human-readable), and *metadata.json, which contains the

configuration information of the collection itself, such as indexes.

Restore

After backing up the data, you can also restore it to MongoDB. To restore the data, you use
mongorestore.exe. If you type it in the Command Prompt window and press Enter, you will get

a response as shown in Figure 49.

The basic operation to perform is to restore the database from the previously taken backup.
This is obtained by running the following command:

Code Listing 115: mongorestore usage

 -h represents the host where the MongoDB runs.

 --db represents the database to be restored.

 --drop contains the information of dropping the collection before recreating it.

mongorestore -h localhost --db mydb --drop c:\backup

www.dbooks.org

https://www.dbooks.org/

108

Figure 49: Restoring the database.

109

Final Words

In this book, we have touched on the most important aspects of the MongoDB database that the
application developer should be aware of—from the theory about NoSQL and the document
definition, to the usage of the Mongo Shell, and at the end, the examples of the MongoDB C#
driver APIs for Microsoft .NET framework.

As with other books in the Syncfusion Succinctly series, what is mentioned in this book should
give you a good starting point not only for designing an application, but also to start exploring
more advanced options on your own, as many things are built around the mentioned concepts.

The administration part of the database was intentionally omitted (other than the short chapter
about the backup and restore), as this book is more oriented to application developers.

I would like to thank you for reading this book, and hope that I’ve managed to fulfill the
expectations you might have had when you started it.

www.dbooks.org

https://www.dbooks.org/

	Table of Contents
	The Story Behind the Succinctly Series of Books
	Information is plentiful but harder to digest
	The Succinctly series
	The best authors, the best content
	Free forever
	Free? What is the catch?
	Let us know what you think

	About the Author
	Introduction
	Purpose of the book
	Target audience
	Additional information and resources
	Source code
	MongoDB groups and communities
	Software requirements
	Conventions used in the book
	Source code
	Resources
	MongoDB version

	Chapter 1 MongoDB Overview
	NoSQL and document databases
	Scalability
	Implementations
	NoSQL: What is missing?

	Database structure
	Documents
	Collections

	Thinking in documents
	Referencing documents
	Embedding documents
	Document design strategy

	Pluggable storage engine
	Sharding
	Conclusion

	Chapter 2 MongoDB Installation
	Installation on Windows (single node)
	MongoDB installation
	Running MongoDB as a standalone application
	Installing MongoDB as a Windows service

	Single node installation on Linux (Ubuntu)
	What comes with the MongoDB installation?

	Chapter 3 The Mongo Shell
	Searching for help
	Databases
	Database creation
	Dropping databases

	Collections
	Capped collections
	Creating a capped collection

	Conclusion

	Chapter 4 Manipulating Documents
	Simple data retrieval
	Inserting a document
	Document primary key

	Updating a document
	Updating a value of an existing attribute
	Update operators

	Deleting a document

	Chapter 5 Data Retrieval
	Querying a collection
	Projections
	Sorting
	Limiting the output
	Cursor

	Aggregations
	The aggregation pipeline
	MapReduce
	Map
	Reduce

	Single-purpose aggregation operations
	Count
	Distinct
	Group

	Conclusion

	Chapter 6 Basic MongoDB with C#
	Connecting to the database
	Authentication

	Database operations
	Referencing a database
	Database creation
	Getting the list of databases
	Deleting a database

	Working with collections

	Chapter 7 Data Handling in C#
	Data representation
	Object mapping
	BsonElement attribute
	BsonId attribute
	BsonIgnore attribute
	BsonIgnoreExtraElements attribute
	BsonExtraElements attribute

	Chapter 8 Inserting Data in C#
	Chapter 9 Find (Query) Data in C#
	Returning all data from a collection
	Projecting data
	Aggregation
	LINQ
	Update data
	FindOneAndUpdate
	ReplaceOne

	Delete data
	Conclusion

	Chapter 10 Binary Data (File Handling) in C#
	Uploading files
	Uploading files from a stream

	Downloading files
	DownloadAsBytes
	Download to a stream

	Chapter 11 Back Up and Restore
	Back up
	Restore

	Final Words

