

 1

www.dbooks.org

https://www.dbooks.org/

Nuxt.js Succinctly

By

Ed Freitas

Foreword by Daniel Jebaraj

 3

 Copyright © 2022 by Syncfusion, Inc.

2501 Aerial Center Parkway

Suite 200

Morrisville, NC 27560

USA

All rights reserved.

ISBN: 978-1-64200-225-6

Important licensing information. Please read.

This book is available for free download from www.syncfusion.com on completion of a

registration form.

If you obtained this book from any other source, please register and download a free copy from

www.syncfusion.com.

This book is licensed for reading only if obtained from www.syncfusion.com.

This book is licensed strictly for personal or educational use.

Redistribution in any form is prohibited.

The authors and copyright holders provide absolutely no warranty for any information provided.

The authors and copyright holders shall not be liable for any claim, damages, or any other

liability arising from, out of, or in connection with the information in this book.

Please do not use this book if the listed terms are unacceptable.

Use shall constitute acceptance of the terms listed.

SYNCFUSION, SUCCINCTLY, DELIVER INNOVATION WITH EASE, ESSENTIAL, and .NET

ESSENTIALS are the registered trademarks of Syncfusion, Inc.

Technical Reviewer: James McCaffrey

Copy Editor: Courtney Wright

Acquisitions Coordinator: Tres Watkins, VP of content, Syncfusion, Inc.

Proofreader: Jacqueline Bieringer, content producer, Syncfusion, Inc.

www.dbooks.org

http://www.syncfusion.com/
http://www.syncfusion.com/
http://www.syncfusion.com/
https://www.dbooks.org/

 4

Table of Contents

The Story behind the Succinctly Series of Books ... 7

About the Author ... 9

Acknowledgments ..10

Introduction ...11

Chapter 1 Getting Started ..12

Client-side vs. server-side rendering ..12

Nuxt.js server-side rendering ..14

Installing Node.js ..15

Getting started with Nuxt.js ...19

Summary ..22

Chapter 2 Project Structure ...23

Initial project structure ..23

Create Nuxt app ...24

Project structure (create-nuxt-app) ...30

Summary ..31

Chapter 3 App Foundations ..32

Getting started ..32

Pages folder ...32

Installing Bootstrap ...34

Components folder ...36

Navbar component ...36

FavList component ...39

Initial objects ..41

Books UI...42

 5

Favorites button ..44

Summary ..48

Chapter 4 Client Logic ...49

Overview ..49

Add to favorites method ..49

Click event binding ...50

Moving the Favorites list ...54

Refactoring index.vue ...54

FavList.vue ...58

Executing the app ...61

Summary ..63

Chapter 5 Firebase ...64

Overview ..64

Getting started with Firebase ..64

Adding data ..70

Connecting the app to Firebase ..72

Installing the Firebase SDK ..74

Summary ..74

Chapter 6 Server Logic ..75

Overview ..75

Server logic ..75

Understanding the server logic ...77

Optimizing the server logic ...79

Retrieving data from Firebase ..81

Lazy loading ...86

Building and generating ..88

www.dbooks.org

https://www.dbooks.org/

 6

Deployment ..90

Complete app code ..90

Next steps and final thoughts ...98

 7

The Story behind the Succinctly Series
 of Books

Daniel Jebaraj, CEO
Syncfusion, Inc.

taying on the cutting edge

As many of you may know, Syncfusion is a provider of software components for the
Microsoft platform. This puts us in the exciting but challenging position of always
being on the cutting edge.

Whenever platforms or tools are shipping out of Microsoft, which seems to be about
every other week these days, we have to educate ourselves, quickly.

Information is plentiful but harder to digest
In reality, this translates into a lot of book orders, blog searches, and Twitter scans.

While more information is becoming available on the Internet and more and more books are
being published, even on topics that are relatively new, one aspect that continues to inhibit us is
the inability to find concise technology overview books.

We are usually faced with two options: read several 500+ page books or scour the web for
relevant blog posts and other articles. Just as everyone else who has a job to do and customers
to serve, we find this quite frustrating.

The Succinctly series
This frustration translated into a deep desire to produce a series of concise technical books that
would be targeted at developers working on the Microsoft platform.

We firmly believe, given the background knowledge such developers have, that most topics can
be translated into books that are between 50 and 100 pages.

This is exactly what we resolved to accomplish with the Succinctly series. Isn’t everything
wonderful born out of a deep desire to change things for the better?

The best authors, the best content
Each author was carefully chosen from a pool of talented experts who shared our vision. The
book you now hold in your hands, and the others available in this series, are a result of the
authors’ tireless work. You will find original content that is guaranteed to get you up and running
in about the time it takes to drink a few cups of coffee.

Free forever
Syncfusion will be working to produce books on several topics. The books will always be free.
Any updates we publish will also be free.

S

www.dbooks.org

https://www.dbooks.org/

 8

Free? What is the catch?

There is no catch here. Syncfusion has a vested interest in this effort.

As a component vendor, our unique claim has always been that we offer deeper and broader
frameworks than anyone else on the market. Developer education greatly helps us market and
sell against competing vendors who promise to “enable AJAX support with one click,” or “turn
the moon to cheese!”

Let us know what you think

If you have any topics of interest, thoughts, or feedback, please feel free to send them to us at
succinctly-series@syncfusion.com.

We sincerely hope you enjoy reading this book and that it helps you better understand the topic
of study. Thank you for reading.

Please follow us on Twitter and “Like” us on Facebook to help us spread the
word about the Succinctly series!

mailto:succinctly-series@syncfusion.com
https://twitter.com/Syncfusion
https://www.facebook.com/Syncfusion

 9

About the Author

Ed Freitas is a consultant on business process automation and a software developer focused on
customer success.

He likes technology and enjoys learning, playing soccer, running, traveling, and being around

his family.

Ed is available at https://edfreitas.me.

www.dbooks.org

https://edfreitas.me/
https://www.dbooks.org/

 10

Acknowledgments

A huge thank you to the fantastic Syncfusion team that helped this book become a reality—
especially Jacqueline Bieringer, Tres Watkins, and Graham High.

The manuscript manager and technical editor thoroughly reviewed the book's organization,
code quality, and overall accuracy—Jacqueline Bieringer from Syncfusion and James
McCaffrey from Microsoft Research. Thank you both.

I dedicate this book to my dear Uncle Tony, who recently passed away. A veteran, he devoted
his life to his loved ones, his beloved country—the United States of America—and his work.

He performed his work with utmost passion, integrity, and with a smile; he never missed a day,
and he always gave his best to his customers and anyone who sought his wisdom and advice.
Your love, character, and everything you did will always remain with everyone you loved. Rest
in peace.

This book is also dedicated to the all the victims of international aggression and violence. I hope
that one day (in the not-so-distant future), we will become an advanced species that cares for
our pale blue dot, practices love and compassion instead of hatred, and realizes that all we
have is each other. To create a better future and world, we must learn to cherish and appreciate
the lives of others as much as our own.

http://www.syncfusion.com/
https://jamesmccaffrey.wordpress.com/
https://jamesmccaffrey.wordpress.com/
https://www.microsoft.com/en-us/research/people/jammc/
https://www.youtube.com/watch?v=GO5FwsblpT8

 11

Introduction

Let's begin by explaining what Nuxt.js is. To do that, we first need to talk about Vue.js.

Vue.js is a progressive (meaning incrementally adoptable) front-end JavaScript framework that
you can use to build highly engaging user interfaces and single-page applications.

Nuxt.js is an open-source JavaScript library based on Vue.js that uses Node.js, Webpack, and

Babel.js under the hood. Nuxt.js takes inspiration from Next.js, a framework of similar purpose

that’s based on React.js.

Nuxt.js takes Vue.js development to the next level and builds upon Vue.js. Think of it as a
framework for a framework—adding two significant features to Vue.js: server-side rendering;
and easy Vue.js application configuration and routing through folders and files.

To make it simple to understand, the goal of Nuxt.js is to make it easier for developers to create
and optimize Vue.js applications.

One of the main features of Nuxt.js is its ability to add server-side rendering to a Vue.js

application. Server-side rendering essentially means that we can build a Vue.js application to

prerender pages on the server before serving them to the user.

Server-side rendering has excellent advantages for search engine optimization (SEO) and can
significantly speed up your web app.

Traditional Vue.js applications require that developers create routes; however, with Nuxt.js,

explicitly creating routes is no longer necessary, as routes are inferred by the folder and file

structure of your Nuxt.js project.

In a nutshell, Nuxt.js simplifies the development of Vue.js applications and makes the

experience of writing Vue.js apps even more exciting and fun without adding any overhead to

the shipped bundle, and instead, optimizing the app for production.

If you are starting your journey with Vue.js, it's probably better that you get up to speed with

Vue.js first, rather than jumping straight into Nuxt.js. For that, the Succinctly series has you

covered with Vue.js Succinctly.

If you are not new to Vue.js, it will be okay to start your journey with Nuxt.js directly, and you'll

feel at home right off the bat.

Nuxt.js adds a nice layer of sugar coating around Vue.js, and if you are a Vue.js developer, it is
a tool that will boost your productivity.

So, without further ado, let's explore what this technology has to offer.

www.dbooks.org

https://nuxtjs.org/
https://vuejs.org/
https://en.wikipedia.org/wiki/Single-page_application
https://nodejs.org/en/
https://webpack.js.org/
https://babeljs.io/
https://nextjs.org/
https://reactjs.org/
https://en.wikipedia.org/wiki/Server-side_scripting
https://en.wikipedia.org/wiki/Search_engine_optimization
https://www.syncfusion.com/succinctly-free-ebooks/vuejs-succinctly
https://www.dbooks.org/

 12

Chapter 1 Getting Started

Client-side vs. server-side rendering

Before we begin, there's one crucial concept that I would like you to have crystal clear in your
mind, and that's server-side rendering.

Nuxt.js should not be confused with a templating engine running on the server—it's not a
replacement for templating engines such as EJS or Handlebars.

To understand server-side rendering, we need to take a step back and look at how traditional
Vue.js applications (which are single-page applications) work—which is another reason you
should first get up-to-speed with Vue.js before reading this book.

If you place UI components into your application pages rendered by some other server-side
service or technology, such as PHP or ASP.NET, you don't need Nuxt.js.

On the other hand, Vue.js is a client-side framework for traditional single-page applications. The
single-page application mechanism works for a Vue.js app because the user sends a request by
entering a URL, and the server sends back an HTML file.

In that case, the HTML file sent by the server contains barely any HTML code, but it does
include your single-page application logic—essentially, all the scripts that need to be loaded to
start the Vue.js app, which runs entirely in the browser.

The loaded Vue.js app is responsible for rendering the UI. Therefore, the view adds all the
HTML elements to the page, and it is also responsible for routing and catching any URLs that
you might visit within the app.

With a traditional Vue.js application, you never receive a second HTML page from the server as
a response when you visit a new URL route within that application (as long as you stay within
the application's routes).

However, the HTML file could be served from the server and rendered there. In the traditional
Vue.js application approach, the HTML file received doesn't contain the HTML that the user
sees on the screen, as this content is all created on the client side through JavaScript.

The traditional Vue.js approach is not great for search engine optimization, especially if you
need to load data asynchronously before rendering something onto the screen. The following
figure illustrates this process.

https://ejs.co/
https://handlebarsjs.com/
https://www.php.net/
https://dotnet.microsoft.com/en-us/apps/aspnet

 13

Figure 1-a: Traditional Client-Side Rendering (Single-Page Application)

In Figure 1-a, the index.html file is rendered on the client after the server returns it following a
user request.

So, imagine for a second that the Google web crawler is indexing your site or application
created with Vue.js. The crawler will not wait for your page content to load; instead, it will see an
empty page. On the other hand, this traditional single-page approach is not well suited for sites
that require fast loading times, such as e-commerce applications.

What Nuxt.js gives us is the ability to solve this problem by rendering that first page on the
server. Therefore, that first page the user visits for any given URL within the application scope
(independent of the root URL or another app URL) can be prerendered on the server, on the fly,
when the user requests it.

With Nuxt.js, you get a regular Vue.js application, but that app gets prerendered dynamically or
even statically on the server. In other words, with Nuxt.js, when a user accesses your page, the
page is sent from the server prerendered and loaded. The following figure illustrates this
process.

www.dbooks.org

https://developers.google.com/search/docs/advanced/crawling/overview-google-crawlers
https://www.dbooks.org/

 14

Figure 1-b: Server-side rendering

The difference, in this case, is that although the Vue.js application still manages the index.html
file, the server can send back a non-empty index.html file on the first request that has been
prerendered.

From there onward, we are back in single-page application mode, and no secondary HTML file
gets rendered—as Vue.js handles all navigation actions from that point.

Nuxt.js helps in that initial load, pre-rendered on the server, which results in a non-empty HTML
response, thus improving page load performance and SEO. This is what server-side rendering
is all about.

Nuxt.js server-side rendering

Now that I’ve covered the difference between client-side and server-side rendering, I'd like to
bring another essential item to your attention.

If you’ve worked extensively with Vue.js, you might already know that it’s possible to implement
server-side rendering without using a framework like Nuxt.js. This topic is officially covered in
the Vue.js documentation. It’s well covered there, and there's a complete guide that goes
through all the steps required to implement it. However, it's not an easy thing to do.

Even though that guide exists, Nuxt.js abstracts most of that complexity away. The advantage of
using Nuxt.js instead of implementing server-side rendering using Vue.js is that you get it ready
to go, out of the box, and highly optimized.

With Nuxt.js, to get server-side rendering working, we need to create a new project—that's it (as
we'll see shortly). There's no need to fiddle with Vue.js configuration.

https://vuejs.org/guide/scaling-up/ssr.html

 15

So, to put things into perspective, Nuxt.js didn't invent server-side rendering and is not
reinventing the wheel. All Nuxt.js does is make it super easy for any Vue.js application to have
highly optimized server-side rendering out of the box—making development with Vue.js a
cleaner and better experience.

Installing Node.js

To install Nuxt.js, you first need to have Node.js installed. If you don't have Node.js installed,

you can download it from the official site.

Figure 1-c: Node.js Official Website

You can choose to download either the long-term support (LTS) or the current version—either is
fine. I will install the LTS version. Once you have downloaded Node.js, execute the installer file.

Figure 1-d: Node.js Installer

Once you have executed the installer, you'll see the following screen. Click Next to continue the

installation process.

www.dbooks.org

https://nodejs.org/
https://www.dbooks.org/

 16

Figure 1-e: Initial Node.js Installation Screen

Then, you'll be asked to accept the license terms. Click Next to carry on with the installation. At
this stage, you'll be presented with a screen where you can select the Node.js installation folder.

Figure 1-f: Node.js Installation (Destination Folder Screen)

I usually leave the default installation folder and click Next; however, you can choose a different

folder if you prefer. With that done, click Next to continue the installation.

At this point, you'll see the Custom Setup screen. In my case, I always use the default options,
as you can see in the following figure.

 17

Figure 1-g: Node.js Installation (Custom Setup Screen)

To continue the installation, click Next. You should see the following screen.

Figure 1-h: Node.js Installation (Tools for Native Modules Screen)

You may choose to select the option Automatically install the necessary tools at this stage.

When this option is selected, it allows the Node.js installer to install any other dependency

needed using Chocolatey. To continue the installation, click Next.

www.dbooks.org

https://chocolatey.org/
https://www.dbooks.org/

 18

Figure 1-i: Node.js Installation (Ready to install Node.js Screen)

We need to click Install at this stage. Doing that will deploy the Node.js runtime and files on the

installation folder previously selected. The process is usually quick.

If a previous version of Node.js exists on the machine, that version gets removed before the

newer version is deployed. Once the new files have been installed, you'll see the following

screen.

Figure 1-j: Node.js Installation (Node.js Setup Wizard Screen—Finish)

To finalize the installation, all we need to do is click Finish. Now Node.js is installed, and we
can install Nuxt.js.

 19

Getting started with Nuxt.js

At the time of writing this book, the latest version of Nuxt.js is version 3 (in beta)—which is the
version that we'll be working with throughout this book, as it includes support for the latest
Vue.js features released with version 3.

Installing Nuxt.js is straightforward. From the terminal, command line, or from the built-in

terminal within Visual Studio Code (VS Code)—which is my editor of choice—type in the

following command. Feel free to use another editor; however, I recommend VS Code so you

can follow along easily.

Code Listing 1-a: Command to Create a New Nuxt.js Project

npx nuxi init nuxt-app

 Note: The name of the Nuxt.js application being created is nuxt-app; however, you
may choose a different name. I suggest using the same name to follow along easily.

 Tip: For more information on how the npx command works, please check out the
official NPM documentation.

Once you have executed this command, you'll be asked if you want to install the Nuxi NPM
package, which is the new Nuxt.js CLI experience.

 Note: NPM stands for node package manager.

Figure 1-k: VS Code Integrated Terminal (Installing Nuxt.js)

To continue, type in y and press enter—this will install the CLI and scaffold a new Nuxt.js

project, as you can see in the following figure.

www.dbooks.org

https://v3.nuxtjs.org/getting-started/installation
https://code.visualstudio.com/
https://docs.npmjs.com/cli/v8/commands/npx
https://v3.nuxtjs.org/getting-started/commands/
https://www.npmjs.com/package/npm
https://www.dbooks.org/

 20

Figure 1-l: VS Code Integrated Terminal (Nuxt.js Installed)

With Nuxt.js installed and the project scaffolded, we can go into the newly created Nuxt.js
application folder, called nuxt-app, with the following command.

Code Listing 1-b: Command to Change to the Project Folder

cd nuxt-app

Once we are inside the nuxt-app folder, we can enter the npm install command at the prompt

to install all the required packages and dependencies that our project will need.

Code Listing 1-c: Command to Install Project Dependencies

npm install

 21

Figure 1-m: Installing Project Dependencies (VS Code)

 Note: Although it is possible to use yarn instead of npm, throughout this book, I'll
be using npm. You may well choose to use yarn, though.

With that done, let's run the scaffolded application in development mode and have a look. You

can do this by executing the following command.

Code Listing 1-d: Command to Execute the Project in Dev Mode

npm run dev -- -o

After executing this command, you should see the following within the built-in terminal in VS
Code. The -- as an argument on its own means further arguments should be treated as

positional arguments, not options.

Figure 1-n: Execution of the Project

To visualize the Nuxt.js project running, you'll need to open it in a modern browser, which you
can do by typing the local URL, or clicking directly on the URL link, as seen in the preceding
figure.

www.dbooks.org

https://www.dbooks.org/

 22

Figure 1-o: Nuxt.js Starter Project Running

To stop the execution of the application, you can press Ctrl+C within the integrated VS Code

terminal.

Summary

At this stage, we have successfully installed Nuxt.js and scaffolded a basic application, which,

as you have seen, was straightforward.

The next chapter will explore the project structure and explain how pages, views, and routing
work together.

 23

Chapter 2 Project Structure

Initial project structure

An essential part of understanding Nuxt.js is knowing a project's folder structure. That’s what

this chapter is all about.

Let's begin by looking at the scaffolded project's folder structure. If you have VS Code open,

ensure that the EXPLORER panel is visible. It displays the list of folders and files that are part of

the project.

Figure 2-a: VS Code (EXPLORER—Project Folders and Files)

Notice that the project doesn't (yet) include any project-specific folders. It consists only of the

.nuxt folder, which contains all the core Nuxt.js engine and configuration, and the node_modules

folder, which includes the dependencies required by Nuxt.js.

So, there aren't any project-related folders specific to the Nuxt.js app itself. This means that this
project we created is a barebones Nuxt.js app, which is nothing more than an empty shell, and
we would need to create project-specific folders manually.

This is the path we will take—to create the folder and file structure ourselves as we go.
However, there's an alternative way that I'd like to show you.

www.dbooks.org

https://www.dbooks.org/

 24

Create Nuxt app

There's a tool that works with Nuxt.js version 2 called create-nuxt-app, which can scaffold a

Nuxt.js (version 2) application with a complete folder structure in no time.

At the time of writing this book, create-nuxt-app does not yet support Nuxt.js version 3;

nevertheless, I'd like to cover it briefly.

Creating a Nuxt.js (version 2) application with create-nuxt-app is straightforward. You need to

execute the following command and replace <project-name> with the name of your app,

where npx stands for “node package execute.”

Code Listing 2-a: Command to Install create-nuxt-app and Scaffold a Nuxt.js (v2) App

npx create-nuxt-app <project-name>

Let's go through these steps using VS Code. I will type the following command using the built-in
VS Code terminal, within my root directory.

Code Listing 2-b Create the test Nuxt.js (v2) App

npx create-nuxt-app test

After I press Enter, create-nuxt-app asks to confirm the name of the application.

Figure 2-b: Project Name— create-nuxt-app (Built-in Terminal—VS Code)

At this stage, if I press Enter, the project name will be set as test. However, I could also choose

to type in a different name for the project. I'll stick with test and press Enter.

Then, create-nuxt-app requests the programming language we want to use for our Nuxt.js

(version 2) application. We can change the programming language by using the arrow keys. In
my case, I'll choose JavaScript. To select it, I press Enter.

Figure 2-c: Programming language— create-nuxt-app (Built-in Terminal—VS Code)

https://nuxtjs.org/docs/2.x/get-started/installation#using-create-nuxt-app

 25

The next step is to choose the package manager our application will use. Although Yarn is also

valid, I will select the Npm option using the down arrow key, and then press Enter.

Figure 2-d: Package Manager— create-nuxt-app (Built-in Terminal—VS Code)

Next, there's the option to select one of several UI frameworks. I won't be choosing any UI
framework, as the goal is to walk you through these steps. However, if you were using create-
nuxt-app to scaffold an app you’re creating, you could choose a UI framework that would best

fit your project.

Figure 2-e: UI Framework—create-nuxt-app (Built-in Terminal—VS Code)

Next, there's the option to add additional modules, such as the Axios HTTP client library, or add

progressive web app (PWA) capabilities to the Nuxt.js application.

www.dbooks.org

https://axios-http.com/
https://web.dev/progressive-web-apps/
https://www.dbooks.org/

 26

For most applications, you would probably need to choose Axios—which can be done by
pressing the space key. Since this is just a walkthrough, I won't select an option. To continue, I’ll
press Enter.

Figure 2-f: Nuxt.js Modules— create-nuxt-app (Built-in Terminal—VS Code)

Next, there's the option to select one or more Linting tools. To continue, I press Enter.

Figure 2-g: Linting Tools— create-nuxt-app (Built-in Terminal—VS Code)

Next, it is possible to choose a Testing framework. I will leave it set to None and press Enter.

Figure 2-h: Testing Framework— create-nuxt-app (Built-in Terminal—VS Code)

Then, it is possible to select the application's rendering mode. I will choose Universal, which
includes server-side rendering (SSR)—which is the whole purpose of using Nuxt.js in the first
place.

It is also possible to select Single Page App, but that doesn't add additional value; for that

purpose, we can use Vue.js instead of Nuxt.js.

https://en.wikipedia.org/wiki/Lint_(software)

 27

Figure 2-i: Rendering Mode— create-nuxt-app (Built-in Terminal —VS Code)

Following that, it is possible to select the deployment target. I will go with the Server option,
which allows us to use Node.js hosting as a backend rather than generating a static site.

Figure 2-j: Deployment Target—create-nuxt-app (Built-in Terminal—VS Code)

Next, it is possible to choose additional development tools. I won't select any options. So, to

continue, I press Enter.

Figure 2-k: Development Tools— create-nuxt-app (Built-in Terminal—VS Code)

Finally, I will indicate my GitHub username, and as the Version control system, select None. In

a real-world project (and not a walkthrough), I would suggest you choose Git.

Figure 2-l: GitHub Username and Version Control System— create-nuxt-app (Built-in Terminal—VS
Code)

We can see that the project is now successfully created.

www.dbooks.org

https://www.dbooks.org/

 28

Figure 2-m: Project Created— create-nuxt-app (Built-in Terminal—VS Code)

We can use the following commands to run the scaffolded application.

Code Listing 2-c: Execute the Test Nuxt.js (v2) App

cd test
npm run dev

After executing these commands, we can see the scaffolded test application running.

 29

Figure 2-n: Project Executing—create-nuxt-app (Built-in Terminal—VS Code)

If we open the localhost URL, we can see the scaffolded application running.

Figure 2-o: Scaffolded App Running

www.dbooks.org

https://www.dbooks.org/

 30

To stop the execution of the application, press Ctrl+C from the built-in terminal within VS Code.

To learn more about working with the create-nuxt-app tool, you can find additional details in

the official documentation.

Project structure (create-nuxt-app)

Now that we have explored how the create-nuxt-app tool works, let's look at the project

structure that has been created.

Figure 2-p: Project Folders

We can see that the .nuxt and node_modules have been added, just like when we scaffolded
the Nuxt.js 3 application. However, notice that the components, pages, static, and store folders
have been added to the project.

As its name implies, the components folder is used for adding Vue.js components to the Nuxt.js
application.

The pages folder is how Nuxt.js addresses routing, and each file within that folder constitutes a
page of a Nuxt.js application. Vue.js and Nuxt.js applications are made up of pages, and each
page can contain one or more components.

https://nuxtjs.org/docs/get-started/installation/#using-create-nuxt-app

 31

The static folder stores the application's static resources, such as JavaScript, CSS files, and
images. On the other hand, the store folder is not required, and it is used for working with Vuex
application state storage files.

Summary

Even though we won't be using the create-nuxt-app tool (as we'll focus on Nuxt.js 3 rather

than Nuxt.js 2), I just wanted to show you the resultant folder structure, which is practical and

speeds up development.

In the next chapter, we will continue with the original Nuxt.js 3 application we created, explore
how to work with it by creating pages, and lay the foundations for the application we'll build
throughout this book.

www.dbooks.org

https://vuex.vuejs.org/
https://www.dbooks.org/

 32

Chapter 3 App Foundations

Getting started

It’s time to look at some code and put in place the foundations of the application we’ll be

building, which will be an app to manage a list of favorite books.

The application we will build has been inspired by these excellent GitHub repositories: nuxt-
blog-starter-kit and online-store-nuxt3.

With VS Code open, let's open the nuxt-app project we created for Nuxt.js 3. To do so, click File
> Open Folder and select the nuxt-app folder where it resides.

With the nuxt-app project open, let’s click the app.vue file to make our first change.

Code Listing 3-a: Original app.vue File

<template>

 <div>

 <NuxtWelcome />

 </div>

</template>

The first thing I'm going to do is replace <NuxtWelcome /> with <NuxtPage />. What this does

is replace the boilerplate code (<NuxtWelcome />) with the content of the app's current page

(<NuxtPage />).

Code Listing 3-b: Modified app.vue File

<template>

 <div>

 <NuxtPage />

 </div>

</template>

Once you’ve made this change, press Ctrl+S to save this change or click File > Save.

Pages folder

The next thing we are going to do is create a pages folder. We can do this by clicking on the

New Folder icon within the VS Code EXPLORER panel.

https://github.com/
https://github.com/bencodezen/nuxt-blog-starter-kit
https://github.com/bencodezen/nuxt-blog-starter-kit
https://github.com/EnterFlash/online-store-nuxt3

 33

Figure 3-a: New Folder Button (VS Code—EXPLORER)

We can place the app’s pages within the pages folder. After creating the pages folder, let's
select it, and then click the New File icon to add a new file to that folder, which we will call
index.vue.

Figure 3-b: New File (VS Code—EXPLORER)

We'll come back to index.vue, as this will be our starting point. For now, let's switch gears and

install the latest version of Bootstrap, which is one of the world's most popular front-end toolkits.

www.dbooks.org

https://getbootstrap.com/docs/5.0/getting-started/introduction/
https://www.dbooks.org/

 34

Installing Bootstrap

Installing the Bootstrap toolkit is straightforward. Let's open the nuxt.config.ts file using the
EXPLORER panel within VS Code.

Figure 3-c: The nuxt.config.ts File—VS Code

First, we need to copy two links from the official documentation, one for the Bootstrap CSS

styles, and another for the Bootstrap JavaScript Bundle, as you can see highlighted in red in the

following figure.

Figure 3-d: Bootstrap CSS and JavaScript Bundle (Bootstrap Official Documentation)

https://getbootstrap.com/
https://getbootstrap.com/docs/5.0/getting-started/introduction/

 35

First, manually copy the CSS link (just the string contained within src, and not using the Copy
button) and paste it (highlighted in bold) into the modified nuxt.config.ts file, which looks as
follows.

Code Listing 3-c: Modified nuxt.config.ts File (Includes Bootstrap CSS)

import { defineNuxtConfig } from 'nuxt3'

// https://v3.nuxtjs.org/docs/directory-structure/nuxt.config

export default defineNuxtConfig({

 meta: {

 link: [

 {

 rel: 'stylesheet',

 href: 'https://cdn.jsdelivr.net/npm/bootstrap@5.0.2/

 dist/css/bootstrap.min.css'

 }

]

 }

})

 Note: I've written the CSS link in two lines (for readability); however, when you
paste it in your nuxt.config.ts file, do not split it into two lines—make sure it remains
in a single line.

Next, let's add the Bootstrap JavaScript Bundle to the nuxt.config.ts file. Manually copy the
Bundle link (just the string contained within src, and not using the Copy button) and paste it

(highlighted in bold) into the modified nuxt.config.ts file. This will look as follows.

Code Listing 3-d: Modified nuxt.config.ts File (Includes Bootstrap CSS & JavaScript Bundle)

import { defineNuxtConfig } from 'nuxt3'

// https://v3.nuxtjs.org/docs/directory-structure/nuxt.config

export default defineNuxtConfig({

 meta: {

 link: [

 {

 rel: 'stylesheet',

 href: 'https://cdn.jsdelivr.net/npm/bootstrap@5.0.2/

 dist/css/bootstrap.min.css'

 }

],

 script: [

 {

www.dbooks.org

https://www.dbooks.org/

 36

 type: 'text/javascript',

 src: 'https://cdn.jsdelivr.net/npm/bootstrap@5.0.2/

 dist/js/bootstrap.bundle.min.js'

 }

]

 }

})

 Note: I've written the Bundle link in two lines (for readability); however, when you
paste it in your nuxt.config.ts file, do not split it into two lines—make sure it remains in
a single line.

Once you’re done, save the changes to the nuxt.config.ts file. Now, Bootstrap has been installed

and is ready to be used.

Components folder

Now that we have Bootstrap, we need to create a components folder that we will use to add
various components our application will utilize. We can do this by clicking the New Folder icon
within the VS Code EXPLORER panel, as seen in Figure 3-a.

Once the folder has been created, select it, and click the New File icon within the VS Code

EXPLORER panel. Let's name the new file NavBar.vue.

Figure 3-e: Creating NavBar.vue (VS Code—EXPLORER)

After you’ve created the file, click to open it in VS Code.

Navbar component

The next thing we want to do is write the navbar component code. Open NavBar.vue and paste

in the following code.

 37

Code Listing 3-e: The NavBar Component (NavBar.vue)

<template>

 <div>

 <nav class="navbar navbar-expand-lg navbar-light"

 style="background-color: #e3f2fd;">

 <div class="container-fluid">

 Books List

 <button

 class="navbar-toggler"

 type="button"

 data-mdb-toggle="collapse"

 data-mdb-target="#navbarTogglerDemo02"

 aria-controls="navbarTogglerDemo02"

 aria-expanded="false"

 aria-label="Toggle navigation"

 >

 <i class="fas fa-bars"></i>

 </button>

 <div class="collapse navbar-collapse"

 id="navbarTogglerDemo02">

 <ul class="navbar-nav me-auto mb-2 mb-lg-0">

 <div class="d-flex input-group w-auto">

 <button

 class="btn btn-outline-primary"

 type="button"

 data-mdb-ripple-color="dark"

 data-bs-toggle="offcanvas"

 data-bs-target="#offcanvasWithBothOptions"

 aria-controls="offcanvasWithBothOptions"

 >

 Favorites

 </button>

 </div>

 </div>

 </div>

 </nav>

 </div>

</template>

To understand this code and how it relates to the finished navbar component, let's look at the

following diagram.

www.dbooks.org

https://www.dbooks.org/

 38

Figure 3-f: Navbar Code and UI Relationship

We define a nav component wrapped around the main div using regular Bootstrap CSS

classes (highlighted in purple). This nav contains an anchor (a) tag (highlighted in yellow) and a

Favorites button component (highlighted in green).

Like Vue.js, Nuxt.js HTML code must be embedded within the template tags. As you have

seen, that wasn't difficult at all.

Now, here comes the exciting part. Notice that the button component includes the data-bs-
target attribute. What does this attribute do? It’s related to another Bootstrap component called

offcanvas, which is a hidden sidebar that we'll use to keep a list of favorite books.

In essence, the data-bs-target attribute is used to reference an offcanvas component that

will appear when the Favorites button is clicked.

To keep our code clean, let's create the offcanvas functionality in a separate component that

we'll name FavList (FavList.vue). The following diagram illustrates how both components are

related using the offcanvasWithBothOptions attribute name.

https://getbootstrap.com/docs/5.1/components/offcanvas/

 39

Figure 3-g: NavBar—FavList Relationship (Using the offcanvasWithBothOptions Attribute Name)

FavList component

Now that we have the navbar component ready, we need to create a new FavList.vue file. We

can do this by selecting the components folder and clicking the New File icon within the VS
Code EXPLORER panel.

Figure 3-h: Creating FavList.vue (VS Code—EXPLORER)

After you’ve created the file, click to open it in VS Code, and paste in the following code.

Code Listing 3-f: The FavList Component (FavList.vue)

<template>

 <div>

 <div class="offcanvas offcanvas-start" data-bs-scroll="true"

 tabindex="-1"

 id="offcanvasWithBothOptions"

 aria-labelledby="offcanvasWithBothOptionsLabel">

 <div class="offcanvas-header">

 <h5 class="offcanvas-title"

 id="offcanvasWithBothOptionsLabel">

www.dbooks.org

https://www.dbooks.org/

 40

 Favorite Books

 </h5>

 <button type="button" class="btn-close text-reset"

 data-bs-dismiss="offcanvas"

 aria-label="Close">

 </button>

 </div>

 <div class="offcanvas-body">

 <p>...</p>

 </div>

 </div>

 </div>

</template>

To understand this code and how it relates to the finished offcanvas component functionality,

let's look at the following diagram.

Figure 3-i: FavList Code and UI Relationship

We see that we have the div with the id offcanvasWithBothOptions (highlighted in green)

contained within the main div.

This div contains two child div tags—one represents the offcanvas-header div (highlighted

in red), and the other represents the offcanvas-body div (for which we'll add the HTML code

later).

 41

The offcanvas-header div contains an h5 tag (highlighted in yellow) with the title of the

offcanvas and a button that closes the offcanvas when clicked (highlighted in blue).

As you have seen, that wasn't difficult to implement either.

Initial objects

Now that we have the application's main UI components partially ready, it's time to add some
hardcoded objects to represent the book data our application will display. As you might have
guessed, this book data will be about the Succinctly series books.

Let’s open the index.vue file contained within the pages folder using the EXPLORER panel in

VS Code and add the following code.

Code Listing 3-g: The Initial Objects Data (index.vue)
<script>

 export default {

 data() {

 return {

 books: [

 {

 uuid: 'cde4664e-afb8-47b2-b4e0-ecedad4ebbf6',

 name: 'Razor Components Succinctly',

 description: 'Razor components are specific

 building blocks within the Blazor framework.',

 author: 'Ed Freitas',

 url: 'https://www.syncfusion.com/succinctly-free-

 ebooks/razor-components-succinctly',

 picUrl:

 'https://cdn.syncfusion.com/content/images/

 downloads/ebook/ebook-cover/

 Razor-Components-Succinctly.png'

 },

 {

 uuid: 'e3d063c7-57bf-4df6-a626-137bfc658e04',

 name: 'Azure Virtual Desktop Succinctly',

 description: 'Put simply, Azure Virtual Desktop

 is a way to serve Windows resources

 over the internet.',

 author: 'Marco Moioli',

 url: 'https://www.syncfusion.com/succinctly-free-

 ebooks/azure-virtual-desktop-succinctly',

 picUrl: 'https://cdn.syncfusion.com/content/

 images/downloads/ebook/ebook-cover/

www.dbooks.org

https://www.syncfusion.com/succinctly-free-ebooks
https://www.dbooks.org/

 42

 azure-virtual-desktop-succinctly.png'

 },

 {

 uuid: '86af8093-7ba9-4178-9c19-0eeb9e75bcf0',

 name: 'Ansible Succinctly',

 description: 'Ansible is an open-source software,

 automation engine, and automation language.',

 author: 'Zoran Maksimovic',

 url: 'https://www.syncfusion.com/succinctly-free-

 ebooks/ansible-succinctly',

 picUrl: 'https://cdn.syncfusion.com/content/

 images/downloads/ebook/

 ebook-cover/ansible-succinctly.png'

 }

]

 }

 }

 }

</script>

 Note: I've written some of the strings in multiple lines per attribute (for
readability); however, if you paste these in your index.vue file, do not split these into
numerous lines—make sure each value remains in a single line.

The book data contains a books array returned by the data method. The uuid is a universally

unique ID, sometimes called a GUID.

Books UI

Now that we have the book information ready, let's create the UI to display the book data, as
seen in the following listing.

Code Listing 3-h: Books UI (index.vue)
<template>

 <div class="container">

 <div class="row">

 <div v-for="(book, index) in books"

 :key="book.uuid + '_' + index"

 class="col-md-4"

 >

 <div class="card-mb-3">

 43

 <div class="card-body">

 <h5 class="card-title">

 {{ book.name }}

 </h5>

 <p class="card-text">

 {{ book.description }}

 </p>

 <p class="card-text">

 {{ book.author }}

 </p>

 </div>

 </div>

 </div>

 </div>

 </div>

</template>

To understand this better, let's look at the following diagram.

Figure 3-j: Books Code and UI Relationship

www.dbooks.org

https://www.dbooks.org/

 44

We can see that we have the main div using Bootstrap's container CSS class (highlighted in

green). This container div contains a row (highlighted in purple), and within it, we find another

div used to display a list of books.

The list of books is displayed by iterating over them using the v-for directive from Vue.js.

Notice that each book rendered using the v-for directive requires a unique key: the

concatenation of the book.uuid and the index value.

Then, we have an anchor (a) tag (highlighted in yellow) that points to the book's URL

(book.url). It contains the book's cover image that uses the book.picUrl as its source (src).

When clicking on the book cover's image, we are directed to the book's website on a separate

browser tab/window—which is why the anchor's target is set to _blank.

Following that, we find an h5 tag that displays the book.name (highlighted in green), a p tag that

shows the book.description (highlighted in red), and finally, another p tag that displays the

book.author.

Favorites button

Now that we have most of the book UI ready, I'd like to add an Add to Favorites button for each
book displayed, which will allow a book to be added to the offcanvas component that will

contain the list of favorite books. The new code is highlighted in bold.

Code Listing 3-i: Updated Books UI (index.vue)
<template>

 <div class="container">

 <div class="row">

 <div v-for="(book, index) in books"

 :key="book.uuid + '_' + index"

 class="col-md-4"

 >

 <div class="card-mb-3">

 <div class="card-body">

 <h5 class="card-title">

 {{ book.name }}

 </h5>

 <p class="card-text">

 {{ book.description }}

 </p>

https://vuejs.org/guide/essentials/list.html

 45

 <p class="card-text">

 {{ book.author }}

 </p>

 <div class="d-grid">

 <button class="btn btn-outline-primary">

 Add to Favorites

 </button>

 </div>

 </div>

 </div>

 </div>

 </div>

 </div>

</template>

The updated UI would look as follows—with the Add to Favorites button appearing after each
author name.

Figure 3-k: Finished Books UI (Main Screen)

You'll be able to verify this shortly in your browser, but first, let's wrap up the remaining changes

for index.vue.

Code Listing 3-j: Books UI (index.vue)—Full Code
<template>

 <div class="container">

www.dbooks.org

https://www.dbooks.org/

 46

 <div class="row">

 <div v-for="(book, index) in books"

 :key="book.uuid + '_' + index"

 class="col-md-4"

 >

 <div class="card-mb-3">

 <div class="card-body">

 <h5 class="card-title">

 {{ book.name }}

 </h5>

 <p class="card-text">

 {{ book.description }}

 </p>

 <p class="card-text">

 {{ book.author }}

 </p>

 <div class="d-grid">

 <button class="btn btn-outline-primary">

 Add to Favorites

 </button>

 </div>

 </div>

 </div>

 </div>

 </div>

 </div>

</template>

<style scoped>

 .img {

 width: 80%;

 height: auto;

 }

 .center {

 display: block;

 margin-left: auto;

 margin-right: auto;

 width: 100%;

 }

 47

</style>

<script>

 export default {

 data() {

 return {

 books: [

 {

 uuid: 'cde4664e-afb8-47b2-b4e0-ecedad4ebbf6',

 name: 'Razor Components Succinctly',

 description: 'Razor components are specific

 building blocks within the Blazor framework.',

 author: 'Ed Freitas',

 url: 'https://www.syncfusion.com/succinctly-free-

 ebooks/razor-components-succinctly',

 picUrl: 'https://cdn.syncfusion.com/content/

 images/downloads/ebook/ebook-cover/

 Razor-Components-Succinctly.png'

 },

 {

 uuid: 'e3d063c7-57bf-4df6-a626-137bfc658e04',

 name: 'Azure Virtual Desktop Succinctly',

 description: 'Put simply, Azure Virtual Desktop

 is a way to serve Windows

 resources over the internet.',

 author: 'Marco Moioli',

 url: 'https://www.syncfusion.com/succinctly-free-

 ebooks/azure-virtual-desktop-succinctly',

 picUrl:

 'https://cdn.syncfusion.com/content/images/

 downloads/ebook/ebook-cover/

 azure-virtual-desktop-succinctly.png'

 },

 {

 uuid: '86af8093-7ba9-4178-9c19-0eeb9e75bcf0',

 name: 'Ansible Succinctly',

 description: 'Ansible is an open-source software,

 automation engine, and automation language.',

 author: 'Zoran Maksimovic',

 url: 'https://www.syncfusion.com/succinctly-free-

 ebooks/ansible-succinctly',

 picUrl: 'https://cdn.syncfusion.com/content/

 images/downloads/ebook/

 ebook-cover/ansible-succinctly.png'

www.dbooks.org

https://www.dbooks.org/

 48

 }

]

 }

 }

 }

</script>

 Note: I've written some of the strings in multiple lines per attribute (for
readability); however, if you paste these in your index.vue file, do not split these into
numerous lines—make sure each value remains in a single line.

Notice that I've also included some scoped CSS styles (highlighted in bold). Even though we
are not using these CSS classes, I've included them if you want to style the HTML of index.vue
later.

This will open the browser and allow you to view the changes implemented. (If you're not
running the application, execute the npm run dev command from the built-in VS Code terminal

to run the app.)

Summary

In this chapter, we have laid out the foundation of our app, implemented the application's main
UI, and enabled the usage of Bootstrap's offcanvas component—which we will use to keep our

favorite books.

We still have to add all the necessary logic for the application to work and finish the UI of the
favorites list—which only makes sense to complete once we have the app's logic laid out. That's
what we are going to look at next.

 49

Chapter 4 Client Logic

Overview

With most of the application's UI done, it's now time to focus on the application's client-side
logic. I'll mainly use the Options API from Vue.js rather than the Composition API (new with
Vue.js 3), which uses the setup method.

The reason is that I don't want to introduce too many changes for developers coming from
Vue.js version 2, so we can focus on Nuxt.js rather than also having to focus on different Vue.js
3 changes.

Add to favorites method

The first step in adding logic to our application is to add a method that allows us to add a book
to the list of favorite books. The following listing shows the method that achieves that, called
addToFavs.

Code Listing 4-a: Methods (index.vue)
<script>

 export default {

 data() {

 return {

 favorites: [],

 books: [

 ...

]

 }

 },

 methods: {

 addToFavs(book) {

 let inFavs = false;

 for (const fav of this.favorites) {

 if (fav.uuid === book.uuid) {

 inFavs = true;

 break;

 }

 }

 if (!inFavs) {

www.dbooks.org

https://vuejs.org/api/options-state.html
https://vuejs.org/api/composition-api-setup.html
https://www.dbooks.org/

 50

 this.favorites.push({...book});

 }

 }

 }

 }

</script>

For the sake of readability, I've explicitly excluded the book data (which is why you'll notice this
instead ...). However, that doesn't mean that this data has been removed from the code.

Let's now explore what the addToFavs method does. The addToFavs method begins by

declaring an inFavs variable initialized to false.

We assume that no books have been added to the list of favorites at this stage. Notice that

the list of favorite books is initialized as an empty array within the data method (favorites:

[]).

Following that, we loop through the favorites array (using a for loop) and check if the current

item (fav) on the favorites list has an uuid equal to the uuid of the book being inserted into

the favorites list.

If the uuid of the current item has the same value as the uuid of the book being inserted, then

inFavs is set to true, and the loop finalizes.

If the book being inserted does not exist on the list of favorites, then it is added to the list with

this instruction: this.favorites.push({...book}).

 Note: We are using the JavaScript spread syntax (…book) when calling the push
method of the favorites array, as we want to add all the properties of the book object as
one element of the array.

By doing this, we ensure that the same book is not added more than once to the favorites list.

Click event binding

Now that we have the addToFavs method ready, let's enable it by binding it to a click event, as

seen in bold in the following code.

Code Listing 4-b: Binding the addToFavs Methods (index.vue)
<button @click="addToFavs(book)" class="btn btn-outline-primary">

 Add to Favorites

</button>

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Spread_syntax

 51

This works because we use the v-on directive (shorthanded as @) to bind the addToFavs

method to the click event. To the addToFavs method, we pass the book that we want to insert

to the favorites list. Here is the updated code for index.vue.

Code Listing 4-c: Updated index.vue
<template>

 <div class="container">

 <div class="row">

 <div v-for="(book, index) in books"

 :key="book.uuid + '_' + index"

 class="col-md-4"

 >

 <div class="card-mb-3">

 <div class="card-body">

 <h5 class="card-title">

 {{ book.name }}

 </h5>

 <p class="card-text">

 {{ book.description }}

 </p>

 <p class="card-text">

 {{ book.author }}

 </p>

 <div class="d-grid">

 <button @click="addToFavs(book)"

 class="btn btn-outline-primary">

 Add to Favorites

 </button>

 </div>

 </div>

 </div>

 </div>

 </div>

 </div>

</template>

<style scoped>

 .img {

 width: 80%;

 height: auto;

www.dbooks.org

https://www.dbooks.org/

 52

 }

 .center {

 display: block;

 margin-left: auto;

 margin-right: auto;

 width: 100%;

 }

</style>

<script>

 export default {

 data() {

 return {

 favorites: [],

 books: [

 {

 uuid: 'cde4664e-afb8-47b2-b4e0-ecedad4ebbf6',

 name: 'Razor Components Succinctly',

 description: 'Razor components are specific

 building blocks within the Blazor framework.',

 author: 'Ed Freitas',

 url: 'https://www.syncfusion.com/succinctly-free-

 ebooks/razor-components-succinctly',

 picUrl:

 'https://cdn.syncfusion.com/content/images/

 downloads/ebook/ebook-cover/

 Razor-Components-Succinctly.png'

 },

 {

 uuid: 'e3d063c7-57bf-4df6-a626-137bfc658e04',

 name: 'Azure Virtual Desktop Succinctly',

 description: 'Put simply, Azure Virtual Desktop

 is a way to serve Windows

 resources over the internet.',

 author: 'Marco Moioli',

 url: 'https://www.syncfusion.com/succinctly-free-

 ebooks/azure-virtual-desktop-succinctly',

 picUrl:

 'https://cdn.syncfusion.com/content/images/

 downloads/ebook/ebook-cover/

 azure-virtual-desktop-succinctly.png'

 },

 {

 53

 uuid: '86af8093-7ba9-4178-9c19-0eeb9e75bcf0',

 name: 'Ansible Succinctly',

 description: 'Ansible is an open-source software,

 automation engine, and automation language.',

 author: 'Zoran Maksimovic',

 url: 'https://www.syncfusion.com/succinctly-free-

 ebooks/ansible-succinctly',

 picUrl:

 'https://cdn.syncfusion.com/content/images/

 downloads/ebook/ebook-cover/

 ansible-succinctly.png'

 }

]

 }

 },

 methods: {

 addToFavs(book) {

 let inFavs = false;

 for (const fav of this.favorites) {

 if (fav.uuid === book.uuid) {

 inFavs = true;

 break;

 }

 }

 if (!inFavs) {

 this.favorites.push({...book});

 }

 }

 }

 }

</script>

 Note: I've written some of the strings in multiple lines per attribute (for
readability); however, if you paste these in your index.vue file, do not split these into
numerous lines—make sure each value remains in a single line.

Now we’re ready to work on the FavList.vue file.

www.dbooks.org

https://www.dbooks.org/

 54

Moving the Favorites list

As you have noticed, the favorites array has been declared within the data method of the

index.vue file (as seen previously).

Although this has worked so far, it poses a problem to us going forward. We need to have the

data contained within the favorites array available within the FavList.vue file.

We could pass the favorites array to the FavList.vue file by calling the component FavList

and passing the favorites array as a property: <FavList favs="favorites"/>.

This could work, but the problem with this approach is that besides repeating the data, we would
have one copy within index.vue and another copy in FavList.vue—which we would also need to
keep in sync.

A better way would be to move the favorites array to FavList.vue and then reference the

favorites array from index.vue. By doing this, we keep one copy of the data.

We can do this by changing the name of the favorites array to favlist (to be declared in

FavList.vue) and then referencing it within index.vue as <FavList ref="favlist"/>.

Refactoring index.vue

To begin, let's refactor index.vue (which no longer uses the favorites array) as follows. The

newest changes are emphasized in bold.

Code Listing 4-d: Refactored index.vue
<template>

 <div class="container">

 <FavList ref="favlist"/>

 <div class="row">

 <div v-for="(book, index) in books"

 :key="book.uuid + '_' + index"

 class="col-md-4"

 >

 <div class="card-mb-3">

 <div class="card-body">

 <h5 class="card-title">

 {{ book.name }}

 </h5>

 <p class="card-text">

 55

 {{ book.description }}

 </p>

 <p class="card-text">

 {{ book.author }}

 </p>

 <div class="d-grid">

 <button @click="addToFavs(book)"

 class="btn btn-outline-primary">

 Add to Favorites

 </button>

 </div>

 </div>

 </div>

 </div>

 </div>

 </div>

</template>

<style scoped>

 .img {

 width: 80%;

 height: auto;

 }

 .center {

 display: block;

 margin-left: auto;

 margin-right: auto;

 width: 100%;

 }

</style>

<script>

 import FavList from '../components/FavList';

 export default {

 components: { FavList },

 data() {

 return {

 books: [

 {

 uuid: 'cde4664e-afb8-47b2-b4e0-ecedad4ebbf6',

 name: 'Razor Components Succinctly',

 description: 'Razor components are specific

www.dbooks.org

https://www.dbooks.org/

 56

 building blocks within the Blazor framework.',

 author: 'Ed Freitas',

 url: 'https://www.syncfusion.com/succinctly-free-

 ebooks/razor-components-succinctly',

 picUrl:

 'https://cdn.syncfusion.com/content/images/

 downloads/ebook/ebook-cover/

 Razor-Components-Succinctly.png'

 },

 {

 uuid: 'e3d063c7-57bf-4df6-a626-137bfc658e04',

 name: 'Azure Virtual Desktop Succinctly',

 description: 'Put simply, Azure Virtual Desktop

 is a way to serve Windows

 resources over the internet.',

 author: 'Marco Moioli',

 url: 'https://www.syncfusion.com/succinctly-free-

 ebooks/azure-virtual-desktop-succinctly',

 picUrl: 'https://cdn.syncfusion.com/content/

 images/downloads/ebook/ebook-cover/

 azure-virtual-desktop-succinctly.png'

 },

 {

 uuid: '86af8093-7ba9-4178-9c19-0eeb9e75bcf0',

 name: 'Ansible Succinctly',

 description: 'Ansible is an open-source software,

 automation engine, and automation language.',

 author: 'Zoran Maksimovic',

 url: 'https://www.syncfusion.com/succinctly-free-

 ebooks/ansible-succinctly',

 picUrl: 'https://cdn.syncfusion.com/content/

 images/downloads/ebook/

 ebook-cover/ansible-succinctly.png'

 }

]

 }

 },

 methods: {

 addToFavs(book) {

 let inFavs = false;

 const favs = this.$refs.favlist;

 for (const fav of favs.favorites) {

 if (fav.uuid === book.uuid) {

 57

 inFavs = true;

 break;

 }

 }

 if (!inFavs) {

 favs.favorites.push({...book});

 }

 }

 }

 }

</script>

 Note: I've written some of the strings in multiple lines per attribute (for
readability); however, if you paste these in your index.vue file, do not split these into
numerous lines—make sure each value remains in a single line.

Let's go over the changes. First, we've included (within the HTML markup) a reference to the
FavList component as follows <FavList ref="favlist"/>.

Notice that favlist (which is the original favorites array renamed) is being passed as

reference (ref). This means that although it is part of FavList.vue (as we will see shortly), we

can access and manipulate it from index.vue.

Next, we can see that the FavList component is being imported within the script section as

follows.

import FavList from '../components/FavList';

To understand how the import statement works, let's look at the following diagram.

www.dbooks.org

https://www.dbooks.org/

 58

Figure 4-a: Relationship between Import Statement and FavList Component

The preceding diagram shows how the FavList relates to the FavList component referenced

in the HTML markup (highlighted in red).

To get to the file path where the component is located, we need to come out of the pages folder,
go one level up (..)—highlighted in yellow—and then go into the components folder

(highlighted in blue).

The FavList component is contained within FavList (which is the FavList.vue file), highlighted

in green. Notice how the .vue extension is not required when importing a component.

Next, we can see that we have included FavList within the components property of index.vue,

as follows: components: { FavList }.

Following that, within the addToFavs method, we can access favlist array from the FavList

component by using Vue.js template refs, as follows.

const favs = this.$refs.favlist;

Then, the favorites array (favlist) is accessed as favs.favorites.

FavList.vue

With index.vue refactored, let's open FavList.vue and copy and paste the following code.

https://vuejs.org/guide/essentials/template-refs.html

 59

Code Listing 4-e: FavList.vue
<template>

 <div>

 <div class="offcanvas offcanvas-start" data-bs-scroll="true"

 tabindex="-1"

 id="offcanvasWithBothOptions"

 aria-labelledby="offcanvasWithBothOptionsLabel">

 <div class="offcanvas-header">

 <h5 class="offcanvas-title"

 id="offcanvasWithBothOptionsLabel">

 Favorite Books

 </h5>

 <button type="button" class="btn-close text-reset"

 data-bs-dismiss="offcanvas"

 aria-label="Close">

 </button>

 </div>

 <div class="offcanvas-body">

 <div v-for="(fav, index) in favorites"

 :key="fav.uuid + '_' + index"

 class="card-mb-3">

 <div class="row">

 <div class="col-md-4">

 <img :src="fav.picUrl"

 class="img-fluid rounded-start">

 </div>

 <div class="col-md-8">

 <div class="card-body">

 <h5 class="card-title">

 {{ fav.name }}

 </h5>

 <p class="card-title">

 {{ fav.author }}

 </p>

 <div class="d-grid">

 <button @click="delFav(fav)"

 class="btn btn-outline-secondary">

 Remove from list

 </button>

 </div>

 </div>

 </div>

 </div>

 </div>

www.dbooks.org

https://www.dbooks.org/

 60

 </div>

 </div>

 </div>

</template>

<script>

 export default {

 name: 'FavList',

 data() {

 return {

 favorites: []

 }

 },

 methods: {

 delFav(fav) {

 const favs = this.favorites;

 const idx = favs.findIndex(

 item => item.uuid === fav.uuid);

 if (idx >= 0) {

 favs.splice(idx, 1);

 }

 }

 }

 }

</script>

Within the template section, we can see that most of the HTML code is used for rendering the

offcanvas Bootstrap component. There are two sections: the header (offcanvas-header) and

body (offcanvas-body).

The header section contains the title used by the offcanvas component and a button to close

it. On the other hand, the body section includes a picture of the book (fav.picUrl), the book's

title (fav.name), the book's author (fav.author), and a button (button
@click="delFav(fav)) to remove the book from the favorites list (favorites).

The body section repeats itself for all the books that have been added to the favorites list
(favorites)—by executing this instruction: v-for="(fav, index) in favorites".

Regarding the script part of the preceding code, we can see that the data method returns the

favorites array—previously declared within index.vue.

The delFav method, which receives the current or selected favorite book as a parameter (fav),

removes that book from the list of favorite books by executing favs.splice(idx, 1), which

means remove 1 item at position idx.

 61

To retrieve the current or selected favorite book, we use the favs.findIndex method. The

chosen book is determined by comparing the value of uuid the current item to the value of the

book (fav) passed as a parameter to the delFav method.

Executing the app

Excellent—we've got a working app at this stage. It's a small application and doesn't do that
much, but it does achieve the goal that we set out to accomplish: to display a list of books and
add and remove favorites from that list.

To see the application running, we can execute it. To do that, run the npm run dev command

from the built-in terminal in VS Code.

Figure 4-b: Executing the App (Built-in Terminal—VS Code)

If we open the browser and navigate to the application's URL, we should see the following.

Figure 4-c: Application Running (1)

www.dbooks.org

https://www.dbooks.org/

 62

If we click each of the Add to Favorites buttons (below each of the book images) from left to
right, and then click the Favorites button, we should see the following list of favorite books.

Figure 4-d: Application Running (2)

Looking at the list of favorite books, we can see that the books have been added to the list in
the same order as each of the Add to Favorites buttons were clicked.

If we click the Remove from list button for the middle book (Azure Virtual Desktop Succinctly),
we should see the following.

Figure 4-e: Application Running (3)

 63

As we can see, the Azure Virtual Desktop Succinctly book has been successfully removed from
the list of favorite books.

Summary

Congrats on what you've achieved so far! We have created all the application's client front-end
logic. The next step is to work on the server-side logic and persist the data—which is what the
next chapter is all about.

www.dbooks.org

https://www.dbooks.org/

 64

Chapter 5 Firebase

Overview

We are ready to start with the server-side setup of our application. Although we could write
server-side code with previous versions of Nuxt.js, with version 3, we can now write endpoints
just like writing an API using Node.js, but more straightforward.

To achieve data persistence and server-side functionality, we will use Firebase, a platform
supported by Google for creating and monitoring mobile and web applications.

Getting started with Firebase

Getting started with Firebase is very easy. You need to have a Google Workspace or Gmail
account to use it.

Figure 5-a: Firebase Home Page

 Note: The Firebase home page and website might change over time, but you
should still easily be able to continue with the steps provided.

https://firebase.google.com/

 65

Once you’re on the Firebase home page, click Get started > Continue.

Figure 5-b: Creating a Firebase Project (Step 1 of 3)

Next, we'll see the following screen for setting up Google Analytics.

www.dbooks.org

https://www.dbooks.org/

 66

Figure 5-c: Creating a Firebase Project (Step 2 of 3)

At this stage, I would suggest disabling the option Enable Google Analytics for this project,
which I'm going to do. We don't need to use Google Analytics for our purposes; however, it's an
option to consider for larger projects.

Next, click Create project to initiate the creation of the project and provision the necessary

resources.

Figure 5-d: Provisioning Resources (Step 3 of 3 - Creating the Firebase Project)

Once the project has been provisioned, you should see the following screen.

 67

Figure 5-e: Firebase Project Created

Click Continue, which will lead us to the project dashboard.

Figure 5-f: Firebase Project Dashboard

With the Firebase project created, we need to create a Firestore database, which you can do by
clicking the navigation option highlighted in yellow in Figure 5-f, leading us to the following
screen.

www.dbooks.org

https://www.dbooks.org/

 68

Figure 5-g: Cloud Firestore Main Page (Firestore Database)

Here, we can click the Create database button to continue creating the Firestore database; this

will display the following window.

Figure 5-h: Create Database Window—Step 1 (Firestore Database)

Although I would usually recommend choosing the Start in test mode option, in this case, for the
sake of simplicity and avoiding additional configuration later on (as the focus of this course is
not Firebase), let's go with the Start in production mode option. So, let's leave the default
option and click Next.

 69

Figure 5-i: Create Database Window—Step 2 (Firestore Database)

Then, we can choose the Cloud Firestore location. I'll go with the default option (nam5 (us-

central)), but feel free to select a location closer to where you are physically located.

So, to finish creating the Cloud Firestore database, click the Enable button to provision the
required database resources.

The Cloud Firestore database is ready to be used, as we can see in Figure 5-j.

Figure 5-j: Cloud Firestore Database Ready

Now we can create a collection and add some data, which will replace the hardcoded book data

we added to our client-side code.

www.dbooks.org

https://www.dbooks.org/

 70

Adding data

Instead of having data hardcoded into the application like we currently have, let's move that
data to Cloud Firestore, instead, and modify our application to retrieve the data from it.

To do that, click the + Start collection option highlighted in the preceding figure—this will

display the following window.

Figure 5-k: Start a collection (Step 1)—Firestore Database

I'll give the Collection ID the name favbooks and click Next to display the following window.

Figure 5-l: Start a collection (Step 2)—Firestore Database

Following that, click the Auto-ID button to generate the Document ID. Then, let's enter each field

value using the same hardcoded values from the index.vue file. For the first document (seen in

the following figure), we are adding the field values for Razor Components Succinctly.

 71

Figure 5-m: Start a collection (Adding a Document)

Click Save at the bottom of the screen (not visible in the preceding figure) to save the

document.

Figure 5-n: Document Added

Repeat the same steps for adding the data for Azure Virtual Desktop Succinctly and Ansible

Succinctly. To do that, click the + Add document button.

www.dbooks.org

https://www.dbooks.org/

 72

Connecting the app to Firebase

With the data now available in the Cloud Firestore database, it's time to connect our application
to Firebase, remove the hardcoded data from index.vue, and retrieve the data from the
database.

Let's click the configuration icon and then click the Project settings option.

Figure 5-o: Project settings Option

Once you’re in the Project settings view, click the Service accounts tab and the Generate new
private key button.

Figure 5-p: Project settings—Service accounts

Once you’re done, the following window will be displayed.

 73

Figure 5-q: Generate new private key—Service accounts

Following that, click the Generate key button to download the private key we will use within our
Nuxt.js project. In my case, the file looks as follows.

Figure 5-r: The Generated Key File

 Note: Depending on how you named your Firebase project (if it is different than
the name I used), the name of the generated key file might be different than mine.

Move the downloaded file to the root folder where your Nuxt.js project resides, to ensure that it

is not exposed through the client-side part of the application.

Here is how the generated key file should look within the VS Code EXPLORER panel once

moved to the project's root folder.

Figure 5-s: The Generated Key File (as seen in VS Code)

www.dbooks.org

https://www.dbooks.org/

 74

Installing the Firebase SDK

We must install the Firebase Admin SDK, the server-side version of Firebase. To do this, we
need to open the built-in terminal within VS Code and type in the following command.

Code Listing 5-a: Command to Install the Firebase Admin SDK
npm install firebase-admin

Once the installation process has been finalized, make sure to add the name of the generated
key file to your project's .gitignore file.

This prevents the file from being added to your Git repository, which is good practice and helps

you avoid sharing sensitive project information by mistake.

Figure 5-t: Adding the Generated Key File Name to .gitignore

Summary

At this stage, we have created a backend server for our project, hosted on the Firebase

platform. In the next chapter, we will write our application's server-side logic, interacting directly

with Firebase.

 75

Chapter 6 Server Logic

Overview

We are ready to write the server-side logic of our application that will retrieve the data from the

Cloud Firestore database.

Server logic

To begin, let’s use the EXPLORER panel of VS Code to create a new folder called ‘server’ and
a subfolder called ‘api,’ and within the api folder, create a new file called books.js.

Figure 6-a: The server and api Folders with books.js (EXPLORER—VS Code)

Then, copy the following code and paste it into the books.js file.

Code Listing 6-a: books.js
import { initializeApp, getApps, cert } from 'firebase-admin/app';

import { getFirestore } from 'firebase-admin/firestore';

const fb_apps = getApps();

if (fb_apps.length <= 0) {

 initializeApp({

 credential:

 cert(

 './booksfavlist-firebase-adminsdk-eel0o-0a9b2da302.json'),

 });

}

www.dbooks.org

https://www.dbooks.org/

 76

const func = async(rq, rs) => {

 const fs_db = getFirestore();

 const snapshot = await fs_db.collection('favbooks').get();

 const books = snapshot.docs.map(doc => {

 return {

 uuid: doc.id,

 name: doc.data().name,

 description: doc.data().description,

 author: doc.data().author,

 url: doc.data().url,

 picUrl: doc.data().picUrl

 }

 });

 return books;

}

export default func;

Before we go over this code, let's run the app by executing the npm run dev command from the

built-in terminal within VS Code.

Once the app is running, open the browser and navigate to http://localhost:3000/api/books.

 Note: Normally, Nuxt.js uses port 3000 by default. If it uses another port in your
case, make sure to replace 3000 with the port number Nuxt.js is using on your
machine. The api part of the URL corresponds to the api folder, and the books part of
the URL corresponds to the books.js file.

After navigating to that URL, you should see the following results returned by the application.

http://localhost:3000/api/books

 77

Figure 6-b: The Results from Firebase

Essentially, we have created an API that can fetch data from the Cloud Firestore database

using the Firebase Admin SDK.

Understanding the server logic

Let's go over the server code that we've written to understand what has been done. First, we
began with the necessary imports.

import { initializeApp, getApps, cert } from 'firebase-admin/app';

import { getFirestore } from 'firebase-admin/firestore';

From the firebase-admin/app module, we imported the initializeApp, getApps, and cert

methods.

Then, from the firebase-admin/firestore module, we imported the getFirestore method.

All these methods are required to initialize the connection to Firebase, get the reference to the
default application, and establish the connection to the database.

The next instruction within the server code is const fb_apps = getApps();. This method

retrieves a list of all the initialized applications that exist within your Firebase account.

So, suppose there aren't any Firebase initialized applications (when the following condition
fb_apps.length <= 0 is true). In that case, we can initialize the connection to the Firebase

application we created, which is done with the execution of the initializeApp method.

www.dbooks.org

https://www.dbooks.org/

 78

To make sure we initialize the correct Firebase application, we have to pass as a parameter the
credentials we retrieved from Firebase (available within the generated key file)—this is done
with the following instruction.

initializeApp({

 credential:

 cert(

 './booksfavlist-firebase-adminsdk-eel0o-0a9b2da302.json'),

 });

In this context, credential is the parameter's name, whereas the result returned by the cert

method is the value assigned to the credential parameter.

What the cert method does in this context is read the contents of the generated key values

contained within the booksfavlist-firebase-adminsdk-eel0o-0a9b2da302.json file.

Once we have initialized our Firebase application, we declare an asynchronous function called
func, to which we pass request (rq) and response (rs) parameters.

The func function is responsible for retrieving the data from the Cloud Firestore database. To

do that, we first get the connection to the Cloud Firestore database using the getFirestore

method—this connection is assigned to the constant fs_db.

const fs_db = getFirestore();

Then, we invoke the collection method from the fs_db instance and pass in the name of the

books collection within Firebase, which, as you might remember, we called favbooks.

const snapshot = await fs_db.collection('favbooks').get();

What the get method does is retrieve a snapshot of the data stored within the collection rather

than the value of the collection itself. The reference to this snapshot is assigned to the constant
with the same name: snapshot.

Then, the data is obtained by invoking the docs method from the snapshot instance. Given that

the result obtained from the docs method is an array, we need to iterate through that array,

which is why we use the map function.

snapshot.docs.map(...)

Within the map function, we use a doc variable that represents each item of the array returned

by the docs method.

For each item within the array, we return an object that includes all the document properties
stored in the Cloud Firestore database.

 79

return {

 uuid: doc.id,

 name: doc.data().name,

 description: doc.data().description,

 author: doc.data().author,

 url: doc.data().url,

 picUrl: doc.data().picUrl

}

Notice that, except for the uuid value, all the document properties stored in the Cloud Firestore

database are available through the data property of the doc instance—and this can be further

optimized, as we'll see shortly.

Finally, once we've gone through all the items in the array, we can return the list of results

assigned to the books variable.

return books;

Optimizing the server logic

As explained previously, except for the uuid value, all the document properties stored in the

Cloud Firestore database are available through the data property of the doc instance.

So, instead of explicitly mentioning each of the properties:

name: doc.data().name,

description: doc.data().description,

author: doc.data().author,

url: doc.data().url,

picUrl: doc.data().picUrl

We can use the JavaScript spread operator (…) to include all the properties accessible through

the data method.

...doc.data()

So, the modified and optimized code would look as follows (with the change emphasized in

bold).

Code Listing 6-b: books.js (Optimized)
import { initializeApp, getApps, cert } from 'firebase-admin/app';

import { getFirestore } from 'firebase-admin/firestore';

www.dbooks.org

https://www.dbooks.org/

 80

const fb_apps= getApps();

if (fb_apps.length <= 0) {

 initializeApp({

 credential:

 cert(

 './booksfavlist-firebase-adminsdk-eel0o-0a9b2da302.json'),

 });

}

const func = async(rq, rs) => {

 const fs_db = getFirestore();

 const snapshot = await fs_db.collection('favbooks').get();

 const books = snapshot.docs.map(doc => {

 return {

 ...doc.data(),

 uuid: doc.id

 }

 });

 return books;

}

export default func;

If you rerun the application (npm run dev) from the built-in terminal within VS Code and

navigate to http://localhost:3000/api/books, you will see the same results.

The only difference this time might be that the order of the books is not the same, and the uuid

field will appear as the last property for each item.

http://localhost:3000/api/books

 81

Figure 6-c: The Results from Firebase

Retrieving data from Firebase

Now that we can retrieve the data from the Cloud Firestore database, we must remove the

hardcoded data within the index.vue file and load the data dynamically.

So, open the index.vue file and remove the items in the books property (returned by the data

method). The changes to the updated code are emphasized in bold in the following code.

Code Listing 6-c: index.vue (Updated)
<template>

 <div class="container">

 <FavList ref="favlist"/>

 <div class="row">

 <div v-for="(book, index) in books"

 :key="book.uuid + '_' + index"

 class="col-md-4"

 >

 <div class="card-mb-3">

 <div class="card-body">

 <h5 class="card-title">

www.dbooks.org

https://www.dbooks.org/

 82

 {{ book.name }}

 </h5>

 <p class="card-text">

 {{ book.description }}

 </p>

 <p class="card-text">

 {{ book.author }}

 </p>

 <div class="d-grid">

 <button @click="addToFavs(book)"

 class="btn btn-outline-primary">

 Add to Favorites

 </button>

 </div>

 </div>

 </div>

 </div>

 </div>

 </div>

</template>

<style scoped>

 .img {

 width: 80%;

 height: auto;

 }

 .center {

 display: block;

 margin-left: auto;

 margin-right: auto;

 width: 100%;

 }

</style>

<script>

 import FavList from '../components/FavList';

 export default {

 components: { FavList },

 data() {

 return {

 books: []

 }

 83

 },

 methods: {

 addToFavs(book) {

 let inFavs = false;

 const favs = this.$refs.favlist;

 for (const fav of favs.favorites) {

 if (fav.uuid === book.uuid) {

 inFavs = true;

 break;

 }

 }

 if (!inFavs) {

 favs.favorites.push({...book});

 }

 }

 }

 }

</script>

Next, we need to add extra code to the index.vue file, allowing us to retrieve the data from the
Cloud Firestore database—which we can do as follows.

<script setup>

 const { data: books } =

await useAsyncData('books', () => $fetch('/api/books'));

</script>

This uses the useAsyncData function from Nuxt.js 3 to perform data fetching. So, within the

setup of index.vue, the useAsyncData function is invoked.

The useAsyncData function uses the browser's Fetch API ($fetch) to which the server URL is

passed as a parameter, retrieving the list of books.

The result of the execution of the useAsyncData function is a data object that we give the

name: books.

By doing this, we no longer need to return the books array from the data method and can

remove the data method altogether. The updated index.vue code is now as follows.

Code Listing 6-d: index.vue (Updated)
<script setup>

 const { data: books } =

www.dbooks.org

https://v3.nuxtjs.org/docs/usage/data-fetching/
https://vuejs.org/api/sfc-script-setup.html
https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API
https://www.dbooks.org/

 84

 await useAsyncData('books', () => $fetch('/api/books'));

</script>

<template>

 <div class="container">

 <FavList ref="favlist"/>

 <div class="row">

 <div v-for="(book, index) in books"

 :key="book.uuid + '_' + index"

 class="col-md-4"

 >

 <div class="card-mb-3">

 <div class="card-body">

 <h5 class="card-title">

 {{ book.name }}

 </h5>

 <p class="card-text">

 {{ book.description }}

 </p>

 <p class="card-text">

 {{ book.author }}

 </p>

 <div class="d-grid">

 <button @click="addToFavs(book)"

 class="btn btn-outline-primary">

 Add to Favorites

 </button>

 </div>

 </div>

 </div>

 </div>

 </div>

 </div>

</template>

<style scoped>

 .img {

 width: 80%;

 height: auto;

 }

 85

 .center {

 display: block;

 margin-left: auto;

 margin-right: auto;

 width: 100%;

 }

</style>

<script>

 import FavList from '../components/FavList';

 export default {

 components: { FavList },

 methods: {

 addToFavs(book) {

 let inFavs = false;

 const favs = this.$refs.favlist;

 for (const fav of favs.favorites) {

 if (fav.uuid === book.uuid) {

 inFavs = true;

 break;

 }

 }

 if (!inFavs) {

 favs.favorites.push({...book});

 }

 }

 }

 }

</script>

If you rerun the application (npm run dev) from the built-in terminal within VS Code, you should

see that it works, and this time the list of books is retrieved from the Cloud Firestore database
instead of being loaded locally.

You might have noticed (also depending on how fast your internet connection is) that because
the list of books is being retrieved from Firebase, the application takes slightly longer to load.

In other words, the UI takes slightly longer to render, and this is because the UI is only

generated after the data has been retrieved.

www.dbooks.org

https://www.dbooks.org/

 86

Lazy loading

For our example, we have hardly any data; however, in a real-world (production-ready) case, we
might have much more data to retrieve, and as such, it wouldn't be recommended to have the
UI blocked (without being rendered) while the data loads.

We can achieve this by using a technique known as lazy loading, for which Nuxt.js 3 provides a
couple of functions for this purpose.

Let's refactor the index.vue code a bit further to accommodate lazy loading. The changes are
emphasized in bold in the following code.

Code Listing 6-e: index.vue (Updated—with Lazy Loading)

<script setup>

 const { pending, data: books } = await useLazyFetch('/api/books');

</script>

<template>

 <div v-if="pending">

 Loading ...

 </div>

 <div v-else class="container">

 <FavList ref="favlist"/>

 <div class="row">

 <div v-for="(book, index) in books"

 :key="book.uuid + '_' + index"

 class="col-md-4"

 >

 <div class="card-mb-3">

 <div class="card-body">

 <h5 class="card-title">

 {{ book.name }}

 </h5>

 <p class="card-text">

 {{ book.description }}

 </p>

 <p class="card-text">

 {{ book.author }}

 </p>

 <div class="d-grid">

 <button @click="addToFavs(book)"

https://v3.nuxtjs.org/docs/usage/data-fetching/#uselazyfetch

 87

 class="btn btn-outline-primary">

 Add to Favorites

 </button>

 </div>

 </div>

 </div>

 </div>

 </div>

 </div>

</template>

<style scoped>

 .img {

 width: 80%;

 height: auto;

 }

 .center {

 display: block;

 margin-left: auto;

 margin-right: auto;

 width: 100%;

 }

</style>

<script>

 import FavList from '../components/FavList';

 export default {

 components: { FavList },

 methods: {

 addToFavs(book) {

 let inFavs = false;

 const favs = this.$refs.favlist;

 for (const fav of favs.favorites) {

 if (fav.uuid === book.uuid) {

 inFavs = true;

 break;

 }

 }

 if (!inFavs) {

 favs.favorites.push({...book});

www.dbooks.org

https://www.dbooks.org/

 88

 }

 }

 }

 }

</script>

The first change is that we are using the useLazyFetch function, and as you can see, this

function only requires one parameter: the URL endpoint of the data to retrieve.

const { pending, data: books } = await useLazyFetch('/api/books');

Note that this function returns a pending variable, which checks whether the data retrieval

operation is still pending or has finalized.

This way, if the data retrieval operation is still taking place, we can display a loading message,
which is what the following code does.

Notice how we use the v-if directive to check if the value of pending is true (which would

indicate that the retrieval operation has not been finalized).

<div v-if="pending">

 Loading ...

</div>

On the other hand, if the value of pending is false, it would indicate that the data retrieval

operation has been finalized. Therefore, the div containing the list of books can be shown—

which is why we've added a v-else directive.

<div v-else class="container">
...

</div>

Building and generating

We are now done with our application, so well done if you've been following along all this time!

Now it's time to generate our server-side rendered application.

We can execute the following command from the built-in terminal within VS Code.

Code Listing 6-f: Building and Generating the App

npm run build

Once this command has been executed, you should see an output similar to the following one
within your terminal.

 89

Figure 6-d: Building and Generating Output

Note that Nuxt.js has created an .output folder that contains the production-ready (minified and

optimized) server-side rendered application code, which can be executed by running the

following command.

Code Listing 6-g: Executing the Production-Ready App

npm run start

Once the application has started, if you right-click within your browser and click the option View
page source, you’ll see that the code has been minified and optimized for production. Here is
an example from my machine.

Figure 6-e: Production-Ready Code

www.dbooks.org

https://www.dbooks.org/

 90

Deployment

Nuxt.js offers the option to deploy your application to a myriad of the most popular hosting
services available on the market today. You can find detailed instructions on deploying your
application to any of these services on the official Nuxt.js documentation. I invite you to explore
this resource in your spare time and check which hosting solutions work best for you.

Complete app code

The listings that follow contain all the finished code for each file that is part of the application

we’ve built throughout this book.

Code Listing 6-h: Finished App (components\FavList.vue)

<template>

 <div>

 <div class="offcanvas offcanvas-start" data-bs-scroll="true"

 tabindex="-1"

 id="offcanvasWithBothOptions"

 aria-labelledby="offcanvasWithBothOptionsLabel">

 <div class="offcanvas-header">

 <h5 class="offcanvas-title"

 id="offcanvasWithBothOptionsLabel">

 Favorite Books

 </h5>

 <button type="button" class="btn-close text-reset"

 data-bs-dismiss="offcanvas"

 aria-label="Close">

 </button>

 </div>

 <div class="offcanvas-body">

 <div v-for="(fav, index) in favorites"

 :key="fav.uuid + '_' + index"

 class="card-mb-3">

 <div class="row">

 <div class="col-md-4">

 <img :src="fav.picUrl"

 class="img-fluid rounded-start">

 </div>

 <div class="col-md-8">

 <div class="card-body">

 <h5 class="card-title">

 {{ fav.name }}

 </h5>

https://nuxtjs.org/deployments/

 91

 <p class="card-title">

 {{ fav.author }}

 </p>

 <div class="d-grid">

 <button @click="delFav(fav)"

 class="btn btn-outline-secondary">

 Remove from list

 </button>

 </div>

 </div>

 </div>

 </div>

 </div>

 </div>

 </div>

 </div>

</template>

<script>

 export default {

 name: 'FavList',

 data() {

 return {

 favorites: []

 }

 },

 methods: {

 delFav(fav) {

 const favs = this.favorites;

 const idx = favs.findIndex(item =>

 item.uuid === fav.uuid);

 if (idx >= 0) {

 favs.splice(idx, 1);

 }

 }

 }

 }

</script>

Code Listing 6-i: Finished App (components\NavBar.vue)

<template>

www.dbooks.org

https://www.dbooks.org/

 92

 <div>

 <nav class="navbar navbar-expand-lg navbar-light"

 style="background-color: #e3f2fd;">

 <div class="container-fluid">

 Books List

 <NuxtLink to="/about">About</NuxtLink>

 <div class="d-flex input-group w-auto">

 <button

 class="btn btn-outline-primary"

 type="button"

 data-mdb-ripple-color="dark"

 data-bs-toggle="offcanvas"

 data-bs-target="#offcanvasWithBothOptions"

 aria-controls="offcanvasWithBothOptions"

 >

 Favorites

 </button>

 </div>

 </div>

 </nav>

 </div>

</template>

Code Listing 6-j: Finished App (pages\index.vue)

<script setup>

 const { pending, data: books } = await useLazyFetch('/api/books');

</script>

<template>

 <div v-if="pending">

 Loading ...

 </div>

 <div v-else class="container">

 <FavList ref="favlist"/>

 <div class="row">

 <div v-for="(book, index) in books"

 :key="book.uuid + '_' + index"

 class="col-md-4"

 >

 <div class="card-mb-3">

 93

 <div class="card-body">

 <h5 class="card-title">

 {{ book.name }}

 </h5>

 <p class="card-text">

 {{ book.description }}

 </p>

 <p class="card-text">

 {{ book.author }}

 </p>

 <div class="d-grid">

 <button @click="addToFavs(book)"

 class="btn btn-outline-primary">

 Add to Favorites

 </button>

 </div>

 </div>

 </div>

 </div>

 </div>

 </div>

</template>

<style scoped>

 .img {

 width: 80%;

 height: auto;

 }

 .center {

 display: block;

 margin-left: auto;

 margin-right: auto;

 width: 100%;

 }

</style>

<script>

 import FavList from '../components/FavList';

 export default {

 components: { FavList },

www.dbooks.org

https://www.dbooks.org/

 94

 methods: {

 addToFavs(book) {

 let inFavs = false;

 const favs = this.$refs.favlist;

 for (const fav of favs.favorites) {

 if (fav.uuid === book.uuid) {

 inFavs = true;

 break;

 }

 }

 if (!inFavs) {

 favs.favorites.push({...book});

 }

 }

 }

 }

</script>

Code Listing 6-k: Finished App (server\api\books.js)

import { initializeApp, getApps, cert } from 'firebase-admin/app';

import { getFirestore } from 'firebase-admin/firestore';

const fb_apps= getApps();

if (fb_apps.length <= 0) {

 initializeApp({

 credential:

 cert('

 ./booksfavlist-firebase-adminsdk-eel0o-0a9b2da302.json'),

 });

}

const func = async(rq, rs) => {

 const fs_db = getFirestore();

 const snapshot = await fs_db.collection('favbooks').get();

 const books = snapshot.docs.map(doc => {

 return {

 ...doc.data(),

 uuid: doc.id

 95

 }

 });

 return books;

}

export default func;

 Note: Keep in mind that your generated key file (in my case: booksfavlist-
firebase-adminsdk-eel0o-0a9b2da302.json) may not have the same name as mine.

Code Listing 6-l: Finished App (.gitignore—root folder)

node_modules

*.log

.nuxt

nuxt.d.ts

.output

.env

booksfavlist-firebase-adminsdk-eel0o-0a9b2da302.json

 Note: Bear in mind that your generated key file (in my case: booksfavlist-firebase-
adminsdk-eel0o-0a9b2da302.json) may not have the same name as mine.

Code Listing 6-m: Finished App (app.vue—root folder)

<template>

 <div class="container-fluid">

 <NavBar />

 <NuxtPage />

 </div>

</template>

Code Listing 6-n: Finished App (booksfavlist-firebase-adminsdk.json—root folder)

{

 "type": "service_account",

 "project_id": "booksfavlist",

 "private_key_id": "0a9b2da302f6...",

 "private_key": "-----BEGIN PRIVATE KEY\n-----END PRIVATE KEY-----\n",

 "client_email": "firebase-adminsdk-eel0o@booksfavlist...",

 "client_id": "10896908522...",

www.dbooks.org

https://www.dbooks.org/

 96

 "auth_uri": "https://accounts.google.com/o/oauth2/auth",

 "token_uri": "https://oauth2.googleapis.com/token",

 "auth_provider_x509_cert_url":

 "https://www.googleapis.com/oauth2/v1/certs",

 "client_x509_cert_url":

 "https://www.googleapis.com/robot/v1/metadata/x509/..."

}

 Note: For obvious security reasons, I have removed some of the Firebase details
that are linked to my account. As this is the generated key file, your details will differ
from mine, in any case.

Code Listing 6-o: Finished App (nuxt.config.ts—root folder)

import { defineNuxtConfig } from 'nuxt3'

// https://v3.nuxtjs.org/docs/directory-structure/nuxt.config

export default defineNuxtConfig({

 meta: {

 link: [

 {

 rel: 'stylesheet',

 href:

'https://cdn.jsdelivr.net/npm/bootstrap@5.0.2/dist/css/bootstrap.min.css'

 }

],

 script: [

 {

 type: 'text/javascript',

 src:

'https://cdn.jsdelivr.net/npm/bootstrap@5.0.2/dist/js/bootstrap.bundle.min.

js'

 }

]

 }

})

Code Listing 6-p: Finished App (package.json—root folder)
{

 "private": true,

 "scripts": {

 "dev": "nuxi dev",

 97

 "build": "nuxi build",

 "start": "node .output/server/index.mjs"

 },

 "devDependencies": {

 "nuxt3": "latest"

 },

 "dependencies": {

 "@nuxt/nitro": "^0.10.0",

 "firebase-admin": "^10.0.2",

 "mdb-ui-kit": "^3.10.2"

 }

}

Code Listing 6-q: Finished App (README.md—root folder)
Nuxt 3 Minimal Starter

We recommend to look at the [documentation](https://v3.nuxtjs.org).

Setup

Make sure to install the dependencies


```bash 

yarn install 

``` 


Development

Start the dev server on http://localhost:3000


```bash 

yarn dev 

``` 


Production

Build the application for production:


```bash 

yarn build 

``` 


www.dbooks.org

https://www.dbooks.org/

 98

Checkout the [deployment

documentation](https://v3.nuxtjs.org/docs/deployment).

Code Listing 6-r: Finished App (tsconfig.json—root folder)
{

 // https://v3.nuxtjs.org/concepts/typescript

 "extends": "./.nuxt/tsconfig.json"

}

 Note: Remember to execute the npm install command from the root folder of your
project to install any (missing) dependencies.

Next steps and final thoughts

Before closing off, I’d like to leave you with some challenges and thoughts. As some possible
next steps in your Nuxt.js learning journey, two things come to mind that would be interesting for
you to investigate and implement in your spare time.

The first would be to add additional pages to this application and explore the file system routing
mechanism with Nuxt.js—you could add an About page, for example.

Second, and even more interesting, would be to add functionality to save the list of favorite
books to the Cloud Firestore database. If you get around to implementing this feature, I’d love to
hear from you.

I think Nuxt.js is a fantastic toolkit that allows Vue.js developers to code faster by worrying less
about what happens under the hood and focusing more on the business aspect of the app.

If you have worked with Vue.js, I think you’ll love Nuxt.js, as it will make you more productive. I

hope you have enjoyed reading this book as much as I have enjoyed writing it.

Until next time—stay strong, focused, positive, and always learning. Thank you for reading and

following along. All the best.

https://nuxtjs.org/docs/features/file-system-routing/

	Table of Contents
	The Story behind the Succinctly Series of Books
	Information is plentiful but harder to digest
	The Succinctly series
	The best authors, the best content
	Free forever
	Free? What is the catch?
	Let us know what you think

	About the Author
	Acknowledgments
	Introduction
	Chapter 1 Getting Started
	Client-side vs. server-side rendering
	Nuxt.js server-side rendering
	Installing Node.js
	Getting started with Nuxt.js
	Summary

	Chapter 2 Project Structure
	Initial project structure
	Create Nuxt app
	Project structure (create-nuxt-app)
	Summary

	Chapter 3 App Foundations
	Getting started
	Pages folder
	Installing Bootstrap
	Components folder
	Navbar component
	FavList component
	Initial objects
	Books UI
	Favorites button
	Summary

	Chapter 4 Client Logic
	Overview
	Add to favorites method
	Click event binding
	Moving the Favorites list
	Refactoring index.vue
	FavList.vue
	Executing the app
	Summary

	Chapter 5 Firebase
	Overview
	Getting started with Firebase
	Adding data
	Connecting the app to Firebase
	Installing the Firebase SDK
	Summary

	Chapter 6 Server Logic
	Overview
	Server logic
	Understanding the server logic
	Optimizing the server logic
	Retrieving data from Firebase
	Lazy loading
	Building and generating
	Deployment
	Complete app code
	Next steps and final thoughts

