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Preface

About This Book

Persistent memory is often referred to as non-volatile memory (NVM) or storage

class memory (SCM). In this book, we purposefully use persistent memory as an all-
encompassing term to represent all the current and future memory technologies that
fall under this umbrella. This book introduces the persistent memory technology and
provides answers to key questions. For software developers, those questions include:
What is persistent memory? How do I use it? What APIs and libraries are available?
What benefits can it provide for my application? What new programming methods do I
need to learn? How do I design applications to use persistent memory? Where can I find
information, documentation, and help?

System and cloud architects will be provided with answers to questions such as:
What is persistent memory? How does it work? How is it different than DRAM or SSD/
NVMe storage devices? What are the hardware and operating system requirements?
What applications need or could benefit from persistent memory? Can my existing
applications use persistent memory without being modified?

Persistent memory is not a plug-and-play technology for software applications.
Although it may look and feel like traditional DRAM memory, applications need to be
modified to fully utilize the persistence feature of persistent memory. That is not to say
that applications cannot run unmodified on systems with persistent memory installed,
they can, but they will not see the full potential of what persistent memory offers without
code modification.

Thankfully, server and operating system vendors collaborated very early in the
design phase and already have products available on the market. Linux and Microsoft
Windows already provide native support for persistent memory technologies. Many
popular virtualization technologies also support persistent memory.

For ISVs and the developer community at large, the journey is just beginning. Some
software has already been modified and is available on the market. However, it will
take time for the enterprise and cloud computing industries to adopt and make the
hardware available to the general marketplace. ISVs and software developers need time
to understand what changes to existing applications are required and implement them.
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To make the required development work easier, Intel developed and open sourced
the Persistent Memory Development Kit (PMDK) available from https://pmem.io/
pmdk/. We introduce the PMDK in more detail in Chapter 5 and walk through most of
the available libraries in subsequent chapters. Each chapter provides an in-depth guide
so developers can understand what library or libraries to use. PMDK is a set of open
source libraries and tools based on the Storage Networking Industry Association (SNIA)
NVM programming model designed and implemented by over 50 industry partners. The
latest NVM programming model document can be found at https://www.snia.org/
tech_activities/standards/curr_standards/npm. The model describes how software
can utilize persistent memory features and enables designers to develop APIs that take
advantage of NVM features and performance.

Available for both Linux and Windows, PMDXK facilitates persistent memory
programming adoption with higher-level language support. C and C++ support is fully
validated. Support for other languages such as Java and Python is work in progress
at the time this book was written. Other languages are expected to also adopt the
programming model and provide native persistent memory APIs for developers. The
PMDK development team welcomes and encourages new contributions to core code,
new language bindings, or new storage engines for the persistent memory key-value
store called pmemkv.

This book assumes no prior knowledge of persistent memory hardware devices
or software development. The book layout allows you to freely navigate the content in
the order you want. It is not required to read all chapters in order, though we do build
upon concepts and knowledge described in previous chapters. In such cases, we make
backward and forward references to relevant chapters and sections so you can learn or
refresh your memory.

Book Structure

This book has 19 chapters, each one focusing on a different topic. The book has three
main sections. Chapters 1-4 provide an introduction to persistent memory architecture,
hardware, and operating system support. Chapters 5-16 allow developers to understand
the PMDK libraries and how to use them in applications. Finally, Chapters 17-19 provide
information on advanced topics such as RAS and replication of data using RDMA.
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PREFACE

Chapter 1. Introduction to Persistent Memory - Introduces persistent
memory and dips our toes in the water with a simple persistent key-
value store example using libpmemkuv.

Chapter 2. Persistent Memory Architecture - Describes the persistent
memory architecture and focuses on the hardware requirements
developers should know.

Chapter 3. Operating System Support for Persistent Memory -
Provides information relating to operating system changes, new
features, and how persistent memory is seen by the OS.

Chapter 4. Fundamental Concepts of Persistent Memory
Programming - Builds on the first three chapters and describes the
fundamental concepts of persistent memory programming.

Chapter 5. Introducing the Persistent Memory Development Kit
(PMDK) - Introduces the Persistent Memory Development Kit
(PMDK), a suite of libraries to assist software developers.

Chapter 6. libpmem: Low-Level Persistent Memory Support -
Describes and shows how to use libpmem from the PMDK, a low-level
library providing persistent memory support.

Chapter 7. libpmemobj: A Native Transactional Object Store -
Provides information and examples using libpmemobj, a C native
object store library from the PMDK.

Chapter 8. libpmemobj-cpp: The Adaptable Language - C++ and
Persistent Memory - Demonstrates the C++ libpmemobj-cpp object
store from the PMDXK, built using C++ headers on top of libpmemobj.

Chapter 9. pmemkv: A Persistent In-Memory Key-Value Store -
Expands upon the introduction to libpmemkv from Chapter 1 with a
more in-depth discussion using examples.

Chapter 10. Volatile Use of Persistent Memory - This chapter is
for those who want to take advantage of persistent memory but
do not require data to be stored persistently. libmemkind is a user-
extensible heap manager built on top of jemalloc which enables
control of memory characteristics and a partitioning of the heap
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XxVi

between different kinds of memory, including persistent memory.
libvmemcache is an embeddable and lightweight in-memory caching
solution. It is designed to fully take advantage of large-capacity
memory, such as persistent memory with DAX, through memory
mapping in an efficient and scalable way.

Chapter 11. Designing Data Structures for Persistent Memory -
Provides a wealth of information for designing data structures for
persistent memory.

Chapter 12. Debugging Persistent Memory Applications - Introduces
tools and walks through several examples for how software developers
can debug persistent memory-enabled applications.

Chapter 13. Enabling Persistence using a Real-World Application -
Discusses how a real-world application was modified to enable
persistent memory features.

Chapter 14. Concurrency and Persistent Memory - Describes how
concurrency in applications should be implemented for use with
persistent memory.

Chapter 15. Profiling and Performance - Teaches performance
concepts and demonstrates how to use the Intel VTune suite of tools
to profile systems and applications before and after code changes are
madle.

Chapter 16. PMDK Internals: Important Algorithms and Data
Structures - Takes us on a deep dive of the PMDK design, architecture,
algorithms, and memory allocator implementation.

Chapter 17. Reliability, Availability, and Serviceability (RAS) -
Describes the implementation of reliability, availability, and
serviceability (RAS) with the hardware and operating system layers.

Chapter 18. Remote Persistent Memory - Discusses how applications
can scale out across multiple systems using local and remote persistent
memory.

Chapter 19. Advanced Topics - Describes things such as NUMA, using
software volume managers, and the mmap() MAP_SYNC flag.



PREFACE

The Appendixes have separate procedures for installing the PMDK and utilities
required for managing persistent memory. We also included an update for Java and the
future of the RDMA protocols. All of this content is considered temporal, so we did not
want to include it in the main body of the book.

Intended Audience

This book has been written for experienced application developers in mind. We

intend the content to be useful to a wider readership such as system administrators

and architects, students, lecturers, and academic research fellows to name but a few.
System designers, kernel developers, and anyone with a vested or passing interest in this
emerging technology will find something useful within this book.

Every reader will learn what persistent memory is, how it works, and how operating
systems and applications can utilize it. Provisioning and managing persistent memory
are vendor specific, so we include some resources in the Appendix sections to avoid
overcomplicating the main chapter content.

Application developers will learn, by example, how to integrate persistent memory
in to existing or new applications. We use examples extensively throughout this book
using a variety of libraries available within the Persistent Memory Development Kit
(PMDK). Example code is provided in a variety of programming languages such as C,
C++, JavaScript, and others. We want developers to feel comfortable using these libraries
in their own projects. The book provides extensive links to resources where you can find
help and information.

System administrators and architects of Cloud, high-performance computing,
and enterprise environments can use most of the content of this book to
understand persistent memory features and benefits to support applications and
developers. Imagine being able to deploy more virtual machines per physical server or
provide applications with this new memory/storage tier such that they can keep more
data closer to the CPU or restart in a fraction of the time they could before while keeping
awarm cache of data.

Students, lecturers, and academic research fellows will also benefit from many
chapters within this book. Computer science classes can learn about the hardware,
operating system features, and programming techniques. Lecturers are free use the
content in student classes or to form the basis of research projects such as new persistent
memory file systems, algorithms, or caching implementations.

Xxvii
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We introduce tools that profile the server and applications to better understand CPU,
memory, and disk IO access patterns. Using this knowledge, we show how applications
can be modified to take full advantage of persistence using the Persistent Memory
Development Kit (PMDK).

A Future Reference

The book content has been written to provide value for many years. Industry
specification such as ACPI, UEFI, and the SNIA non-volatile programming model will,
unless otherwise stated by the specification, remain backward compatible as new
versions are released. If new form factors are introduced, the approach to programming
remains the same. We do not limit ourselves to one specific persistent memory vendor
or implementation. In places where it is necessary to describe vendor-specific features
or implementations, we specifically call this out as it may change between vendors or
between product generations. We encourage you to read the vendor documentation for
the persistent memory product to learn more.

Developers using the Persistent Memory Development Kit (PMDK) will retain a stable
APl interface. PMDK will deliver new features and performance improvements with each
major release. It will evolve with new persistent memory products, CPU instructions,
platform designs, industry specifications, and operating system feature support.

Source Code Examples

Concepts and source code samples within this book adhere to the vendor neutral
SNIA non-volatile memory programming model. SNIA which is the Storage
Networking Industry Association is a non-profit global organization dedicated to
developing standards and education programs to advance storage and information
technology. The model was designed, developed, and is maintained by the SNIA NVM
Technical Working Group (TWG) which includes many leading operating system,
hardware, and server vendors. You can join this group or find information at https://
www.snia.org/forums/sssi/nvmp.
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PREFACE

The code examples provided with this book have been tested and validated using
Intel Optane DC persistent memory. Since the PMDK is vendor neutral, they will also
work on NVDIMM-N devices. PMDK will support any future persistent memory product
that enters the market.

The code examples used throughout this book are current at the time of
publication. All code examples have been validated and tested to ensure they compile
and execute without error. For brevity, some of the examples in this book use assert()
statements to indicate unexpected errors. Any production code would likely replace
these with the appropriate error handling actions which would include friendlier
error messages and appropriate error recovery actions. Additionally, some of the code
examples use different mount points to represent persistent memory aware file systems,
for example “/daxfs’; “/pmemfs’, and “/mnt/pmemfs” This demonstrates persistent
memory file systems can be mounted and named appropriately for the application, just
like regular block-based file systems. Source code is from the repository that accompanies
this book - https://github.com/Apress/programming-persistent-memory.

Since this is a rapidly evolving technology, the software and APIs references
throughout this book may change over time. While every effort is made to be backward
compatible, sometimes software must evolve and invalidate previous versions. For this
reason, it is therefore expected that some of the code samples may not compile on newer
hardware or operating systems and may need to be changed accordingly.

Book Conventions

This book uses several conventions to draw your attention to specific pieces of
information. The convention used depends on the type of information displayed.

Computer Commands

Commands, programming library, and API function references may be presented in line
with the paragraph text using a monospaced font. For example:

To illustrate how persistent memory is used, let’s start with a sample program
demonstrating the key-value store provided by a library called 1ibpmemkv.

XXix
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Computer Terminal Output

Computer terminal output is usually taken directly from a computer terminal presented
in a monospaced font such as the following example demonstrating cloning the
Persistent Memory Development Kit (PMDK) from the GitHub project:

$ git clone https://github.com/pmem/pmdk

Cloning into 'pmdk'...

remote: Enumerating objects: 12, done.

remote: Counting objects: 100% (12/12), done.

remote: Compressing objects: 100% (10/10), done.

remote: Total 100169 (delta 2), reused 7 (delta 2), pack-reused 100157
Receiving objects: 100% (100169/100169), 34.71 MiB | 4.85 MiB/s, done.
Resolving deltas: 100% (83447/83447), done.

Source Code

Source code examples taken from the accompanying GitHub repository are shown with
relevant line numbers in a monospaced font. Below each code listing is a reference to
the line number or line number range with a brief description. Code comments use
language native styling. Most languages use the same syntax. Single line comments

will use // and block/multiline comments should use /*..*/. An example is shown in
Listing 1.

Listing 1. A sample program using libpmemkv

37 #include <iostream>
38 #include "libpmemkv.h"

39

40 using namespace pmemkv;

41

42 /*

43  * kvprint -- print a single key-value pair

44 X/

45 void kvprint(const stringd k, const stringd v) {

46 std::cout << "key: " << k << ", value: " << v << "\n";
47 '}



PREFACE

o Line45: Here we define a small helper routine, kvprint (), which prints
a key-value pair when called.

Notes

We use a standard format for notes, cautions, and tips when we want to direct your
attention to an important point, for example.

Note Notes are tips, shortcuts, or alternative approaches to the current
discussion topic. Ignoring a note should have no negative consequences, but you
might miss out on a nugget of information that makes your life easier.
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CHAPTER 1

Introduction to Persistent
Memory Programming

This book describes programming techniques for writing applications that use persistent
memory. It is written for experienced software developers, but we assume no previous
experience using persistent memory. We provide many code examples in a variety of
programming languages. Most programmers will understand these examples, even if
they have not previously used the specific language.

Note All code examples are available on a GitHub repository (https://
github.com/Apress/programming-persistent-memory), along with
instructions for building and running it.

Additional documentation for persistent memory, example programs, tutorials, and
details on the Persistent Memory Development Kit (PMDK), which is used heavily in this
book, can be found on http://pmem. io.

The persistent memory products on the market can be used in various ways, and
many of these ways are transparent to applications. For example, all persistent memory
products we encountered support the storage interfaces and standard file APT’s just like
any solid-state disk (SSD). Accessing data on an SSD is simple and well-understood, so
we consider these use cases outside the scope of this book. Instead, we concentrate on
memory-style access, where applications manage byte-addressable data structures that
reside in persistent memory. Some use cases we describe are volatile, using the persistent
memory only for its capacity and ignoring the fact it is persistent. However, most of this
book is dedicated to the persistent use cases, where data structures placed in persistent
memory are expected to survive crashes and power failures, and the techniques
described in this book keep those data structures consistent across those events.

© The Author(s) 2020
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CHAPTER 1

INTRODUCTION TO PERSISTENT MEMORY PROGRAMMING

A High-Level Example Program

To illustrate how persistent memory is used, we start with a sample program

demonstrating the key-value store provided by a library called 1ibpmemkv. Listing 1-1

shows a full C++ program that stores three key-value pairs in persistent memory and

then iterates through the key-value store, printing all the pairs. This example may seem

trivial, but there are several interesting components at work here. Descriptions below the

listing show what the program does.

Listing 1-1. A sample program using libpmemkv

37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62

#include <iostreamy
#include <cassert>
#include <libpmemkv.hpp>

using namespace pmem::kv;
using std::cerr;

using std::cout;

using std::endl;

using std::string;

/*

* for this example, create a 1 Gig file
* called "/daxfs/kvfile"

*/

auto PATH = "/daxfs/kvfile";

const uint64 t SIZE = 1024 * 1024 * 1024;

/*
* kvprint -- print a single key-value pair
*/
int kvprint(string view k, string view v) {
cout << "key: " << k.data() <«
! << v.data() << endl;

value:
return 0;
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63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96

CHAPTER 1  INTRODUCTION TO PERSISTENT MEMORY PROGRAMMING

int main() {

// start by creating the db object
db *kv = new db();
assert(kv != nullptr);

// create the config information for
// libpmemkv's open method
config cfg;

if (cfg.put_string("path", PATH) != status::0K) {
cerr << pmemkv_errormsg() << endl;
exit(1);

}

if (cfg.put_uint64("force create", 1) != status::0K) {
cerr << pmemkv_errormsg() << endl;
exit(1);

}

if (cfg.put_uint64("size", SIZE) != status::0K) {
cerr << pmemkv_errormsg() << endl;
exit(1);

// open the key-value store, using the cmap engine
if (kv->open("cmap", std::move(cfg)) != status::0K) {
cerr << db::errormsg() << endl;
exit(1);

// add some keys and values

if (kv->put("key1", "value1l") != status::0K) {
cerr << db::errormsg() << endl;
exit(1);
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INTRODUCTION TO PERSISTENT MEMORY PROGRAMMING

97 if (kv->put("key2", "value2") != status::0K) {
98 cerr << db::errormsg() << endl;

99 exit(1);

100 }

101 if (kv->put("key3", "value3") != status::0K) {
102 cerr << db::errormsg() << endl;

103 exit(1);

104 }

105

106 // iterate through the key-value store, printing them
107 kv->get all(kvprint);

108

109 // stop the pmemkv engine

110 delete kv;

111

112 exit(0);

113 }

Line 57: We define a small helper routine, kvprint (), which prints a
key-value pair when called.

Line 63: This is the first line of main() which is where every C++
program begins execution. We start by instantiating a key-value
engine using the engine name "cmap". We discuss other engine types
in Chapter 9.

Line 70: The cmap engine takes config parameters from a config
structure. The parameter "path" is configured to "/daxfs/kvfile",
which is the path to a persistent memory file on a DAX file system;
the parameter "size" is set to SIZE. Chapter 3 describes how to
create and mount DAX file systems.

Line 93: We add several key-value pairs to the store. The trademark
of a key-value store is the use of simple operations like put () and
get(); we only show put() in this example.

Line 107: Using the get_all() method, we iterate through the
entire key-value store, printing each pair when get_all() calls our
kvprint() routine.
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What’s Different?

A wide variety of key-value libraries are available in practically every programming
language. The persistent memory example in Listing 1-1 is different because the key-
value store itself resides in persistent memory. For comparison, Figure 1-1 shows how a
key-value store using traditional storage is laid out.

Application -.
buffers

Key-value Library

Storage

Figure 1-1. A key-value store on traditional storage

When the application in Figure 1-1 wants to fetch a value from the key-value store,
a buffer must be allocated in memory to hold the result. This is because the values are
kept on block storage, which cannot be addressed directly by the application. The only
way to access a value is to bring it into memory, and the only way to do that is to read
full blocks from the storage device, which can only be accessed via block I/O. Now
consider Figure 1-2, where the key-value store resides in persistent memory like our
sample code.
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Application
direct access

Key-value Library

Persistent Memory

Figure 1-2. A key-value store in persistent memory

With the persistent memory key-value store, values are accessed by the application
directly, without the need to first allocate buffers in memory. The kvprint() routine in
Listing 1-1 will be called with references to the actual keys and values, directly where
they live in persistence - something that is not possible with traditional storage. In
fact, even the data structures used by the key-value store library to organize its data are
accessed directly. When a storage-based key-value store library needs to make a small
update, for example, 64 bytes, it must read the block of storage containing those 64 bytes
into a memory buffer, update the 64 bytes, and then write out the entire block to make it
persistent. That is because storage accesses can only happen using block I/0, typically
4K bytes at a time, so the task to update 64 bytes requires reading 4K and then writing
4K. But with persistent memory, the same example of changing 64 bytes would only
write the 64 bytes directly to persistence.

The Performance Difference

Moving a data structure from storage to persistent memory does not just mean smaller
1/0 sizes are supported; there is a fundamental performance difference. To illustrate this,
Figure 1-3 shows a hierarchy of latency among the different types of media where data
can reside at any given time in a program.
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* Volatile Memory
= Load/Store Instructions

* Cache Line Granularity

* Non-Volatile Storage *~~ =~~~
» Load/Store Instructions

* Cache Line Granularity ____ _/

* Non-Volatile Storage RANL R

= /0 Commands

* Bock Granularity Hard Disk Drives (HDD)

Tape

(*) See vendor specifications Capacily

Figure 1-3. The memory/storage hierarchy pyramid with estimated latencies

As the pyramid shows, persistent memory provides latencies similar to memory,
measured in nanoseconds, while providing persistency. Block storage provides
persistency with latencies starting in the microseconds and increasing from there,
depending on the technology. Persistent memory is unique in its ability to act like both
memory and storage at the same time.

Program Complexity

Perhaps the most important point of our example is that the programmer still uses

the familiar get/put interfaces normally associated with key-value stores. The fact that
the data structures are in persistent memory is abstracted away by the high-level API
provided by 1ibpmemkv. This principle of using the highest level of abstraction possible,
as long as it meets the application’s needs, will be a recurring theme throughout this
book. We start by introducing very high-level APIs; later chapters delve into the lower-
level details for programmers who need them. At the lowest level, programming directly
to raw persistent memory requires detailed knowledge of things like hardware atomicity,
cache flushing, and transactions. High-level libraries like 1ibpmemkv abstract away all
that complexity and provide much simpler, less error-prone interfaces.
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How Does libpmemkv Work?

All the complexity hidden by high-level libraries like 1ibpmemkv are described more fully
in later chapters, but let’s look at the building blocks used to construct a library like this.
Figure 1-4 shows the full software stack involved when an application uses 1ibpmemkv.

Uses simple key-value API

libpmemkv Provide key-value API

PMEMKV

cmap engine | Concurrent persistent memory hashmap

libpmemobj | Provide transactions, persistent memory allocator
PMDK
libpmem Abstract away hardware details
SN!A . Expose Persistent Memory as memory-mapped files (DAX)

Programming Model

persistent memory ]

Figure 1-4. The software stack when using 1ibpmemkv

Starting from the bottom of Figure 1-4 and working upward are these components:

o The persistent memory hardware, typically connected to the system
memory bus and accessed using common memory load/store

operations.

o A pmem-aware file system, which is a kernel module that exposes
persistent memory to applications as files. Those files can be memory
mapped to give applications direct access (abbreviated as DAX).

This method of exposing persistent memory was published by SNIA
(Storage Networking Industry Association) and is described in detail
in Chapter 3.

o The libpmemlibrary is part of the PMDK. This library abstracts
away some of the low-level hardware details like cache flushing
instructions.
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o The libpmemobj library is a full-featured transaction and allocation
library for persistent memory. (Chapters 7 and 8 describe 1ibpmemobj
and its C++ cousin in more detail.) If you cannot find data structures
that meet your needs, you will most likely have to implement what
you need using this library, as described in Chapter 11.

e The cmap engine, a concurrent hash map optimized for persistent
memory.

e The libpmemkv library, providing the API demonstrated in Listing 1-1.
e And finally, the application that uses the API provided by 1ibpmemkv.

Although there is quite a stack of components in use here, it does not mean there
is necessarily a large amount of code that runs for each operation. Some components
are only used during the initial setup. For example, the pmem-aware file system is
used to find the persistent memory file and perform permission checks; it is out of the
application’s data path after that. The PMDK libraries are designed to leverage the direct
access allowed by persistent memory as much as possible.

What’s Next?

Chapters 1 through 3 provide the essential background that programmers need to know to
start persistent memory programming. The stage is now set with a simple example; the next
two chapters provide details about persistent memory at the hardware and operating system
levels. The later and more advanced chapters provide much more detail for those interested.
Because the immediate goal is to get you programming quickly, we recommend
reading Chapters 2 and 3 to gain the essential background and then dive into Chapter 4
where we start to show more detailed persistent memory programming examples.

Summary

This chapter shows how high-level APIs like 1ibpmemkv can be used for persistent
memory programming, hiding complex details of persistent memory from the
application developer. Using persistent memory can allow finer-grained access and
higher performance than block-based storage. We recommend using the highest-level,
simplest APIs possible and only introducing the complexity of lower-level persistent
memory programming as necessary.
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Open Access This chapter is licensed under the terms of the Creative

Commons Attribution 4.0 International License (http://creativecommons.
org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution and
reproduction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need
to obtain permission directly from the copyright holder.
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CHAPTER 2

Persistent Memory
Architecture

This chapter provides an overview of the persistent memory architecture while focusing
on the hardware to emphasize requirements and decisions that developers need to know.

Applications that are designed to recognize the presence of persistent memory in
a system can run much faster than using other storage devices because data does not
have to transfer back and forth between the CPU and slower storage devices. Because
applications that only use persistent memory may be slower than dynamic random-
access memory (DRAM), they should decide what data resides in DRAM, persistent
memory, and storage.

The capacity of persistent memory is expected to be many times larger than DRAM;
thus, the volume of data that applications can potentially store and process in place is
also much larger. This significantly reduces the number of disk I/Os, which improves
performance and reduces wear on the storage media.

On systems without persistent memory, large datasets that cannot fit into DRAM
must be processed in segments or streamed. This introduces processing delays as the
application stalls waiting for data to be paged from disk or streamed from the network.

If the working dataset size fits within the capacity of persistent memory and DRAM,
applications can perform in-memory processing without needing to checkpoint or page
data to or from storage. This significantly improves performance.

11
© The Author(s) 2020

S. Scargall, Programming Persistent Memory, https://doi.org/10.1007/978-1-4842-4932-1_2



CHAPTER 2

PERSISTENT MEMORY ARCHITECTURE

Persistent Memory Characteristics

As with every new technology, there are always new things to consider. Persistent

memory is no exception. Consider these characteristics when architecting and

developing solutions:

12

Performance (throughput, latency, and bandwidth) of persistent
memory is much better than NAND but potentially slower than
DRAM.

Persistent memory is durable unlike DRAM. Its endurance is usually
orders of magnitude better than NAND and should exceed the
lifetime of the server without wearing out.

Persistent memory module capacities can be much larger than
DRAM DIMMs and can coexist on the same memory channels.

Persistent memory-enabled applications can update data in place
without needing to serialize/deserialize the data.

Persistent memory is byte addressable like memory. Applications
can update only the data needed without any read-modify-write
overhead.

Data is CPU cache coherent.

Persistent memory provides direct memory access (DMA) and
remote DMA (RDMA) operations.

Data written to persistent memory is not lost when power is removed.

After permission checks are completed, data located on persistent
memory is directly accessible from user space. No kernel code, file
system page caches, or interrupts are in the data path.
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o Data on persistent memory is instantly available, that is:
o Datais available as soon as power is applied to the system.

e Applications do not need to spend time warming up caches. They
can access the data immediately upon memory mapping it.

o Dataresiding on persistent memory has no DRAM footprint
unless the application copies data to DRAM for faster access.

e Data written to persistent memory modules is local to the system.
Applications are responsible for replicating data across systems.

Platform Support for Persistent Memory

Platform vendors such as Intel, AMD, ARM, and others will decide how persistent
memory should be implemented at the lowest hardware levels. We try to provide a
vendor-agnostic perspective and only occasionally call out platform-specific details.

For systems with persistent memory, failure atomicity guarantees that systems can
always recover to a consistent state following a power or system failure. Failure atomicity
for applications can be achieved using logging, flushing, and memory store barriers that
order such operations. Logging, either undo or redo, ensures atomicity when a failure
interrupts the last atomic operation from completion. Cache flushing ensures that
data held within volatile caches reach the persistence domain so it will not be lost if a
sudden failure occurs. Memory store barriers, such as an SFENCE operation on the x86
architecture, help prevent potential reordering in the memory hierarchy, as caches and
memory controllers may reorder memory operations. For example, a barrier ensures
that the undo log copy of the data gets persisted onto the persistent memory before the
actual data is modified in place. This guarantees that the last atomic operation can be
rolled back should a failure occur. However, it is nontrivial to add such failure atomicity
in user applications with low-level operations such as write logging, cache flushing, and
barriers. The Persistent Memory Development Kit (PMDXK) was developed to isolate
developers from having to re-implement the hardware intricacies.

Failure atomicity should be a familiar concept, since most file systems implement
and perform journaling and flushing of their metadata to storage devices.

13
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Cache Hierarchy

We use load and store operations to read and write to persistent memory rather than
using block-based I/0 to read and write to traditional storage. We suggest reading the
CPU architecture documentation for an in-depth description because each successive
CPU generation may introduce new features, methods, and optimizations.

Using the Intel architecture as an example, a CPU cache typically has three
distinct levels: L1, L2, and L3. The hierarchy makes references to the distance
from the CPU core, its speed, and size of the cache. The L1 cache is closest to
the CPU. It is extremely fast but very small. L2 and L3 caches are increasingly
larger in capacity, but they are relatively slower. Figure 2-1 shows a typical CPU
microarchitecture with three levels of CPU cache and a memory controller with
three memory channels. Each memory channel has a single DRAM and persistent
memory attached. On platforms where the CPU caches are not contained within
the power-fail protected domain, any modified data within the CPU caches that has
not been flushed to persistent memory will be lost when the system loses power or
crashes. Platforms that do include CPU caches in the power-fail protected domain
will ensure modified data within the CPU caches are flushed to the persistent
memory should the system crash or loses power. We describe these requirements
and features in the upcoming “Power-Fail Protected Domains” section.

14

www. dbooks. or g


https://www.dbooks.org/

CHAPTER 2  PERSISTENT MEMORY ARCHITECTURE

L3 LLC - Last Level Cache
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Figure 2-1. CPU cache and memory hierarchy

The L1 (Level 1) cache is the fastest memory in a computer system. In terms of access
priority, the L1 cache has the data the CPU is most likely to need while completing a
specific task. The L1 cache is also usually split two ways, into the instruction cache (L1 I)
and the data cache (L1 D). The instruction cache deals with the information about the
operation that the CPU has to perform, while the data cache holds the data on which the
operation is to be performed.

The L2 (Level 2) cache has a larger capacity than the L1 cache, but it is slower. L2
cache holds data that is likely to be accessed by the CPU next. In most modern CPUs,
the L1 and L2 caches are present on the CPU cores themselves, with each core getting
dedicated caches.

The L3 (Level 3) cache is the largest cache memory, but it is also the slowest of the
three. It is also a commonly shared resource among all the cores on the CPU and may be
internally partitioned to allow each core to have dedicated L3 resources.

Data read from DRAM or persistent memory is transferred through the memory
controller into the L3 cache, then propagated into the L2 cache, and finally the L1 cache
where the CPU core consumes it. When the processor is looking for data to carry out an
operation, it first tries to find it into the L1 cache. If the CPU can find it, the condition is
called a cache hit. If the CPU cannot find the data within the L1 cache, it then proceeds to

15
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search for it first within L2, then L3. If it cannot find the data in any of the three, it tries to
access it from memory. Each failure to find data in a cache is called a cache miss. Failure
to locate the data in memory requires the operating system to page the data into memory
from a storage device.

When the CPU writes data, it is initially written to the L1 cache. Due to ongoing
activity within the CPU, at some point in time, the data will be evicted from the L1 cache
into the L2 cache. The data may be further evicted from L2 and placed into L3 and
eventually evicted from L3 into the memory controller’s write buffers where it is then
written to the memory device.

In a system that does not possess persistent memory, software persists data by writing it
to a non-volatile storage device such as an SSD, HDD, SAN, NAS, or a volume in the cloud.
This protects data from application or system crashes. Critical data can be manually flushed
using calls such as msync (), fsync(), or fdatasync(), which flush uncommitted dirty
pages from volatile memory to the non-volatile storage device. File systems provide fdisk
or chkdsk utilities to check and attempt repairs on damaged file systems if required. File
systems do not protect user data from torn blocks. Applications have a responsibility to
detect and recovery from this situation. That’s why databases, for example, use a variety of
techniques such as transactional updates, redo/undo logging, and checksums.

Applications memory map the persistent memory address range directly into its
own memory address space. Therefore, the application must assume responsibility
for checking and guaranteeing data integrity. The rest of this chapter describes
your responsibilities in a persistent memory environment and how to achieve data
consistency and integrity.

Power-Fail Protected Domains

A computer system may include one or more CPUs, volatile or persistent memory
modules, and non-volatile storage devices such as SSDs or HDDs.

System platform hardware supports the concept of a persistence domain, also called
power-fail protected domains. Depending on the platform, a persistence domain may
include the persistent memory controller and write queues, memory controller write
queues, and CPU caches. Once data has reached the persistence domain, it may be
recoverable during a process that results from a system restart. That is, if data is located
within hardware write queues or buffers protected by power failure, domain applications
should assume it is persistent. For example, if a power failure occurs, the data will be flushed

16
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from the power-fail protected domain using stored energy guaranteed by the platform for
this purpose. Data that has not yet made it into the protected domain will be lost.

Multiple persistence domains may exist within the same system, for example, on
systems with more than one physical CPU. Systems may also provide a mechanism for
partitioning the platform resources for isolation. This must be done in such a way that
SNIA NVM programming model behavior is assured from each compliant volume or file
system. (Chapter 3 describes the programming model as it applies to operating systems
and file systems. The “Detecting Platform Capabilities” section in that chapter describes
the logic that applications should perform to detect platform capabilities including
power failure protected domains. Later chapters provide in-depth discussions into why,
how, and when applications should flush data, if required, to guarantee the data is safe
within the protected domain and persistent memory.)

Volatile memory loses its contents when the computer system’s power is interrupted.
Just like non-volatile storage devices, persistent memory keeps its contents even in the
absence of system power. Data that has been physically saved to the persistent memory
media is called data at rest. Data in-flight has the following meanings:

o Writes sent to the persistent memory device but have not yet been
physically committed to the media

e Any writes that are in progress but not yet complete

o Data that has been temporarily buffered or cached in either the CPU
caches or memory controller

When a system is gracefully rebooted or shut down, the system maintains power
and can ensure all contents of the CPU caches and memory controllers are flushed such
that any in-flight or uncommitted data is successfully written to persistent memory
or non-volatile storage. When an unexpected power failure occurs, and assuming no
uninterruptable power supply (UPS) is available, the system must have enough stored
energy within the power supplies and capacitors dotted around it to flush data before the
power is completely exhausted. Any data that is not flushed is lost and not recoverable.

Asynchronous DRAM Refresh (ADR) is a feature supported on Intel products which
flushes the write-protected data buffers and places the DRAM in self-refresh. This
process is critical during a power loss event or system crash to ensure the data is in a safe
and consistent state on persistent memory. By default, ADR does not flush the processor
caches. A platform that supports ADR only includes persistent memory and the memory
controller’s write pending queues within the persistence domain. This is the reason
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data in the CPU caches must be flushed by the application using the CLWB, CLFLUSHOPT,
CLFLUSH, non-temporal stores, or WBINVD machine instructions.

Enhanced Asynchronous DRAM Refresh (eADR) requires that a non-maskable
interrupt (NMI) routine be called to flush the CPU caches before the ADR event can begin.
Applications running on an eADR platform do not need to perform flush operations
because the hardware should flush the data automatically, but they are still required
to perform an SFENCE operation to maintain write order correctness. Stores should be
considered persistent only when they are globally visible, which the SFENCE guarantees.

Figure 2-2 shows both the ADR and eADR persistence domains.

WBINVD (kernel only)

MoV

Core
E L CLWEB + fence
H -or- Custom
: L CLFLUSHOPT + fence Power fail protected domain
: 0 i
. o or- indicated by ACPI property:
: g CLFLUSH CPU Cache Hierarchy :
: 2 -or- : eADR
: ¢ NT stores + fence :
H L2 -or-
5.

-
3 g J‘t:ri Minimum Required
WPQ Flush (kernel only) Power fail protected domain: :
Memory subsystem

Figure 2-2. ADR and eADR power-fail protection domains

ADR is a mandatory platform requirement for persistent memory. The write
pending queue (WPQ) within the memory controller acknowledges receipt of the data
to the writer once all the data is received. Although the data has not yet made it to the
persistent media, a platform supporting ADR guarantees that it will be successfully
written should a power loss event occur. During a crash or power failure, data that is in-
flight through the CPU caches can only be guaranteed to be flushed to persistent media
if the platform supports eADR. It will be lost on platforms that only support ADR.

The challenge with extending the persistence domain to include the CPU caches is
that the CPU caches are quite large and it would take considerably more energy than the
capacitors in a typical power supply can practically provide. This means the platform
would have to contain batteries or utilize an external uninterruptable power supply.
Requiring a battery for every server supporting persistent memory is not generally
practical or cost-effective. The lifetime of a battery is typically shorter than the server,

18

www. dbooks.

org


https://www.dbooks.org/

CHAPTER 2  PERSISTENT MEMORY ARCHITECTURE

which introduces additional maintenance routines that reduce server uptime. There
is also an environmental impact when using batteries as they must be disposed of
or recycled correctly. It is entirely possible for server or appliance OEMs to include a
battery in their product.

Because some appliance and server vendors plan to use batteries, and because
platforms will someday include the CPU caches in the persistence domain, a property is
available within ACPI such that the BIOS can notify software when the CPU flushes can
be skipped. On platforms with eADR, there is no need for manual cache line flushing.

The Need for Flushing, Ordering, and Fencing

Except for WBINVD, which is a kernel-mode-only operation, the machine instructions
in Table 2-1 (in the “Intel Machine Instructions for Persistent Memory” section)

are supported in user space by Intel and AMD CPUs. Intel adopted the SNIA NVM
programming model for working with persistent memory. This model allows for

direct access (DAX) using byte-addressable operations (i.e., load/store). However, the
persistence of the data in the cache is not guaranteed until it has entered the persistence
domain. The x86 architecture provides a set of instructions for flushing cache lines in

a more optimized way. In addition to existing x86 instructions, such as non-temporal
stores, CLFLUSH, and WBINVD, two new instructions were added: CLFLUSHOPT and

CLWB. Both new instructions must be followed by an SFENCE to ensure all flushes are
completed before continuing. Flushing a cache line using CLWB, CLFLUSHOPT, or CLFLUSH
and using non-temporal stores are all supported from user space. You can find details
for each machine instruction in the software developer manuals for the architecture.
On Intel platforms, for example, this information can be found in the Intel 64 and 32
Architectures Software Developer Manuals (https://software.intel.com/en-us/
articles/intel-sdm).

Non-temporal stores imply that the data being written is not going to be read again
soon, so we bypass the CPU caches. That is, there is no temporal locality, so there is no
benefit to keeping the data in the processor’s cache(s), and there may be a penalty if the
stored data displaces other useful data from the cache(s).

Flushing to persistent memory directly from user space negates calling into the
kernel, which makes it highly efficient. The feature is documented in the SNIA persistent
memory programming model specification as an optimized flush. The specification
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document' describes optimized flush as optionally supported by the platform,
depending on the hardware and operating system support. Despite the CPU support,
it is essential for applications to use only optimized flushes when the operating system
indicates that it is safe to use. The operating system may require the control point
provided by calls like msync() when, for example, there are changes to file system
metadata that need to be written as part of the msync() operation.

To better understand instruction ordering, consider a very simple linked list
example. Our pseudocode described in the following has three simple steps to add a new
node into an existing list that already contains two nodes. These steps are depicted in
Figure 2-3.

1. Create the new node (Node 2).

2. Update the node pointer (next pointer) to point to the last node in
the list (Node 2 — Node 1).

3. Update the head pointer to point at the new node (Head — Node 2).

Figure 2-3 (Step 3) shows that the head pointer was updated in the CPU cached version,
but the Node 2 to Node 1 pointer has not yet been updated in persistent memory. This
is because the hardware can choose which cache lines to commit and the order may not
match the source code flow. If the system or application were to crash at this point, the
persistent memory state would be inconsistent, and the data structure would no longer
be usable.

!SNIA NVM programming model spec: https://www.snia.org/tech activities/standards/
curr_standards/npm

20

www. dbooks. or g


https://www.snia.org/tech_activities/standards/curr_standards/npm
https://www.snia.org/tech_activities/standards/curr_standards/npm
https://www.dbooks.org/

CHAPTER 2  PERSISTENT MEMORY ARCHITECTURE

CPUCaches |
rdliFey
® 0060

S .

<)
@

[ Persistent Memory " Persistent Memory |
o6 @
0 0 1
S 7 S

CPU Caches CPU Caches |
)

- |
oTo oxe

:

( Persistent Memory [ Persistent Memory 1

™y
606 666

Figure 2-3. Adding a new node to an existing linked list without a store barrier

/

To solve this problem, we introduce a memory store barrier to ensure the order of the

write operations is maintained. Starting from the same initial state, the pseudocode now

looks like this:
1. Create the new node.

2. Update the node pointer (next pointer) to point to the last node in
the list, and perform a store barrier/fence operation.

3. Update the head pointer to point at the new node.

Figure 2-4 shows that the addition of the store barrier allows the code to work as
expected and maintains a consistent data structure in the volatile CPU caches and on
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persistent memory. We can see in Step 3 that the store barrier/fence operation waited
for the pointer from Node 2 to Node 1 to update before updating the head pointer. The
updates in the CPU cache matches the persistent memory version, so it now globally
visible. This is a simplistic approach to solving the problem because store barriers do not
provide atomicity or data integrity. A complete solution should also use transactions to
ensure the data is atomically updated.

CPU Caches

Node Node Node
0 il 2
¢ A

[ Persistent Memory ) ( Persistent Memory

- | -
u%ae \N%:Ie

CPU Caches

Persistent Memory ) ( Pemstent Memory

?

Figure 2-4. Adding a new node to an existing linked list using a store barrier

The PMDK detects the platform, CPU, and persistent memory features when the
memory pool is opened and then uses the optimal instructions and fencing to preserve
write ordering. (Memory pools are files that are memory mapped into the process
address space; later chapters describe them in more detail.)
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To insulate application developers from the complexities of the hardware and to keep
them from having to research and implement code specific to each platform or device,
the 1ibpmem library provides a function that tells the application when optimized flush is
safe to use or fall back to the standard way of flushing stores to memory-mapped files.

To simplify programming, we encourage developers to use libraries, such as 1ibpmem
and others within the PMDK. The 1ibpmem library is also designed to detect the case of
the platform with a battery that automatically converts flush calls into simple SFENCE
instructions. Chapter 5 introduces and describes the core libraries within the PMDK in
more detail, and later chapters take an in-depth look into each of the libraries to help
you understand their APIs and features.

Data Visibility

When data is visible to other processes or threads, and when it is safe in the persistence
domain, is critical to understand when using persistent memory in applications. In the
Figure 2-2 and 2-3 examples, updates made to data in the CPU caches could become
visible to other processes or threads. Visibility and persistence are often not the same
thing, and changes made to persistent memory are often visible to other running threads
in the system before they are persistent. Visibility works the same way as it does for
normal DRAM, described by the memory model ordering and visibility rules for a given
platform (for example, see the Intel Software Development Manual for the visibility rules
for Intel platforms). Persistence of changes is achieved in one of three ways: either by
calling the standard storage API for persistence (msync on Linux or FlushFileBuffers
on Windows), by using optimized flush when supported, or by achieving visibility on
a platform where the CPU caches are considered persistent. This is one reason we use
flushing and fencing operations.

A pseudo C code example may look like this:

open() // Open a file on a file system
mmap()  // Memory map the file

strcpy() // Execute a store operation
// Data is globally visible
msync() // Data is now persistent
Developing for persistent memory follows this decades-old model.
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Intel Machine Instructions for Persistent Memory

Applicable to Intel- and AMD-based ADR platforms, executing an Intel 64 and 32 architecture
store instruction is not enough to make data persistent since the data may be sitting in the
CPU caches indefinitely and could be lost by a power failure. Additional cache flush actions
are required to make the stores persistent. Importantly, these non-privileged cache flush
operations can be called from user space, meaning applications decide when and where to
fence and flush data. Table 2-1 summarizes each of these instructions. For more detailed
information, the Intel 64 and 32 Architectures Software Developer Manuals are online at
https://software.intel.com/en-us/articles/intel-sdm.

Developers should primarily focus on CLWB and Non-Temporal Stores if available
and fall back to the others as necessary. Table 2-1 lists other opcodes for completeness.

Table 2-1. Intel architecture instructions for persistent memory

OPCODE Description

CLFLUSH This instruction, supported in many generations of CPU, flushes a single
cache line. Historically, this instruction is serialized, causing multiple CLFLUSH
instructions to execute one after the other, without any concurrency.

CLFLUSHOPT This instruction, newly introduced for persistent memory support, is like

(followed by an  CLFLUSH but without the serialization. To flush a range, the software executes a

SFENCE) CLFLUSHOPT instruction for each 64-byte cache line in the range, followed by a
single SFENCE instruction to ensure the flushes are complete before continuing.
CLFLUSHOPT is optimized, hence the name, to allow some concurrency when
executing multiple CLFLUSHOPT instructions back-to-back.

CLWB (followed by The effect of cache line writeback (CLWB) is the same as CLFLUSHOPT except

an SFENCE) that the cache line may remain valid in the cache but is no longer dirty since it
was flushed. This makes it more likely to get a cache hit on this line if the data
is accessed again later.

Non-temporal This feature has existed for a while in x86 CPUs. These stores are “write

stores (followed ~ combining” and bypass the CPU cache; using them does not require a flush. A

by an SFENCE) final SFENCE instruction is still required to ensure the stores have reached the
persistence domain.

(continued)
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Table 2-1. (continued)

OPCODE

Description

SFENCE

WBINVD

Performs a serializing operation on all store-to-memory instructions that were
issued prior to the SFENCE instruction. This serializing operation guarantees
that every store instruction that precedes in program order the SFENCE
instruction is globally visible before any store instruction that follows the
SFENCE instruction can be globally visible. The SFENCE instruction is ordered
with respect to store instructions, other SFENCE instructions, any MFENCE
instructions, and any serializing instructions (such as the CPUID instruction). It is
not ordered with respect to load instructions or the LFENCE instruction.

This kernel-mode-only instruction flushes and invalidates every cache line on
the CPU that executes it. After executing this on all CPUs, all stores to persistent
memory are certainly in the persistence domain, but all cache lines are empty,
impacting performance. Also, the overhead of sending a message to each CPU
to execute this instruction can be significant. Because of this, WBINVD is only
expected to be used by the kernel for flushing very large ranges (at least many
megabytes).

Detecting Platform Capabilities

Server platform, CPU, and persistent memory features and capabilities are exposed to

the operating system through the BIOS and ACPI that can be queried by applications.

Applications should not assume they are running on hardware with all the optimizations

available. Even if the physical hardware supports it, virtualization technologies may or

may not expose those features to the guests, or your operating system may or may not

implement them. As such, we encourage developers to use libraries, such as those in the

PMDK, that perform the required feature checks or implement the checks within the

application code base.
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Figure 2-5 shows the flow implemented by 1ibpmem, which initially verifies the
memory-mapped file (called a memory pool), resides on a file system that has the DAX
feature enabled, and is backed by physical persistent memory. Chapter 3 describes DAX
in more detail.

On Linux, direct access is achieved by mounting an XFS or ext4 file system with
the "-o dax" option. On Microsoft Windows, NTFS enables DAX when the volume
is created and formatted using the DAX option. If the file system is not DAX-enabled,
applications should fall back to the legacy approach of usingmsync(), fsync(), or
FlushFileBuffers(). If the file system is DAX-enabled, the next check is to determine
whether the platform supports ADR or eADR by verifying whether or not the CPU caches
are considered persistent. On an eADR platform where CPU caches are considered
persistent, no further action is required. Any data written will be considered persistent,
and thus there is no requirement to perform any flushes, which is a significant
performance optimization. On an ADR platform, the next sequence of events identifies
the most optimal flush operation based on Intel machine instructions previously
described.

[ Program Initialization ]

DAX mapped file?
(O provides info)

Use standard API for flushing
[msyncffsync or FlushFileButfers) CPU caches
considered persistent?
[ACP| provides info)

no

no yes

cLwa? Stores conskdered persistent
(CPU_ID provides infe) when globalty-sible
no yes
CLFLUSHOPT?
[CPU_ID provides infa)

Use CLFLUSHOPT+SFENCE
for flushing

Use CLWB +SFENCE
for flushing

no yes

Use CLFLUSH for flushing

Figure 2-5. Flowchart showing how applications can detect platform features
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Application Startup and Recovery

In addition to detecting platform features, applications should verify whether the
platform was previously stopped and restarted gracefully or ungracefully. Figure 2-6
shows the checks performed by the Persistent Memory Development Kit.

Some persistent memory devices, such as Intel Optane DC persistent memory,
provide SMART counters that can be queried to check the health and status. Several
libraries such as 1ibpmemobj query the BIOS, ACPI, OS, and persistent memory module
information then perform the necessary validation steps to decide which flush operation
is most optimal to use.

We described earlier that if a system loses power, there should be enough stored
energy within the power supplies and platform to successfully flush the contents of
the memory controller’s WPQ and the write buffers on the persistent memory devices.
Data will be considered consistent upon successful completion. If this process fails,
due to exhausting all the stored energy before all the data was successfully flushed, the
persistent memory modules will report a dirty shutdown. A dirty shutdown indicates that
data on the device may be inconsistent. This may or may not result in needing to restore
the data from backups. You can find more information on this process - and what errors
and signals are sent - in the RAS (reliability, availability, serviceability) documentation
for your platform and the persistent memory device. Chapter 17 also discusses this
further.

Assuming no dirty shutdown is indicated, the application should check to see if
the persistent memory media is reporting any known poison blocks (see Figure 2-6).
Poisoned blocks are areas on the physical media that are known to be bad.
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Program Initialization

Dirty
Shutdown?

Known
Poison
Blocks?

Data Set is potentially
inconsistent. Recover.

Repair Data Set Normal Operation

Figure 2-6. Application startup and recovery flow

If an application were not to check these things at startup, due to the persistent
nature of the media, it could get stuck in an infinite loop, for example:

1. Application starts.

2. Reads a memory address.

3. Encounters poison.

4. Crashes or system crashes and reboots.

5. Starts and resumes operation from where it left off.

6. Performs aread on the same memory address that triggered the
previous restart.

7. Application or system crashes.
8.
9. Repeats infinitely until manual intervention.

The ACPI specification defines an Address Range Scrub (ARS) operation that the
operating system implements. This allows the operating system to perform a runtime
background scan operation across the memory address range of the persistent memory.
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System administrators may manually initiate an ARS. The intent is to identify bad

or potentially bad memory regions before the application does. If ARS identifies an
issue, the hardware can provide a status notification to the operating system and the
application that can be consumed and handled gracefully. If the bad address range
contains data, some method to reconstruct or restore the data needs to be implemented.
Chapter 17 describes ARS in more detail.

Developers are free to implement these features directly within the application code.
However, the libraries in the PMDK handle these complex conditions, and they will be
maintained for each product generation while maintaining stable APIs. This gives you
a future-proof option without needing to understand the intricacies of each CPU or
persistent memory product.

What’s Next?

Chapter 3 continues to provide foundational information from the perspective of the
kernel and user spaces. We describe how operating systems such as Linux and Windows
have adopted and implemented the SNIA non-volatile programming model that defines
recommended behavior between various user space and operating system kernel
components supporting persistent memory. Later chapters build on the foundations
provided in Chapters 1 through 3.

Summary

This chapter defines persistent memory and its characteristics, recaps how CPU caches
work, and describes why it is crucial for applications directly accessing persistent
memory to assume responsibility for flushing CPU caches. We focus primarily on
hardware implementations. User libraries, such as those delivered with the PMDK,
assume the responsibilities for architecture and hardware-specific operations and allow
developers to use simple APIs to implement them. Later chapters describe the PMDK
libraries in more detail and show how to use them in your application.
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Open Access This chapter is licensed under the terms of the Creative

Commons Attribution 4.0 International License (http://creativecommons.
org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution and
reproduction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need
to obtain permission directly from the copyright holder.
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CHAPTER 3

Operating System Support
for Persistent Memory

This chapter describes how operating systems manage persistent memory as a platform
resource and describes the options they provide for applications to use persistent
memory. We first compare memory and storage in popular computer architectures and
then describe how operating systems have been extended for persistent memory.

Operating System Support for Memory and Storage

Figure 3-1 shows a simplified view of how operating systems manage storage and volatile
memory. As shown, the volatile main memory is attached directly to the CPU through a
memory bus. The operating system manages the mapping of memory regions directly
into the application’s visible memory address space. Storage, which usually operates at
speeds much slower than the CPU, is attached through an I/O controller. The operating
system handles access to the storage through device driver modules loaded into the
operating system'’s I/O subsystem.
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Figure 3-1. Storage and volatile memory in the operating system

The combination of direct application access to volatile memory combined with the
operating system I/O access to storage devices supports the most common application
programming model taught in introductory programming classes. In this model,
developers allocate data structures and operate on them at byte granularity in memory.
When the application wants to save data, it uses standard file API system calls to write
the data to an open file. Within the operating system, the file system executes this write
by performing one or more I/0 operations to the storage device. Because these I/O
operations are usually much slower than CPU speeds, the operating system typically
suspends the application until the I/O completes.

Since persistent memory can be accessed directly by applications and can persist
data in place, it allows operating systems to support a new programming model that
combines the performance of memory while persisting data like a non-volatile storage
device. Fortunately for developers, while the first generation of persistent memory
was under development, Microsoft Windows and Linux designers, architects and
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developers collaborated in the Storage and Networking Industry Association (SNIA) to
define a common programming model, so the methods for using persistent memory
described in this chapter are available in both operating systems. More details can be
found in the SNIA NVM programming model specification (https://www.snia.org/
tech activities/standards/curr_standards/npm).

Persistent Memory As Block Storage

The first operating system extension for persistent memory is the ability to detect the
existence of persistent memory modules and load a device driver into the operating
system’s I/O subsystem as shown in Figure 3-2. This NVDIMM driver serves two
important functions. First, it provides an interface for management and system
administrator utilities to configure and monitor the state of the persistent memory
hardware. Second, it functions similarly to the storage device drivers.

Management Apoli
Standard raw Standard
device access file API

Figure 3-2. Persistent memory as block storage

The NVDIMM driver presents persistent memory to applications and operating
system modules as a fast block storage device. This means applications, file systems,
volume managers, and other storage middleware layers can use persistent memory the
same way they use storage today, without modifications.
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Figure 3-2 also shows the Block Translation Table (BTT) driver, which can be
optionally configured into the I/O subsystem. Storage devices such as HDDs and SSDs
present a native block size with 512k and 4k bytes as two common native block sizes.
Some storage devices, especially NVM Express SSDs, provide a guarantee that when a
power failure or server failure occurs while a block write is in-flight, either all or none
of the block will be written. The BTT driver provides the same guarantee when using
persistent memory as a block storage device. Most applications and file systems depend
on this atomic write guarantee and should be configured to use the BTT driver, although
operating systems also provide the option to bypass the BTT driver for applications that
implement their own protection against partial block updates.

Persistent Memory-Aware File Systems

The next extension to the operating system is to make the file system aware of and be
optimized for persistent memory. File systems that have been extended for persistent
memory include Linux ext4 and XFS, and Microsoft Windows NTFS. As shown in

Figure 3-3, these file systems can either use the block driver in the I/O subsystem (as
described in the previous section) or bypass the I/O subsystem to directly use persistent
memory as byte-addressable load/store memory as the fastest and shortest path to data
stored in persistent memory. In addition to eliminating the I/0O operation, this path
enables small data writes to be executed faster than traditional block storage devices that
require the file system to read the device’s native block size, modify the block, and then
write the full block back to the device.
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Management
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device access file API file API

Figure 3-3. Persistent memory-aware file system

These persistent memory-aware file systems continue to present the familiar,
standard file APIs to applications including the open, close, read, and write system
calls. This allows applications to continue using the familiar file APIs while benefiting
from the higher performance of persistent memory.

Memory-Mapped Files

Before describing the next operating system option for using persistent memory,
this section reviews memory-mapped files in Linux and Windows. When memory
mapping a file, the operating system adds a range to the application’s virtual
address space which corresponds to a range of the file, paging file data into physical
memory as required. This allows an application to access and modify file data as
byte-addressable in-memory data structures. This has the potential to improve
performance and simplify application development, especially for applications that
make frequent, small updates to file data.

Applications memory map a file by first opening the file, then passing the resulting
file handle as a parameter to the mmap () system call in Linux or to MapViewOfFile() in
Windows. Both return a pointer to the in-memory copy of a portion of the file. Listing 3-1
shows an example of Linux C code that memory maps a file, writes data into the file
by accessing it like memory, and then uses the msync system call to perform the I/O
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operation to write the modified data to the file on the storage device. Listing 3-2 shows

the equivalent operations on Windows. We walk through and highlight the key steps in

both code samples.

Listing 3-1. mmap_example.c - Memory-mapped file on Linux example

36
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60
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67
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70
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#include <err.h>
#include <fcntl.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/mman.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <unistd.h>

int
main(int argc, char *argv[])
{

int fd;

struct stat stbuf;

char *pmaddr;

if (argc != 2) {
fprintf(stderr, "Usage: %s filename\n",

argv([0]);
exit(1);

if ((fd = open(argv[1], O RDWR)) < 0)
err(1, "open %s", argv[1]);

if (fstat(fd, &stbuf) < 0)
err(1, "stat %s", argv[1]);

/*
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* Map the file into our address space for read
* & write. Use MAP_SHARED so stores are visible
* to other programs.
*/
if ((pmaddr = mmap(NULL, stbuf.st size,
PROT_READ|PROT_WRITE,
MAP SHARED, fd, 0)) == MAP_FAILED)
err(1, "mmap %s", argv[1]);

/* Don't need the fd anymore because the mapping
* stays around */
close(fd);

/* store a string to the Persistent Memory */
strcpy(pmaddr, "This is new data written to the
file");

/*

* Simplest way to flush is to call msync().

* The length needs to be rounded up to a 4k page.

*/

if (msync((void *)pmaddr, 4096, MS _SYNC) < 0)
err(1, "msync");

printf("Done.\n");
exit(0);

o Lines 67-74: We verify the caller passed a file name that can be

opened. The open call will create the file if it does not already exist.

o Line 76: We retrieve the file statistics to use the length when we

memory map the file.
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e Line 84: We map the file into the application’s address space to allow
our program to access the contents as if in memory. In the second
parameter, we pass the length of the file, requesting Linux to initialize
memory with the full file. We also map the file with both READ and
WRITE access and also as SHARED allowing other processes to map
the same file.

e Line 91: We retire the file descriptor which is no longer needed once
a file is mapped.

o Line 94: We write data into the file by accessing it like memory
through the pointer returned by mmap.

e Line 101: We explicitly flush the newly written string to the backing
storage device.

Listing 3-2 shows an example of C code that memory maps a file, writes data into
the file, and then uses the FlushViewOfFile() and FlushFileBuffers() system calls to
flush the modified data to the file on the storage device.

Listing 3-2. Memory-mapped file on Windows example

45 #include <fcntl.h>

46 #include <stdio.h>

47 #include <stdlib.h>

48 #include <string.h>

49 #include <sys/stat.h>

50 #include <sys/types.h>

51 #include <Windows.h>

52

53 int

54 main(int argc, char *argv[])
55 {

56 if (argc != 2) {

57 fprintf(stderr, "Usage: %s filename\n",
58 argv[0]);

59 exit(1);

60 }

61
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/* Create the file or open if the file exists */
HANDLE fh = CreateFile(argv[1],

GENERIC_READ|GENERIC_WRITE,

0,

NULL,

OPEN_EXISTING,

FILE_ATTRIBUTE_NORMAL,

NULL);

if (fh == INVALID HANDLE VALUE) {
fprintf(stderr, "CreateFile, gle: 0x%08x",
GetlLastError());
exit(1);

/*
* Get the file length for use when
* memory mapping later
* */
DWORD filelen = GetFileSize(fh, NULL);
if (filelen == 0) {
fprintf(stderr, "GetFileSize, gle: 0x%08x",
GetlastError());
exit(1);

/* Create a file mapping object */
HANDLE fmh = CreateFileMapping(fh,
NULL, /* security attributes */
PAGE_READWRITE,
0,
0,
NULL);
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if (fmh == NULL) {
fprintf(stderr, "CreateFileMapping,
gle: 0x%08x", GetlLastError());
exit(1);

/*
* Map into our address space and get a pointer
* to the beginning
* */
char *pmaddr = (char *)MapViewOfFileEx(fmh,
FILE MAP ALL_ACCESS,
0,
0,
filelen,
NULL); /* hint address */

if (pmaddr == NULL) {
fprintf(stderr, "MapViewOfFileEx,
gle: 0x%08x", GetlLastError());
exit(1);

/*
* On windows must leave the file handle(s)

* open while mmaped
* ok /

/* Store a string to the beginning of the file */
strcpy(pmaddr, "This is new data written to
the file");

/*

* Flush this page with length rounded up to 4K
* page size

* */
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if (FlushViewOfFile(pmaddr, 4096) == FALSE) {
fprintf(stderr, "FlushViewOfFile,
gle: 0x%08x", GetlLastError());
exit(1);

/* Flush the complete file to backing storage */
if (FlushFileBuffers(fh) == FALSE) {
fprintf(stderr, "FlushFileBuffers,
gle: 0x%08x", GetlLastError());
exit(1);

/* Explicitly unmap before closing the file */
if (UnmapViewOfFile(pmaddr) == FALSE) {
fprintf(stderr, "UnmapViewOfFile,
gle: 0x%08x", GetlLastError());
exit(1);

CloseHandle(fmh);
CloseHandle(fh);

printf("Done.\n");
exit(0);

e Lines 45-75: As in the previous Linux example, we take the file name

passed through argv and open the file.

o Line 81: We retrieve the file size to use later when memory mapping.

o Line 89: We take the first step to memory mapping a file by creating

the file mapping. This step does not yet map the file into our

application’s memory space.

o Line 106: This step maps the file into our memory space.
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e Line 125: As in the previous Linux example, we write a string to the
beginning of the file, accessing the file like memory.

e Line 132: We flush the modified memory page to the backing storage.

e Line 139: We flush the full file to backing storage, including any
additional file metadata maintained by Windows.

o Line 146-157: We unmap the file, close the file, then exit the program.

( = J

Memory Page fault
load/store access
access

——mm—m—p

Figure 3-4. Memory-mapped files with storage

Figure 3-4 shows what happens inside the operating system when an application
calls mmap() on Linux or CreateFileMapping() on Windows. The operating system
allocates memory from its memory page cache, maps that memory into the application’s
address space, and creates the association with the file through a storage device driver.

As the application reads pages of the file in memory, and if those pages are not
present in memory, a page fault exception is raised to the operating system which will
then read that page into main memory through storage I/0O operations. The operating
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system also tracks writes to those memory pages and schedules asynchronous I/0
operations to write the modifications back to the primary copy of the file on the storage
device. Alternatively, if the application wants to ensure updates are written back to
storage before continuing as we did in our code example, the msync system call on
Linux or FlushViewOfFile on Windows executes the flush to disk. This may cause the
operating system to suspend the program until the write finishes, similar to the file-write
operation described earlier.

This description of memory-mapped files using storage highlights some of the
disadvantages. First, a portion of the limited kernel memory page cache in main
memory is used to store a copy of the file. Second, for files that cannot fit in memory, the
application may experience unpredictable and variable pauses as the operating system
moves pages between memory and storage through I/0 operations. Third, updates to
the in-memory copy are not persistent until written back to storage so can be lost in the
event of a failure.

Persistent Memory Direct Access (DAX)

The persistent memory direct access feature in operating systems, referred to as DAX in
Linux and Windows, uses the memory-mapped file interfaces described in the previous
section but takes advantage of persistent memory’s native ability to both store data

and to be used as memory. Persistent memory can be natively mapped as application
memory, eliminating the need for the operating system to cache files in volatile main
memory.

To use DAX, the system administrator creates a file system on the persistent memory
module and mounts that file system into the operating system’s file system tree. For
Linux users, persistent memory devices will appear as /dev/pmem* device special files. To
show the persistent memory physical devices, system administrators can use the ndctl
and ipmctl utilities shown in Listings 3-3 and 3-4.
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Listing 3-3. Displaying persistent memory physical devices and regions on Linux

# ipmctl show -dimm

HealthState |

ActionRequired |

LockState |

FWVersion

DimmID | Capacity |
0x0001 | 252.4 GiB |
0x0011 | 252.4 GiB |
0x0021 | 252.4 GiB |
0x0101 | 252.4 GiB |
0x0111 | 252.4 GiB |
0x0121 | 252.4 GiB |
0x1001 | 252.4 GiB |
0x1011 | 252.4 GiB |
0x1021 | 252.4 GiB |
0x1101 | 252.4 GiB |
0x1111 | 252.4 GiB |
0x1121 | 252.4 GiB |

# ipmctl show -region

SocketID| ISetID

Healthy
Healthy
Healthy
Healthy
Healthy
Healthy
Healthy
Healthy
Healthy
Healthy
Healthy
Healthy

| PersistentMemoryType | Capacity

©O O O O O O O OO o o o o

Disabled
Disabled
Disabled
Disabled
Disabled
Disabled
Disabled
Disabled
Disabled
Disabled
Disabled
Disabled

| FreeCapacity | HealthState

0X0000 | 0x2d3c7f48f4e22ccc | AppDirect
0x0001 | 0xdd387f488ced2ccc | AppDirect

| 1512.0 GiB | 0.0 GiB
| 1512.0 GiB | 1512.0 GiB

Listing 3-4. Displaying persistent memory physical devices, regions, and

namespaces on Linux

# ndctl list -DRN

{
“dimms":[
{
"dev":"nmem1"
"handle":17,
44

)

"id":"8089-a2-1837-00000bb3",

| Healthy
| Healthy
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"phys_id":44,
"security":"disabled"

"dev":"nmem3",
"id":"8089-a2-1837-00000b5e",
"handle":257,

"phys id":54,
"security":"disabled"
1
[...snip...]
{

“dev":"nmem8",
"id":"8089-a2-1837-00001114",
"handle":4129,

"phys_id":76,
"security":"disabled"
}
])
"regions":[
{

"dev":"region1",
"size":1623497637888,
"available size":1623497637888,
"max_available extent":1623497637888,
"type":"pmem",
"iset id":-2506113243053544244,
"mappings":[
{
"dimm": "nmem11",
"offset":268435456,
"length":270582939648,
"position":5

b
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"dimm":"nmem10",
"offset":268435456,
"length":270582939648,
"position”:1

"dimm":"nmem9",
"offset":268435456,
"length":270582939648,
"position":3

"dimm": "nmem8",
"offset":268435456,
"length":270582939648,
"position”:2

"dimm": "nmem7",
"offset":268435456,
"length":270582939648,
"position":4

"dimm" :"nmem6" ,
"offset":268435456,
"length":270582939648,
"position":0

"persistence_domain":"memory controller”

1
{

"dev

:"region0",

"size":1623497637888,
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"available size":o0,

"max_available extent":o0,

"type":"pmem",

"iset id":3259620181632232652,

"mappings":[

{

1

"dimm" :"nmems",
"offset":268435456,
"length":270582939648,
"position":5

"dimm":"nmem4",
"offset":268435456,
"length":270582939648,
"position”:1

"dimm":"nmem3",
"offset":268435456,
"length":270582939648,
"position”:3

"dimm" :"nmem2",
"offset":268435456,
"length":270582939648,
"position”:2

"dimm":"nmem1",
"offset":268435456,
"length":270582939648,
"position":4

OPERATING SYSTEM SUPPORT FOR PERSISTENT MEMORY
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{
"dimm" : "nmemo"
"offset":268435456,
"length":270582939648,
"position”:0
}
]’

"persistence _domain":"memory controller",
"namespaces”: [

{
"dev":"namespace0.0",
"mode" :"fsdax",
"map":"dev",
"size":1598128390144,
"uuid":"06b8536d-4713-487d-891d-795956d94cc9",
"sector_size":512,
"align":2097152,
"blockdev": "pmem0"
}

When a file system is created and mounted using /dev/pmem* devices, they can be
identified using the df command as shown in Listing 3-5.

Listing 3-5. Locating persistent memory on Linux.

$ df -h /dev/pmem*

Filesystem Size Used Avail Use’% Mounted on
/dev/pmemo 1.5T 77M 1.4T 1% /mnt/pmemfsO
/dev/pmem1 1.5T 77M 1.4T 1% /mnt/pmemfsi

Windows developers will use PowerShellCmdlets as shown in Listing 3-6. In either
case, assuming the administrator has granted you rights to create files, you can create
one or more files in the persistent memory and then memory map those files to your
application using the same method shown in code Listings 3-1 and 3-2.
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Listing 3-6. Locating persistent memory on Windows
PS C:\Users\Administrator> Get-PmemDisk

Number Size Health Atomicity Removable Physical device IDs Unsafe shutdowns

2 249 GB Healthy None True {1} 36

PS C:\Users\Administrator> Get-Disk 2 | Get-Partition

PartitionNumber Driveletter Offset Size Type
1 24576 15.98 MB Reserved
D 16777216 248.98 GB Basic

Managing persistent memory as files has several benefits:

e You can leverage the rich features of leading file systems for
organizing, managing, naming, and limiting access for user’s
persistent memory files and directories.

¢ You can apply the familiar file system permissions and access rights
management for protecting data stored in persistent memory and for
sharing persistent memory between multiple users.

e System administrators can use existing backup tools that rely on file
system revision-history tracking.

e You can build on existing memory mapping APIs as described earlier
and applications that currently use memory-mapped files and can

use direct persistent memory without modifications.

Once a file backed by persistent memory is created and opened, an application still
calls mmap () or MapViewOfFile() to get a pointer to the persistent media. The difference,
shown in Figure 3-5, is that the persistent memory-aware file system recognizes that
the file is on persistent memory and programs the memory management unit (MMU)
in the CPU to map the persistent memory directly into the application’s address space.
Neither a copy in kernel memory nor synchronizing to storage through I/0 operations
is required. The application can use the pointer returned by mmap () or MapViewOfFile()
to operate on its data in place directly in the persistent memory. Since no kernel I/O

49



CHAPTER 3  OPERATING SYSTEM SUPPORT FOR PERSISTENT MEMORY

operations are required, and because the full file is mapped into the application’s
memory, it can manipulate large collections of data objects with higher and more
consistent performance as compared to files on I/O-accessed storage.

standard
file API
A
4 v A
- 17 7 7\
pmem aware MMU |
file system mappings |
NVDIMM operating
_driver system kernel
\_ T »

Figure 3-5. Direct access (DAX) I/0 and standard file API 1/0 paths through the
kernel

Listing 3-7 shows a C source code example that uses DAX to write a string directly
into persistent memory. This example uses one of the persistent memory API libraries
included in Linux and Windows called 1ibpmem. Although we discuss these libraries in
depth in later chapters, we describe the use of two of the functions available in 1ibpmem
in the following steps. The APIs in 1ibpmem are common across Linux and Windows and
abstract the differences between underlying operating system APIs, so this sample code
is portable across both operating system platforms.
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Listing 3-7. DAX programming example

32 #include <sys/types.h>
33 #include <sys/stat.h>
34 #include <fcntl.h>

35 #include <stdio.h>

36 #include <errno.h>

37 #include <stdlib.h>

38 #ifndef WIN32

39 #include <unistd.h>

40 #else

41 #include <io.h>

42 #endif

43 #include <string.h>

44 #include <libpmem.h>
45

46 /* Using 4K of pmem for this example */
47 #define PMEM_LEN 4096

48

49 int

50 main(int argc, char *argv[])

51 {

52 char *pmemaddr;

53 size t mapped len;

54 int is_pmem;

55

56 if (argc != 2) {

57 fprintf(stderr, "Usage: %s filename\n",
58 argv[0]);

59 exit(1);

60 }

61

62 /* Create a pmem file and memory map it. */
63 if ((pmemaddr = pmem map file(argv[1], PMEM_LEN,
64 PMEM_FILE_CREATE, 0666, &mapped_len,
65 8is _pmem)) == NULL) {
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66 perror("pmem map file");

67 exit(1);

68 }

69

70 /* Store a string to the persistent memory. */
71 char s[] = "This is new data written to the file";
72 strcpy(pmemaddr, s);

73

74 /* Flush our string to persistence. */

75 if (is_pmem)

76 pmem_persist(pmemaddr, sizeof(s));

77 else

78 pmem_msync(pmemaddr, sizeof(s));

79

80 /* Delete the mappings. */

81 pmem_unmap (pmemaddr, mapped len);

82

83 printf("Done.\n");

84 exit(0);

85 }

Lines 38-42: We handle the differences between Linux and Windows
for the include files.

Line 44: We include the header file for the 1ibpmem API used in this
example.

Lines 56-60: We take the pathname argument from the command
line argument.

Line 63-68: The pmem_map_file function in 1ibpmem handles
opening the file and mapping it into our address space on both
Windows and Linux. Since the file resides on persistent memory, the
operating system programs the hardware MMU in the CPU to map
the persistent memory region into our application’s virtual address
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space. Pointer pmemaddr is set to the beginning of that region. The
pmem map_file function can also be used for memory mapping disk-
based files through kernel main memory as well as directly mapping
persistent memory, so is_pmemis set to TRUE if the file resides on
persistent memory and FALSE if mapped through main memory.

Line 72: We write a string into persistent memory.

Lines 75-78: If the file resides on persistent memory, the pmem_
persist function uses the user space machine instructions
(described in Chapter 2) to ensure our string is flushed through
CPU cache levels to the power-fail safe domain and ultimately to
persistent memory. If our file resided on disk-based storage, Linux
mmap or Windows FlushViewOfFile would be used to flushed to
storage. Note that we can pass small sizes here (the size of the string
written is used in this example) instead of requiring flushes at page
granularity when using msync() or FlushViewOfFile().

Line 81: Finally, we unmap the persistent memory region.

Summary

Figure 3-6 shows the complete view of the operating system support that this chapter

describes. As we discussed, an application can use persistent memory as a fast SSD,

more directly through a persistent memory-aware file system, or mapped directly into

the application’s memory space with the DAX option. DAX leverages operating system

services for memory-mapped files but takes advantage of the server hardware’s ability

to map persistent memory directly into the application’s address space. This avoids the

need to move data between main memory and storage. The next few chapters describe

considerations for working with data directly in persistent memory and then discuss the

APIs for simplifying development.
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Block Storage File Access DAX

standard raw standard standard 4
device access file API file API
A A A
(" v v )
| file system | pmem aware vmu!
t file system mappinss:
v
—> NVDIMM driver operating
system kernel
\ N y,

persistent memory
region

Figure 3-6. Persistent memory programming interfaces

Open Access This chapter is licensed under the terms of the Creative

Commons Attribution 4.0 International License (http://creativecommons.
org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution and
reproduction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need
to obtain permission directly from the copyright holder.
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CHAPTER 4

Fundamental Concepts
of Persistent Memory
Programming

In Chapter 3, you saw how operating systems expose persistent memory to applications
as memory-mapped files. This chapter builds on this fundamental model and examines
the programming challenges that arise. Understanding these challenges is an essential
part of persistent memory programming, especially when designing a strategy for
recovery after application interruption due to issues like crashes and power failures.
However, do not let these challenges deter you from persistent memory programming!
Chapter 5 describes how to leverage existing solutions to save you programming time
and reduce complexity.

What’s Different?

Application developers typically think in terms of memory-resident data structures and
storage-resident data structures. For data center applications, developers are careful to
maintain consistent data structures on storage, even in the face of a system crash. This
problem is commonly solved using logging techniques such as write-ahead logging,
where changes are first written to a log and then flushed to persistent storage. If the data
modification process is interrupted, the application has enough information in the log
to finish the operation on restart. Techniques like this have been around for many years;
however, correct implementations are challenging to develop and time-consuming to
maintain. Developers often rely on a combination of databases, libraries, and modern
file systems to provide consistency. Even so, it is ultimately the application developer’s
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responsibility to design in a strategy to maintain consistent data structures on storage,
both at runtime and when recovering from application and system crashes.

Unlike storage-resident data structures, application developers are concerned
about maintaining consistency of memory-resident data structures at runtime. When
an application has multiple threads accessing the same data structure, techniques like
locking are used so that one thread can perform complex changes to a data structure
without another thread seeing only part of the change. When an application exits or
crashes, or the system crashes, the memory contents are gone, so there is no need
to maintain consistency of memory-resident data structures between runs of an
application like there is with storage-resident data structures.

These explanations may seem obvious, but these assumptions that the storage state
stays around between runs and memory contents are volatile are so fundamental in
the way applications are developed that most developers don’t give it much thought.
What's different about persistent memory is, of course, that it is persistent, so all the
considerations of both storage and memory apply. The application is responsible for
maintaining consistent data structures between runs and reboots, as well as the thread-
safe locking used with memory-resident data structures.

If persistent memory has these attributes and requirements just like storage, why
not use code developed over the years for storage? This approach does work; using the
storage APIs on persistent memory is part of the programming model we described
in Chapter 3. If the existing storage APIs on persistent memory are fast enough and
meet the application’s needs, then no further work is necessary. But to fully leverage
the advantages of persistent memory, where data structures are read and written in
place on persistence and accesses happen at the byte granularity, instead of using the
block storage stack, applications will want to memory map it and access it directly. This
eliminates the buffer-based storage APIs in the data path.

Atomic Updates

Each platform supporting persistent memory will have a set of native memory
operations that are atomic. On Intel hardware, the atomic persistent store is 8 bytes.
Thus, if the program or system crashes while an aligned 8-byte store to persistent
memory is in-flight, on recovery those 8 bytes will either contain the old contents or
the new contents. The Intel processor has instructions that store more than 8 bytes,
but those are not failure atomic, so they can be forn by events like a power failure.
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Sometimes an update to a memory-resident data structure will require multiple
instructions, so naturally those changes can be torn by power failure as well since power
could be lost between any two instructions. Runtime locking prevents other threads from
seeing a partially done change, but locking doesn’t provide any failure atomicity. When
an application needs to make a change that is larger than 8 bytes to persistent memory, it
must construct the atomic operation by building on top of the basic atomics provided by
hardware, such as the 8-byte failure atomicity provided by Intel hardware.

Transactions

Combining multiple operations into a single atomic operation is usually referred to as
a transaction. In the database world, the acronym ACID describes the properties of a
transaction: atomicity, consistency, isolation, and durability.

Atomicity

As described earlier, atomicity is when multiple operations are composed into a single
atomic action that either happens entirely or does not happen at all, even in the face of
system failure. For persistent memory, the most common techniques used are

o Redo logging, where the full change is first written to a log, so during
recovery, it can be rolled forward if interrupted.

o Undo logging, where information is logged that allows a partially
done change to be rolled back during recovery.

» Atomic pointer updates, where a change is made active by updating
a single pointer atomically, usually changing it from pointing to old
data to new data.

The preceding list is not exhaustive, and it ignores the details that can get relatively
complex. One common consideration is that transactions often include memory
allocation/deallocation. For example, a transaction that adds a node to a tree data
structure usually includes the allocation of the new node. If the transaction is rolled back,
the memory must be freed to prevent a memory leak. Now imagine a transaction that
performs multiple persistent memory allocations and free operations, all of which must
be part of the same atomic operation. The implementation of this transaction is clearly
more complex than just writing the new value to a log or updating a single pointer.
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Consistency

Consistency means that a transaction can only move a data structure from one valid
state to another. For persistent memory, programmers usually find that the locking they
use to make updates thread-safe often indicates consistency points as well. If it is not
valid for a thread to see an intermediate state, locking prevents it from happening, and
when it is safe to drop the lock, that is because it is safe for another thread to observe the
current state of the data structure.

Isolation

Multithreaded (concurrent) execution is commonplace in modern applications. When
making transactional updates, the isolation is what allows the concurrent updates

to have the same effect as if they were executed sequentially. At runtime, isolation

for persistent memory updates is typically achieved by locking. Since the memory is
persistent, the isolation must be considered for transactions that were in-flight when
the application was interrupted. Persistent memory programmers typically detect

this situation on restart and roll partially done transactions forward or backward
appropriately before allowing general-purpose threads access to the data structures.

Durability

A transaction is considered durable if it is on persistent media when it is complete. Even if the
system loses power or crashes at that point, the transaction remains completed. As described
in Chapter 2, this usually means the changes must be flushed from the CPU caches. This can
be done using standard APIs, such as the Linuxmsync () call, or platform-specific instructions
such as Intel’s CLWB. When implementing transactions on persistent memory, pay careful
attention to ensure that log entries are flushed to persistence before changes are started and
flush changes to persistence before a transaction is considered complete.

Another aspect of the durable property is the ability to find the persistent
information again when an application starts up. This is so fundamental to how storage
works that we take it for granted. Metadata such as file names and directory names are
used to find the durable state of an application on storage. For persistent memory, the
same is true due to the programming model described in Chapter 3, where persistent
memory is accessed by first opening a file on a direct access (DAX) file system and then
memory mapping that file. However, a memory-mapped file is just a range of raw data;
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how does the application find the data structures resident in that range? For persistent
memory, there must be at least one well-known location of a data structure to use as a
starting point. This is often referred to as a root object (described in Chapter 7). The root
object is used by many of the higher-level libraries within PMDK to access the data.

Flushing Is Not Transactional

Itis important to separate the ideas of flushing to persistence from transactional
updates. Flushing changes to storage using calls like msync() or fsync() on Linux

and FlushFileBuffers() on Windows have never provided transactional updates.
Applications assume the responsibility for maintaining consistent storage data structures
in addition to flushing changes to storage. With persistent memory, the same is true. In
Chapter 3, a simple program stored a string to persistent memory and then flushed it to
make sure the change was persistent. But that code was not transactional, and in the face
of failure, the change could be in just about any state - from completely lost to partially
lost to fully completed.

A fundamental property of caches is that they hold data temporarily for
performance, but they do not typically hold data until a transaction is ready to commit.
Normal system activity can cause cache pressure and evict data at any time and in any
order. If the examples in Chapter 3 were interrupted by power failure, it is possible for
any part of the string being stored to be lost and any part to be persistent, in any order.

It is important to think of the cache flush operation as flush anything that hasn't already
been flushed and not as flush all my changes now.

Finally, we showed a decision tree in Chapter 2 (Figure 2-5) where an application can
determine at startup that no cache flushing is required for persistent memory. This can
be the case on platforms where the CPU cache is flushed automatically on power failure,
for example. Even on platforms where flush instructions are not needed, transactions are

still required to keep data structures consistent in the face of failure.

Start-Time Responsibilities

In Chapter 2 (Figures 2-5 and 2-6), we showed flowcharts outlining the application’s
responsibilities when using persistent memory. These responsibilities included
detecting platform details, available instructions, media failures, and so on. For storage,
these types of things happen in the storage stack in the operating system. Persistent
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memory, however, allows direct access, which removes the kernel from the data path
once the file is memory mapped.

As a programmer, you may be tempted to map persistent memory and start using it,
as shown in the Chapter 3 examples. For production-quality programming, you want to
ensure these start-time responsibilities are met. For example, if you skip the checks in
Figure 2-5, you will end up with an application that flushes CPU caches even when it is
not required, and that will perform poorly on hardware that does not need the flushing.
If you skip the checks in Figure 2-6, you will have an application that ignores media
errors and may use corrupted data resulting in unpredictable and undefined behavior.

Tuning for Hardware Configurations

When storing a large data structure to persistent memory, there are several ways to copy
the data and make it persistent. You can either copy the data using the common store
operations and then flush the caches (if required) or use special instructions like Intel’s
non-temporal store instructions that bypass the CPU caches. Another consideration

is that persistent memory write performance may be slower than writing to normal
memory, so you may want to take steps to store to persistent memory as efficiently as
possible, by combining multiple small writes into larger changes before storing them to
persistent memory. The optimal write size for persistent memory will depend on both
the platform it is plugged into and the persistent memory product itself. These examples
show that different platforms will have different characteristics when using persistent
memory, and any production-quality application will be tuned to perform best on the
intended target platforms. Naturally, one way to help with this tuning work is to leverage
libraries or middleware that has already been tuned and validated.

Summary

This chapter provides an overview of the fundamental concepts of persistent memory
programming. When developing an application that uses persistent memory, you must
carefully consider several areas:

e Atomic updates.

o Flushing is not transactional.
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o Start-time responsibilities.
e Tuning for hardware configurations.

Handling these challenges in a production-quality application requires some
complex programming and extensive testing and performance analysis. The next chapter
introduces the Persistent Memory Development Kit, designed to assist application
developers in solving these challenges.

Open Access This chapter is licensed under the terms of the Creative

Commons Attribution 4.0 International License (http://creativecommons.
org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution and
reproduction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need
to obtain permission directly from the copyright holder.
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Introducing the Persistent
Memory Development Kit

Previous chapters introduced the unique properties of persistent memory that make it
special, and you are correct in thinking that writing software for such a novel technology
is complicated. Anyone who has researched or developed code for persistent memory
can testify to this. To make your job easier, Intel created the Persistent Memory
Development Kit (PMDK). The team of PMDK developers envisioned it to be the
standard library for all things persistent memory that would provide solutions to the
common challenges of persistent memory programming.

Background

The PMDK has evolved to become a large collection of open source libraries and
tools for application developers and system administrators to simplify managing and
accessing persistent memory devices. It was developed alongside evolving support for
persistent memory in operating systems, which ensures the libraries take advantage of
all the features exposed through the operating system interfaces.

The PMDK libraries build on the SNIA NVM programming model (described in
Chapter 3). They extend it to varying degrees, some by simply wrapping around the
primitives exposed by the operating system with easy-to-use functions and others by
providing complex data structures and algorithms for use with persistent memory.
This means you are responsible for making an informed decision about which level of
abstraction is the best for your use case.
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Although the PMDK was created by Intel to support its hardware products, Intel is
committed to ensuring the libraries and tools are both vendor and platform neutral. This
means that the PMDK is not tied to Intel processors or Intel persistent memory devices.
It can be made to work on any other platform that exposes the necessary interfaces
through the operating system, including Linux and Microsoft Windows. We welcome
and encourage contributions to PMDK from individuals, hardware vendors, and ISVs.
The PMDK has a BSD 3-Clause License, allowing developers to embed it in any software,
whether it’s open source or proprietary. This allows you to pick and choose individual
components of PMDK by integrating only the bits of code required.

The PMDK is available at no cost on GitHub (https://github.com/pmem/pmdk) and
has a dedicated web site at https://pmem. io. Man pages are delivered with PMDK and
are available online under each library’s own page. Appendix B of this book describes
how to install it on your system.

An active persistent memory community is available through Google Forums at
https://groups.google.com/forum/#! forum/pmem. This forum allows developers,
system administrators, and others with an interest in persistent memory to ask questions
and get assistance. This is a great resource.

Choosing the Right Semantics

With so many libraries available within the PMDK, it is important to carefully consider
your options. The PMDK offers two library categories:

1. Volatilelibraries are for use cases that only wish to exploit the
capacity of persistent memory.

2. Persistentlibraries are for use in software that wishes to
implement fail-safe persistent memory algorithms.

While you are deciding how to best solve a problem, carefully consider which
category it fits into. The challenges that fail-safe persistent programs present are
significantly different from volatile ones. Choosing the right approach upfront will
minimize the risk of having to rewrite any code.

You may decide to use libraries from both categories for different parts of the
application, depending on feature and functional requirements.
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Volatile Libraries

Volatile libraries are typically simpler to use because they can fall back to dynamic
random-access memory (DRAM) when persistent memory is not available. This
provides a more straightforward implementation. Depending on the workload, they may
also have lower overall overhead compared to similar persistent libraries because they
do not need to ensure consistency of data in the presence of failures.

This section explores the available libraries for volatile use cases in applications,
including what the library is and when to use it. The libraries may have overlapping

situation use cases.

libmemkind

What is it?

The memkind library, called 1ibmemkind, is a user-extensible heap manager built
on top of jemalloc. It enables control of memory characteristics and partitioning of the
heap between different kinds of memory. The kinds of memory are defined by operating
system memory policies that have been applied to virtual address ranges. Memory
characteristics supported by memkind without user extension include control of
nonuniform memory access (NUMA) and page size features. The jemalloc nonstandard
interface has been extended to enable specialized kinds to make requests for virtual
memory from the operating system through the memkind partition interface. Through
the other memkind interfaces, you can control and extend memory partition features
and allocate memory while selecting enabled features. The memkind interface allows
you to create and control file-backed memory from persistent memory with PMEM kind.

Chapter 10 describes this library in more detail. You can download memkind and
read the architecture specification and API documentation at http://memkind.github.
io/memkind/. memkind is an open source project on GitHub at https://github.com/
memkind/memkind.

When to use it?

Choose l1ibmemkind when you want to manually move select memory objects to
persistent memory in a volatile application while retaining the traditional programming
model. The memkind library provides familiar malloc() and free() semantics. This is
the recommended memory allocator for most volatile use cases of persistent memory.
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Modern memory allocators usually rely on anonymous memory mapping to
provision memory pages from the operating system. For most systems, this means that
actual physical memory is allocated only when a page is first accessed, allowing the OS
to overprovision virtual memory. Additionally, anonymous memory can be paged out
if needed. When using memkind with file-based kinds, such as PMEM kind, physical
space is still only allocated on first access to a page and the other described techniques
no longer apply. Memory allocation will fail when there is no memory available to be
allocated, so it is important to handle such failures within the application.

The described techniques also play an important role in hiding the inherent
inefficiencies of manual dynamic memory allocation such as fragmentation, which
causes allocation failures when not enough contiguous free space is available. Thus, file-
based kinds can exhibit low space utilization for applications with irregular allocation/
deallocation patterns. Such workloads may be better served with 1ibvmemcache.

libvmemcache

What is it?

libvmemcache is an embeddable and lightweight in-memory caching solution that
takes full advantage of large-capacity memory, such as persistent memory with direct
memory access (DAX), through memory mapping in an efficient and scalable way.
libvmemcache has unique characteristics:

e An extent-based memory allocator sidesteps the fragmentation
problem that affects most in-memory databases and allows the cache
to achieve very high space utilization for most workloads.

e The buffered least recently used (LRU) algorithm combines a
traditional LRU doubly linked list with a non-blocking ring buffer to
deliver high degrees of scalability on modern multicore CPUs.

e The critnib indexing structure delivers high performance while
being very space efficient.

The cache is tuned to work optimally with relatively large value sizes. The smallest
possible size is 256 bytes, but 1ibvmemcache works best if the expected value sizes are
above 1 kilobyte.

Chapter 10 describes this library in more detail. 1ibvmemcache is an open source
project on GitHub at https://github.com/pmem/vmemcache.
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When to use it?
Use libvmemcache when implementing caching for workloads that typically would
have low space efficiency when cached using a system with a normal memory allocation

scheme.

libvmem

What is it?

libvmemis a deprecated predecessor to 1ibmemkind. It is a jemalloc-derived
memory allocator, with both metadata and objects allocations placed in file-based
mapping. The libvmem library is an open source project available from https://pmem.
io/pmdk/1ibvmem/.

When to use it?

Use 1libvmem only if you have an existing application that uses 1ibvmem or if you
need to have multiple completely separate heaps of memory. Otherwise, consider using
libmemkind.

Persistent Libraries

Persistent libraries help applications maintain data structure consistency in the presence
of failures. In contrast to the previously described volatile libraries, these provide new
semantics and take full advantage of the unique possibilities enabled by persistent
memory.

libpmem

What is it?

libpmemis a low-level C library that provides basic abstraction over the primitives
exposed by the operating system. It automatically detects features available in the
platform and chooses the right durability semantics and memory transfer (memcpy ())
methods optimized for persistent memory. Most applications will need at least parts of
this library.
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Chapter 4 describes the requirements for applications using persistent memory, and
Chapter 6 describes 1ibpmem in more depth.

When to use it?

Use libpmem when modifying an existing application that already uses memory-
mapped I/0. Such applications can leverage the persistent memory synchronization
primitives, such as user space flushing, to replace msync(), thus reducing the kernel
overhead.

Also use 1ibpmem when you want to build everything from the ground up. It
supports implementation of low-level persistent data structures with custom memory
management and recovery logic.

libpmemobj

What is it?

libpmemobj is a C library that provides a transactional object store, with a manual
dynamic memory allocator, transactions, and general facilities for persistent memory
programming. This library solves many of the commonly encountered algorithmic and
data structure problems when programming for persistent memory. Chapter 7 describes
this library in detail.

When to use it?

Use libpmemobj when the programming language of choice is C and when you need
flexibility in terms of data structures design but can use a general-purpose memory
allocator and transactions.

libpmemobj-cpp

What is it?

libpmemobj-cpp, also known as 1ibpmemobj++, is a C++ header-only library that uses
the metaprogramming features of C++ to provide a simpler, less error-prone interface to
libpmemobj. It enables rapid development of persistent memory applications by reusing
many concepts C++ programmers are already familiar with, such as smart pointers and
closure-based transactions.

This library also ships with custom-made, STL-compatible data structures and
containers, so that application developers do not have to reinvent the basic algorithms
for persistent memory.
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When to use it?
When C++ is an option, 1ibpmemobj-cpp is preferred for general-purpose persistent
memory programming over 1ibpmemobj. Chapter 7 describes this library in detail.

libpmemkv

What is it?

libpmemkyv is a generic embedded local key-value store optimized for persistent
memory. It is easy to use and ships with many different language integrations, including
C, C++, and JavaScript.

This library has a pluggable back end for different storage engines. Thus, it can
be used as a volatile library, although it was originally designed primarily to support
persistent use cases.

Chapter 9 describes this library in detail.

When to use it?

This library is the recommended starting point into the world of persistent memory
programming because it is approachable and has a simple interface. Use it when
complex and custom data structures are not needed and a generic key-value store
interface is enough to solve the current problem.

libpmemliog

What is it?
libpmemlog is a C library that implements a persistent memory append-only log file
with power fail-safe operations.

When to use it?
Use libpmemlog when your use case exactly fits into the provided log API; otherwise,
a more generic library such as 1ibpmemobj or 1ibpmemobj-cpp might be more useful.

libpmemblk

What is it?
libpmemblk is a C library for managing fixed-size arrays of blocks. It provides fail-safe
interfaces to update the blocks through buffer-based functions.

69

www. dbooks. or g


https://www.dbooks.org/

CHAPTER 5  INTRODUCING THE PERSISTENT MEMORY DEVELOPMENT KIT

When to use it?
Use libpmemblk only when a simple array of fixed blocks is needed and direct byte-
level access to blocks is not required.

Tools and Command Utilities

PMDK comes with a wide variety of tools and utilities to assist in the development and
deployment of persistent memory applications.

pmempool

What is it?

The pmempool utility is a tool for managing and offline analysis of persistent
memory pools. Its variety of functionalities, useful throughout the entire life cycle of an
application, include

¢ Obtaining information and statistics from a memory pool

e Checking a memory pool’s consistency and repairing it if possible
o Creating memory pools

o Removing/deleting a previously created memory pool

e Updating internal metadata to the latest layout version

o Synchronizing replicas within a poolset

e Modifying internal data structures within a poolset

o Enabling or disabling pool and poolset features

When to use it?
Use pmempool whenever you are creating persistent memory pools for applications
using any of the persistent libraries from PMDK.

pmemcheck

What is it?

The pmemcheck utility is a Valgrind-based tool for dynamic runtime analysis
of common persistent memory errors, such as a missing flush or incorrect use of
transactions. Chapter 12 describes this utility in detail.
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When to use it?

The pmemcheck utility is useful when developing an application using 1ibpmemob3j,
libpmemobj-cpp, or 1ibpmem because it can help you find bugs that are common in
persistent applications. We suggest running error-checking tools early in the lifetime of a
codebase to avoid a pileup of hard-to-debug problems. The PMDK developers integrate
pmemcheck tests into the continuous integration pipeline of PMDK, and we recommend
the same for any persistent applications.

pmreorder

What is it?

The pmreorder utility helps detect data structure consistency problems of persistent
applications in the presence of failures. It does this by first recording and then replaying
the persistent state of the application while verifying consistency of the application’s
data structures at any possible intermediate state. Chapter 12 describes this utility in
detail.

When to use it?

Just like pmemcheck, pmreorder is an essential tool for finding hard-to-debug
persistent problems and should be integrated into the development and testing cycle of
any persistent memory application.

Summary

This chapter provides a brief listing of the libraries and tools available in PMDK
and when to use them. You now have enough information to know what is possible.
Throughout the rest of this book, you will learn how to create software using these
libraries and tools.

The next chapter introduces 1ibpmem and describes how to use it to create simple
persistent applications.
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Open Access This chapter is licensed under the terms of the Creative

Commons Attribution 4.0 International License (http://creativecommons.
org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution and
reproduction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need
to obtain permission directly from the copyright holder.
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CHAPTER 6

libpmem: Low-Level
Persistent Memory
Support

This chapter introduces 1ibpmem, one of the smallest libraries in PMDK. This C library

is very low level, dealing with things like CPU instructions related to persistent memory,
optimal ways to copy data to persistence, and file mapping. Programmers who only want
completely raw access to persistent memory, without libraries to provide allocators or
transactions, will likely want to use 1ibpmem as a basis for their development.

The code in 1ibpmem that detects the available CPU instructions, for example, is a
mundane boilerplate code that you do not want to invent repeatedly in applications.
Leveraging this small amount of code from 1ibpmem will save time, and you get the
benefit of fully tested and tuned code in the library.

For most programmers, 1ibpmem is too low level, and you can safely skim this
chapter quickly (or skip it altogether) and move on to the higher-level, friendlier
libraries available in PMDK. All the PMDK libraries that deal with persistence, such as
libpmemob3j, are built on top of 1ibpmem to meet their low-level needs.

Like all PMDK libraries, online man pages are available. For 1ibpmem, they are at
http://pmem.io/pmdk/1libpmem/. This site includes links to the man pages for both the
Linux and Windows version. Although the goal of the PMDK project was to make the
interfaces similar across operating systems, some small differences appear as necessary.
The C code examples used in this chapter build and run on both Linux and Windows.
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The examples used in this chapter are

o simple_copy.cisasmall program that copies a 4KiB block from a
source file to a destination file on persistent memory.

o full copy.cisamore complete copy program, copying
the entire file.

e manpage.c is the simple example used in the 1ibpmem man page.

Using the Library

To use libpmenm, start by including the appropriate header, as shown in Listing 6-1.

Listing 6-1. Including the libpmem headers

32

33 /%
34  * simple_copy.c
35

36 x usage: simple copy src-file dst-file
37 %

38 x

39 x/

40

41 #include <sys/types.h>

42 #include <sys/stat.h>

43 #include <fcntl.h>

44 #include <stdio.h>

45 #include <errno.h>

46 #include <stdlib.h>

47 #ifndef _WIN32

48 #include <unistd.h>

49 #else

50 #include <io.h>

51 #endif

52 #include <string.h>

53 #include <libpmem.h>

Reads 4KiB from src-file and writes it to dst-file.
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Notice the include on line 53. To use 1ibpmem, use this include line, and link the C

program with 1ibpmem using the - 1pmem option when building under Linux.

Mapping a File

The 1ibpmem library contains some convenience functions for memory mapping files.

Of course, your application can call mmap() on Linux or MapViewOfFile() on Windows

directly, but using 1ibpmem has some advantages:

libpmem knows the correct arguments to the operating system
mapping calls. For example, on Linux, it is not safe to flush changes
to persistent memory using the CPU instructions directly unless the
mapping is created with the MAP_SYNC flag to mmap ().

libpmem detects if the mapping is actually persistent memory and if
using the CPU instructions directly for flushing is safe.

Listing 6-2 shows how to memory map a file on a persistent memory-aware file

system into the application.

Listing 6-2. Mapping a persistent memory file

80
81
82
83
84
85
86

/% create a pmem file and memory map it x/
if ((pmemaddr = pmem map_file(argv[2], BUF_LEN,
PMEM_FILE_CREATE|PMEM_FILE EXCL,
0666, &mapped len, &is pmem)) == NULL) {
perror("pmem map file");
exit(1);

}

As part of the persistent memory detection mentioned earlier, the flag is_pmemis

returned by pmem _map_file. It is the caller’s responsibility to use this flag to determine

how to flush changes to persistence. When making a range of memory persistent, the

caller can use the optimal flush provided by 1ibpmem, pmem_persist, only if the is_pmem

flagis set. This is illustrated in the man page example excerpt in Listing 6-3.
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Listing 6-3. manpage.c: Using the is_pmem flag

74 /% Flush above strcpy to persistence x/
75 if (is_pmem)

76 pmem_persist(pmemaddr, mapped len);
77 else

78 pmem_msync (pmemaddr, mapped_len);

Listing 6-3 shows the convenience function pmem_msync (), which is just a small
wrapper around msync() or the Windows equivalent. You do not need to build in
different logic for Linux and Windows because 1ibpmem handles this.

Copying to Persistent Memory

There are several interfaces in 1ibpmem for optimally copying or zeroing ranges of
persistent memory. The simplest interface shown in Listing 6-4 is used to copy the block
of data from the source file to the persistent memory in the destination file and flush it to
persistence.

Listing 6-4. simple_copy.c: Copying to persistent memory

88 /% read up to BUF_LEN from srcfd x/

89 if ((cc = read(srcfd, buf, BUF_LEN)) < 0) {
90 pmem_unmap (pmemaddr, mapped len);

91 perror("read");

92 exit(1);

93 }

94

95 /x write it to the pmem x/

96 if (is_pmem) {

97 pmem_memcpy_persist(pmemaddr, buf, cc);
98 } else {

99 memcpy (pmemaddr, buf, cc);

100 pmem_msync (pmemaddr, cc);

101 }
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Notice how the is_pmem flag on line 96 is used just like it would be for calls to pmem_
persist(), since the pmem _memcpy persist() function includes the flush to persistence.
The interface pmem_memcpy persist() includes the flush to persistent because it
may determine that the copy is more optimally performed by using non-temporal stores,
which bypass the CPU cache and do not require subsequent cache flush instructions for
persistence. By providing this API, which both copies and flushes, 1ibpmenm is free to use

the most optimal way to perform both steps.

Separating the Flush Steps

Flushing to persistence involves two steps:

1. Flush the CPU caches or bypass them entirely as explained in the
previous example.

2. Wait for any hardware buffers to drain, to ensure writes have
reached the media.

These steps are performed together when pmem_persist() is called, or they can be
called individually by calling pmem_flush() for the first step and pmem_drain() for the
second. Note that either of these steps may be unnecessary on a given platform, and
the library knows how to check for that and do what is correct. For example, on Intel
platforms, pmem_drain is an empty function.

When does it make sense to break flushing into steps? The example in Listing 6-5
illustrates one reason you might want to do this. Since the example copies data using
multiple calls to memcpy (), it uses the version of 1ibpmem copy (pmem memcpy nodrain())
that only performs the flush, postponing the final drain step to the end. This works
because, unlike the flush step, the drain step does not take an address range; it is a
system-wide drain operation so can happen at the end of the loop that copies individual
blocks of data.

Listing 6-5. full_copy.c: Separating the flush steps

58 /%
59 * do_copy to pmem
60  */

61 static void
62 do_copy to pmem(char xpmemaddr, int srcfd, off t len)
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63 {

64 char buf[BUF_LEN];

65 int cc;

66

67 /%

68 x Copy the file,

69 x saving the last flush & drain step to the end
70 */

71 while ((cc = read(srcfd, buf, BUF_LEN)) > 0) {
72 pmem_memcpy_nodrain(pmemaddr, buf, cc);
73 pmemaddr += cc;

74 }

75

76 if (cc < 0) {

77 perror("read");

78 exit(1);

79 }

80

81 /% Perform final flush step x/

82 pmem_drain();

83 }

In Listing 6-5, pmem_memcpy _nodrain() is specifically designed for persistent
memory. When using other libraries and standard functions like memcpy (), remember
they were written before persistent memory existed and do not perform any flushing
to persistence. In particular, the memcpy () provided by the C runtime environment
often chooses between regular stores (which require flushing) and non-temporal stores
(which do not require flushing). It is making that choice based on performance, not
persistence. Since you will not know which instructions it chooses, you will need to
perform the flush to persistence yourself using pmem persist() ormsync().

The choice of instructions used when copying ranges to persistent memory is fairly
important to the performance in many applications. The same is true when zeroing out
ranges of persistent memory. To meet these needs, 1ibpmem provides pmem_memmove(),
pmem_memcpy (), and pmem_memset (), which all take a flags argument to give the
caller more control over which instructions they use. For example, passing the flag
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PMEM_F_MEM_NONTEMPORAL will tell these functions to use non-temporal stores instead of
choosing which instructions to use based on the size of the range. The full list of flags is
documented in the man pages for these functions.

Summary

This chapter demonstrated some of the fairly small set of APIs provided by 1ibpmem.
This library does not track what changed for you, does not provide power fail-safe
transactions, and does not provide an allocator. Libraries like 1ibpmemobj (described in
the next chapter) provide all those tasks and use 1ibpmem internally for simple flushing
and copying.

Open Access This chapter is licensed under the terms of the Creative

Commons Attribution 4.0 International License (http://creativecommons.
org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution and
reproduction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need
to obtain permission directly from the copyright holder.
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CHAPTER 7

libpmemobj: A Native
Transactional Object Store

In the previous chapter, we described 1ibpmem, the low-level persistent memory library
that provides you with an easy way to directly access persistent memory. libpmemis a
small, lightweight, and feature-limited library that is designed for software that tracks
every store to pmem and needs to flush those changes to persistence. It excels at what
it does. However, most developers will find higher-level libraries within the Persistent
Memory Development Kit (PMDK), like 1ibpmemobj, to be much more convenient.

This chapter describes 1ibpmemobj, which builds upon 1ibpmem and turns persistent
memory-mapped files into a flexible object store. It supports transactions, memory
management, locking, lists, and several other features.

What is libpmemobj?

The 1ibpmemobj library provides a transactional object store in persistent memory for
applications that require transactions and persistent memory management using direct
access (DAX) to the memory. Briefly recapping our DAX discussion in Chapter 3, DAX
allows applications to memory map files on a persistent memory-aware file system to
provide direct load/store operations without paging blocks from a block storage device.
It bypasses the kernel, avoids context switches and interrupts, and allows applications to
read and write directly to the byte-addressable persistent storage.
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Why not malloc()?

Using 1libpmem seems simple. You need to flush anything you have written and use
discipline when ordering such that data needs to be persisted before any pointers to it
go live.

If only persistent memory programming were so simple. Apart from some specific
patterns that can be done in a simpler way, such as append-only records that can be
efficiently handled by 1ibpmemlog, any new piece of data needs to have its memory
allocated. When and how should the allocator mark the memory as in use? Should the
allocator mark the memory as allocated before writing data or after? Neither approach
works for these reasons:

o Ifthe allocator marks the memory as allocated before the data is
written, a power outage during the write can cause torn updates and
a so-called “persistent leak”

o Ifthe allocator writes the data, then marks it as allocated, a power
outage that occurs between the write completing and the allocator
marking it as allocated can overwrite the data when the application
restarts since the allocator believes the block is available.

Another problem is that a significant number of data structures include cyclical
references and thus do not form a tree. They could be implemented as a tree, but this
approach is usually harder to implement.

Byte-addressable memory guarantees atomicity of only a single write. For current
processors, that is generally one 64-bit word (8-bytes) that should be aligned, but this is
not a requirement in practice.

All of the preceding problems could be solved if multiple writes occurred
simultaneously. In the event of a power failure, any incomplete writes should either
be replayed as though the power failure never happened or discarded as though the
write never occurred. Applications solve this in different ways using atomic operations,
transactions, redo/undo logging, etc. Using 1ibpmemob7j can solve those problems
because it uses atomic transactions and redo/undo logs.
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Grouping Operations

With the exception of modifying a single scalar value that fits within the processor’s
word, a series of data modifications must be grouped together and accompanied by a
means of detecting an interruption before completion.

Memory Pools

Memory-mapped files are at the core of the persistent memory programming model.
The 1ibpmemobj library provides a convenient API to easily manage pool creation and
access, avoiding the complexity of directly mapping and synchronizing data. PMDK
also provides a pmempool utility to administer memory pools from the command line.
Memory pools reside on DAX-mounted file systems.

Creating Memory Pools

Use the pmempool utility to create persistent memory pools for use with applications.
Several pool types can be created including pmemblk, pmemlog, and pmemobj. When using
libpmemobj in applications, you want to create a pool of type obj (pmemob7j). Refer

to the pmempool-create(1) man page for all available commands and options. The
following examples are for reference:

Example 1. Create a libpmemobj (obj) type pool of minimum allowed size and
layout called “my_layout” in the mounted file system /mnt/pmemfs0/

$ pmempool create --layout my layout obj /mnt/pmemfs0/pool.obj

Example 2. Create a libpmemobj (obj) pool of 20GiB and layout called “my_
layout” in the mounted file system /mnt/pmemfs0/

$ pmempool create --layout my layout --size 20G obj \
/mnt/pmemfso/pool.obj
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Example 3. Create a libpmemobj (obj) pool using all available capacity within
the /mnt/pmemfs0/ file system using the layout name of “my_layout”

$ pmempool create --layout my layout --max-size obj \
/mnt/pmemfso/pool.obj

Applications can programmatically create pools that do not exist at application start
time using pmemobj_create(). pmemobj create() has the following arguments:

PMEMobjpool *pmemobj create(const char *path,
const char *layout, size t poolsize, mode t mode);

o path specifies the name of the memory pool file to be created,
including a full or relative path to the file.

o layout specifies the application’s layout type in the form of a string to
identify the pool.

e poolsize specifies the required size for the pool. The memory pool
file is fully allocated to the size poolsize using posix_fallocate(3).
The minimum size for a pool is defined as PMEMOBJ_MIN_POOL in
<1libpmemobj.h>.If the pool already exists, pmemobj_create() will
return an EEXISTS error. Specifying poolsize as zero will take the
pool size from the file size and will verify that the file appears to be
empty by searching for any nonzero data in the pool header at the
beginning of the file.

« mode specifies the ACL permissions to use when creating the file, as
described by create(2).

Listing 7-1 shows how to create a pool using the pmemobj create() function.

Listing 7-1. pwriter.c - An example showing how to create a pool using
pmemobj_create()

33 /*

34 * pwriter.c - Write a string to a

35 % persistent memory pool
36 */

37
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#include <stdio.h>
#include <string.h>
#include <libpmemobj.h>

#define LAYOUT _NAME "rweg"
#define MAX BUF_LEN 31

struct my root {

size t len;

char buf[MAX BUF_LEN];
};

int
main(int argc, char *argv[])
{
if (argc != 2) {
printf("usage: %s file-name\n", argv[0]);
return 1;

PMEMobjpool *pop = pmemobj create(argv[1],
LAYOUT NAME, PMEMOBJ MIN POOL, 0666);
if (pop == NULL) {

perror ("pmemobj create");
return 1;

PMEMoid root = pmemobj_root(pop,
sizeof(struct my root));

struct my_root *rootp

pmemobj_direct(root);

char buf[MAX BUF LEN] = "Hello PMEM World";
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rootp->len = strlen(buf);
pmemobj_persist(pop, &rootp->len,
sizeof(rootp->len));

pmemobj_memcpy persist(pop, rootp->buf, buf,
rootp->len);

pmemobj_close(pop);

return 0;

Line 42: We define the name for our pool layout to be “rweg” (read-
write example). This is just a name and can be any string that
uniquely identifies the pool to the application. A NULL value is valid.
In the case where multiple pools are opened by the application, this
name uniquely identifies it.

Line 43: We define the maximum length of the write buffer.

Lines 45-47: This defines the root object data structure which has
members len and buf. buf contains the string we want to write, and
the len is the length of the buffer.

Lines 53- 56: The pwriter command accepts one argument: the path
and pool name to write to. For example, /mnt/pmemfso/helloworld
obj.pool. The file name extension is arbitrary and optional.

Lines 58-59: We call pmemobj create() to create the pool using

the file name passed in from the command line, the layout name

of “rweg,” a size we set to be the minimum size for an object pool
type, and permissions of 0666. We cannot create a pool smaller than
defined by PMEMOBJ_MIN_POOL or larger than the available space

on the file system. Since the string in our example is very small, we
only require a minimally sized pool. On success, pmemobj create()
returns a pool object pointer (POP) of type PMEMobjpool, that we can
use to acquire a pointer to the root object.
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o Lines 61-64: If pmemobj_create() fails, we will exit the program and
return an error.

o Line 66: Using the pop acquired from line 58, we use the pmemobj
root () function to locate the root object.

e Line 69: We use the pmemobj direct() function to get a pointer to the
root object we found in line 66.

o Line 71: We set the string/buffer to “Hello PMEM World.”

o Lines 73-78. After determining the length of the buffer, we first write
the len and then the buf member of our root object to persistent
memory.

e Line 80: We close the persistent memory pool by unmapping it.

Pool Object Pointer (POP) and the Root Object

Due to the address space layout randomization (ASLR) feature used by most operating
systems, the location of the pool - once memory mapped into the application address
space - can differ between executions and system reboots. Without a way to access

the data within the pool, you would find it challenging to locate the data within a pool.
PMDK-based pools have a small amount of metadata to solve this problem.

Every pmemobj (obj) type pool has a root object. This root object is necessary
because it is used as an entry point from which to find all the other objects created in a
pool, that is, user data. An application will locate the root object using a special object
called pool object pointer (POP). The POP object resides in volatile memory and is
created with every program invocation. It keeps track of metadata related to the pool,
such as the offset to the root object inside the pool. Figure 7-1 depicts the POP and
memory pool layout.
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Root offset

Pool — Root

POP

Address

Figure 7-1. A high-level overview of a persistent memory pool with a pool object
pointer (POP) pointing to the root object

Using a valid pop pointer, you can use the pmemobj_root() function to get a pointer

of the root object. Internally, this function creates a valid pointer by adding the current

memory address of the mapped pool plus the internal offset to the root.

Opening and Reading from Memory Pools

You create a pool using pmemobj_create(), and you open an existing pool using
pmemobj_open(). Both functions return a PMEMobjpool *pop pointer. The pwriter

example in Listing 7-1 shows how to create a pool and write a string to it. Listing 7-2

shows how to open the same pool to read and display the string.

Listing 7-2. preader.c - An example showing how to open a pool and access the

root object and data

33
34
35
36
37
38
39
40
41
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/*

* preader.c - Read a string from a

* persistent memory pool
*/

#include <stdio.h>
#include <string.h>
#include <libpmemobj.h>
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#define LAYOUT _NAME "rweg"
#define MAX_BUF_LEN 31

struct my root {

};

int

size t len;
char buf[MAX_BUF_LEN];

main(int argc, char *argv[])

{

if (argc != 2) {
printf("usage: %s file-name\n", argv[0]);
return 1;

PMEMobjpool *pop = pmemobj open(argv[1],
LAYOUT NAME);
if (pop == NULL) {

perror("pmemobj_open");
return 1;

PMEMoid root = pmemobj_root(pop,
sizeof(struct my root));
struct my root *rootp = pmemobj direct(root);

if (rootp->len == strlen(rootp->buf))
printf("%s\n", rootp->buf);

pmemobj close(pop);

return 0;
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o Lines 42-48: We use the same data structure declared in pwriter.c. In
practice, this should be declared in a header file for consistency.

o Line 58: Open the pool and return a pop pointer to it

e Line 66: Upon success, pmemobj_root() returns a handle to the root
object associated with the persistent memory pool pop.

e Line 68: pmemobj_direct() returns a pointer to the root object.

e Lines 70-71: Determine the length of the buffer pointed to by
rootp->buf. If it matches the length of the buffer we wrote, the
contents of the buffer is printed to STDOUT.

Memory Poolsets

The capacity of multiple pools can be combined into a poolset. Besides providing a
way to increase the available space, a poolset can be used to span multiple persistent
memory devices and provide both local and remote replication.

You open a poolset the same way as a single pool using pmemobj open(). (At the
time of publication, pmemobj create() and the pmempool utility cannot create poolsets.
Enhancement requests exist for these features.) Although creating poolsets requires
manual administration, poolset management can be automated via 1ibpmempool or the
pmempool utility; full details appear in the poolset(5) man page.

Concatenated Poolsets

Individual pools can be concatenated using pools on a single or multiple file systems.
Concatenation only works with the same pool type: block, object, or log pools. Listing 7-3
shows an example “myconcatpool.set” poolset file that concatenates three smaller pools
into a larger pool. For illustrative purposes, each pool is a different size and located on
different file systems. An application using this poolset would see a single 700GiB memory
pool.
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Listing 7-3. myconcatpool.set - An example of a concatenated poolset created
from three individual pools on three different file systems

PMEMPOOLSET

OPTION NOHDRS

100G /mountpoint0/myfile.parto
200G /mountpointi/myfile.parti
400G /mountpoint2/myfile.part2

Note Data will be preserved if it exists in /mountpointo/myfile.parto, but
any data in /mountpointo/myfile.part1 or /mountpointo/myfile.part2
will be lost. We recommend that you only add new and empty pools to a poolset.

Replica Poolsets

Besides combining multiple pools to provide more space, a poolset can also maintain
multiple copies of the same data to increase resiliency. Data can be replicated to another
poolset on a different file of the local host and a poolset on a remote host.

Listing 7-4 shows a poolset file called “myreplicatedpool.set” that will replicate
local writes into the /mnt/pmem0/pool1 pool to another local pool, /mnt/pmem1/pool1,
on a different file system, and to a remote-objpool.set poolset on a remote host called
example.com.

Listing 7-4. myreplicatedpool.set - An example demonstrating how to replicate
local data locally and remote host

PMEMPOOLSET
256G /mnt/pmem0/pooll

REPLICA
256G /mnt/pmem1/pooll

REPLICA user@example.com remote-objpool.set

The 1librpmem library, a remote persistent memory support library, underpins this
feature. Chapter 18 discusses 1ibrpmem and replica pools in more detail.
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Managing Memory Pools and Poolsets

The pmempool utility has several features that developers and system administrators
may find useful. We do not present their details here because each command has a
detailed man page:

o pmempool info prints information and statistics in human-readable
format about the specified pool.

o pmempool check checks the pool’s consistency and repairs pool if it
is not consistent.

o pmempool create creates a pool of specified type with additional
properties specific for this type of pool.

e pmempool dump dumps usable data from a pool in hexadecimal or
binary format.

o pmempool rm removes pool file or all pool files listed in pool set
configuration file.

« pmempool convert updates the pool to the latest available layout
version.

o pmempool sync synchronizes replicas within a poolset.
o pmempool transform modifies the internal structure of a poolset.

« pmempool feature toggles or queries a poolset’s features.

Typed Object Identifiers (TOIDs)

When we write data to a persistent memory pool or device, we commit it at a physical
address. With the ASLR feature of operating systems, when applications open a pool and
memory map it into the address space, the virtual address will change each time. For this
reason, a type of handle (pointer) that does not change is needed; this handle is called
an OID (object identifier). Internally, it is a pair of the pool or poolset unique identifier
(UUID) and an offset within the pool or poolset. The OID can be translated back and
forth between its persistent form and pointers that are fit for direct use by this particular
instance of your program.
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At alow level, the translation can be done manually via functions such as
pmemobj_direct() that appear in the preader.c example in Listing 7-2. Because manual
translations require explicit type casts and are error prone, we recommend tagging every
object with a type. This allows some form of type safety, and thanks to macros, can be
checked at compile time.

For example, a persistent variable declared via TOID(struct foo) x can be read via
D _RO(x)->field. In a pool with the following layout:

POBJ_LAYOUT BEGIN(cathouse);
POBJ_LAYOUT_TOID(cathouse, struct canaries);
POBJ_LAYOUT TOID(cathouse, int);

POBJ_LAYOUT END(cathouse);

The field val declared on the first line can be accessed using any of the subsequent
three operations:

TOID(int) val;

TOID ASSIGN(val, oid of val); // Assigns 'oid of val' to typed OID 'val'
D RW(val) = 42; // Returns a typed write pointer to 'val' and writes 42
return D RO(val); // Returns a typed read-only (const) pointer to 'val'

Allocating Memory

Using malloc() to allocate memory is quite normal to C developers and those who use
languages that do not fully handle automatic memory allocation and deallocation. For
persistent memory, you can use pmemobj_alloc(), pmemobj_ reserve(), or pmemobj
xreserve() to reserve memory for a transient object and use it the same way you would
use malloc(). We recommend that you free allocated memory using pmemobj_free() or
POBJ_FREE() when the application no longer requires it to avoid a runtime memory leak.
Because these are volatile memory allocations, they will not cause a persistent leak after
a crash or graceful application exit.
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Persisting Data

The typical intent of using persistent memory is to save data persistently. For this, you
need to use one of three APIs that 1ibpmemobj provides:

e Atomic operations
o Reserve/publish

¢ Transactional

Atomic Operations

The pmemobj alloc() and its variants shown below are easy to use, but they are limited
in features, so additional coding is required by the developer:

int pmemobj alloc(PMEMobjpool *pop, PMEMoid *oidp,
size t size, uint64_t type num, pmemobj_constr
constructor, void *arg);

int pmemobj zalloc(PMEMobjpool *pop, PMEMoid *oidp,
size t size, uint64 t type num);

void pmemobj free(PMEMoid *oidp);

int pmemobj realloc(PMEMobjpool *pop, PMEMoid *oidp,
size t size, uint64 t type num);

int pmemobj zrealloc(PMEMobjpool *pop, PMEMoid *oidp,
size t size, uint64 t type num);

int pmemobj strdup(PMEMobjpool *pop, PMEMoid *oidp,
const char *s, uint64 t type num);

int pmemobj wcsdup(PMEMobjpool *pop, PMEMoid *oidp,
const wchar t *s, uint64 t type num);

The TOID-based wrappers for most of these functions include:

POBJ_NEW(PMEMobjpool *pop, TOID *oidp, TYPE,
pmemobj constr constructor, void *arg)
POBJ_ALLOC(PMEMobjpool *pop, TOID *oidp, TYPE, size t size,
pmemobj constr constructor, void *arg)
POBJ_ZNEW(PMEMobjpool *pop, TOID *oidp, TYPE)
POBJ_ZALLOC(PMEMobjpool *pop, TOID *oidp, TYPE, size t size)
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POBJ_REALLOC(PMEMobjpool *pop, TOID *oidp, TYPE, size t size)
POBJ_ZREALLOC(PMEMobjpool *pop, TOID *oidp, TYPE, size t size)
POBJ_FREE(TOID *oidp)

These functions reserve the object in a temporary state, call the constructor you
provided, and then in one atomic action, mark the allocation as persistent. They will
insert the pointer to the newly initialized object into a variable of your choice.

If the new object needs to be merely zeroed, pmemobj_zalloc() does so without
requiring a constructor.

Because copying NULL-terminated strings is a common operation, 1ibpmemobj
provides pmemobj strdup() and its wide-char variant pmemobj wcsdup() to handle
this. pmemobj_strdup() provides the same semantics as strdup(3) but operates on the
persistent memory heap associated with the memory pool.

Once you are done with the object, pmemobj free() will deallocate the object while
zeroing the variable that stored the pointer to it. The pmemobj free() function frees the
memory space represented by oidp, which must have been allocated by a previous call
to pmemobj alloc(), pmemobj xalloc(), pmemobj zalloc(), pmemobj realloc(),
or pmemobj_zrealloc(). The pmemobj free() function provides the same semantics as
free(3), but instead of operating on the process heap supplied by the system, it operates
on the persistent memory heap.

Listing 7-5 shows a small example of allocating and freeing memory using the
libpmemobj APL

Listing 7-5. Using pmemobj_alloc() to allocate memory and using pmemobj_
free() to free it

33 /%

34 * pmemobj_alloc.c - An example to show how to use
35  * pmemobj alloc()

36 */

47 typedef uint32_t color;

48

49 static int paintball init(PMEMobjpool *pop,
50 void *ptr, void *arg)

51 {

52 *(color *)ptr = time(0) & oxffffff;
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pmemobj persist(pop, ptr, sizeof(color));
return 0;

int main()

{

PMEMobjpool *pool = pmemobj open(POOL, LAYOUT);
if (!pool) {
pool = pmemobj create(POOL, LAYOUT,
PMEMOBJ_MIN_POOL, 0666);
if (!pool)
die("Couldn't open pool: %m\n");

}
PMEMoid root = pmemobj_ root(pool,

sizeof(PMEMoid) * 6);
if (0ID_IS NULL(root))
die("Couldn't access root object.\n");

PMEMoid *chamber = (PMEMoid *)pmemobj direct(root)
+ (getpid() % 6);
if (0ID IS NULL(*chamber)) {
printf("Reloading.\n");
if (pmemobj alloc(pool, chamber, sizeof(color)
, 0, paintball init, 0))
die("Failed to alloc: %m\n");
} else {
printf("Shooting %06x colored bullet.\n",
*(color *)pmemobj direct(*chamber));
pmemobj free(chamber);

pmemobj_close(pool);
return 0;
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o Line 47: Defines a color that will be stored in the pool.

o Lines 49-54: The paintball init() function is called when we
allocate memory (line 76). This function takes a pool and object
pointer, calculates a random hex value for the paintball color, and
persistently writes it to the pool. The program exits when the write
completes.

o Lines 59-70: Opens or creates a pool and acquires a pointer to the
root object within the pool.

o Line 72: Obtain a pointer to an offset within the pool.

o Lines 74-78: If the pointer in line 72 is not a valid object, we allocate
some space and call paintball init().

o Lines 79-80: If the pointer in line 72 is a valid object, we read the color
value, print the string, and free the object.

Reserve/Publish API

The atomic allocation API will not help if

o There is more than one reference to the object that needs to be
updated

e There are multiple scalars that need to be updated

For example, if your program needs to subtract money from account A and add it
to account B, both operations must be done together. This can be done via the reserve/
publish API.

To use it, you specify any number of operations to be done. The operations may be
setting a scalar 64-bit value using pmemobj_set value(), freeing an object with pmemob7j
defer_free(), or allocating it using pmemobj_reserve(). Of these, only the allocation
happens immediately, letting you do any initialization of the newly reserved object.
Modifications will not become persistent until pmemobj_publish() is called.

Functions provided by 1ibpmemobj related to the reserve/publish feature are

PMEMoid pmemobj reserve(PMEMobjpool *pop,
struct pobj action *act, size t size, uint64 t type num);
void pmemobj defer free(PMEMobjpool *pop, PMEMoid oid,
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struct pobj action *act);
void pmemobj set value(PMEMobjpool *pop,

struct pobj action *act, uint64_t *ptr, uint64_t value);
int pmemobj_publish(PMEMobjpool *pop,

struct pobj action *actv, size t actvent);
void pmemobj cancel(PMEMobjpool *pop,

struct pobj action *actv, size t actvent);

Listing 7-6 is a simple banking example that demonstrates how to change multiple
scalars (account balances) before publishing the updates into the pool.

Listing 7-6. Using the reserve/publish API to modify bank account balances

32

33 /%

34 * reserve publish.c - An example using the

35 * reserve/publish libpmemobj API
36 */

37

44 #define POOL "/mnt/pmem/balance"

45

46 static PMEMobjpool *pool;

47

48 struct account {

49 PMEMoid name;

50 uint64_t balance;

51 };

52 TOID DECLARE(struct account, 0);
53

60 static PMEMoid new_account(const char *name,

61 int deposit)

62 {

63 int len = strlen(name) + 1;
64

65 struct pobj action act[2];

98

www. dbooks. or g


https://www.dbooks.org/

66
67
68
69
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100

101

102

103

104

int

CHAPTER 7  LIBPMEMOBJ: A NATIVE TRANSACTIONAL OBJECT STORE

PMEMoid str = pmemobj reserve(pool, act + 0,
len, 0);
if (0ID IS NULL(str))
die("Can't allocate string: %m\n");

pmemobj memcpy(pool, pmemobj direct(str), name,
len, PMEMOBJ F_MEM_NODRAIN);

TOID(struct account) acc;

PMEMoid acc_oid = pmemobj reserve(pool, act + 1,
sizeof(struct account), 1);

TOID ASSIGN(acc, acc_oid);

if (TOID IS NULL(acc))

die("Can't allocate account: %m\n");

D RW(acc)->name = str;

D RW(acc)->balance = deposit;

pmemobj_persist(pool, D _RW(acc),
sizeof(struct account));

pmemobj publish(pool, act, 2);

return acc_oid;

main()
if (!(pool = pmemobj create(POOL, "",
PMEMOBJ_MIN POOL, 0600)))
die("Can't create pool "%s": %m\n", POOL);

TOID(struct account) account a, account b;
TOID ASSIGN(account_a,

new_account("Julius Caesar", 100));
TOID ASSIGN(account b,

new_account("Mark Anthony", 50));

int price = 42;
struct pobj action act[2];

99



CHAPTER 7

105
106
107
108
109
110
111
112
113
114
115

LIBPMEMOBJ: A NATIVE TRANSACTIONAL OBJECT STORE

pmemobj set value(pool, &act[o0],

8D _RW(account_a)->balance,

D RW(account_a)->balance - price);
pmemobj_set_value(pool, &act[1],

8D _RW(account_b)->balance,

D _RW(account_b)->balance + price);
pmemobj publish(pool, act, 2);

pmemobj close(pool);
return 0;

Line 44: Defines the location of the memory pool.

Lines 48-52: Declares an account data structure with a name and
balance.

Lines 60-89: The new_account () function reserves the memory (lines
66 and 78), updates the name and balance (lines 83 and 84), persists
the changes (line 85), and then publishes the updates (line 87).

Lines 93-95: Create a new pool or exit on failure.
Line 97: Declare two account instances.

Lines 98-101: Create a new account for each owner with initial
balances.

Lines 103-111: We subtract 42 from Julius Caesar’s account and add
42 to Mark Anthony’s account. The modifications are published on
line 111.

Transactional API

The reserve/publish APT is fast, but it does not allow reading data you have just written.

In such cases, you can use the transactional API.

The first time a variable is written, it must be explicitly added to the transaction. This

can be done via pmemobj_tx_add_range() or its variants (xadd, direct). Convenient

macros such as TX_ADD() or TX_SET() can perform the same operation. The transaction-

based functions and macros provided by 1ibpmemobj include
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int pmemobj tx_add range(PMEMoid oid, uint64 t off,
size t size);
int pmemobj tx add range direct(const void *ptr, size t size);

TX_ADD(TOID o)

TX_ADD_FIELD(TOID o, FIELD)

TX_ADD DIRECT(TYPE *p)

TX_ADD_FIELD DIRECT(TYPE *p, FIELD)

TX SET(TOID o, FIELD, VALUE)

TX_SET DIRECT(TYPE *p, FIELD, VALUE)
TX_MEMCPY(void *dest, const void *src, size t num)
TX MEMSET(void *dest, int c, size t num)

The transaction may also allocate entirely new objects, reserve their memory, and
then persistently allocate them only one transaction commit. These functions include

PMEMoid pmemobj tx alloc(size t size, uint64 t type num);
PMEMoid pmemobj tx zalloc(size t size, uint64_t type num);
PMEMoid pmemobj tx realloc(PMEMoid oid, size t size,
uint64 t type num);
PMEMoid pmemobj tx zrealloc(PMEMoid oid, size t size,
uint64 t type num);
PMEMoid pmemobj tx_strdup(const char *s, uint64 t type num);
PMEMoid pmemobj tx wcsdup(const wchar t *s,
uint64 t type num);

We can rewrite the banking example from Listing 7-6 using the transaction API. Most
of the code remains the same except when we want to add or subtract amounts from the
balance; we encapsulate those updates in a transaction, as shown in Listing 7-7.

Listing 7-7. Using the transaction API to modify bank account balances

33 /%

34 * tx.c - An example using the transaction API
35 ¥/

36
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94 int main()

95 |
96
97
98
99
100
101
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103
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105
106
107
108
109
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112
113
114
115
116 }

if (!(pool = pmemobj create(POOL, "",
PMEMOBJ_MIN_POOL, 0600)))
die("Can't create pool "%s": %m\n", POOL);

TOID(struct account) account_a, account b;
TOID ASSIGN(account a,

new_account("Julius Caesar", 100));
TOID ASSIGN(account b,

new_account("Mark Anthony", 50));

int price = 42;

TX BEGIN(pool) {
TX_ADD DIRECT(&D RW(account_a)->balance);
TX_ADD DIRECT(8D RW(account b)->balance);
D RW(account a)->balance -= price;
D RW(account_b)->balance += price;

} TX_END

pmemobj_close(pool);
return 0;

e Line 107: We start the transaction.

e Lines 108-111: Make balance modifications to multiple accounts.

e Line 112: Finish the transaction. All updates will either complete

entirely or they will be rolled back if the application or system crashes

before the transaction completes.

Each transaction has multiple stages in which an application can interact. These

transaction stages include

e TX_STAGE_NONE: No open transaction in this thread.

o TX STAGE_WORK: Transaction in progress.

o TX_STAGE_ONCOMMIT: Successfully committed.
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o TX_STAGE_ONABORT: The transaction start either failed or was aborted.
e TX STAGE_FINALLY: Ready for cleanup.

The example in Listing 7-7 uses the two mandatory stages: TX_BEGIN and TX_END.
However, we could easily have added the other stages to perform actions for the other
stages, for example:

TX_BEGIN(Pop) {
/* the actual transaction code goes here... */
} TX_ONCOMMIT {
/*
* optional - executed only if the above block
* successfully completes
*/
} TX_ONABORT {
/*
* optional - executed only if starting the transaction
* fails, or if transaction is aborted by an error or a
* call to pmemobj tx abort()
*/
} TX_FINALLY {
/*
* optional - if exists, it is executed after
* TX_ONCOMMIT or TX ONABORT block
*/
} TX_END /* mandatory */

Optionally, you can provide a list of parameters for the transaction. Each parameter
consists of a type followed by one of these type-specific number of values:

e TX PARAM NONE is used as a termination marker with no following
value.

e TX PARAM MUTEX is followed by one value, a pmem-resident
PMEMmutex.
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o TX_PARAM RWLOCK is followed by one value, a pmem-resident
PMEMrwlock.

o TX_PARAM (B is followed by two values: a callback function of type
pmemobj tx_callback and a void pointer.

Using TX_PARAM_MUTEX or TX_PARAM_RWLOCK causes the specified lock to be acquired
at the beginning of the transaction. TX_PARAM RWLOCK acquires the lock for writing.

It is guaranteed that pmemobj_tx_begin() will acquire all locks prior to successful
completion, and they will be held by the current thread until the outermost transaction
is finished. Locks are taken in order from left to right. To avoid deadlocks, you are
responsible for proper lock ordering.

TX_PARAM_CB registers the specified callback function to be executed at each
transaction stage. For TX_STAGE_WORK, the callback is executed prior to commit. For all
other stages, the callback is executed as the first operation after a stage change. It will
also be called after each transaction.

Optional Flags

Many of the functions discussed for the atomic, reserve/publish, and transactional APIs
have a variant with a "flags" argument that accepts these values:

o POBJ XALLOC ZERO zeroes the object allocated.

e POBJ_XALLOC NO_FLUSH suppresses automatic flushing. It is expected
that you flush the data in some way; otherwise, it may not be durable
in case of an unexpected power loss.

Persisting Data Summary

The atomic, reserve/publish, and transactional APIs have different strengths:

e Atomic allocations are the simplest and fastest, but their use is
limited to allocating and initializing wholly new blocks.

o Thereserve/publish API can be as fast as atomic allocations when
all operations involve either allocating or deallocating whole objects
or modifying scalar values. However, being able to read the data you
have just written may be desirable.
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o The transactional API requires slow synchronization whenever
avariable is added to the transaction. If the variable is changed
multiple times during the transaction, subsequent operations are
free. It also allows conveniently mutating pieces of data larger than a
single machine word.

Guarantees of libpmemobj's APIs

The transactional, atomic allocation, and reserve/publish APIs within 1ibpmemobj all
provide fail-safe atomicity and consistency.

The transactional API ensures the durability of any modifications of memory for
an object that has been added to the transaction. An exception is when the POBJ_X***
NO_FLUSH flag is used, in which case the application is responsible for either flushing
that memory range itself or using the memcpy-1ike functions from libpmemobj. The
no-flush flag does not provide any isolation between threads, meaning partial writes are
immediately visible to other threads.

The atomic allocation API requires that applications flush the writes done by the
object’s constructor. This ensures durability if the operation succeeded. It is the only API
that provides full isolation between threads.

The reserve/publish API requires explicit flushes of writes to memory blocks
allocated via pmemobj reserve() that will flush writes done via pmemobj_set value().
There is no isolation between threads, although no modifications go live until pmemobj
publish() starts, allowing you to take explicit locks for just the publishing stage.

Using terms known from databases, the isolation levels provided are

o Transactional API: READ_UNCOMMITTED
e Atomic allocations API: READ_COMMITTED

o Reserve/publish API: READ_COMMITTED until publishing starts, then
READ_UNCOMMITTED
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Managing Library Behavior

The pmemobj_set funcs() function allows an application to override memory allocation
calls used internally by 1ibpmemobj. Passing in NULL for any of the handlers will cause
the 1ibpmemobj default function to be used. The library does not make heavy use of the
system malloc() functions, but it does allocate approximately 4-8 kilobytes for each
memory pool in use.

By default, 1ibpmemobj supports up to 1024 parallel transactions/allocations. For
debugging purposes, it is possible to decrease this value by setting the PMEMOB]_NLANES
shell environment variable to the desired limit. For example, at the shell prompt, run
"export PMEMOB]_NLANES=512" then run the application:

$ export PMEMOB] NLANES=512
$ ./my_app

To return to the default behavior, unset PMEMOBJ_NLANES using

$ unset PMEMOBJ NLANES

Debugging and Error Handling

If an error is detected during the call to a 1ibpmemobj function, the application

may retrieve an error message describing the reason for the failure from pmemob7j
errormsg() . This function returns a pointer to a static buffer containing the last error
message logged for the current thread. If errno was set, the error message may include
a description of the corresponding error code as returned by strerror(3). The error
message buffer is thread local; errors encountered in one thread do not affect its value
in other threads. The buffer is never cleared by any library function; its content is
significant only when the return value of the immediately preceding call to a 1ibpmemobj
function indicated an error, or if errno was set. The application must not modify or free
the error message string, but it may be modified by subsequent calls to other library
functions.

Two versions of 1ibpmemobj are typically available on a development system. The
non-debug version is optimized for performance and used when a program is linked
using the -1pmemobj option. This library skips checks that impact performance, never
logs any trace information, and does not perform any runtime assertions.
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A debug version of 1ibpmemobj is provided and available in /usx/1ib/pmdk_debug
or /usr/local/1ib64/pmdk_debug. The debug version contains runtime assertions and
tracepoints.

The common way to use the debug version is to set the environment variable LD _
LIBRARY_PATH. Alternatively, you can use LD_PRELOAD to point to /usr/1ib/pmdk_debug
or /usr/1ib64/pmdk_debug, as appropriate. These libraries may reside in a different
location, such as /usr/local/lib/pmdk_debug and /usr/local/lib64/pmdk_debug,
depending on your Linux distribution or if you compiled installed PMDK from source
code and chose /usr/local as the installation path. The following examples are
equivalent methods for loading and using the debug versions of 1ibpmemobj with an
application called my_app:

$ export LD LIBRARY_PATH=/usr/1ib64/pmdk_debug
$ ./my_app

Or

$ LD_PRELOAD=/usr/1ib64/pmdk_debug ./my_app

The output provided by the debug library is controlled using the PMEMOB]_LOG_LEVEL
and PMEMOBJ _LOG_FILE environment variables. These variables have no effect on the
non-debug version of the library.

PMEMOBJ_LOG_LEVEL
The value of PMEMOB]_LOG_LEVEL enables tracepoints in the debug version of the
library, as follows:

1. Thisis the default level when PMEMOBJ] _LOG_LEVEL is not set. No
log messages are emitted at this level.

2. Additional details on any errors detected are logged, in addition to
returning the errno-based errors as usual. The same information

may be retrieved using pmemobj_errormsg().
3. Atrace of basic operations is logged.

4. Enables an extensive amount of function-call tracing in the
library.

5. Enables voluminous and fairly obscure tracing information that is
likely only useful to the 1ibpmemobj developers.
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Debug output is written to STDERR unless PMEMOBJ _LOG FILE is set. To set a debug
level, use

$ export PMEMOBIJ LOG_LEVEL=2
$ ./my_app

PMEMOBJ_LOG_FILE

The value of PMEMOB] _LOG_FILE includes the full path and file name of a file where all
logging information should be written. If PMEMOB] _LOG_FILE is not set, logging output is
written to STDERR.

The following example defines the location of the log file to /var/tmp/1libpmemobj
debug.log, ensures we are using the debug version of 1ibpmemobj when executing
my_app in the background, sets the debug log level to 2, and monitors the log in real time
using tail -f:

$ export PMEMOB] LOG FILE=/var/tmp/libpmemobj debug.log
$ export PMEMOBJ LOG LEVEL=2

$ LD_PRELOAD=/usr/1ib64/pmdk_debug ./my app &

$ tail -f /var/tmp/libpmemobj debug.log

If the last character in the debug log file name is "-", the process identifier (PID) of
the current process will be appended to the file name when the log file is created. This is

useful if you are debugging multiple processes.

Summary

This chapter describes the 1ibpmemobj library, which is designed to simplify persistent
memory programming. By providing APIs that deliver atomic operations, transactions,
and reserve/publish features, it makes creating applications less error prone while
delivering guarantees for data integrity.
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Open Access This chapter is licensed under the terms of the Creative

Commons Attribution 4.0 International License (http://creativecommons.
org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution and
reproduction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need
to obtain permission directly from the copyright holder.
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CHAPTER 8

libpmemobj-cpp:

The Adaptable Language -
C++ and Persistent
Memory

Introduction

The Persistent Memory Development Kit (PMDK) includes several separate libraries;
each is designed with a specific use in mind. The most flexible and powerful one is
libpmemobj. It complies with the persistent memory programming model without
modifying the compiler. Intended for developers of low-level system software and
language creators, the 1ibpmemobj library provides allocators, transactions, and a way
to automatically manipulate objects. Because it does not modify the compiler, its API is
verbose and macro heavy.

To make persistent memory programming easier and less error prone, higher-
level language bindings for 1ibpmemobj were created and included in PMDK. The C++
language was chosen to create new and friendly API to 1ibpmemobj called 1ibpmemobj-
cpp, which is also referred to as 1ibpmemobj++. C++ is versatile, feature rich, has a
large developer base, and it is constantly being improved with updates to the C++
programming standard.

The main goal for the 1ibpmemobj-cpp bindings design was to focus modifications to
volatile programs on data structures and not on the code. In other words, 1ibpmemobj-
cpp bindings are for developers, who want to modify volatile applications, provided with
a convenient API for modifying structures and classes with only slight modifications to
functions.
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This chapter describes how to leverage the C++ language features that support
metaprogramming to make persistent memory programming easier. It also describes
how to make it more C++ idiomatic by providing persistent containers. Finally, we
discuss C++ standard limitations for persistent memory programming, including an

object’s lifetime and the internal layout of objects stored in persistent memory.

Metaprogramming to the Rescue

Metaprogramming is a technique in which computer programs have the ability to treat
other programs as their data. It means that a program can be designed to read, generate,
analyze or transform other programs, and even modify itself while running. In some
cases, this allows programmers to minimize the number of lines of code to express a
solution, in turn reducing development time. It also allows programs greater flexibility to
efficiently handle new situations without recompilation.

For the 1ibpmemobj-cpp library, considerable effort was put into encapsulating
the PMEMoids (persistent memory object IDs) with a type-safe container. Instead of a
sophisticated set of macros for providing type safety, templates and metaprogramming
are used. This significantly simplifies the native C 1ibpmemobj API.

Persistent Pointers

The persistent memory programming model created by the Storage Networking Industry
Association (SNIA) is based on memory-mapped files. PMDK uses this model for its
architecture and design implementation. We discussed the SNIA programming model in
Chapter 3.

Most operating systems implement address space layout randomization (ASLR).
ASLR is a computer security technique involved in preventing exploitation of memory
corruption vulnerabilities. To prevent an attacker from reliably jumping to, for example,
a particular exploited function in memory, ASLR randomly arranges the address space
positions of key data areas of a process, including the base of the executable and the
positions of the stack, heap, and libraries. Because of ASLR, files can be mapped at
different addresses of the process address space each time the application executes.

As aresult, traditional pointers that store absolute addresses cannot be used. Upon
each execution, a traditional pointer might point to uninitialized memory for which
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dereferencing it may result in a segmentation fault. Or it might point to a valid memory
range, but not the one that the user expects it to point to, resulting in unexpected and
undetermined behavior.

To solve this problem in persistent memory programming, a different type of pointer
is needed. 1ibpmemobj introduced a C struct called PMEMoid, which consists of an
identifier of the pool and an offset from its beginning. This fat pointer is encapsulated
in 1ibpmemobj C++ bindings as a template class pmem: :0bj: :persistent ptr. Both
the C and C++ implementations have the same 16-byte footprint. A constructor
from raw PMEMo1id is provided so that mixing the C API with C++ is possible. The
pmem: :obj::persistent ptr issimilar in concept and implementation to the smart
pointers introduced in C++11 (std: :shared_ptr, std::auto_ptr, std::unique ptr, and
std: :weak_ptr), with one big difference - it does not manage the object’s life cycle.

Besides operator*, operator->, operator|[ ], and typedefs for compatibility with
std::pointer traitsandstd::iterator_traits, the pmem::obj::persistent ptr
also has defined methods for persisting its contents. The pmem: :0bj: :persistent_ptr
can be used in standard library algorithms and containers.

Transactions

Being able to modify more than 8 bytes of storage at a time atomically is imperative for
most nontrivial algorithms one might want to use in persistent memory. Commonly, a
single logical operation requires multiple stores. For example, an insert into a simple list-
based queue requires two separate stores: a tail pointer and the next pointer of the last
element. To enable developers to modify larger amounts of data atomically, with respect
to power-fail interruptions, the PMDK library provides transaction support in some of
its libraries. The C++ language bindings wrap these transactions into two concepts: one,
based on the resource acquisition is initialization (RAII) idiom and the other based on
a callable std: : function object. Additionally, because of some C++ standard issues,
the scoped transactions come in two flavors: manual and automatic. In this chapter we
only describe the approach with std: : function object. For information about RAII-
based transactions, refer to 1ibpmemobj-cpp documentation (https://pmem.io/pmdk/
cpp_obj/).

The method which uses std: : functionis declared as

void pmem::obj::transaction::run(pool base &pop,
std::function<void ()> tx, Locks&... locks)
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The locks parameter is a variadic template. Thanks to the std: : function, a myriad
of types can be passed in to run. One of the preferred ways is to pass a lambda function
as the tx parameter. This makes the code compact and easier to analyze. Listing 8-1
shows how lambda can be used to perform work in a transaction.

Listing 8-1. Function object transaction

45 // execute a transaction

46 pmem: :obj::transaction::run(pop, [&]() {
47 // do transactional work

48 IOk

Of course, this API is not limited to just lambda functions. Any callable target can
be passed as tx, such as functions, bind expressions, function objects, and pointers
to member functions. Since run is a normal static member function, it has the benefit
of being able to throw exceptions. If an exception is thrown during the execution of
a transaction, it is automatically aborted, and the active exception is rethrown so
information about the interruption is not lost. If the underlying C library fails for any
reason, the transaction is also aborted, and a C++ library exception is thrown. The
developer is no longer burdened with the task of checking the status of the previous
transaction.

libpmemobj-cpp transactions provide an entry point for persistent memory resident
synchronization primitives such as pmem: :obj: :mutex, pmem: :obj: :shared_mutex and
pmem: :obj::timed mutex. l1ibpmemobj ensures that all locks are properly reinitialized
when one attempts to acquire a lock for the first time. The use of pmem locks is
completely optional, and transactions can be executed without them. The number of
supplied locks is arbitrary, and the types can be freely mixed. The locks are held until
the end of the given transaction, or the outermost transaction in the case of nesting. This
means when transactions are enclosed by a try-catch statement, the locks are released
before reaching the catch clause. This is extremely important in case some kind of
transaction abort cleanup needs to modify the shared state. In such a case, the necessary
locks need to be reacquired in the correct order.
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Snapshotting

The C library requires manual snapshots before modifying data in a transaction. The
C++ bindings do all of the snapshotting automatically, to reduce the probability of
programmer error. The pmem: :obj: :p template wrapper class is the basic building block
for this mechanism. It is designed to work with basic types and not compound types
such as classes or PODs (Plain Old Data, structures with fields only and without any
object-oriented features). This is because it does not define operator->() and there is
no possibility to implement operator. (). The implementation of pmem: :0bj: :p is based
on the operator=(). Each time the assignment operator is called, the value wrapped

by p will be changed, and the library needs to snapshot the old value. In addition to
snapshotting, the p<> template ensures the variable is persisted correctly, flushing data if
necessary. Listing 8-2 provides an example of using the p<> template.

Listing 8-2. Using the p<> template to persist values correctly

39 struct bad example {

40 int some_int;

41 float some float;

42 s

43

44 struct good example {

45 pmem: :obj::p<int> pint;

46 pmem: :obj::p<float> pfloat;
47}

48

49 struct root {

50 bad_example bad;

51 good_example good;

52 s

53

54 int main(int argc, char *argv[]) {
55 auto pop = pmem::obj::pool<root>::open("/daxfs/file", "p");
56

57 auto r = pop.root();

58
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59 pmem: :obj::transaction::run(pop, [&]() {
60 r->bad.some_int = 10;

61 r->good.pint = 10;

62

63 r->good.pint += 1;

64 }s

65

66 return 0;

67 }

e Lines 39-42: Here, we declare a bad_example structure with two
variables - some_int and some_float. Storing this structure on
persistent memory and modifying it are dangerous because data is
not snapshotted automatically.

o Lines 44-47: We declare the good_example structure with two p<>
type variables - pint and pfloat. This structure can be safely stored
on persistent memory as every modification of pint or pfloatina
transaction will perform a snapshot.

o Lines 55-57: Here, we open a persistent memory pool, created
already using the pmempool command, and obtain a pointer to the
root object stored within the root variable.

o Line 60: We modify the integer value from the bad_example structure.
This modification is not safe because we do not add this variable to
the transaction; hence it will not be correctly made persistent if there
is an unexpected application or system crash or power failure.

o Line 61: Here, we modify integer value wrapped by p<> template. This
is safe because operator=() will automatically snapshot the element.

o Line 63: Using arithmetic operators on p<> (if the underlying type
supports it) is also safe.

Allocating

Aswith std: :shared ptr, the pmem::obj::persistent ptr comes with a set of allocating
and deallocating functions. This helps allocate memory and create objects, as well as
destroy and deallocate the memory. This is especially important in the case of persistent
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memory because all allocations and object construction/destruction must be done
atomically with respect to power-fail interruptions. The transactional allocations use
perfect forwarding and variadic templates for object construction. This makes object
creation similar to calling the constructor and identical to std: :make_shared. The
transactional array creation, however, requires the objects to be default constructible.
The created arrays can be multidimensional. The pmem: :ob7j: :make persistent and
pmem: :obj: :make persistent array must be called within a transaction; otherwise, an
exception is thrown. During object construction, other transactional allocations can be
made, and that is what makes this API very flexible. The specifics of persistent memory
required the introduction of the pmem: :0bj: :delete persistent function, which
destroys objects and arrays of objects. Since the pmem: :0bj: :persistent ptr doesnot
automatically handle the lifetime of pointed to objects, the user is responsible for disposing
of the ones that are no longer in use. Listing 8-3 shows example of transaction allocation.

Atomic allocations behave differently as they do not return a pointer. Developers
must provide a reference to one as the function’s argument. Because atomic allocations
are not executed in the context of a transaction, the actual pointer assignment must be
done through other means. For example, by redo logging the operation. Listing 8-3 also
provides an example of atomic allocation.

Listing 8-3. Example of transactional and atomic allocations

39 struct my data {

40 my data(int a, int b): a(a), b(b) {

41

42 }

43

44 int a;

45 int b;

46 s

47

48 struct root {

49 pmem: :obj::persistent ptr<my data> mdata;
50 )

51

52 int main(int argc, char *argv[]) {

53 auto pop = pmem::obj::pool<root>::open("/daxfs/file", "tx");
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54

55 auto r = pop.root();

56

57 pmem: :obj::transaction::run(pop, [&]() {

58 r->mdata = pmem::obj::make_persistent<my data>(1, 2);

59 1;

60

61 pmem: :obj::transaction::run(pop, [&]() {

62 pmem: :obj::delete persistent<my data>(r->mdata);

63 };

64 pmem: :0b7j: :make_persistent atomic<my data>(pop, r->mdata,
2, 3);

65

66 return 0;

67 }

o Line 58: Here, we allocate my_data object transactionally. Parameters
passed to make_persistent will be forwarded tomy_data constructor.
Note that assignment to r->mdata will perform a snapshot of old
persistent pointer’s value.

o Line 62: Here, we delete the my_data object. delete_persistent will
call the object’s destructor and free the memory.

e Line 64: We allocate my _data object atomically. Calling this function
cannot be done inside of a transaction.

C++ Standard limitations

The C++ language restrictions and persistent memory programming paradigm imply
serious restrictions on objects which may be stored on persistent memory. Applications
can access persistent memory with memory-mapped files to take advantage of its byte
addressability thanks to 1ibpmemobj and SNIA programming model. No serialization
takes place here, so applications must be able to read and modify directly from the
persistent memory media even after the application was closed and reopened or after a

power failure event.
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What does the preceding mean from a C++ and libpmemobj’s perspective? There are
four major problems:
1. Object lifetime
2. Snapshotting objects in transactions
3. Fixed on-media layout of stored objects
4. Pointers as object members

These four problems will be described in next four sections.

An Object’s Lifetime

The lifetime of an object is described in the [basic.life] section of the C++ standard
(https://isocpp.org/std/the-standard):

The lifetime of an object or reference is a runtime property of the object or
reference. A variable is said to have vacuous initialization if it is default-
initialized and, if it is of class type or a (possibly multi-dimensional) array
thereof, that class type has a trivial default constructor. The lifetime of an
object of type T begins when:

(1.1) storage with the proper alignment and size for type T is obtained, and

(1.2) its initialization (if any) is complete (including vacuous initializa-
tion) ([dcl.init]), except that if the object is a union member or subobject
thereof, its lifetime only begins if that union member is the initialized mem-
ber in the union ([dcl.init.aggr], [class.base.init]), or as described in [class.
union]. The lifetime of an object of type T ends when:

(1.3) if T is a non-class type, the object is destroyed, or
(1.4) if Tis a class type, the destructor call starts, or

(1.5) the storage which the object occupies is released, or is reused by an
object that is not nested within o ([intro.object]).

The standard states that properties ascribed to objects apply for a given object only
during its lifetime. In this context, the persistent memory programming problem is
similar to transmitting data over a network, where the C++ application is given an array
of bytes but might be able to recognize the type of object sent. However, the object was
not constructed in this application, so using it would result in undefined behavior.
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This problem is well known and is being addressed by the WG21 C++ Standards
Committee Working Group (https://isocpp.org/std/the-committee and http://
www.open-std.org/jtcl/sc22/wg21/).

Currently, there is no possible way to overcome the object-lifetime obstacle and
stop relying on undefined behavior from C++ standard’s point of view. libpmemobj-cpp
is tested and validated with various C++11 compliant compilers and use case scenarios.
The only recommendation for 1ibpmemobj-cpp users is that they must keep this
limitation in mind when developing persistent memory applications.

Trivial Types

Transactions are the heart of 1ibpmemobj. That is why 1ibpmemobj-cpp was implemented
with utmost care while designing the C++ versions so they are as easy to use as possible.
Developers do not have to know the implementation details and do not have to worry about
snapshotting modified data to make undo log-based transaction works. A special semi-
transparent template property class has been implemented to automatically add variable
modifications to the transaction undo log, which is described in the “Snapshotting” section.

But what does snapshotting data mean? The answer is very simple, but the
consequences for C++ are not. 1ibpmemobj implements snapshotting by copying data of
given length from a specified address to another address using memcpy (). If a transaction
aborts or a system power loss occurs, the data will be written from the undo log when the
memory pool is reopened. Consider a definition of the following C++ object, presented
in Listing 8-4, and think about the consequences that a memcpy () has on it.

Listing 8-4. An example showing an unsafe memcpy() on an object

35 class nonTriviallyCopyable {

36 private:

37 int* i;

38 public:

39 nonTriviallyCopyable (const nonTriviallyCopyable & from)
40 {

41 /* perform non-trivial copying routine */

42 i = new int(*from.i);

43 }

44 };
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Deep and shallow copying is the simplest example. The gist of the problem is that
by copying the data manually, we may break the inherent behavior of the object which
may rely on the copy constructor. Any shared or unique pointer would be another great
example - by simple copying it with memcpy (), we break the "deal" we made with that
class when we used it, and it may lead to leaks or crashes.

The application must handle many more sophisticated details when it manually
copies the contents of an object. The C++11 standard provides a <type_traits>
type traitand std: :is_trivially copyable, which ensure a given type satisfies the
requirements of TriviallyCopyable. Referring to C++ standard, an object satisfies the
TriviallyCopyable requirements when

A trivially copyable class is a class that:

— has no non-trivial copy constructors (12.8),

— has no non-trivial move constructors (12.8),

— has no non-trivial copy assignment operators (13.5.3, 12.8),

— has no non-trivial move assignment operators (13.5.3, 12.8), and
— has a trivial destructor (12.4).

A trivial class is a class that has a trivial default constructor (12.1) and is
trivially copyable.

[Note: In particular, a trivially copyable or trivial class does not have vir-
tual functions or virtual base classes. |

The C++ standard defines nontrivial methods as follows:
A copy/move constructor for class X is trivial if it is not user-provided and if

— class X has no virtual functions (10.3) and no virtual base classes (10.1),
and

— the constructor selected to copy/move each direct base class subobject is
trivial, and

— for each non-static data member of X that is of class type (or array
thereof), the constructor selected to copy/move that member is trivial;

otherwise, the copy/move constructor is non-trivial.
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This means that a copy or move constructor is trivial if it is not user provided.
The class has nothing virtual in it, and this property holds recursively for all the members
of the class and for the base class. As you can see, the C++ standard and 1ibpmemobj
transaction implementation limit the possible objects type to store on persistent
memory to satisfy requirements of trivial types, but the layout of our objects must be
taken into account.

Object Layout

Object representation, also referred to as the layout, might differ between compilers,
compiler flags, and application binary interface (ABI). The compiler may do some
layout-related optimizations and is free to shuffle order of members with same specifier
type - for example, public then protected, then public again. Another problem related
to unknown object layout is connected to polymorphic types. Currently there is no
reliable and portable way to implement vtable rebuilding after reopening the memory
pool, so polymorphic objects cannot be supported with persistent memory.

If we want to store objects on persistent memory using memory-mapped files and
to follow the SNIA NVM programming model, we must ensure that the following casting
will be always valid:

someType A = *reinterpret_cast<someType*>(mmap(...));

The bit representation of a stored object type must be always the same, and our
application should be able to retrieve the stored object from the memory-mapped file
without serialization.

It is possible to ensure that specific types satisfy the aforementioned requirements.
C++11 provides another type trait called std: :is_standard_layout. The standard
mentions that it is useful for communicating with other languages, such as for creating
language bindings to native C++ libraries as an example, and that's why a standard-
layout class has the same memory layout of the equivalent C struct or union. A general
rule is that standard-layout classes must have all non-static data members with the same
access control. We mentioned this at the beginning of this section - that a C++ compliant
compiler is free to shuffle access ranges of the same class definition.

When using inheritance, only one class in the whole inheritance tree can have non-
static data members, and the first non-static data member cannot be of a base class type
because this could break aliasing rules. Otherwise, it is not a standard-layout class.
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The C++11 standard defines std: :is_standard layout as follows:
A standard-layout class is a class that:

— has no non-static data members of type non-standard-layout class (or
array of such types) or reference,

— has no virtual functions (10.3) and no virtual base classes (10.1),
— has the same access control (Clause 11) for all non-static data members,
— has no non-standard-layout base classes,

— either has no non-static data members in the most derived class and at
most one base class with non-static data members, or has no base classes
with non-static data members, and

— has no base classes of the same type as the first non-static data member.

A standard-layout struct is a standard-layout class defined with the class-
key struct or the class-key class.

A standard-layout union is a standard-layout class defined with the class-
key union.

[ Note: Standard-layout classes are useful for communicating with code
written in other programming languages. Their layout is specified in 9.2.]

Having discussed object layouts, we look at another interesting problem with pointer
types and how to store them on persistent memory.

Pointers

In previous sections, we quoted parts of the C++ standard. We were describing the limits
of types which were safe to snapshot and copy and which we can binary-cast without
thinking of fixed layout. But what about pointers? How do we deal with them in our
objects as we come to grips with the persistent memory programming model? Consider
the code snippet presented in Listing 8-5 which provides an example of a class that uses
avolatile pointer as a class member.
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Listing 8-5. Example of class with a volatile pointer as a class member

39 struct root {

40 int* vptri;

41 int* vptr2;

2 )

43

44 int main(int argc, char *argv[]) {

45 auto pop = pmem::obj::pool<root>::open("/daxfs/file", "tx");
46

47 auto r = pop.root();

48

49 int a1 = 1;

50

51 pmem: :obj: :transaction::run(pop, [&](){

52 auto ptr = pmem::obj::make persistent<int>(0);
53 r->vptrl = ptr.get();

54 r->vptr2 = &ail;

55 D;

56

57 return O;

58 }

o Lines 39-42: We create a root structure with two volatile pointers as
members.

o Lines 51-52: Our application is assigning, transactionally, two virtual
addresses. One to an integer residing on the stack and the second to
an integer residing on persistent memory. What will happen if the
application crashes or exits after execution of the transaction and we
execute the application again? Since the variable a1 was residing on
the stack, the old value vanished. But what is the value assigned to
vptr1? Even if it resides on persistent memory, the volatile pointer
is no longer valid. With ASLR we are not guaranteed to get the same
virtual address again if we call mmap (). The pointer could point to
something, nothing, or garbage.
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As shown in the preceding example, it is very important to realize that storing
volatile memory pointers in persistent memory is almost always a design error.
However, using the pmem: :0obj: :persistent ptr<> class template is safe. It provides
the only way to safely access specific memory after an application crash. However,
the pmem: :obj: :persistent_ptr<> type does not satisfy TriviallyCopyable
requirements because of explicitly defined constructors. As a result, an object with a
pmem: :obj::persistent_ptr<> member will not pass the std::is_trivially copyable
verification check. Every persistent memory developer should always check whether
pmem: :obj::persistent_ptr<> could be copied in that specific case and that it will
not cause errors and persistent memory leaks. Developers should realize that std: :is_
trivially copyable is a syntax check only and it does not test the semantics. Using
pmem: :obj::persistent ptr<> in this context leads to undefined behavior. There is no
single solution to the problem. At the time of writing this book, the C++ standard does
not yet fully support persistent memory programming, so developers must ensure that
copying pmem: :obj: :persistent_ptr<> is safe to use in each case.

Limitations Summary

C++11 provides several very useful type traits for persistent memory programming.
These are

o template <typename T>
struct std::is_pod;
o template <typename T>
struct std::is_trivial;
o template <typename T>
struct std::is_trivially copyable;
o template <typename T>
struct std::is_standard layout;

They are correlated with each other. The most general and restrictive is the definition
of a POD type shown in Figure 8-1.
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Figure 8-1. Correlation between persistent memory-related C++ type traits

We mentioned previously that a persistent memory resident class must satisfy the
following requirements:

e std::is trivially copyable
e std::is standard layout

Persistent memory developers are free to use more restrictive type traits if required.
If we want to use persistent pointers, however, we cannot rely on type traits, and we
must be aware of all problems related to copying objects with memcpy () and the layout
representation of objects. For persistent memory programming, a format description or
standardization of the aforementioned concepts and features needs to take place within
the C++ standards body group such that it can be officially designed and implemented.
Until then, developers must be aware of the restrictions and limitations to manage
undefined object-lifetime behavior.

Persistence Simplified

Consider a simple queue implementation, presented in Listing 8-6, which stores
elements in volatile DRAM.

Listing 8-6. An implementation of a volatile queue

33 #include <cstdio>
34 #include <cstdlib>
35 #include <iostream>
36 #include <string>
37
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struct queue_node {

int

value;

struct queue _node *next;

};

struct queue {

void

push(int value)

{
auto node = new queue_node;
node->value = value;
node->next = nullptr;
if (head == nullptr) {
head = tail = node;
} else {
tail->next = node;
tail = node;
}
}
int
pop()
{

if (head == nullptr)
throw std::out _of range("no elements");

auto head ptr = head;
auto value = head->value;

head = head->next;
delete head ptr;

if (head == nullptr)
tail = nullptr;

127

www. dbooks. or g


https://www.dbooks.org/

CHAPTER 8

74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92

LIBPMEMOBJ-CPP: THE ADAPTABLE LANGUAGE - C++ AND PERSISTENT MEMORY

return value;

}
void
show()
{
auto node = head;
while (node != nullptr) {
std::cout << "show: " << node->value << std::endl;
node = node->next;
}
std::cout << std::endl;
}
private:
queue_node *head = nullptr;
queue_node *tail = nullptr;

b

Lines 38-40: We declare layout of the queue_node structure. It stores
an integer value and a pointer to the next node in the list.

Lines 44-57: We implement push () method which allocates new
node and sets its value.

Lines 59-75: We implement pop () method which deletes the first
element in the queue.

Lines 77-87: The show() method walks the list and prints the contents
of each node to standard out.

The preceding queue implementation stores values of type int in a linked list and
provides three basic methods: push(), pop(), and show().

In this section, we will demonstrate how to modify your volatile structure to store

elements in persistent memory with 1ibpmemobj-cpp bindings. All the modifier methods

should provide atomicity and consistency properties which will be guaranteed by the

use of transactions.
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Changing a volatile application to start taking advantage of persistent memory
should rely on modifying structures and classes with only slight modifications to
functions. We will begin by modifying the queue_node structure by changing its layout as
shown in Listing 8-7.

Listing 8-7. A persistent queue implementation - modifying the queue_node struct

38 #include <libpmemobj++/make persistent.hpp>
39 #include <libpmemobj++/p.hpp>

40 #include <libpmemobj++/persistent ptr.hpp>
41 #include <libpmemobj++/pool.hpp>

42 #include <libpmemobj++/transaction.hpp>

43

44 struct queue_node {

45 pmem: :obj::p<int> value;

46 pmem: :obj::persistent ptr<queue node> next;
47  };

48

49 struct queue {

100 private:

101 pmem: :obj::persistent_ptr<queue_node> head = nullptr;
102 pmem: :obj::persistent_ptr<queue_node> tail = nullptr;
103 };

As you can see, all the modifications are limited to replace the volatile pointers with
pmem:obj::persistent_ptr and to start using the p<> property.
Next, we modify a push() method, shown in Listing 8-8.

Listing 8-8. A persistent queue implementation - a persistent push() method

50 void

51 push(pmem: :obj::pool base &pop, int value)

52 {

53 pmem: :obj::transaction::run(pop, [&]{

54 auto node = pmem::obj::make persistent<queue node>();
55 node->value = value;
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56 node->next = nullptr;
57

58 if (head == nullptr) {
59 head = tail = node;
60 } else {

61 tail->next = node;
62 tail = node;

63 }

64 1

65 }

All the modifiers methods must be aware on which persistent memory pool they
should operate on. For a single memory pool, this is trivial, but if the application
memory maps files from different file systems, we need to keep track of which pool has
what data. We introduce an additional argument of type pmem: :0bj: :pool_base to solve
this problem. Inside the method definition, we are wrapping the code with a transaction
by using a C++ lambda expression, [&], to guarantee atomicity and consistency of
modifications. Instead of allocating a new node on the stack, we call pmem: :obj: :make_
persistent<>() to transactionally allocate it on persistent memory.

Listing 8-9 shows the modification of the pop() method.

Listing 8-9. A persistent queue implementation - a persistent pop() method

67 int

68 pop(pmem: :obj::pool base &pop)

69 {

70 int value;

71 pmem: :obj::transaction::run(pop, [&]{

72 if (head == nullptr)

73 throw std::out_of range("no elements");
74

75 auto head ptr = head;

76 value = head->value;

77

78 head = head->next;

79 pmem: :obj::delete persistent<queue node>(head ptr);
80
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if (head == nullptr)
tail = nullptr;
1;

return value;

}

The logic of pop() is wrapped within a 1ibpmemob7j-cpp transaction. The only

additional modification is to exchange call to volatile delete with transactional
pmem: :obj::delete persistent<>().

The show() method does not modify anything on either volatile DRAM or persistent
memory, so we do not need to make any changes to it since the pmem:obj: :persistent

ptr implementation provides operator->.

To start using the persistent version of this queue example, our application can

associate it with a root object. Listing 8-10 presents an example application that uses our

persistent queue.

Listing 8-10. Example of application that uses a persistent queue

39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56

#include "persistent queue.hpp"

enum queue_op {
PUSH,
POP,
SHOW,
EXIT,
MAX_OPS,

};
const char *ops str[MAX OPS] = {"push", "pop", "show", "exit"};

queue_op
parse_queue_ops(const std::string &ops)
{
for (int i = 0; i < MAX OPS; i++) {
if (ops == ops_str[i]) {
return (queue_op)i;
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}

}
return MAX_OPS;

int
main(int argc, char *argv[])
{
if (argc < 2) {
std::cerr << "Usage:
<< std::endl;
return 1;

<< argv[0] << " path_to pool"

auto path = argv[1];
pmem: :obj: :pool<queue> pool;

try {
pool = pmem::obj::pool<queue>::open(path, "queue");
} catch(pmem::pool error &e) {
std::cerr << e.what() << std::endl;
std::cerr << "To create pool run: pmempool create obj
--layout=queue -s 100M path to pool" << std::endl;

auto q = pool.root();

while (1) {
std::cout << "[push value|pop|show|exit]" << std::endl;

std::string command;
std::cin >> command;

// parse string
auto ops = parse queue ops(std::string(command));
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switch (ops) {
case PUSH: {
int value;
std::cin >> value;

g->push(pool, value);

break;
}
case POP: {
std::cout << g->pop(pool) << std::endl;
break;
}
case SHOW: {
q->show();
break;
}
case EXIT: {
exit(0);
}
default: {
std::cerr << "unknown ops" << std::endl;
exit(0);
}

The Ecosystem

The overall goal for the libpmemobj C++ bindings was to create a friendly and less

error-prone API for persistent memory programming. Even with persistent memory

pool allocators, a convenient interface for creating and managing transactions,

auto-snapshotting class templates and smart persistent pointers, and designing
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an application with persistent memory usage may still prove challenging without
alot of niceties that the C++ programmers are used to. The natural step forward to
make persistent programming easier was to provide programmers with efficient and

useful containers.

Persistent Containers

The C++ standard library containers collection is something that persistent memory
programmers may want to use. Containers manage the lifetime of held objects
through allocation/creation and deallocation/destruction with the use of allocators.
Implementing custom persistent allocator for C++ STL (Standard Template Library)
containers has two main downsides:

o Implementation details:

e STL containers do not use algorithms optimal for a persistent
memory programming point of view.

e Persistent memory containers should have durability and
consistency properties, while not every STL method guarantees
strong exception safety.

e Persistent memory containers should be designed with an
awareness of fragmentation limitations.

e Memory layout:

e The STL does not guarantee that the container layout will remain

unchanged in new library versions.

Due to these obstacles, the 1ibpmemobj-cpp contains the set of custom,
implemented-from-scratch, containers with optimized on-media layouts and
algorithms to fully exploit the potential and features of persistent memory. These
methods guarantee atomicity, consistency, and durability. Besides specific internal
implementation details, 1ibpmemobj-cpp persistent memory containers have a well-
known STL-like interface, and they work with STL algorithms.
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Examples of Persistent Containers

Since the main goal for the 1ibpmemobj-cpp design is to focus modifications to volatile
programs on data structures and not on the code, the use of 1ibpmemobj-cpp persistent
containers is almost the same as for their STL counterparts. Listing 8-11 shows a
persistent vector example to showcase this.

Listing 8-11. Allocating a vector transactionally using persistent containers

33 #include <libpmemobj++/make persistent.hpp>

34 #include <libpmemobj++/transaction.hpp>

35 #include <libpmemobj++/persistent ptr.hpp>

36 #include <libpmemobj++/pool.hpp>

37 #include "libpmemobj++/vector.hpp"

38

39 using vector type = pmem::obj::experimental::vector<int>;
40

41 struct root {

42 pmem: :obj: :persistent ptr<vector type> vec p;

43}

44

63

64 /* creating pmem::obj::vector in transaction */

65 pmem: :obj::transaction::run(pool, [&] {

66 root->vec_p = pmem::obj::make persistent<vector type>
(/* optional constructor arguments */);

67 1

68

69 vector type 8pvector = *(root->vec p);

Listing 8-11 shows that a pmem: :0bj: : vector must be created and allocated in
persistent memory using transaction to avoid an exception being thrown. The vector
type constructor may construct an object by internally opening another transaction.
In this case, an inner transaction will be flattened to an outer one. The interface and
semantics of pmem: :obj: :vector are similar to that of std: :vector, as Listing 8-12
demonstrates.
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Listing 8-12. Using persistent containers

71 pvector.reserve(10);

72 assert(pvector.size() == 0);

73 assert(pvector.capacity() == 10);

74

75 pvector = {0, 1, 2, 3, 4};

76 assert(pvector.size() == 5);

77 assert(pvector.capacity() == 10);

78

79 pvector.shrink to fit();

80 assert(pvector.size() == 5);

81 assert(pvector.capacity() == 5);

82

83 for (unsigned i = 0; i < pvector.size(); ++1i)

84 assert(pvector.const_at(i) == static_cast<int>(i));
85

86 pvector.push back(5);

87 assert(pvector.const_at(5) == 5);

88 assert(pvector.size() == 6);

89

90 pvector.emplace(pvector.cbegin(), pvector.back());
91 assert(pvector.const at(0) == 5);

92 for (unsigned i = 1; i < pvector.size(); ++i)

93 assert(pvector.const _at(i) == static_cast<int>(i - 1));

Every method that modifies persistent memory containers does so inside an implicit
transaction to guarantee full exception safety. If any of these methods are called inside
the scope of another transaction, the operation is performed in the context of that
transaction; otherwise, it is atomic in its own scope.

Iterating over pmem: :obj: : vector works exactly the same as std: :vector. We can
use the range-based indexing operator for loops or iterators. The pmem: :0bj: :vector
can also be processed using std: :algorithms, as shown in Listing 8-13.
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Listing 8-13. Iterating over persistent container and compatibility with STD

algorithms
95 std::vector<int> stdvector = {5, 4, 3, 2, 1};
96 pvector = stdvector;
97
98 try {
99 pmem: :obj::transaction::run(pool, [&] {
100 for (auto &e : pvector)
101 et++;
102 /* 6, 5, 4, 3, 2 */
103
104 for (auto it = pvector.begin();
it != pvector.end(); it++)
105 *it += 2;
106 /* 8, 7, 6, 5, 4 */
107
108 for (unsigned i = 0; i < pvector.size(); i++)
109 pvector[i]--;
110 /*7, 6,5, 4, 3%/
111
112 std::sort(pvector.begin(), pvector.end());
113 for (unsigned i = 0; i < pvector.size(); ++1i)
114 assert(pvector.const at(i) == static_cast<int>
(i+3));
115
116 pmem: :0bj: :transaction::abort(0);
117 1
118 } catch (pmem::manual tx abort &) {
119 /* expected transaction abort */
120 } catch (std::exception &e) {
121 std::cerr << e.what() << std::endl;
122 }
123
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124 assert(pvector == stdvector); /* pvector element's value was
rolled back */

125

126 try {

127 pmem: :obj::delete persistent<vector type>(8pvector);

128 } catch (std::exception &e) {

129 }

If an active transaction exists, elements accessed using any of the preceding methods
are snapshotted. When iterators are returned by begin() and end(), snapshotting
happens during the iterator dereferencing phase. Note that snapshotting is done only
for mutable elements. In the case of constant iterators or constant versions of indexing
operator, nothing is added to the transaction. That is why it is essential to use const
qualified function overloads such as cbegin() or cend() whenever possible. If an object
snapshot occurs in the current transaction, a second snapshot of the same memory
address will not be performed and thus will not have performance overhead. This will
reduce the number of snapshots and can significantly reduce the performance impact
of transactions. Note also that pmem: :0bj: :vector does define convenient constructors
and compare operators that take std: :vector as an argument.

Summary

This chapter describes the 1ibpmemobj-cpp library. It makes creating applications less
error prone, and its similarity to standard C++ API makes it easier to modify existing
volatile programs to use persistent memory. We also list the limitations of this library
and the problems you must consider during development.
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Open Access This chapter is licensed under the terms of the Creative

Commons Attribution 4.0 International License (http://creativecommons.
org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution and
reproduction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter's
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter's Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need
to obtain permission directly from the copyright holder.
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CHAPTER 9

pmemkv: A Persistent In-
Memory Key-Value Store

Programming persistent memory is not easy. In several chapters we have described
that applications that take advantage of persistent memory must take responsibility
for atomicity of operations and consistency of data structures. PMDK libraries like
libpmemobj are designed with flexibility and simplicity in mind. Usually, these are
conflicting requirements, and one has to be sacrificed for the sake of the other. The truth
is that in most cases, an API’s flexibility increases its complexity.

In the current cloud computing ecosystem, there is an unpredictable demand
for data. Consumers expect web services to provide data with predicable low-latency
reliability. Persistent memory’s byte addressability and huge capacity characteristics
make this technology a perfect fit for the broadly defined cloud environment.

Today, as greater numbers of devices with greater levels of intelligence are
connected to various networks, businesses and consumers are finding the cloud to
be an increasingly attractive option that enables fast, ubiquitous access to their data.
Increasingly, consumers are fine with lower storage capacity on endpoint devices in
favor of using the cloud. By 2020, IDC predicts that more bytes will be stored in the
public cloud than in consumer devices (Figure 9-1).

Consumer %

Enterprise %

Public Cloud %

Figure 9-1. Where is data stored? Source: IDC White Paper - #US44413318
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The cloud ecosystem, its modularity, and variety of service modes define
programming and application deployment as we know it. We call it cloud-native
computing, and its popularity results in a growing number of high-level languages,
frameworks, and abstraction layers. Figure 9-2 shows the 15 most popular languages on
GitHub based on pull requests.

AVASCRIPT -8 2.IM

JAVA S 1L

RUBY e

PHP N 114
G —
£ss ———& 33K
o —s 326K
—a
c —e 230K
TYPESCRIFT —e 207K
SHELL —e 206K
SWIFT —e WK

SCALA —a 93K

OBJECTIVE-C -8 BEK

Figure 9-2. The 15 most popular languages on GitHub by opened pull request
(2017). Source: https://octoverse.github.com/2017/

In cloud environments, the platform is typically virtualized, and applications are
heavily abstracted as to not make explicit assumptions about low-level hardware details.
The question is: how to make programming persistent memory easier in cloud-native
environment given the physical devices are local only to a specific server?

One of the answers is a key-value store. This data storage paradigm designed for
storing, retrieving, and managing associative arrays with straightforward API can easily
utilize the advantages of persistent memory. This is why pmemkv was created.
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pmemkv Architecture

There are many key-value data stores available on the market. They have different
features and licenses and their APIs are targeting different use cases. However, their core
API remains the same. All of them provide methods like put, get, remove, exists, open,
and close. At the time we published this book, the most popular key-value data store

is Redis. It is available in open source (https://redis.io/) and enterprise (https://
redislabs.com) versions. DB-Engines (https://db-engines.com) shows that Redis has
a significantly higher rank than any of its competitors in this sector.

1.  Redis 144,26
2. Amazon DynamoDB 56,42
3. Microsoft Azure Cosmos DB 29,08
4, Memcached 27,07
5. Hazelcast 8,27
6. Aerospike 6,59
74 Ehcache 6,56
8. Riak KV 6,06
9. OrientDB 5,69
10. ArangoDB 4,66
11. Ignite 4,26
12. Oracle NoSQL 3,46
13. InterSystems Caché 3,30
14. LevelDB 3,29
15. Oracle Berkeley DB 3,04

Figure 9-3. DB-Engines ranking of key-value stores (July 2019). Scoring method:
https://db-engines.com/en/ranking_definition. Source: https://db-
engines.com/en/ranking/key-value+store

Pmemkv was created as a separate project not only to complement PMDK’s set
of libraries with cloud-native support but also to provide a key-value API built for
persistent memory. One of the main goals for pmemkv developers was to create friendly
environment for open source community to develop new engines with the help of
PMDK and to integrate it with other programming languages. Pmemkv uses the same
BSD 3-Clause permissive license as PMDK. The native API of pmemkv is C and C++.
Other programming language bindings are available such as JavaScript, Java, and Ruby.
Additional languages can easily be added.
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Ruby
bindings
C++ API (header only)

pmemkv core (C++)

Figure 9-4. The architecture of pmemkv and programming languages support

The pmemkv API is similar to most key-value databases. Several storage engines
are available for flexibility and functionality. Each engine has different performance
characteristics and aims to solve different problems. Because of that, the functionality
provided by each engine differs. They can be described by the following characteristics:

o Persistence: Persistent engines guarantee that modifications are
retained and power-fail safe, while volatile ones keep its content only
for the application lifetime.

e Concurrency: Concurrent engines guarantee that some methods
such as get()/put()/remove() are thread-safe.

o Keys' ordering: "Sorted" engines provide range query methods (like
get_above()).

What makes pmembkv different from other key-value databases is that it provides
direct access to the data. This means reading data from persistent memory does not
require a copy into DRAM. This was already mentioned in Chapter 1 and is presented
again in Figure 9-5.
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Application
direct access

Key-value Library

Persistent Memory

Figure 9-5. Applications directly accessing data in place using pmemkv

Having direct access to the data significantly speeds up the application. This benefit
is most noticeable in situations where the program is only interested in a part of the
data stored in the database. In conventional approaches, this would require copying the
whole data in some buffer and returning it to the application. With pmemkv, we provide
the application a direct pointer, and the application reads only as much as it is needed.

To make the API fully functional with various engine types, a flexible pmemkv_config
structure was introduced. It stores engine configuration options and allows you to
tune its behavior. Every engine has documented all supported config parameters. The
pmembkv library was designed in a way that engines are pluggable and extendable
to support the developers own requirements. Developers are free to modify existing
engines or contribute new ones (https://github.com/pmem/pmemkv/blob/master/
CONTRIBUTING.md#engines).

Listing 9-1 shows a basic setup of the pmemkv_config structure using the native C
APL. All the setup code is wrapped around the custom function, config setup(), which
will be used in a phonebook example in the next section. You can see how error handling
is solved in pmemkv - all methods, except for pmemkv_close() and pmemkv_errormsg(),
return a status. We can obtain error message using the pmemkv_errormsg() function. A
complete list of return values can be found in pmemkv man page.
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Listing 9-1. pmembkv_config.h - An example of the pmemkv_config structure
using the C API

1 #include <cstdio>
2 #include <cassert>
3 #include <libpmemkv.h>
4
5 pmemkv_config* config setup(const char* path, const uint64 t fcreate,
const uint64 t size) {
6 pmemkv_config *cfg = pmemkv_config new();
7 assert(cfg != nullptr);
8
9 if (pmemkv_config put string(cfg, "path", path) != PMEMKV_STATUS OK) {
10 fprintf(stderr, "%s", pmemkv_errormsg());
11 return NULL;
12 }
13
14 if (pmemkv_config put uint64(cfg, "force create", fcreate) !=
PMEMKV_STATUS_ OK) {
15 fprintf(stderr, "%s", pmemkv_errormsg());
16 return NULL;
17 }
18
19 if (pmemkv_config put uint64(cfg, "size", size) != PMEMKV_STATUS OK) {
20 fprintf(stderr, "%s", pmemkv_errormsg());
21 return NULL;
22 }
23
24 return cfg;
25 }
e Line 5: We define custom function to prepare config and set all
required params for engine(s) to use.
o Line 6: We create an instance of C config class. It returns nullptr on
failure.
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o Line 9-22: All params are put into config (the cfg instance) one after
another (using function dedicated for the type), and each is checked
if was stored successful (PMEMKV_STATUS OK is returned when no
errors occurred).

A Phonebook Example

Listing 9-2 shows a simple phonebook example implemented using the pmemkv C++
APIv0.9. One of the main intentions of pmembkv is to provide a familiar API similar to
the other key-value stores. This makes it very intuitive and easy to use. We will reuse the
config setup() function from Listing 9-1.

Listing 9-2. A simple phonebook example using the pmemkv C++ API

37 #include <iostream>

38 #include <cassert>

39 #include <libpmemkv.hpp>

40 #include <string>

41 #include "pmemkv_config.h"

42

43 using namespace pmem::kv;

44

45 auto PATH = "/daxfs/kvfile";

46 const uint64_t FORCE_CREATE = 1;
47 const uint64_t SIZE = 1024 = 1024 * 1024; // 1 Gig
48

49 int main() {

50 // Prepare config for pmemkv database

51 pmemkv_config xcfg = config setup(PATH, FORCE_CREATE, SIZE);
52 assert(cfg != nullptr);

53

54 // Create a key-value store using the "cmap" engine.

55 db kv;

56

57 if (kv.open("cmap", config(cfg)) != status::0K) {

58 std::cerr << db::errormsg() << std::endl;
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return 1;

// Add 2 entries with name and phone number

if (kv.put("John", "123-456-789") != status::0K) {
std::cerr << db::errormsg() << std::endl;
return 1;

}

if (kv.put("Kate", "987-654-321") != status::0K) {
std::cerr << db::errormsg() << std::endl;
return 1;

// Count elements

size t cnt;

if (kv.count_all(cnt) != status::0K) {
std::cerr << db::errormsg() << std::endl;
return 1;

}

assert(cnt == 2);

// Read key back

std::string number;

if (kv.get("John", &number) != status::0K) {
std::cerr << db::errormsg() << std::endl;
return 1;

}
assert(number == "123-456-789");

// Iterate through the phonebook

if (kv.get all([](string view name, string view number) {
std::cout << "name: " << name.data() <<
" << number.data() << std::endl;

, nhumber:
return O;
}) != status::0K) {
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std::cerr << db::errormsg() << std::endl;
return 1;

// Remove one record

if (kv.remove("John") != status::0K) {
std::cerr << db::errormsg() << std::endl;
return 1;

// Look for removed record
assert(kv.exists("John") == status::NOT_FOUND);

// Try to use one of methods of ordered engines
assert(kv.get above("John", [](string view key, string view
value) {
std::cout << "This callback should never be called" <<
std::endl;
return 1;
}) == status::NOT_SUPPORTED);

// Close database (optional)
kv.close();

return 0;

Line 51: We set the pmemkv_config structure by calling config
setup() function introduced in previous section and listing
(imported with #include "pmemkv_config.h").

Line 55: Creates a volatile object instance of the class pmem: :kv: :db
which provides interface for managing persistent database.

Line 57: Here, we open the key-value database backed by the cmap
engine using the config parameters. The cmap engine is a persistent
concurrent hash map engine, implemented in 1ibpmemobj-cpp.
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You can read more about cmap engine internal algorithms and data
structures in Chapter 13.

Line 58: The pmem: :kv: :db class provides a static errormsg() method
for extended error messages. In this example, we use the errormsg()
function as a part of the error-handling routine.

Line 63 and 67: The put() method inserts a key-value pair into the
database. This function is guaranteed to be implemented by all
engines. In this example, we are inserting two key-value pairs into
database and compare returned statuses with status: :0K. It’s a
recommended way to check if function succeeded.

Line 74: The count_all() has a single argument of type size_t. The
method returns the number of elements (phonebook entries) stored
in the database by the argument variable (cnt).

Line 82: Here, we use the get () method to return the value of the
“John” key. The value is copied into the user-provided number
variable. The get () function returns status: :0K on success or an
error on failure. This function is guaranteed to be implemented by all
engines.

Line 86: For this example, the expected value of variable number for
“John” is “123-456-789". If we do not get this value, an assertion error
is thrown.

Line 89: The get_all() method used in this example gives the
application direct, read-only access to the data. Both key and value
variables are references to data stored in persistent memory. In this
example, we simply print the name and the number of every visited pair.

Line 99: Here, we are removing “John” and his phone number from
the database by calling the remove () method. It is guaranteed to be
implemented by all engines.

Line 105: After removal of the pair “John, 123-456-789”, we verify if
the pair still exists in database. The API method exists() checks
the existence of an element with given key. If the element is present,
status::0K is returned; otherwise status: :NOT_FOUND is returned.
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Line 108: Not every engine provides implementations of all the
available API methods. In this example, we used the cmap engine,
which is unordered engine type. This is why cmap does not

support the get_above() function (and similarly: get below(),

get between(), count_above(), count_below(), count_between()).
Calling these functions will return status: :NOT_SUPPORTED.

Line 114: Finally, we are calling the close() method to close
database. Calling this function is optional because kv was
allocated on the stack and all necessary destructors will be called
automatically, just like for the other variables residing on stack.

Bringing Persistent Memory Closer to the Cloud

We will rewrite the phonebook example using the JavaScript language bindings. There

are several language bindings available for pmembkv - JavaScript, Java, Ruby, and Python.

However, not all provide the same API functionally equivalent to the native C and C++

counterparts. Listing 9-3 shows an implementation of the phonebook application

written using JavaScript language bindings API.

Listing 9-3. A simple phonebook example written using the JavaScript bindings

for pmemkv v0.8

O N O U1 B W N R

9

10
11
12

13

const Database = require('./lib/all');

function assert(condition) {
if (!condition) throw new Error('Assert failed');

console.log('Create a key-value store using the "cmap" engine');
const db = new Database('cmap', '{"path":"/daxfs/
kvfile","size":1073741824, "force create":1}');

console.log('Add 2 entries with name and phone number');

db.put('John', '123-456-789');
db.put('Kate', '987-654-321");
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14 console.log('Count elements');
15 assert(db.count_all == 2);

16

17 console.log('Read key back');

18  assert(db.get('John') === '123-456-789');
19

20  console.log('Iterate through the phonebook');
21 db.get_all((k, v) => console.log(® name: ${k}, number: ${v} ));
22

23 console.log('Remove one record');

24 db.remove('John");

25

26 console.log("'Lookup of removed record');

27 assert(!db.exists('John"));

28

29 console.log('Stopping engine');

30 db.stop();

The goal of higher-level pmemkv language bindings is to make programming
persistent memory even easier and to provide a convenient tool for developers of cloud
software.

Summary

In this chapter, we have shown how a familiar key-value data store is an easy way for the
broader cloud software developer audience to use persistent memory and directly access
the data in place. The modular design, flexible engine API, and integration with many
of the most popular cloud programming languages make pmembkv an intuitive choice
for cloud-native software developers. As an open source and lightweight library, it can
easily be integrated into existing applications to immediately start taking advantage of
persistent memory.

Some of the pmemkv engines are implemented using 1ibpmemobj-cpp that we
described in Chapter 8. The implementation of such engines provides real-world
examples for developers to understand how to use PMDK (and related libraries) in
applications.
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Open Access This chapter is licensed under the terms of the Creative

Commons Attribution 4.0 International License (http://creativecommons.
org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution and
reproduction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need
to obtain permission directly from the copyright holder.
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CHAPTER 10

Volatile Use of Persistent
Memory

Introduction

This chapter discusses how applications that require a large quantity of volatile memory
can leverage high-capacity persistent memory as a complementary solution to dynamic
random-access memory (DRAM).

Applications that work with large data sets, like in-memory databases, caching
systems, and scientific simulations, are often limited by the amount of volatile
memory capacity available in the system or the cost of the DRAM required to load a
complete data set. Persistent memory provides a high capacity memory tier to solve
these memory-hungry application problems.

In the memory-storage hierarchy (described in Chapter 1), data is stored in tiers with
frequently accessed data placed in DRAM for low-latency access, and less frequently
accessed data is placed in larger capacity, higher latency storage devices. Examples of
such solutions include Redis on Flash (https://redislabs.com/redis-enterprise/
technology/redis-on-flash/) and Extstore for Memcached (https://memcached.org/
blog/extstore-cloud/).

For memory-hungy applications that do not require persistence, using the larger
capacity persistent memory as volatile memory provides new opportunities and
solutions.

Using persistent memory as a volatile memory solution is advantageous when an
application:

o Has control over data placement between DRAM and other storage
tiers within the system

e Doesnot need to persist data
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e Can use the native latencies of persistent memory, which may be
slower than DRAM but are faster than non-volatile memory express
(NVMe) solid-state drives (SSDs).

Background

Applications manage different kinds of data structures such as user data, key-value
stores, metadata, and working buffers. Architecting a solution that uses tiered memory
and storage may enhance application performance, for example, placing objects that
are accessed frequently and require low-latency access in DRAM while storing objects
that require larger allocations that are not as latency-sensitive on persistent memory.
Traditional storage devices are used to provide persistence.

Memory Allocation

As described in Chapters 1 through 3, persistent memory is exposed to the application
using memory-mapped files on a persistent memory-aware file system that provides
direct access to the application. Since malloc() and free() do not operate on different
types of memory or memory-mapped files, an interface is needed that provides malloc()
and free() semantics for multiple memory types. This interface is implemented as the
membkind library (http://memkind.github.io/memkind/).

How it Works

The membkind library is a user-extensible heap manager built on top of jemalloc, which
enables partitioning of the heap between multiple kinds of memory. Memkind was
created to support different kinds of memory when high bandwidth memory (HBM) was
introduced. A PMEM kind was introduced to support persistent memory.

Different “kinds” of memory are defined by the operating system memory policies
that are applied to virtual address ranges. Memory characteristics supported by
membkind without user extension include the control of non-uniform memory access
(NUMA) and page sizes. Figure 10-1 shows an overview of libmemkind components and
hardware support.
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Figure 10-1. An overview of the memkind components and hardware support

The memkind library serves as a wrapper that redirects memory allocation requests
from an application to an allocator that manages the heap. At the time of publication,
only the jemalloc allocator is supported. Future versions may introduce and support
multiple allocators. Memkind provides jemalloc with different kinds of memory: A static
kind is created automatically, whereas a dynamic kind is created by an application using
memkind create kind().

Supported “Kinds” of Memory

The dynamic PMEM kind is best used with memory-addressable persistent storage
through a DAX-enabled file system that supports load/store operations that are

not paged via the system page cache. For the PMEM kind, the membkind library supports
the traditional malloc/free-like interfaces on a memory-mapped file. When an
application calls memkind create kind() with PMEM, a temporary file (tmpfile(3))

is created on a mounted DAX file system and is memory-mapped into the application’s
virtual address space. This temporary file is deleted automatically when the program
terminates, giving the perception of volatility.

Figure 10-2 shows memory mappings from two memory sources: DRAM
(MEMKIND DEFAULT) and persistent memory (PMEM_KIND).

For allocations from DRAM, rather than using the common malloc(), the
application can call memkind malloc() with the kind argument set to MEMKIND DEFAULT.
MEMKIND DEFAULT is a static kind that uses the operating system’s default page size for
allocations. Refer to the memkind documentation for large and huge page support.
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Figure 10-2. An application using different “kinds” of memory

When using 1ibmemkind with DRAM and persistent memory, the key points to
understand are:

e Two pools of memory are available to the application, one from
DRAM and another from persistent memory.

e Both pools of memory can be accessed simultaneously by setting
the kind type to PMEM_KIND to use persistent memory and MEMKIND
DEFAULT to use DRAM.

o jemalloc is the single memory allocator used to manage all kinds of
memory.

o The memkind library is a wrapper around jemalloc that provides a
unified API for allocations from different kinds of memory.

o PMEM_KIND memory allocations are provided by a temporary file
(tmpfile(3)) created on a persistent memory-aware file system.
The file is destroyed when the application exits. Allocations are not
persistent.

e Using libmemkind for persistent memory requires simple
modifications to the application.
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The memkind API

The memkind API functions related to persistent memory programming are shown in
Listing 10-1 and described in this section. The complete memkind API is available in the
memkind man pages (http://memkind.github.io/memkind/man_pages/memkind.html).

Listing 10-1. Persistent memory-related memkind API functions

KIND CREATION MANAGEMENT:

int memkind create pmem(const char *dir, size t max _size, memkind t *kind);
int memkind create pmem with config(struct memkind config *cfg, memkind t
*kind);

memkind_t memkind_detect kind(void *ptr);

int memkind destroy kind(memkind t kind);

KIND HEAP MANAGEMENT:

void *memkind malloc(memkind t kind, size t size);

void *memkind_calloc(memkind t kind, size t num, size t size);
void *memkind realloc(memkind t kind, void *ptr, size t size);
void memkind free(memkind t kind, void *ptr);

size t memkind malloc_usable size(memkind t kind, void *ptr);
memkind_t memkind_detect kind(void *ptr);

KIND CONFIGURATION MANAGEMENT:

struct memkind config *memkind_config new();

void memkind config delete(struct memkind config *cfg);

void memkind config set path(struct memkind config *cfg, const char
*pmem_dir);

void memkind config set size(struct memkind config *cfg, size t pmem size);
void memkind config set memory usage policy(struct memkind config *cfg,
memkind _mem usage policy policy);

Kind Management API

The memkind library supports a plug-in architecture to incorporate new memory kinds,
which are referred to as dynamic kinds. The memkind library provides the API to create
and manage the heap for the dynamic kinds.
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Kind Creation

Use the memkind_create pmem() function to create a PMEM kind of memory from a
file-backed source. This file is created as a tmpfile(3) in a specified directory (PMEM_DIR)
and is unlinked, so the file name is not listed under the directory. The temporary file is
automatically removed when the program terminates.

Use memkind create pmem() to create a fixed or dynamic heap size depending on
the application requirement. Additionally, configurations can be created and supplied
rather than passing in configuration options to the * create * function.

Creating a Fixed-Size Heap

Applications that require a fixed amount of memory can specify a nonzero value for the
PMEM_MAX_ SIZE argument to memkind create pmem(), shown below. This defines the
size of the memory pool to be created for the specified kind of memory. The value of
PMEM_MAX_SIZE should be less than the available capacity of the file system specified in
PMEM_DIR to avoid ENOMEM or ENOSPC errors. An internal data structure struct memkind is
populated internally by the library and used by the memory management functions.

int memkind_create_pmem(PMEM_DIR, PMEM MAX SIZE, &pmem kind)

The arguments to memkind_create_pmem() are
o PMEM DIR is the directory where the temp file is created.

o PMEM _MAX SIZE is the size, in bytes, of the memory region to be
passed to jemalloc.

o 8&pmem kindisthe address of a memkind data structure.

If successful, memkind_create_pmem() returns zero. On failure, an error number is
returned thatmemkind error message() can convert to an error message string.
Listing 10-2 shows how a 32MiB PMEM kind is created on a /daxfs file system. Included in
this listing is the definition of memkind_fatal() to print a memkind error message and exit.
The rest of the examples in this chapter assume this routine is defined as shown below.

Listing 10-2. Creating a 32MiB PMEM kind

void memkind fatal(int err)

{
char error message[MEMKIND _ERROR_MESSAGE_SIZE];
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memkind error message(err, error message,

MEMKIND ERROR_MESSAGE_SIZE);
fprintf(stderr, "%s\n", error message);
exit(1);

}
/¥ ... in main() ... */
#tdefine PMEM MAX SIZE (1024 * 1024 * 32)

struct memkind *pmem kind;
int err;

// Create PMEM memory pool with specific size
err = memkind create pmem("/daxfs",PMEM MAX SIZE, &pmem kind);
if (err) {

memkind fatal(err);

You can also create a heap with a specific configuration using the function memkind_
create pmem with config(). This function uses a memkind config structure with
optional parameters such as size, file path, and memory usage policy. Listing 10-3
shows how to build a test_cfg usingmemkind config new(), then passing that
configuration to memkind_create_pmem with_config() to create a PMEM kind. We use
the same path and size parameters from the Listing 10-2 example for comparison.

Listing 10-3. Creating PMEM kind with configuration

struct memkind config *test cfg = memkind config new();

memkind config set path(test cfg, "/daxfs");

memkind config set size(test cfg, 1024 * 1024 * 32);

memkind config set memory usage policy(test cfg, MEMKIND MEM USAGE POLICY
CONSERVATIVE);

// create a PMEM partition with specific configuration
err = memkind create pmem with config(test cfg, &pmem kind);
if (err) {

memkind fatal(err);
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Creating a Variable Size Heap

When PMEM_MAX_SIZE is set to zero, as shown below, allocations are satisfied as long as
the temporary file can grow. The maximum heap size growth is limited by the capacity of
the file system mounted under the PMEM DIR argument.

memkind create pmem(PMEM DIR, 0, &pmem kind)

The arguments to memkind create pmem() are:
o PMEM DIR is the directory where the temp file is created.
e PMEM _MAX_SIZEisO.
o 8&pmem kindisthe address of a memkind data structure.

If the PMEM kind is created successfully, memkind_create pmem() returns zero. On
failure, memkind_error_message() can be used to convert an error number returned by
memkind create pmem() to an error message string, as shown in the memkind fatal()
routine in Listing 10-2.

Listing 10-4 shows how to create a PMEM kind with variable size.

Listing 10-4. Creating a PMEM kind with variable size

struct memkind *pmem kind;
int err;
err = memkind create_pmem("/daxfs",0,8&pmem kind);
if (err) {
memkind fatal(err);

}
Detecting the Memory Kind

Memkind supports both automatic detection of the kind as well as a function to detect
the kind associated with a memory referenced by a pointer.

Automatic Kind Detection

Automatically detecting the kind of memory is supported to simplify code changes when
using 1ibmemkind. Thus, the memkind library will automatically retrieve the kind of
memory pool the allocation was made from, so the heap management functions listed in
Table 10-1 can be called without specifying the kind.
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Table 10-1. Automatic kind detection functions and their equivalent specified
kind functions and operations

Operation Memkind API with Kind Memkind APl Using Automatic Detection
free memkind_free(kind, ptr) memkind_free(NULL, ptr)

realloc memkind_realloc(kind, ptr, size)  memkind_realloc(NULL, ptr, size)

Get size of allocated memkind_malloc_usable_ memkind_malloc_usable_size(NULL, ptr)
memory size(kind, ptr)

The memkind library internally tracks the kind of a given object from the allocator
metadata. However, to get this information, some of the operations may need to
acquire a lock to prevent accesses from other threads, which may negatively affect the
performance in a multithreaded environment.

Memory Kind Detection

Memkind also provides the memkind_detect kind() function, shown below, to query
and return the kind of memory referenced by the pointer passed into the function.

If the input pointer argument is NULL, the function returns NULL. The input pointer
argument passed into memkind_detect_kind() must have been returned by a previous
call to memkind malloc(), memkind calloc(), memkind realloc(), or memkind posix
memalign().

memkind t memkind detect kind(void *ptr)

Similar to the automatic detection approach, this function has nontrivial
performance overhead. Listing 10-5 shows how to detect the kind type.

Listing 10-5. pmem_detect_kind.c - how to automatically detect the ‘kind’ type

73 err = memkind_create_pmem(path, 0, &pmem kind);
74 if (err) {

75 memkind fatal(err);

76 }

77
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78 /* do some allocations... */

79 bufo = memkind malloc(pmem kind, 1000);

80 buf1 = memkind malloc(MEMKIND DEFAULT, 1000);

81

82 /* look up the kind of an allocation */

83 if (memkind_detect_kind(bufo) == MEMKIND DEFAULT) {

84 printf("bufo is DRAM\n");
85 } else {

86 printf("bufo is pmem\n");
87 }

Destroying Kind Objects

Use the memkind_destroy kind() function, shown below, to delete the kind object that
was previously created using the memkind create pmem() or memkind create pmem_
with_config() function.

int memkind destroy kind(memkind t kind);

Using the same pmem_detect_kind.c code from Listing 10-5, Listing 10-6 shows how
the kind is destroyed before the program exits.

Listing 10-6. Destroying a kind object

89 err = memkind_destroy kind(pmem_kind);
90 if (err) {

91 memkind fatal(err);

92 }

When the kind returned by memkind_create_pmem() or memkind create pmem with_
config() is successfully destroyed, all the allocated memory for the kind object is freed.

Heap Management API

The heap management functions described in this section have an interface modeled on
the ISO C standard API, with an additional “kind” parameter to specify the memory type
used for allocation.
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Allocating Memory

The memkind library provides memkind malloc(), memkind calloc(), and memkind
realloc() functions for allocating memory, defined as follows:

void *memkind malloc(memkind t kind, size t size);
void *memkind_calloc(memkind t kind, size t num, size t size);
void *memkind realloc(memkind_t kind, void *ptr, size t size);

memkind malloc() allocates size bytes of uninitialized memory of the specified kind.
The allocated space is suitably aligned (after possible pointer coercion) for storage of any
object type. If size is 0, then memkind malloc() returns NULL.

memkind calloc() allocates space for num objects, each is size bytes in length. The
result is identical to calling memkind malloc() with an argument of num * size. The
exception is that the allocated memory is explicitly initialized to zero bytes. If num or size
is 0, then memkind_calloc() returns NULL.

memkind_realloc() changes the size of the previously allocated memory
referenced by ptr to size bytes of the specified kind. The contents of the memory
remain unchanged, up to the lesser of the new and old sizes. If the new size is larger,
the contents of the newly allocated portion of the memory are undefined. If successful,
the memory referenced by ptr is freed, and a pointer to the newly allocated memory is
returned.

The code example in Listing 10-7 shows how to allocate memory from DRAM and
persistent memory (pmem_kind) using memkind_malloc(). Rather than using the
common C library malloc() for DRAM and memkind malloc() for persistent memory,
we recommend using a single library to simplify the code.

Listing 10-7. An example of allocating memory from both DRAM and persistent
memory

/*

* Allocates 100 bytes using appropriate "kind"
* of volatile memory

*/
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// Create a PMEM memory pool with a specific size
err = memkind create pmem(path, PMEM MAX SIZE, &pmem kind);
if (err) {
memkind fatal(err);
}
char *pstring
char *dstring

memkind malloc(pmem kind, 100);
memkind_malloc (MEMKIND DEFAULT, 100);

Freeing Allocated Memory

To avoid memory leaks, allocated memory can be freed using the memkind free()
function, defined as:

void memkind_free(memkind_t kind, void *ptr);

memkind free() causes the allocated memory referenced by ptr to be made
available for future allocations. This pointer must be returned by a previous call to
memkind_malloc(), memkind calloc(), memkind realloc(), or memkind posix
memalign(). Otherwise, if memkind free(kind, ptr) was previously called, undefined
behavior occurs. If ptr is NULL, no operation is performed. In cases where the kind is
unknown in the context of the call to memkind free(), NULL can be given as the kind
specified to memkind_free(), but this will require an internal lookup for the correct kind.
Always specify the correct kind because the lookup for kind could result in a serious
performance penalty.

Listing 10-8 shows four examples of memkind free() being used. The first two specify
the kind, and the second two use NULL to detect the kind automatically.

Listing 10-8. Examples of memkind_free() usage

/* Free the memory by specifying the kind */
memkind_free(MEMKIND DEFAULT, dstring);
memkind free(PMEM_KIND, pstring);

/* Free the memory using automatic kind detection */
memkind free(NULL, dstring);
memkind_free(NULL, pstring);
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Kind Configuration Management

You can also create a heap with a specific configuration using the function memkind_
create pmem with config(). This function requires completing a memkind config
structure with optional parameters such as size, path to file, and memory usage policy.

Memory Usage Policy

In jemalloc, a runtime option called dirty decay ms determines how fast it returns
unused memory back to the operating system. A shorter decay time purges unused
memory pages faster, but the purging costs CPU cycles. Trade-offs between memory and
CPU cycles needed for this operation should be carefully thought out before using this
parameter.

The memkind library supports two policies related to this feature:

1. MEMKIND_MEM_USAGE_POLICY_DEFAULT
2. MEMKIND_MEM_USAGE_POLICY_CONSERVATIVE

The minimum and maximum values for dirty decay ms using the MEMKIND MEM
USAGE_POLICY DEFAULT are Oms to 10,000ms for arenas assigned to a PMEM kind.
Setting MEMKIND MEM_USAGE_POLICY_CONSERVATIVE sets shorter decay times to purge
unused memory faster, reducing memory usage. To define the memory usage policy, use
memkind_config set memory usage policy(), shown below:

void memkind config set memory usage policy (struct memkind config *cfg,
memkind _mem usage policy policy );

e MEMKIND MEM USAGE_POLICY DEFAULT is the default memory usage
policy.

o MEMKIND MEM_USAGE_POLICY_CONSERVATIVE allows changing the
dirty decay_ms parameter.

Listing 10-9 shows how to use memkind_config set memory usage policy() witha
custom configuration.
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Listing 10-9. An example of a custom configuration and memory policy use

73 struct memkind config *test cfg =

74 memkind config new();

75 if (test_cfg == NULL) {

76 fprintf(stderr,

77 "memkind_config new: out of memory\n");
78 exit(1);

79 }

80

81 memkind config set path(test cfg, path);

82 memkind config set size(test cfg, PMEM_MAX SIZE);
83 memkind config set memory usage policy(test cfg,
84 MEMKIND MEM USAGE POLICY CONSERVATIVE);

85

86 // Create PMEM partition with the configuration
87 err = memkind create pmem with config(test cfg,

88 &pmem_kind);

89 if (err) {

90 memkind fatal(err);
91 }

Additional memkind Code Examples

The memkind source tree contains many additional code examples, available on GitHub
athttps://github.com/memkind/memkind/tree/master/examples

C++ Allocator for PMEM Kind

A new pmem: :allocator class template is created to support allocations from persistent
memory, which conforms to C++11 allocator requirements. It can be used with C++
compliant data structures from:

o Standard Template Library (STL)
o Intel® Threading Building Blocks (Intel® TBB) library
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The pmem: :allocator class template uses the memkind create pmem() function
described previously. This allocator is stateful and has no default constructor.

pmem::allocator methods

pmem: :allocator(const char *dir, size t max_size);

pmem: :allocator(const std::string& dir, size t max size) ;
template <typename U> pmem::allocator<T>::allocator(const

pmem: :allocator<U>8);

template <typename U> pmem::allocator(allocator<U>&& other);
pmem: :allocator<T>::~allocator();

T* pmem::allocator<T>::allocate(std::size t n) const;

void pmem::allocator<T>::deallocate(T* p, std::size t n) const ;
template <class U, class... Args> void pmem::allocator<T>::construct(U* p,
Args... args) const;

void pmem::allocator<T>::destroy(T* p) const;

For more information about the pmem: :allocator class template, refer to the pmem
allocator(3) man page.

Nested Containers

Multilevel containers such as a vector of lists, tuples, maps, strings, and so on pose
challenges in handling the nested objects.

Imagine you need to create a vector of strings and store it in persistent memory. The
challenges - and their solutions - for this task include:

1. Challenge: The std::string cannot be used for this purpose because
itis an alias of the std::basic_string. The std::allocator requires a
new alias that uses pmem:allocator.

Solution: A new alias called pmem_string is defined as a typedef
of std: :basic_string when created with pmem: :allocator.
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2.

Challenge: How to ensure that an outermost vector will properly
construct nested pmem_string with a proper instance of
pmem: :allocator.

Solution: From C++11 and later, the std: :scoped_allocator_
adaptor class template can be used with multilevel containers.
The purpose of this adaptor is to correctly initialize stateful
allocators in nested containers, such as when all levels of a nested
container must be placed in the same memory segment.

C++ Examples

This section presents several full-code examples demonstrating the use of 1ibmemkind

using C and C++.

Using the pmem::allocator

As mentioned earlier, you can use pmem: :allocator with any STL-like data structure.

The code sample in Listing 10-10 includes a pmem_allocator.h header file to use

pmem: :allocator.

Listing 10-10. pmem_allocator.cpp: using pmem::allocator with std:vector

37
38
39
40
41
42
43
44
45
46
47
48

170

#include <pmem_allocator.h>
#include <vector>
#include <cassert>

int main(int argc, char *argv[]) {
const size t pmem max_size = 64 * 1024 * 1024; //64 MB
const std::string pmem dir("/daxfs");

// Create allocator object
libmemkind: :pmem: :allocator<int>
alc(pmem_dir, pmem_max_size);



49
50
51
52
53
54
55
56
57
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// Create std::vector with our allocator.
std::vector<int,
1ibmemkind: :pmem: :allocator<int>> v(alc);

for (int i = 0; i < 100; ++i)
v.push_back(i);

for (int i = 0; i < 100; ++i)
assert(v[i] == i);

Line 43: We define a persistent memory pool of 64MiB.

Lines 46-47: We create an allocator object alc of type
pmem: :allocator<int>.

Line 50: We create a vector object v of type std: :vector<int,

pmem: :allocator<int> > and pass in the alc from line 47 object as
an argument. The pmem: :allocator is stateful and has no default
constructor. This requires passing the allocator object to the vector
constructor; otherwise, a compilation error occurs if the default
constructor of std: :vector<int, pmem::allocator<int> > iscalled
because the vector constructor will try to call the default constructor
of pmem: :allocator, which does not exist yet.

Creating a Vector of Strings

Listing 10-11 shows how to create a vector of strings that resides in persistent memory.

We define pmem_string as a typedef of std: :basic_string with pmem: :allocator.

In this example, std: :scoped allocator_ adaptor allows the vector to propagate the

pmem: :allocator instance to all pmem_string objects stored in the vector object.

Listing 10-11. vector_of_strings.cpp: creating a vector of strings

37
38
39
40
41

#include <pmem_allocator.h>
#include <vector>
#include <string>
#include <scoped allocator>
#include <cassert>
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42 #include <iostream>

43

44 typedef libmemkind::pmem::allocator<char> str_alloc_type;

45

46 typedef std::basic_string<char, std::char_traits<char>,
str_alloc_type> pmem_string;

47

48 typedef libmemkind::pmem::allocator<pmem string> vec_alloc_type;

49

50 typedef std::vector<pmem string, std::scoped allocator adaptor
<vec_alloc_type> > vector_type;

51

52 int main(int argc, char *argv[]) {

53 const size t pmem max_size = 64 * 1024 * 1024; //64 MB
54 const std::string pmem dir("/daxfs");

55

56 // Create allocator object

57 vec_alloc_type alc(pmem dir, pmem max size);
58 // Create std::vector with our allocator.

59 vector type v(alc);

60

61 v.emplace back("Foo");

62 v.emplace back("Bar");

63

64 for (auto str : v) {

65 std::cout << str << std::endl;

66 }

o Line 46: We define pmem_string as a typedef of std: :basic_string.
o Line 48: We define the pmem: :allocator using the pmem_string type

e Line50: Using std: :scoped_allocator_adaptor allows the vector to
propagate the pmem: :allocator instance to all pmem_string objects
stored in the vector object.
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Expanding Volatile Memory Using
Persistent Memory

Persistent memory is treated by the kernel as a device. In a typical use-case, a persistent
memory-aware file system is created and mounted with the -o dax option, and files are
memory-mapped into the virtual address space of a process to give the application direct
load/store access to persistent memory regions.

A new feature was added to the Linux kernel v5.1 such that persistent memory
can be used more broadly as volatile memory. This is done by binding a persistent
memory device to the kernel, and the kernel manages it as an extension to DRAM. Since
persistent memory has different characteristics than DRAM, memory provided by this
device is visible as a separate NUMA node on its corresponding socket.

To use the MEMKIND_DAX_KMEM kind, you need pmem to be available using device
DAX, which exposes pmem as devices with names like /dev/dax*. If you have an existing
dax device and want to migrate the device model type to use DEV_DAX_KMEM, use:

$ sudo daxctl migrate-device-model

To create a new dax device using all available capacity on the first available region
(NUMA node), use:

$ sudo ndctl create-namespace --mode=devdax --map=mem
To create a new dax device specifying the region and capacity, use:

$ sudo ndctl create-namespace --mode=devdax --map=mem --region=regionO
--size=32g

To display a list of namespaces, use:
$ ndctl list

If you have already created a namespace in another mode, such as the default fsdax,
you can reconfigure the device using the following where namespace0. 0 is the existing
namespace you want to reconfigure:

$ sudo ndctl create-namespace --mode=devdax --map=mem --force -e namespace0.0

For more details about creating new namespace read https://docs.pmem.io/
ndctl-users-guide/managing-namespaces#creating-namespaces.
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DAX devices must be converted to use the system-ram mode. Converting a dax
device to a NUMA node suitable for use with system memory can be performed using
following command:

$ sudo daxctl reconfigure-device dax2.0 --mode=system-ram

This will migrate the device from using the device_dax driver to the dax_pmem
driver. The following shows an example output with dax1.0 configured as the default
devdax type and dax2.0 is system-ram:

$ daxctl 1list
[

{
"chardev":"dax1.0",
"size":263182090240,
"target node":3,
"mode" : "devdax"

b

{
"chardev":"dax2.0",
"size":263182090240,
"target node":4,
"mode" :"system-ram"

}

]

You can now use numactl -H to show the hardware NUMA configuration.
The following example output is collected from a 2-socket system and shows node 4
is a new system-ram backed NUMA node created from persistent memory:

$ numactl -H
available: 3 nodes (0-1,4)
node 0 cpus: 0123 4567 89 10 11 12 13 14 15 16 17 18 19 20 21 22
23 24 25 26 27 56 57 58 59 60 61 62 63 64 65 66 67 68 69
70 71 72 73 74 75 76 77 78 79 80 81 82 83
node 0 size: 192112 MB
node 0 free: 185575 MB
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node 1 cpus: 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46
47 48 49 50 51 52 53 54 55 84 85 86 87 88 89 90 91 92 93
94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109
110 111

size: 193522 MB

free: 193107 MB

node 1
1

node 4 cpus:
4
4

node

size: 250880 MB
free: 250879 MB
node distances:
node 0 1 4

0: 10 21 17

1: 21 10 28

4: 17 28 10

node
node

To online the NUMA node and have the Kernel manage the new memory, use:

$ sudo daxctl online-memory daxo0.1
dax0.1: 5 sections already online
dax0.1: 0 new sections onlined
onlined memory for 1 device

At this point, the kernel will use the new capacity for normal operation. The new
memory shows itself in tools such Ismem example shown below where we see an additional
10GiB of system-ram in the 0x0000003380000000-0x00000035ffffffff address range:

$ lsmem

RANGE SIZE STATE REMOVABLE  BLOCK
0x0000000000000000-0x000000007 Ffff 2G online no 0
0x0000000100000000-0x000000277fffffff 154G online yes  2-78
0x0000002780000000-0x000000297 fffffff 8G online no 79-82
0x0000002980000000-0x0000002effffffff  22G online yes  83-93
0x0000002f00000000-0x0000002 4G online no  94-95
0x0000003380000000-0x00000035Ffffffff 120G online yes 103-107
0x0000012a80000000-0x000001doffffffff 154G online yes 853-929
0x000001d100000000-0x000001d37fffffff  10G online no 930-934
0x000001d380000000-0x000001d8ffffffff 22G online yes 935-945
0x000001d900000000-0x000001d9ffffffff 4G online no 946-947
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Memory block size: 2G
Total online memory: 390G
Total offline memory: OB

To programmatically allocate memory from a NUMA node created using persistent
memory, a new static kind, called MEMKIND_DAX_KMEM, was added to 1ibmemkind
that uses the system-ram DAX device.

Using MEMKIND DAX_ KMEM as the first argument to memkind_malloc(), shown below,
you can use persistent memory from separate NUMA nodes in a single application.

The persistent memory is still physically connected to a CPU socket, so the application
should take care to ensure CPU affinity for optimal performance.

memkind_malloc (MEMKIND DAX_KMEM, size t size)

Figure 10-3 shows an application that created two static kind objects: MEMKIND
DEFAULT and MEMKIND DAX_KMEM.

P &
-~

Static Kinds

S

__________

Figure 10-3. An application that created two kind objects from different types of
memory

The difference between the PMEM_KIND described earlier and MEMKIND_ DAX
KMEM is that the MEMKIND_DAX_KMEM is a static kind and uses mmap() with the
MAP_PRIVATE flag, while the dynamic PMEM_KIND is created with memkind_create_
pmem() and uses the MAP_SHARED flag when memory-mapping files on a DAX-
enabled file system.
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Child processes created using the fork(2) system call inherit the MAP_PRIVATE
mappings from the parent process. When memory pages are modified by the parent
process, a copy-on-write mechanism is triggered by the kernel to create an unmodified
copy for the child process. These pages are allocated on the same NUMA node as the
original page.

libvmemcache: An Efficient Volatile Key-Value
Cache for Large-Capacity Persistent Memory

Some existing in-memory databases (IMDB) rely on manual dynamic memory allocations
(malloc, jemalloc, tcmalloc), which can exhibit external and internal memory
fragmentation when run for a long period of time, leaving large amounts of memory
un-allocatable. Internal and external fragmentation is briefly explained as follows:

o Internal fragmentation occurs when more memory is allocated
than is required, and the unused memory is contained within the
allocated region. For example, if the requested allocation size is 200
bytes, a chunk of 256 bytes is allocated.

e External fragmentation occurs when variable memory sizes are
allocated dynamically, resulting in a failure to allocate a contiguous
chunk of memory, although the requested chunk of memory remains
available in the system. This problem is more pronounced when large
capacities of persistent memory are being used as volatile memory.
Applications with substantially long runtimes need to solve this
problem, especially if the allocated sizes have considerable variation.
Applications and runtime environments handle this problem in
different ways, for example:

o Java and .NET use compacting garbage collection
o Redis and Apache Ignite* use defragmentation algorithms
e Memcached uses a slab allocator

Each of the above allocator mechanisms has pros and cons. Garbage collection and
defragmentation algorithms require processing to occur on the heap to free unused
allocations or move data to create contiguous space. Slab allocators usually define a fixed
set of different sized buckets at initialization without knowing how many of each bucket
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the application will need. If the slab allocator depletes a certain bucket size, it allocates
from larger sized buckets, which reduces the amount of free space. These mechanisms
can potentially block the application’s processing and reduce its performance.

libvmemcache Overview

libvmemcache is an embeddable and lightweight in-memory caching solution with a
key-value store at its core. It is designed to take full advantage of large-capacity memory,
such as persistent memory, efficiently using memory mapping in a scalable way. It

is optimized for use with memory-addressable persistent storage through a DAX-
enabled file system that supports load/store operations. 1ibvmemcache has these unique
characteristics:

o The extent-based memory allocator sidesteps the fragmentation
problem that affects most in-memory databases, and it allows the
cache to achieve very high space utilization for most workloads.

o Buffered LRU (least recently used) combines a traditional LRU
doubly linked list with a non-blocking ring buffer to deliver high
scalability on modern multicore CPUs.

e Aunique indexing critnib data structure delivers high performance
and is very space efficient.

The cache for 1ibvmemcache is tuned to work optimally with relatively large value
sizes. While the smallest possible size is 256 bytes, 1ibvmemcache performs best if the
expected value sizes are above 1 kilobyte.

libvmemcache has more control over the allocation because it implements a custom
memory-allocation scheme using an extents-based approach (like that of file system
extents). libvmemcache can, therefore, concatenate and achieve substantial space
efficiency. Additionally, because it is a cache, it can evict data to allocate new entries in
a worst-case scenario. 1ibvmemcache will always allocate exactly as much memory as it
freed, minus metadata overhead. This is not true for caches based on common memory
allocators such as memkind. 1ibvmemcache is designed to work with terabyte-sized
in-memory workloads, with very high space utilization.

178



CHAPTER 10  VOLATILE USE OF PERSISTENT MEMORY

libvmemcache works by automatically creating a temporary file on a DAX-enabled
file system and memory-mapping it into the application’s virtual address space. The
temporary file is deleted when the program terminates and gives the perception of
volatility. Figure 10-4 shows the application using traditional malloc() to allocate
memory from DRAM and using 1ibvmemcache to memory map a temporary file residing
on a DAX-enabled file system from persistent memory.

malloc or varient

Figure 10-4. An application using libvmemcache memory-maps a temporary file
from a DAX-enabled file system

Although libmemkind supports different kinds of memory and memory consumption
policies, the underlying allocator is jemalloc, which uses dynamic memory allocation.
Table 10-2 compares the implementation details of libvmemcache and libmemkind.
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Table 10-2. Design aspects of libmemkind and libvmemcache

libmemkind (PMEM) libvmemcache
Allocation Dynamic allocator Extent based (not restricted to
Scheme sector, page, etc.)
Purpose General purpose Lightweight in-memory cache
Fragmentation Apps with random size allocations/ Minimized

deallocations that run for a longer period

libvmemcache Design

libvmmemcache has two main design aspects:
1. Allocator design to improve/resolve fragmentation issues

2. Ascalable and efficient LRU policy

Extent-Based Allocator

libvmemcache can solve fragmentation issues when working with terabyte-sized in-
memory workloads and provide high space utilization. Figure 10-5 shows a workload
example that creates many small objects, and over time, the allocator stops due to
fragmentation.
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A = malloc(128); 0 64 128 192 256 320 384
B = malloc(128);
C = malloc(128);
-
D\ 64 128 192 256 320 384
free(A);

free(C);

malloc(256);

NULL (errno == ENOMEM)

Figure 10-5. An example of a workload that creates many small objects, and the
allocator stops due to fragmentation

libvmemcache uses an extent-based allocator, where an extent is a contiguous set of
blocks allocated for storing the data in a database. Extents are typically used with large
blocks supported by file systems (sectors, pages, etc.), but such restrictions do not apply
when working with persistent memory that supports smaller block sizes (cache line).
Figure 10-6 shows that if a single contiguous free block is not available to allocate an
object, multiple, noncontiguous blocks are used to satisfy the allocation request. The
noncontiguous allocations appear as a single allocation to the application.

0

EEERES

A = malloc(128);
B = malloc(128);
C = malloc(128);

)
128 192 256 320 384
free(C):
- B
D = malloc(256); 0 64 128 192 256 320 384

next

+
i
S
0 64 128 192 256 320 384

Figure 10-6. Using noncontiguous free blocks to fulfill a larger allocation request
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Scalable Replacement Policy

An LRU cache is traditionally implemented as a doubly linked list. When an item is
retrieved from this list, it gets moved from the middle to the front of the list, so it is not
evicted. In a multithreaded environment, multiple threads may contend with the front
element, all trying to move elements being retrieved to the front. Therefore, the front
element is always locked (along with other locks) before moving the element being
retrieved, which results in lock contention. This method is not scalable and is inefficient.

A buffer-based LRU policy creates a scalable and efficient replacement policy. A non-
blocking ring buffer is placed in front of the LRU linked list to track the elements being
retrieved. When an element is retrieved, it is added to this buffer, and only when the
buffer is full (or the element is being evicted), the linked list is locked, and the elements
in that buffer are processed and moved to the front of the list. This method preserves the
LRU policy and provides a scalable LRU mechanism with minimal performance impact.
Figure 10-7 shows a ring buffer-based design for the LRU algorithm.

a B “\I c ) & B
List entry — List entry +~—b| List entry
LEAST | MOST
USED USED
Value Value Value
A . / A / .4 A b 4
[ wait-free ring buffer ]
get(B)
— ¥

@ Fa = N & 2 - B
List entry — List entry — List entry
LEAST | | MOST
USED
\ . b /

USED
-
wait-free ring buffer ]
h

Figure 10-7. A ring buffer-based LRU design

‘ Value Value Value
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Using libvmemcache

Table 10-3 lists the basic functions that libvinemcache provides. For a complete list,
see the 1ibvmemcache man pages (https://pmem.io/vmemcache/manpages/master/
vmemcache.3.html).

Table 10-3. The libvmemcache functions

Function Name Description

vmemcache_new Creates an empty unconfigured vmemcache instance with default
values: Eviction_policy=VMEMCACHE_REPLACEMENT_LRU
Extent_size = VMEMCAHE_MIN_EXTENT
VMEMCACHE_MIN_POOL

vmemcache_add Associates the cache with a path.

vmemcache_set_size Sets the size of the cache.

vmemcache_set_extent_size Sets the block size of the cache (256 bytes minimum).

vmemcache_set_eviction_policy Sets the eviction policy:
1. VMEMCACHE_REPLACEMENT_NONE
2. VMEMCACHE_REPLACEMENT_LRU

vmemcache_add Associates the cache with a given path on a DAX-enabled file
system or non-DAX-enabled file system.

vmemcache_delete Frees any structures associated with the cache.

vmemcache_get Searches for an entry with the given key, and if found, the entry’s
value is copied to vbuf.

vmemcache_put Inserts the given key-value pair into the cache.

vmemcache_evict Removes the given key from the cache.

vmemcache_callback_on_evict  Called when an entry is being removed from the cache.

vmemcache_callback_on_miss  Called when a get query fails to provide an opportunity to insert
the missing key.
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To illustrate how 1ibvmemcache is used, Listing 10-12 shows how to create an
instance of vmemcache using default values. This example uses a temporary file on a
DAX-enabled file system and shows how a callback is registered after a cache miss for a
key “meow.”

Listing 10-12. vmemcache.c: An example program using libvinemcache

37 #include <libvmemcache.h>
38 #include <stdio.h>
39 #include <stdlib.h>
40 #include <string.h>

41

42 #define STR_AND LEN(x) (x), strlen(x)

43

44 VMEMcache *cache;

45

46 void on_miss(VMEMcache *cache, const void *key,
47 size t key size, void *arg)

48 |

49 vmemcache_put(cache, STR_AND LEN("meow"),
50 STR_AND_LEN("Cthulhu fthagn"));

51 }

52

53 void get(const char *key)

54 |

55 char buf[128];

56 ssize t len = vmemcache get(cache,

57 STR_AND LEN(key), buf, sizeof(buf), 0, NULL);
58 if (len >= 0)

59 printf("%.*s\n", (int)len, buf);

60 else

61 printf("(key not found: %s)\n", key);
62 }

63

64 int main()

65 {
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cache = vmemcache new();
if (vmemcache add(cache, "/daxfs")) {
fprintf(stderr, "error: vmemcache add: %s\n",
vmemcache_errormsg());
exit(1);

// Query a non-existent key
get("meow");

// Insert then query

vmemcache put(cache, STR_AND LEN("bark"),
STR_AND_LEN("Lorem ipsum"));

get("bark");

// Install an on-miss handler
vmemcache_callback on miss(cache, on_miss, 0);
get("meow");

vmemcache_delete(cache);

Line 66: Creates a new instance of vmemcache with default values for
eviction policy and extent size.

Line 67: Calls the vmemcache_add() function to associate cache with a
given path.

Line 74: Calls the get () function to query on an existing key. This
function calls the vmemcache get () function with error checking for
success/failure of the function.

Line 77: Calls vmemcache_put() to insert a new key.

Line 82: Adds an on-miss callback handler to insert the key “meow”
into the cache.

Line 83: Retrieves the key “meow” using the get() function.

Line 85: Deletes the vmemcache instance.
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Summary

This chapter showed how persistent memory’s large capacity can be used to hold volatile
application data. Applications can choose to allocate and access data from DRAM or
persistent memory or both.

memkind is a very flexible and easy-to-use library with semantics that are similar to
the 1ibc malloc/free APIs that developers frequently use.

libvmemcache is an embeddable and lightweight in-memory caching solution that
allows applications to efficiently use persistent memory’s large capacity in a scalable
way. libvmemcache is an open source project available on GitHub at https://github.
com/pmem/vmemcache.

Open Access This chapter is licensed under the terms of the Creative

Commons Attribution 4.0 International License (http://creativecommons.
org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution and
reproduction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need
to obtain permission directly from the copyright holder.
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CHAPTER 11

Designing Data Structures
for Persistent Memory

Taking advantage of the unique characteristics of persistent memory, such as byte
addressability, persistence, and update in place, allows us to build data structures that
are much faster than any data structure requiring serialization or flushing to a disk.
However, this comes at a cost. Algorithms must be carefully designed to properly persist
data by flushing CPU caches or using non-temporal stores and memory barriers to
maintain data consistency. This chapter describes how to design such data structures
and algorithms and shows what properties they should have.

Contiguous Data Structures and Fragmentation

Fragmentation is one of the most critical factors to consider when designing a data
structure for persistent memory due to the length of heap life. A persistent heap can
live for years with different versions of an application. In volatile use cases, the heap is
destroyed when the application exits. The life of the heap is usually measured in hours,
days, or weeks.

Using file-backed pages for memory allocation makes it difficult to take advantage
of the operating system-provided mechanisms for minimizing fragmentation, such as
presenting discontinuous physical memory as a contiguous virtual region. It is possible
to manually manage virtual memory at a low granularity, producing a page-level
defragmentation mechanism for objects in user space. But this mechanism could lead to
complete fragmentation of physical memory and an inability to take advantage of huge
pages. This can cause an increased number of translation lookaside buffer (TLB) misses,
which significantly slows down the entire application. To make effective use of persistent
memory, you should design data structures in a way that minimizes fragmentation.
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Internal and External Fragmentation

Internal fragmentation refers to space that is overprovisioned inside allocated blocks.
An allocator always returns memory in fixed-sized chunks or buckets. The allocator must
determine what size each bucket is and how many different sized buckets it provides.
If the size of the memory allocation request does not exactly match a predefined bucket
size, the allocator will return a larger memory bucket. For example, if the application
requests a memory allocation of 200KiB, but the allocator has bucket sizes of 128KiB
and 256KiB, the request is allocated from an available 256KiB bucket. The allocator must
usually return a memory chunk with a size divisible by 16 due to its internal alignment
requirements.

External fragmentation occurs when free memory is scattered in small blocks.
For example, imagine using up the entire memory with 4KiB allocations. If we then
free every other allocation, we have half of the memory available; however, we cannot
allocate more than 4KiB at once because that is the maximum size of any contiguous free
space. Figure 11-1 illustrates this fragmentation, where the red cells represent allocated
space and the white cells represent free space.

Il B B B

0 4k 8k 12k 16k 20k 24k 28k
Figure 11-1. External fragmentation
When storing a sequence of elements in persistent memory, several possible data
structures can be used:
o Linked list: Each node is allocated from persistent memory.

o Dynamic array (vector): A data structure that pre-allocates memory
in bigger chunks. If there is no free space for new elements, it
allocates a new array with bigger capacity and moves all elements
from the old array to the new one.

e Segment vector: A list of fixed-size arrays. If there is no free space left
in any segment, a new one is allocated.
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Consider fragmentation for each of those data structures:

o For linked lists, fragmentation efficiency depends on the node size. If
it is small enough, then high internal fragmentation can be expected.
During node allocation, every allocator will return memory with a
certain alignment that will likely be different than the node size.

e Using dynamic array results in fewer memory allocations, but every
allocation will have a different size (most implementations double
the previous one), which results in a higher external fragmentation.

o Using a segment vector, the size of a segment is fixed, so every allocation
has the same size. This practically eliminates external fragmentation
because we can allocate a new one for each freed segment.’

Atomicity and Consistency

Guaranteeing consistency requires the proper ordering of stores and making sure data

is stored persistently. To make an atomic store bigger than 8 bytes, you must use some
additional mechanisms. This section describes several mechanisms and discusses their
memory and time overheads. For the time overhead, the focus is on analyzing the number
of flushes and memory barriers used because they have the biggest impact on performance.

Transactions

One way to guarantee atomicity and consistency is to use transactions (described in
detail in Chapter 7). Here we focus on how to design a data structure to use transactions
efficiently. An example data structure that uses transactions is described in the “Sorted
Array with Versioning” section later in this chapter.

Transactions are the simplest solution for guaranteeing consistency. While using
transactions can easily make most operations atomic, two items must be kept in mind.
First, transactions that use logging always introduce memory and time overheads.
Second, in the case of undo logging, the memory overhead is proportional to the size of
data you modify, while the time overhead depends on the number of snapshots. Each
snapshot must be persisted prior to the modification of snapshotted data.

'Using the 1ibpmemobj allocator, it is also possible to easily lower internal fragmentation by using
allocation classes (see Chapter 7).
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It is recommended to use a data-oriented approach when designing a data structure
for persistent memory. The idea is to store data in such a way that its processing by the
CPU is cache friendly. Imagine having to store a sequence of 1000 records that consist of
2 integer values. This has two approaches: Either use two arrays of integers as shown in
Listing 11-1, or use one array of pairs as shown in Listing 11-2. The first approach is SoA
(Structure of Arrays), and the second is AoS (Array of Structures).

Listing 11-1. SoA layout approach to store data

struct soa {
int a[1000];
int b[1000];

};
Listing 11-2. AoS layout approach to store data
std::pair<int, int> aos records[1000];

Depending on the access pattern to the data, you may prefer one solution over the
other. If the program frequently updates both fields of an element, then the AoS solution
is better. However, if the program only updates the first variable of all elements, then the
SoA solution works best.

For applications that use volatile memory, the main concerns are usually cache
misses and optimizations for single instruction, multiple data (SIMD) processing. SIMD
is a class of parallel computers in Flynn’s taxonomy,*> which describes computers with
multiple processing elements that simultaneously perform the same operation on
multiple data points. Such machines exploit data-level parallelism, but not concurrency:
There are simultaneous (parallel) computations but only a single process (instruction) at
a given moment.

While those are still valid concerns for persistent memory, developers must consider
snapshotting performance when transactions are used. Snapshotting one contiguous
memory region is always better then snapshotting several smaller regions, mainly due to
the smaller overhead incurred by using less metadata. Efficient data structure layout that
takes these considerations into account is imperative for avoiding future problems when
migrating data from DRAM-based implementations to persistent memory.

2For a full definition of SIMD, see https://en.wikipedia.org/wiki/SIMD.

190


https://en.wikipedia.org/wiki/SIMD

CHAPTER 11 DESIGNING DATA STRUCTURES FOR PERSISTENT MEMORY

Listing 11-3 presents both approaches; in this example, we want to increase the first
integer by one.

Listing 11-3. Layout and snapshotting performance

37 struct soa {

38 int a[1000];

39 int b[1000];

40 };

41

42 struct root {

43  soa soa_records;

44  std::pair<int, int aos_records[1000];

45 };

46

47 int main()

48 {

49 try {

50 auto pop = pmem::obj::pool<root>::create("/daxfs/pmpool”,
51 "data_oriented", PMEMOB] MIN POOL, 0666);
52

53 auto root = pop.root();

54

55  pmem::obj::transaction::run(pop, [&]{

56 pmem: :0bj: :transaction::snapshot(&root->soa_records);
57 for (int i = 0; i < 1000; i++) {

58 root->soa_records.a[i]++;

59 }

60

61 for (int i = 0; i < 1000; i++) {

62 pmem: :0bj: :transaction::snapshot(

63 &root->aos _records[i].first);

64 root->aos_records[i].first++;

65 }

66 });

67
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68 pop.close();
69 } catch (std::exception 8e) {

70
71}
72 }

std::cerr << e.what() << std::endl;

Lines 37-45: We define two different data structures to store records
of integers. The first one is SoA - where we store integers in two
separate arrays. Line 44 shows a single array of pairs - AoS.

Lines 56-59: We take advantage of the SoA layout by snapshotting the
entire array at once. Then we can safely modify each element.

Lines 61-65: When using AoS, we are forced to snapshot data in every
iteration - elements we want to modify are not contiguous in memory.

Examples of data structures that use transactions are shown in the “Hash Table with

Transactions” and “Hash Table with Transactions and Selective Persistence” sections,

later in this chapter.

Copy-on-Write and Versioning

Another way to maintain consistency is the copy-on-write (CoW) technique. In this

approach, every modification creates a new version at a new location whenever you

want to modify some part of a persistent data structure. For example, a node in a linked

list can use the CoW approach as described in the following:

1.

192

Create a copy of the element in the list. If a copy is dynamically
allocated in persistent memory, you should also save the pointer
in persistent memory to avoid a memory leak. If you fail to do
that and the application crashes after the allocation, then on the
application restart, newly allocated memory will be unreachable.

Modify the copy and persist the changes.

Atomically change the original element with the copy and persist
the changes, then free the original node if needed. After this

step successfully completes, the element is updated and is in a
consistent state. If a crash occurs before this step, the original
element is untouched.



CHAPTER 11 DESIGNING DATA STRUCTURES FOR PERSISTENT MEMORY

Although using this approach compared to transactions can be faster, it is significantly
harder to implement because you must manually persist data.

Copy-on-write usually works well in multithreaded systems where mechanisms
like reference counting or garbage collection are used to free copies that are no longer
used. Although such systems are beyond the scope of this book, Chapter 14 describes
concurrency in multithreaded applications.

Versioning is a very similar concept to copy-on-write. The difference is that here
you hold more than one version of a data field. Each modification creates a new version
of the field and stores information about the current one. The example presented
in “Sorted Array with Versioning” later in this chapter shows this technique in an
implementation of the insert operation for a sorted array. In the preceding example, only
two versions of a variable are kept, the old and current one as a two-element array. The
insert operations alternately write data to the first and second element of this array.

Selective Persistence

Persistent memory is faster than disk storage but potentially slower than DRAM. Hybrid
data structures, where some parts are stored in DRAM and some parts are in persistent
memory, can be implemented to accelerate performance. Caching previously computed
values or frequently accessed parts of a data structure in DRAM can improve access
latency and improve overall performance.

Data does not always need to be stored in persistent memory. Instead, it can be
rebuilt during the restart of an application to provide a performance improvement
during runtime given that it accesses data from DRAM and does not require
transactions. An example of this approach appears in “Hash Table with Transactions and
Selective Persistence.”

Example Data Structures

This section presents several data structure examples that were designed using the
previously described methods for guaranteeing consistency. The code is written in C++
and uses 1ibpmemob3j-cpp. See Chapter 8 for more information about this library.
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Hash Table with Transactions

We present an example of a hash table implemented using transactions and containers
using 1ibpmemobj-cpp

As a quick primer to some, and a refresher to other readers, a hash table is a data
structure that maps keys to values and guarantees O(1) lookup time. It is usually
implemented as an array of buckets (a bucket is a data structure that can hold one or
more key-value pairs). When inserting a new element to the hash table, a hash function
is applied to the element’s key. The resulting value is treated as an index of a bucket
to which the element is inserted. It is possible that the result of the hash function for
different keys will be the same; this is called a collision. One method for resolving
collisions is to use separate chaining. This approach stores multiple key-value pairs in
one bucket; the example in Listing 11-4 uses this method.

For simplicity, the hash table in Listing 11-4 only provides the const Value&
get(const std::string 8key) andvoid put(const std::string &key, const Value
&value) methods. It also has a fixed number of buckets. Extending this data structure
to support the remove operation and to have a dynamic number of buckets is left as an
exercise to you.

Listing 11-4. Implementation of a hash table using transactions

38  #include <functional>

39 #include <libpmemobj++/p.hpp>

40 #include <libpmemobj++/persistent ptr.hpp>
41 #include <libpmemobj++/pext.hpp>

42 #include <libpmemobj++/pool.hpp>

43 #include <libpmemobj++/transaction.hpp>
44  #include <libpmemobj++/utils.hpp>

45  #include <stdexcept>

46  #include <string>

47

48  #include "libpmemobj++/array.hpp"

49  #include "libpmemobj++/string.hpp"

50 #include "libpmemobj++/vector.hpp"

51
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/**
* Value - type of the value stored in hashmap
* N - number of buckets in hashmap
*/
template <typename Value, std::size t N>
class simple kv {
private:
using key type = pmem::obj::string;
using bucket type = pmem::obj::vector<
std::pair<key type, std::size t>>;
using bucket_array type = pmem::obj::array<bucket type, N>;
using value vector = pmem::obj::vector<Value>;

bucket_array type buckets;
value vector values;

public:
simple kv() = default;

const Value &
get(const std::string &key) const

{
auto index = std::hash<std::string>{}(key) % N;

for (const auto &e : buckets[index]) {

if (e.first == key)
return values[e.second];

throw std::out_of range("no entry in simplekv");

}
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84
85
86
87
88
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void
put(const std::string &key, const Value &val)

{
auto index = std::hash<std::string>{}(key) % N;

/* get pool on which this simple_kv resides */
auto pop = pmem::obj::pool by vptr(this);

/* search for element with specified key - if found
* update its value in a transaction*/
for (const auto &e : buckets[index]) {
if (e.first == key) {
pmem: :obj: :transaction: :run(
pop, [&] { values[e.second] = val; });

return;

}
}

/* if there is no element with specified key, insert
* new value to the end of values vector and put
* reference in proper bucket */
pmem: :obj: :transaction::run(pop, [&] {
values.emplace back(val);
buckets[index].emplace back(key, values.size() - 1);

};
}
};

o Lines 58-66: Define the layout of a hash map as a pmem: :0bj: :array
of buckets, where each bucket is a pmem: :0bj: :vector of key and
index pairs and pmem: :0bj: :vector contains the values. The index
in a bucket entry always specifies a position of the actual value
stored in a separate vector. For snapshotting optimization, the value
is not saved next to a key in a bucket. When obtaining a non-const
reference to an element in pmem: :obj: :vector, the element is always
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snapshotted. To avoid snapshotting unnecessary data, for example,

if the key is immutable, we split keys and values into separate

vectors. This also helps in the case of updating several values in

one transaction. Recall the discussion in the “Copy-on-Write and
Versioning” section. The result could turn out to be next to each other
in a vector, and there could be fewer bigger regions to snapshot.

e Line 74: Calculate hash in a table using standard library feature.

o Lines 76-79: Search for entry with specified key by iterating over
all buckets stored in the table under index. Note that e is a const
reference to the key-value pair. Because of the way 1ibpmemobj-cpp
containers work, this has a positive impact on performance when
compared to non-const reference; obtaining non-const reference
requires a snapshot, while a const reference does not.

o Line 90: Get the instance of the pmemobj pool object, which is used to
manage the persistent memory pool where our data structure resides.

o Lines 94-95: Find the position of a value in the values vector by
iterating over all the entries in the designated bucket.

o Lines 96-98: If an element with the specified key is found, update its

value using a transaction.

o Lines 106-109: If there is no element with the specified key, insert a
value into the values vector, and put a reference to this value in the
proper bucket; that is, create key, index pair. Those two operations
must be completed in a single atomic transaction because we want
them both to either succeed or fail.

Hash Table with Transactions and Selective Persistence

This example shows how to modify a persistent data structure (hash table) by moving
some data out of persistent memory. The data structure presented in Listing 11-5 is

a modified version of the hash table in Listing 11-4 and contains the implementation

of this hash table design. Here we store only the vector of keys and vector of values in
persistent memory. On application startup, we build the buckets and store them in
volatile memory for faster processing during runtime. The most noticeable performance
gain would be in the get () method.
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Listing 11-5. Implementation of hash table with transactions and selective
persistence

40 #include <array>

41 #include <functional>

42 #include <libpmemobj++/p.hpp>

43 #include <libpmemobj++/persistent ptr.hpp>

44 #include <libpmemobj++/pext.hpp>

45 #include <libpmemobj++/pool.hpp>

46 #include <libpmemobj++/transaction.hpp>

47 #include <libpmemobj++/utils.hpp>

48 #include <stdexcept>

49 #include <string>

50 #include <vector>

51

52 #include "libpmemobj++/array.hpp"

53 #include "libpmemobj++/string.hpp"

54 #include "libpmemobj++/vector.hpp"

55

56 template <typename Value, std::size t N>

57 struct simple kv persistent;

58

59 /**

60 * This class is runtime wrapper for simple kv peristent.
61 * Value - type of the value stored in hashmap

62 * N - number of buckets in hashmap

63 */

64 template <typename Value, std::size t N>

65 class simple_kv_runtime {
66 private:

67 using volatile key type
68 using bucket entry type = std::pair<volatile key type, std::size t>;
69 using bucket type = std::vector<bucket entry type>;

70  using bucket array type = std::array<bucket type, N>;

71

std::string;
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72 bucket_array type buckets;

73 simple_kv_persistent<Value, N> *data;

74

75 public:

76 simple kv_runtime(simple kv persistent<Value, N> *data)

77 |

78 this->data = data;

79

80 for (std::size t i = 0; i < data->values.size(); i++) {
81  auto volatile key = std::string(data->keys[i].c_str(),
82 data->keys[i].size());

83

84  auto index = std::hash<std::string>{}(volatile key)%N;
85 buckets[index].emplace back(

86 bucket entry type{volatile key, i});

87 }

88 }

89

90 const Value &

91 get(const std::string &key) const

92 {

93 auto index = std::hash<std::string>{}(key) % N;

94

95 for (const auto &e : buckets[index]) {

96 if (e.first == key)

97 return data->values[e.second];

98 }

99

100 throw std::out_of range("no entry in simplekv");
101 }

102

103 void

104 put(const std::string 8key, const Value &val)
105 {

106  auto index = std::hash<std::string>{}(key) % N;
107
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108  /* get pool on which persistent data resides */

109 auto pop = pmem::obj::pool by vptr(data);

110

111 /* search for element with specified key - if found
112 * update its value in a transaction */

113 for (const auto &e : buckets[index]) {

114 if (e.first == key) {

115 pmem: :obj::transaction::run(pop, [&] {
116 data->values[e.second] = val;

117 IOk

118

119 return;

120 }

121}

122

123 /* if there is no element with specified key, insert new value
124 * to the end of values vector and key to keys vector

125 * in a transaction */

126 pmem: :obj::transaction: :run(pop, [&] {

127 data->values.emplace back(val);
128 data->keys.emplace back(key);
129 }s

130

131 buckets[index].emplace back(key, data->values.size() - 1);
132 }

133 };

134

135 /**

136 * Class which is stored on persistent memory.
137 * Value - type of the value stored in hashmap
138 * N - number of buckets in hashmap

139 */

140 template <typename Value, std::size t N>

141 struct simple kv persistent {

142 using key type = pmem::obj::string;
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using value_vector = pmem::obj::vector<Value>;
using key vector = pmem::obj::vector<key type>;

/* values and keys are stored in separate vectors to optimize

* snapshotting. If they were stored as a pair in single vector

* entire pair would have to be snapshotted in case of value update */
value_vector values;

key vector keys;

simple_kv_runtime<Value, N>
get_runtime()
{
return simple kv _runtime<Value, N>(this);
}
};

o Line 67: We define the data types residing in volatile memory. These
are very similar to the types used in the persistent version in “Hash
Table with Transactions.” The only difference is that here we use std
containers instead of pmem: : obj.

o Line 72: We declare the volatile buckets array.

e Line 73: We declare the pointer to persistent data (simple kv
persistent structure).

o Lines 75-88: In the simple kv_runtime constructor, we rebuild the
bucket’s array by iterating over keys and values in persistent memory.
In volatile memory, we store both the keys, which are a copy of the
persistent data and the index for the values vector in persistent
memory.

o Lines 90-101: The get() function looks for an element reference in
the volatile buckets array. There is only one reference to persistent

memory when we read the actual value on line 97.

o Lines 113-121: Similar to the get() function, we search for an
element using the volatile data structure and, when found, update

the value in a transaction.
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e Lines 126-129: When there is no element with the specified key in the
hash table, we insert both a value and a key to their respective vectors
in persistent memory in a transaction.

o Line 131: After inserting data to persistent memory, we update the
state of the volatile data structure. Note that this operation does not
have to be atomic. If a program crashes, the bucket array will be
rebuilt on startup.

o Lines 149-150: We define the layout of the persistent data. Key and
values are stored in separate pmem: :obj: :vector.

o Lines 153-156: We define a function that returns the runtime object of
this hash table.

Sorted Array with Versioning

This section presents an overview of an algorithm for inserting elements into a sorted
array and preserving the order of elements. This algorithm guarantees data consistency
using the versioning technique.

First, we describe the layout of our sorted array. Figure 11-2 and Listing 11-6 show
that there are two arrays of elements and two size fields. Additionally, one current field
stores information about which array and size variable is currently used.

4 %
(i ~ | @ 1] i
idx [EIEORETRESN 2 key [1]=a’
key [0]=c’
/ size| 4 5: key [3]='d’
curraid | key [2]=e |
( N
id« [110]| 2
size| 3
X y
key
value
% y

Figure 11-2. Sorted array layout
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Listing 11-6. Sorted array layout

41 template <typename Value, uint64_t slots>

42 struct entries t {

43 Value entries[slots];

44 size t size;

45 };

46

47 template <typename Value, uint64_t slots>

48 class array {

49 public:

50 void insert(pmem::obj::pool base &pop, const Value &);
51  void insert element(pmem::obj::pool base &pop, const Valued);
52

53 entries t<Value, slots> v[2];

54 uint32_t current;

55 };

e Lines 41-45: We define the helper structure, which consists of an
array of indexes and a size.

o Line 53: We define two elements array of entries_t structures.
entries_t holds an array of elements (entries array) and the number
of elements in the node as the size variable.

o Line 54: This variable determines which entries_t structure from
line 53 is used. It can be only 0 or 1. Figure 11-2 shows the situation
where the current is equal to 0 and points to the first element of the v
array.

To understand why we need two versions of the entries_t structure and a current
field, Figure 11-3 shows how the insert operation works, and the corresponding
pseudocode appears in Listing 11-7.
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A2

current ~

P

value

Figure 11-3. Overview of a sorted tree insert operation

Listing 11-7. Pseudocode of a sorted tree insert operation

57 template <typename Value, uint64 t slots>

58 void array<Value, slots>::insert element(pmem::obj::pool base &pop,
59 const Value &entry) {

60 auto 8working copy = v[1 - current];

61 auto &consistent copy = v[current];

62

63 auto consistent insert position = std::lower bound(

64 std::begin(consistent copy.entries),

65 std::begin(consistent copy.entries) +

66 consistent copy.size, entry);

67 auto working insert_position =

68 std: :begin(working copy.entries) +
std::distance(std::begin(consistent copy.entries),

69 consistent_insert position);

70

71 std::copy(std::begin(consistent copy.entries),

72 consistent_insert_position,

73 std::begin(working copy.entries));

74

75 *working_insert position = entry;

76

77 std::copy(consistent insert position,

78 std::begin(consistent copy.entries) +

consistent_copy.size,
79 working insert position + 1);

204



80
81
82
83
84
85
86
87
88
89
90
91
92

CHAPTER 11 DESIGNING DATA STRUCTURES FOR PERSISTENT MEMORY

working copy.size = consistent_copy.size + 1;

template <typename V, uint64_t s>
void array<V,s>::insert(pmem::obj::pool base 8pop,
const Value &entry){
insert element(pop, entry);
pop.persist(&(v[1 - current]), sizeof(entries t<Value, slots>));

current = 1 - current;
pop.persist(&current, sizeof(current));

¢ Lines 60-61: We define references to the current version of entries
array and to the working version.

o Line 63: We find the position in the current array where an entry
should be inserted.

o Line 67: We create iterator to the working array.

e Line 71: We copy part of the current array to the working array (range
from beginning of the current array to the place where a new element
should be inserted).

e Line 75: We insert an entry to the working array.

e Line 77: We copy remaining elements from the current array to the
working array after the element we just inserted.

o Line 81: We update the size of the working array to the size of the
current array plus one, for the element inserted.

o Lines 87-88: We insert an element and persist the entire v[1-current]
element.

e Lines 90-91: We update the current value and save it.
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Let’s analyze whether this approach guarantees data consistency. In the first step,
we copy elements from the original array to a currently unused one, insert the new
element, and persist it to make sure data goes to the persistence domain. The persist
call also ensures that the next operation (updating the current value) is not reordered
before any of the previous stores. Because of this, any interruption before or after issuing
the instruction to update the current field would not corrupt data because the current
variable always points to a valid version.

The memory overhead of using versioning for the insert operation is equal to a size
of the entries array and the current field. In terms of time overhead, we issued only two
persist operations.

Summary

This chapter shows how to design data structures for persistent memory, considering its
characteristics and capabilities. We discuss fragmentation and why it is problematic in
the case of persistent memory. We also present a few different methods of guaranteeing
data consistency; using transactions is the simplest and least error-prone method.
Other approaches, such as copy-on-write or versioning, can perform better, but they are
significantly more difficult to implement correctly.

Open Access This chapter is licensed under the terms of the Creative

Commons Attribution 4.0 International License (http://creativecommons.
org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution and
reproduction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need
to obtain permission directly from the copyright holder.
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CHAPTER 12

Debugging Persistent
Memory Applications

Persistent memory programming introduces new opportunities that allow developers to
directly persist data structures without serialization and to access them in place without
involving classic block I/O. As a result, you can merge your data models and avoid the
classic split between data in memory - which is volatile, fast, and byte addressable - with
data on traditional storage devices, which is non-volatile but slower.

Persistent memory programming also brings challenges. Recall our discussion
about power-fail protected persistence domains in Chapter 2: When a process or system
crashes on an Asynchronous DRAM Refresh (ADR)-enabled platform, data residing in
the CPU caches that has not yet been flushed, is lost. This is not a problem with volatile
memory because all the memory hierarchy is volatile. With persistent memory, however,
a crash can cause permanent data corruption. How often must you flush data? Flushing
too frequently yields suboptimal performance, and not flushing often enough leaves the
potential for data loss or corruption.

Chapter 11 described several approaches to designing data structures and using
methods such as copy-on-write, versioning, and transactions to maintain data integrity.
Many libraries within the Persistent Memory Development Kit (PMDK) provide
transactional updates of data structures and variables. These libraries provide optimal
CPU cache flushing, when required by the platform, at precisely the right time, so you
can program without concern about the hardware intricacies.

This programming paradigm introduces new dimensions related to errors and
performance issues that programmers need to be aware of. The PMDK libraries reduce
errors in persistent memory programming, but they cannot eliminate them. This chapter

207
© The Author(s) 2020

S. Scargall, Programming Persistent Memory, https://doi.org/10.1007/978-1-4842-4932-1_12

www. dbooks. or g


https://www.dbooks.org/

CHAPTER 12  DEBUGGING PERSISTENT MEMORY APPLICATIONS

describes common persistent memory programming issues and pitfalls and how to
correct them using the tools available. The first half of this chapter introduces the tools.
The second half presents several erroneous programming scenarios and describes how
to use the tools to correct the mistakes before releasing your code into production.

pmemcheck for Valgrind

pmemcheck is a Valgrind (http://www.valgrind.org/) tool developed by Intel. It is very
similar to memcheck, which is the default tool in Valgrind to discover memory-related
bugs but adapted for persistent memory. Valgrind is an instrumentation framework for
building dynamic analysis tools. Some Valgrind tools can automatically detect many
memory management and threading bugs and profile your programs in detail. You can
also use Valgrind to build new tools.

To run pmemcheck, you need a modified version of Valgrind supporting the new
CLFLUSHOPT and CLWB flushing instructions. The persistent memory version of Valgrind
includes the pmemcheck tool and is available from https://github.com/pmem/valgrind.
Refer to the README.md within the GitHub project for installation instructions.

All the libraries in PMDK are already instrumented with pmemcheck. If you use PMDK
for persistent memory programming, you will be able to easily check your code with
pmemcheck without any code modification.

Before we discuss the pmemcheck details, the following two sections demonstrate how
it identifies errors in an out-of-bounds and a memory leak example.

Stack Overflow Example

An out-of-bounds scenario is a stack/buffer overflow bug, where data is written or
read beyond the capacity of the stack or array. Consider the small code snippet in
Listing 12-1.

Listing 12-1. stackoverflow.c: Example of an out-of-bound bug

32 #include <stdlib.h>

33

34 int main() {

35 int *stack = malloc(1200 * sizeof(int));
36 stack[100] = 1234;
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37 free(stack);
38 return 0;
39 }

In line 36, we are incorrectly assigning the value 1234 to the position 100, which is
outside the array range of 0-99. If we compile and run this code, it may not fail. This is
because, even if we only allocated 400 bytes (100 integers) for our array, the operating
system provides a whole memory page, typically 4KiB. Executing the binary under
Valgrind reports an issue, shown in Listing 12-2.

Listing 12-2. Running Valgrind with code Listing 12-1

$ valgrind ./stackoverflow
==4188== Memcheck, a memory error detector

==4188== Invalid write of size 4

==4188== at 0x400556: main (stackoverflow.c:36)

==4188== Address 0x51f91d0 is O bytes after a block of size 400 alloc'd
==4188== at 0x4C2EB37: malloc (vg_replace malloc.c:299)

==4188== by 0x400547: main (stackoverflow.c:35)

==4188== ERROR SUMMARY: 1 errors from 1 contexts (suppressed: 0 from 0)

Because Valgrind can produce long reports, we show only the relevant “Invalid write”
error part of the report. When compiling code with symbol information (gcc -g), itis
easy to see the exact place in the code where the error is detected. In this case, Valgrind
highlights line 36 of the stackoverflow.c file. With the issue identified in the code, we
know where to fix it.

Memory Leak Example

Memory leaks are another common issue. Consider the code in Listing 12-3.

Listing 12-3. leak.c: Example of a memory leak

32 t#include <stdlib.h>

33
34 void func(void) {
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35 int *stack = malloc(100 * sizeof(int));
36 }

37

38 int main(void) {

39 func();

40 return 0;

41 '}

The memory allocation is moved to the function func(). A memory leak occurs
because the pointer to the newly allocated memory is a local variable on line 35, which is
lost when the function returns. Executing this program under Valgrind shows the results
in Listing 12-4.

Listing 12-4. Running Valgrind with code Listing 12-3

$ valgrind --leak-check=yes ./leak
==4413== Memcheck, a memory error detector

==4413== 400 bytes in 1 blocks are definitely lost in loss record 1 of 1

==4413== at 0x4C2EB37: malloc (vg replace malloc.c:299)
==4413== by 0x4004F7: func (leak.c:35)

==4413== by 0x400507: main (leak.c:39)

==4413==

==4413== LEAK SUMMARY:

==4413== ERROR SUMMARY: 1 errors from 1 contexts (suppressed: 0 from 0)

Valgrind shows a loss of 400 bytes of memory allocated at 1eak.c:35. To learn more,
please visit the official Valgrind documentation (http://www.valgrind.org/docs/
manual/index.html).

Intel Inspector — Persistence Inspector

Intel Inspector - Persistence Inspector is a runtime tool that developers use to detect
programming errors in persistent memory programs. In addition to cache flush misses,
this tool detects
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e Redundant cache flushes and memory fences
e Out-of-order persistent memory stores
e Incorrect undo logging for the PMDK

Persistence Inspector is included as part of Intel Inspector, an easy-to-use
memory and threading error debugger for C, C++, and Fortran that works with both
Windows and Linux operating systems. It has an intuitive graphical and command-
line interfaces, and it can be integrated with Microsoft Visual Studio. Intel Inspector
is available as part of Intel Parallel Studio XE (https://software.intel.com/en-us/
parallel-studio-xe) and Intel System Studio (https://software.intel.com/en-us/
system-studio).

This section describes how the Intel Inspector tool works with the same out-of-
bounds and memory leak examples from Listings 12-1 and 12-3.

Stack Overflow Example

The Listing 12-5 example demonstrates how to use the command-line interface to
perform the analysis and collect the data and then switches to the GUI to examine
the results in detail. To collect the data, we use the inspxe-cl utility with the -c=mi2
collection option for detecting memory problems.

Listing 12-5. Running Intel Inspector with code Listing 12-1
$ inspxe-cl -c=mi2 -- ./stackoverflow

1 new problem(s) found
1 Invalid memory access problem(s) detected

Intel Inspector creates a new directory with the data and analysis results, and prints
a summary of findings to the terminal. For the stackoverflow app, it detected one invalid
memory access.

After launching the GUI using inspxe-gui, we open the results collection through
the File » Open » Result menu and navigate to the directory created by inspxe-cli. The
directory will be named r000miz2 if it is the first run. Within the directory is a file named
r000mi2.1inspxe. Once opened and processed, the GUI presents the data shown in
Figure 12-1.
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E Detect Memory Problems INTEI.IHSPB}[GMDTB

| @ Targer A Analysis Type [3 Collectionlog || @ sumemary

choverflow.c:36

Figure 12-1. GUI of Intel Inspector showing results for Listing 12-1

The GUI defaults to the Summary tab to provide an overview of the analysis. Since
we compiled the program with symbols, the Code Locations panel at the bottom shows
the exact place in the code where the problem was detected. Intel Inspector identified
the same error on line 36 that Valgrind found.

If Intel Inspector detects multiple problems within the program, those issues are
listed in the Problems section in the upper left area of the window. You can select each
problem and see the information relating to it in the other sections of the window.

Memory Leak Example

The Listing 12-6 example runs Intel Inspector using the leak.c code from Listing 12-2
and uses the same arguments from the stackoverflow program to detect memory issues.

Listing 12-6. Running Intel Inspector with code Listing 12-2
$ inspxe-cl -c=mi2 -- ./leak
1 new problem(s) found

1 Memory leak problem(s) detected
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The Intel Inspector output is shown in Figure 12-2 and explains that a memory leak
problem was detected. When we open the r001mi2/r001mi2. inspxe result file in the
GUI, we get something similar to what is shown in the lower left section of Figure 12-2.

£ Detect Memory Problems INTEL INSPECTOR 2018
+ @ Target A Anabyss Type [ Collectiontog | @ surmary y b
Prebiems Al Filters Sertw A 7

P @ 400

id funcivoid) {
int *st

t ack = malloc(108 * sizeof(int]));

Figure 12-2. GUI of Intel Inspector showing results for Listing 12-2

The information related to the leaked object is shown above the code listing:
o Allocation site (source, function name, and module)
o Object size (400 bytes)
e The variable name that caused the leak

The right side of the Code panel shows the call stack that led to the bug (call stacks
are read from bottom to top). We see the call to func() in the main() function on line 39
(Leak.c:39), then the memory allocation occurs within func() on line 35 (1eak.c:35).
The Intel Inspector offers much more than what we presented here. To learn
more, please visit the documentation (https://software.intel.com/en-us/intel-
inspector-support/documentation).
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Common Persistent Memory Programming
Problems

This section reviews several coding and performance problems you are likely to
encounter, how to catch them using the pmemcheck and Intel Inspector tools, and how to
resolve the issues.

The tools we use highlight deliberately added issues in our code that can cause
bugs, data corruption, or other problems. For pmemcheck, we show how to bypass data
sections that should not be checked by the tool and use macros to assist the tool in better

understanding our intent.

Nonpersistent Stores

Nonpersistent stores refer to data written to persistent memory but not flushed explicitly.
It is understood that if the program writes to persistent memory, it wishes for those
writes to be persistent. If the program ends without explicitly flushing writes, there is an
open possibility for data corruption. When a program exits gracefully, all the pending
writes in the CPU caches are flushed automatically. However, if the program were to
crash unexpectedly, writes still residing in the CPU caches could be lost.

Consider the code in Listing 12-7 that writes data to a persistent memory device
mounted to /mnt/pmem without flushing the data.

Listing 12-7. Example of writing to persistent memory without flushing

32 #include <stdio.h>
33 #include <sys/mman.h>
34 #include <fcntl.h>

35

36 int main(int argc, char *argv[]) {

37 int fd, *data;

38 fd = open("/mnt/pmem/file", O CREAT|O RDWR, 0666);
39 posix_fallocate(fd, 0, sizeof(int));

40 data = (int *) mmap(NULL, sizeof(int), PROT READ |
41 PROT_WRITE, MAP_SHARED VALIDATE |
42 MAP_SYNC, fd, 0);
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43 *data = 1234;

44 munmap(data, sizeof(int));
45 return 0;

46 '}

o Line 38: We open /mnt/pmem/file.

o Line 39: We make sure there is enough space in the file to allocate an
integer by calling posix_fallocate().

o Line 40: We memory map /mnt/pmem/file.
e Line 43: We write 1234 to the memory.
e Line 44: We unmap the memory.

If we run pmemcheck with Listing 12-7, we will not get any useful information
because pmemcheck has no way to know which memory addresses are persistent and
which ones are volatile. This may change in future versions. To run pmemcheck, we pass
--tool=pmemcheck argument to valgrind as shown in Listing 12-8. The result shows no
issues were detected.

Listing 12-8. Running pmemcheck with code Listing 12-7

$ valgrind --tool=pmemcheck ./listing 12-7

==116951== pmemcheck-1.0, a simple persistent store checker

==116951== Copyright (c) 2014-2016, Intel Corporation

==116951== Using Valgrind-3.14.0 and LibVEX; rerun with -h for copyright

info
==116951== Command: ./listing 12-9
==116951==
==116951==

==116951== Number of stores not made persistent: 0
==116951== ERROR SUMMARY: 0 errors

We can inform pmemcheck which memory regions are persistent using a VALGRIND _
PMC_REGISTER_PMEM_MAPPING macro shown on line 52 in Listing 12-9. We must include
the valgrind/pmemcheck.h header for pmemcheck, line 36, which defines the VALGRIND _
PMC_REGISTER PMEM MAPPING macro and others.
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Listing 12-9. Example of writing to persistent memory using Valgrind macros
without flushing

33 #include <stdio.h>

34 #include <sys/mman.h>

35 #include <fcntl.h>

36 #include <valgrind/pmemcheck.h>

37

38 int main(int argc, char *argv[]) {

39 int fd, *data;

40

41 // open the file and allocate enough space for an
42 // integer

43 fd = open("/mnt/pmem/file", O CREAT|O _RDWR, 0666);
44 posix _fallocate(fd, 0, sizeof(int));

45

46 // memory map the file and register the mapped
47 // memory with VALGRIND

48 data = (int *) mmap(NULL, sizeof(int),

49 PROT_READ|PROT_WRITE,

50 MAP_SHARED VALIDATE | MAP_SYNC,

51 fd, 0);

52 VALGRIND PMC REGISTER PMEM_MAPPING(data,

53 sizeof(int));

54

55 // write to pmem

56 *data = 1234;

57

58 // unmap the memory and un-register it with

59 // VALGRIND

60 munmap(data, sizeof(int));

61 VALGRIND PMC REMOVE_PMEM MAPPING(data,

62 sizeof(int));
63 return 0;

64 }
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We remove persistent memory mapping identification from pmemcheck using the
VALGRIND PMC_REMOVE PMEM_MAPPING macro. As mentioned earlier, this is useful when
you want to exclude parts of persistent memory from the analysis. Listing 12-10 shows
executing pmemcheck with the modified code in Listing 12-9, which now reports a
problem.

Listing 12-10. Running pmemcheck with code Listing 12-9

$ valgrind --tool=pmemcheck ./listing 12-9
==8904== pmemcheck-1.0, a simple persistent store checker

==8904== Number of stores not made persistent: 1

==8904== Stores not made persistent properly:

==8904== [0] at 0x4008B4: main (listing 12-9.c:56)
==8904== Address: 0x4027000 size: 4 state: DIRTY
==8904== Total memory not made persistent: 4

==8904== ERROR SUMMARY: 1 errors

See that pmemcheck detected that data is not being flushed after a write in
listing 12-9.c, line 56. To fix this, we create a new flush() function, accepting an
address and size, to flush all the CPU cache lines storing any part of the data using the
CLFLUSH machine instruction (__mm_c1flush()). Listing 12-11 shows the modified
code.

Listing 12-11. Example of writing to persistent memory using Valgrind with
flushing

33 #include <emmintrin.h>

34 #include <stdint.h>

35 #include <stdio.h>

36 #include <sys/mman.h>

37 #include <fcntl.h>

38 #include <valgrind/pmemcheck.h>
39
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40 // flushing from user space
41 void flush(const void *addr, size t len) {

42 uintptr t flush align = 64, uptr;

43 for (uptr = (uintptr t)addr & ~(flush align - 1);
44 uptr < (uintptr_t)addr + len;

45 uptr += flush align)

46 _mm_c1lflush((char *)uptr);

47 '}

48

49 int main(int argc, char *argv[]) {

50 int fd, *data;

51

52 // open the file and allocate space for one

53 // integer

54 fd = open("/mnt/pmem/file", O CREAT|O_RDWR, 0666);
55 posix _fallocate(fd, 0, sizeof(int));

56

57 // map the file and register it with VALGRIND
58 data = (int *)mmap(NULL, sizeof(int),

59 PROT_READ | PROT WRITE,

60 MAP_SHARED VALIDATE | MAP_SYNC, fd, 0);
61 VALGRIND PMC_REGISTER_PMEM MAPPING(data,

62 sizeof(int));
63

64 // write and flush

65 *data = 1234;

66 flush((void *)data, sizeof(int));

67

68 // unmap and un-register

69 munmap(data, sizeof(int));

70 VALGRIND PMC_REMOVE PMEM MAPPING(data,

71 sizeof(int));
72 return 0;

73}
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Running the modified code through pmemcheck reports no issues, as shown in
Listing 12-12.

Listing 12-12. Running pmemcheck with code Listing 12-11

$ valgrind --tool=pmemcheck ./listing 12-11
==9710== pmemcheck-1.0, a simple persistent store checker

==9710== Number of stores not made persistent: 0
==9710== ERROR SUMMARY: 0 errors

Because Intel Inspector - Persistence Inspector does not consider an unflushed write a
problem unless there is a write dependency with other variables, we need to show a more
complex example than writing a single variable in Listing 12-7. You need to understand
how programs writing to persistent memory are designed to know which parts of the data
written to the persistent media are valid and which parts are not. Remember that recent
writes may still be sitting on the CPU caches if they are not explicitly flushed.

Transactions solve the problem of half-written data by using logs to either roll back
or apply uncommitted changes; thus, programs reading the data back can be assured
that everything written is valid. In the absence of transactions, it is impossible to know
whether or not the data written on persistent memory is valid, especially if the program
crashes.

A writer can inform a reader that data is properly written in one of two ways, either
by setting a “valid” flag or by using a watermark variable with the address (or the index,
in the case of an array) of the last valid written memory position.

Listing 12-13 shows pseudocode for how the “valid” flag approach could be
implemented.

Listing 12-13. Pseudocode showcasing write dependency of varl with varl_valid

1 writer() {

2 varl = "This is a persistent Hello World
3 written to persistent memory!";
4 flush (vari);

5 varl valid = True;

6 flush (vari valid);

7

8

}
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9 reader() {

10
11
12
14

if (vari valid == True) {
print (vari);

}

The reader () will read the data in var1 if the var1 valid flag is set to True (line 10),

and varl valid can only be True if var1 has been flushed (lines 4 and 5)

We can now modify the code from Listing 12-7 to introduce this “valid” flag. In

Listing 12-14, we separate the code into writer and reader programs and map two

integers instead of one (to accommodate for the flag). Listing 12-15 shows the reading to

persistent memory example.

Listing 12-14. Example of writing to persistent memory with a write

dependency; the code does not flush

33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
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#include <stdio.h>
#include <sys/mman.h>
#include <fcntl.h>
#include <string.h>

int main(int argc, char *argv[]) {
int fd, *ptr, *data, *flag;

fd = open("/mnt/pmem/file", O CREAT|O RDWR, 0666);
posix_fallocate(fd, 0, sizeof(int)*2);

ptr = (int *) mmap(NULL, sizeof(int)*2,
PROT_READ | PROT WRITE,
MAP_SHARED VALIDATE | MAP_SYNC,
fd, 0);

data = &(ptr[1]);
flag = &(ptr[o]);
*data = 1234;
*flag = 1;



54
55
56}
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munmap(ptr, 2 * sizeof(int));
return 0;

Listing 12-15. Example of reading from persistent memory with a write

dependency

33 #include <stdio.h>
34 #include <sys/mman.h>
35 #include <fcntl.h>

36

37 int main(int argc, char *argv[]) {

38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55 }

int fd, *ptr, *data, *flag;

fd = open("/mnt/pmem/file", O _CREAT|O_RDWR, 0666);
posix_fallocate(fd, 0, 2 * sizeof(int));

ptr = (int *) mmap(NULL, 2 * sizeof(int),
PROT_READ | PROT WRITE,
MAP_SHARED VALIDATE | MAP_SYNC,
fd, 0);

data = &(ptr[1]);
flag = &(ptr[o]);
if (*flag == 1)
printf("data = %d\n", *data);

munmap(ptr, 2 * sizeof(int));
return 0;

Checking our code with Persistence Inspector is done in three steps.

Step 1: We must run the before-unfortunate-event phase analysis (see Listing 12-16),

which corresponds to the writer code in Listing 12-14.
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Listing 12-16. Running Intel Inspector - Persistence Inspector with code
Listing 12-14 for before-unfortunate-event phase analysis

$ pmeminsp cb -pmem-file /mnt/pmem/file -- ./listing 12-14
++ Analysis starts

++ Analysis completes
++ Data is stored in folder "/data/.pmeminspdata/data/listing 12-14"

The parameter cb is an abbreviation of check-before-unfortunate-event, which
specifies the type of analysis. We must also pass the persistent memory file that will be
used by the application so that Persistence Inspector knows which memory accesses
correspond to persistent memory. By default, the output of the analysis is stored in
alocal directory under the . pmeminspdata directory. (You can also specify a custom
directory; run pmeminsp -help for information on the available options.)

Step 2: We run the after-unfortunate-event phase analysis (see Listing 12-17). This
corresponds to the code that will read the data after an unfortunate event happens, such
as a process crash.

Listing 12-17. Running Intel Inspector - Persistence Inspector with code Listing
12-15 for after-unfortunate-event phase analysis

$ pmeminsp ca -pmem-file /mnt/pmem/file -- ./listing 12-15
++ Analysis starts

data = 1234

++ Analysis completes
++ Data is stored in folder "/data/.pmeminspdata/data/listing 12-15"

The parameter ca is an abbreviation of check-after-unfortunate-event. Again, the
output of the analysis is stored in . pmeminspdata within the current working directory.

Step 3: We generate the final report. For this, we pass the option rp (abbreviation for
report) along with the name of both programs, as shown in Listing 12-18.
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Listing 12-18. Generating a final report with Intel Inspector - Persistence
Inspector from the analysis done in Listings 12-16 and 12-17

$ pmeminsp rp -- listing 12-16 listing 12-17

The first memory store
of size 4 at address 0x7F9C68893004 (offset 0x4 in /mnt/pmem/file)
in /data/listing 12-16!main at listing 12-16.c:51 - 0x67D
in /1ib64/1ibc.so.6! libc_start main at <unknown_file>:<unknown_
line> - 0x223D3
in /data/listing 12-16! start at <unknown_file>:<unknown_line> - 0x534

is not flushed before

the second memory store
of size 4 at address 0x7F9C68893000 (offset 0x0 in /mnt/pmem/file)
in /data/listing_12-16!main at listing 12-16.c:52 - 0x687
in /1ib64/1ibc.so.6! libc_start main at <unknown_file>:<unknown_
line> - 0x223D3
in /data/listing 12-16! start at <unknown_file>:<unknown_line> - 0x534

while

memory load from the location of the first store
in /data/listing 12-17!main at listing 12-17.c:51 - 0x6(C8

depends on

memory load from the location of the second store
in /data/listing 12-17!main at listing 12-17.c:50 - Ox6BD

# Diagnostic # 2: Missing cache flush
Memory store
of size 4 at address 0x7F9C68893000 (offset 0x0 in /mnt/pmem/file)

in /data/listing 12-16!main at listing 12-16.c:52 - 0x687
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in /1ib64/1ibc.so.6! libc_start main at <unknown_file>:<unknown_
line> - 0x223D3
in /data/listing 12-16! start at <unknown_file>:<unknown_line> - 0x534

is not flushed before

memory is unmapped
in /data/listing 12-16!main at listing 12-16.c:54 - 0x699
in /1ib64/1ibc.so.6! libc_start main at <unknown_file>:<unknown_
line> - 0x223D3
in /data/listing 12-16! start at <unknown_ file>:<unknown line> - 0x534

Analysis complete. 2 diagnostic(s) reported.

The output is very verbose, but it is easy to follow. We get two missing cache flushes
(diagnostics 1 and 2) corresponding to lines 51 and 52 of 1isting 12-16.c. We do these
writes to the locations in the mapped persistent memory pointed by variables flag
and data. The first diagnostic says that the first memory store is not flushed before the
second store, while, at the same time, there is a load dependency of the first store to the
second. This is exactly what we intended.

The second diagnostic says that the second store (to the flag) itself is never actually
flushed before ending. Even if we flush the first store correctly before we write the flag,
we must still flush the flag to make sure the dependency works.

To open the results in the Intel Inspector GUI, you can use the -insp option when
generating the report, for example:

$ pmeminsp rp -insp -- listing 12-16 listing 12-17

This generates a directory called r000pmem inside the analysis directory
(.pmeminspdata by default). Launch the GUI running inspxe-gui and open the result
file by going to File » Open » Result and selecting the file r000pmem/xr000pmem. inspxe.
You should see something similar to what is shown in Figure 12-3.
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[ Examine Persistence Inspector Result 3 .--"!ﬂmlﬁspmms

0 (D Target & Aratysis Type [ collectiontog | @ surerary

iz, Fating 12-17.c:50; bsting .

listing 12-16/main - listing 12-16.c:52
libc.so.6!_ Llibc start main
Usting 12-161 start

Tisting 12-171min - listing 12-17.c:50

listing 12-17!main - listing 12-17.c:51

da ptel
flag = &(prr(ell; libe.sa.6! Libe start maim
*data = 1234; listing 12-16! start

“flag = 1;

Visting 12-18min - listing 12-16.c:51

Figure 12-3. GUI of Intel Inspector showing results for Listing 12-18 (diagnostic 1)

The GUI shows the same information as the command-line analysis but in a more
readable way by highlighting the errors directly on our source code. As Figure 12-3
shows, the modification of the flag is called “primary store.”

In Figure 12-4, the second diagnosis is selected in the Problems pane, showing the
missing flush for the flag itself.
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[l Examine Persistence Inspector Result MTEUHSPEG]!]H
| @ et A Mnalyis e [3 Colkctontog | @ summary ; 5 Z

2019

-16imain - listing 12-16.c:52
+_main

-16imain - listing 12-16.c:54
c_start main

munrapiptr, 2 * sizesfl{intll;
return 6;

56}

Figure 12-4. GUI of Intel Inspector showing results for Listing 12-20 (diagnostic #2)

To conclude this section, we fix the code and rerun the analysis with Persistence
Inspector. The code in Listing 12-19 adds the necessary flushes to Listing 12-14.

Listing 12-19. Example of writing to persistent memory with a write
dependency. The code flushes both writes

33 #include <emmintrin.h>
34 #include <stdint.h>
35 #include <stdio.h>
36 #include <sys/mman.h>
37 #include <fcntl.h>
38 #include <string.h>

39

40 void flush(const void *addr, size t len) {

41 uintptr_t flush_align = 64, uptr;

42 for (uptr = (uintptr_ t)addr & ~(flush align - 1);
43 uptr < (uintptr_t)addr + len;

44 uptr += flush_align)

226



CHAPTER 12 DEBUGGING PERSISTENT MEMORY APPLICATIONS

45 _mm_clflush((char *)uptr);

46 }

47

48 int main(int argc, char *argv[]) {

49 int fd, *ptr, *data, *flag;

50

51 fd = open("/mnt/pmem/file", O CREAT|O _RDWR, 0666);
52 posix_fallocate(fd, 0, sizeof(int) * 2);
53

54 ptr = (int *) mmap(NULL, sizeof(int) * 2,
55 PROT READ | PROT WRITE,
56 MAP_SHARED VALIDATE | MAP_SYNC,
57 fd, 0);

58

59 data = &(ptr[1]);

60 flag = &(ptr[o]);

61 *data = 1234;

62 flush((void *) data, sizeof(int));

63 *flag = 1;

64 flush((void *) flag, sizeof(int));

65

66 munmap(ptr, 2 * sizeof(int));

67 return 0;

68 }

Listing 12-20 executes Persistence Inspector against the modified code from
Listing 12-19, then the reader code from Listing 12-15, and finally running the report,
which says that no problems were detected.

Listing 12-20. Running full analysis with Intel Inspector - Persistence Inspector
with code Listings 12-19 and 12-15

$ pmeminsp cb -pmem-file /mnt/pmem/file -- ./listing 12-19
++ Analysis starts

++ Analysis completes
++ Data is stored in folder "/data/.pmeminspdata/data/listing 12-19"
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$ pmeminsp ca -pmem-file /mnt/pmem/file -- ./listing 12-15
++ Analysis starts

data = 1234

++ Analysis completes
++ Data is stored in folder "/data/.pmeminspdata/data/listing 12-15"

$ pmeminsp rp -- listing 12-19 listing 12-15
Analysis complete. No problems detected.

Stores Not Added into a Transaction

When working within a transaction block, it is assumed that all the modified persistent
memory addresses were added to it at the beginning, which also implies that their
previous values are copied to an undo log. This allows the transaction to implicitly flush
added memory addresses at the end of the block or roll back to the old values in the
event of an unexpected failure. A modification within a transaction to an address that is
not added to the transaction is a bug that you must be aware of.

Consider the code in Listing 12-21 that uses the 1ibpmemobj library from PMDK. It
shows an example of writing within a transaction using a memory address that is not
explicitly tracked by the transaction.

Listing 12-21. Example of writing within a transaction with a memory address
not added to the transaction

33 #include <libpmemobj.h>

34

35 struct my_root {
36 int value;
37 int is_odd;
38}

39

40 // registering type 'my root' in the layout
41 POBJ_LAYOUT_BEGIN(example);

42 POBJ_LAYOUT ROOT(example, struct my root);
43 POBJ_LAYOUT_END(example);

44
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int main(int argc, char *argv[]) {
// creating the pool
PMEMobjpool *pop= pmemobj_create("/mnt/pmem/pool”,
POBJ_LAYOUT_NAME (example),
(1024 * 1024 * 100), 0666);

// transation
TX BEGIN(pop) {
TOID(struct my root) root
= POBJ_ROOT(pop, struct my root);

// adding root.value to the transaction
TX_ADD_FIELD(root, value);

D RW(root)->value = 4;
D RW(root)->is odd = D RO(root)->value % 2;
} TX_END

return 0;

}

Note For a refresh on the definitions of a layout, root object, or macros used in
Listing 12-21, see Chapter 7 where we introduce 1ibpmemobj.

In lines 35-38, we create amy_root data structure, which has two integer members:

value and is_odd. These integers are modified inside a transaction (lines 52-61),

setting value=4 and is_odd=0. On line 57, we are only adding the value variable to the

transaction, leaving is_odd out. Given that persistent memory is not natively supported

in C, there is no way for the compiler to warn you about this. The compiler cannot

distinguish between pointers to volatile memory vs. those to persistent memory.

Listing 12-22 shows the response from running the code through pmemcheck.

229

www. dbooks. or g


https://www.dbooks.org/

CHAPTER 12  DEBUGGING PERSISTENT MEMORY APPLICATIONS

Listing 12-22. Running pmemcheck with code Listing 12-21

$ valgrind --tool=pmemcheck ./listing 12-21

==48660== pmemcheck-1.0, a simple persistent store checker

==48660== Copyright (c) 2014-2016, Intel Corporation

==48660== Using Valgrind-3.14.0 and LibVEX; rerun with -h for copyright info
==48660== Command: ./listing 12-21

==48660==

==48660==

==48660== Number of stores not made persistent: 1

==48660== Stores not made persistent properly:

==48660== [0] at 0x400C2D: main (listing 12-25.c:60)

==48660== Address: 0x7dc0554 size: 4 state: DIRTY
==48660== Total memory not made persistent: 4
==48660==

==48660== Number of stores made without adding to transaction: 1
==48660== Stores made without adding to transactions:

==48660== [0] at 0x400C2D: main (listing 12-25.c:60)
==48660== Address: 0x7dc0554 size: 4

==48660== ERROR SUMMARY: 2 errors

Although they are both related to the same root cause, pmemcheck identified two
issues. One is the error we expected; that is, we have a store inside a transaction that
was not added to it. The other error says that we are not flushing the store. Since
transactional stores are flushed automatically when the program exits the transaction,
finding two errors per store to a location not included within a transaction should be
common in pmemcheck.

Persistence Inspector has a more user-friendly output, as shown in Listing 12-23.

Listing 12-23. Generating a report with Intel Inspector - Persistence Inspector
for code Listing 12-21

$ pmeminsp cb -pmem-file /mnt/pmem/pool -- ./listing 12-21
++ Analysis starts

++ Analysis completes
++ Data is stored in folder "/data/.pmeminspdata/data/listing 12-21"
$

230



CHAPTER 12 DEBUGGING PERSISTENT MEMORY APPLICATIONS

$ pmeminsp rp -- ./listing 12-21

Memory store
of size 4 at address 0x7FAA84DC0554 (offset 0x3C0554 in /mnt/pmem/pool)
in /data/listing 12-21!main at listing 12-21.c:60 - 0xC2D
in /1ib64/1ibc.so.6! libc_start main at <unknown_file>:<unknown_
line> - 0x223D3
in /data/listing 12-21! start at <unknown file>:<unknown line> - 0x954

is not undo logged in

transaction
in /data/listing 12-21!main at listing 12-21.c:52 - 0xB67
in /1ib64/1ibc.so.6! libc_start main at <unknown_file>:<unknown_
line> - 0x223D3
in /data/listing 12-21! start at <unknown_file>:<unknown line> - 0x954

Analysis complete. 1 diagnostic(s) reported.

We do not perform an after-unfortunate-event phase analysis here because we are

only concerned about transactions.

We can fix the problem reported in Listing 12-23 by adding the whole root object to

the transaction using TX_ADD(root), as shown on line 53 in Listing 12-24.

Listing 12-24. Example of adding an object and writing it within a transaction

32
33
34
35
36
37
38
39
40
41
42

#include <libpmemobj.h>

struct my root {
int value;
int is_odd;
b
POBJ_LAYOUT BEGIN(example);
POBJ_LAYOUT ROOT(example, struct my root);
POBJ_LAYOUT END(example);
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43 int main(int argc, char *argv[]) {

44 PMEMobjpool *pop= pmemobj create("/mnt/pmem/pool”,
45 POBJ_LAYOUT NAME (example),

46 (1024 * 1024 * 100), 0666);
47

48 TX_BEGIN(pop) {

49 TOID(struct my root) root

50 = POBJ _ROOT(pop, struct my root);

51

52 // adding full root to the transaction

53 TX_ADD(root);

54

55 D RW(root)->value = 4;

56 D RW(root)->is odd = D RO(root)->value % 2;
57 } TX_END

58

59 return 0;

60 }

If we run the code through pmemcheck, as shown in Listing 12-25, no issues are
reported.

Listing 12-25. Running pmemcheck with code Listing 12-24

$ valgrind --tool=pmemcheck ./listing 12-24

==80721== pmemcheck-1.0, a simple persistent store checker

==80721== Copyright (c) 2014-2016, Intel Corporation

==80721== Using Valgrind-3.14.0 and LibVEX; rerun with -h for copyright

info
==80721== Command: ./listing 12-24
==80721==
==80721==

==80721== Number of stores not made persistent: 0
==80721== ERROR SUMMARY: 0 errors
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Similarly, no issues are reported by Persistence Inspector in Listing 12-26.

Listing 12-26. Generating report with Intel Inspector - Persistence Inspector for
code Listing 12-24

$ pmeminsp cb -pmem-file /mnt/pmem/pool -- ./listing 12-24
++ Analysis starts

++ Analysis completes

++ Data is stored in folder "/data/.pmeminspdata/data/listing_12-24"
$

$ pmeminsp rp -- ./listing 12-24

Analysis complete. No problems detected.

After properly adding all the memory that will be modified to the transaction, both
tools report that no problems were found.

Memory Added to Two Different Transactions

In the case where one program can work with multiple transactions simultaneously,
adding the same memory object to multiple transactions can potentially corrupt data.
This can occur in PMDK, for example, where the library maintains a different transaction
per thread. If two threads write to the same object within different transactions, after an
application crash, a thread might overwrite modifications made by another thread in a
different transaction. In database systems, this problem is known as dirty reads. Dirty
reads violate the isolation requirement of the ACID (atomicity, consistency, isolation,
durability) properties, as shown in Figure 12-5.
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Thread 1 Thread 2

X =0 START_TX START_TX
1

X =@ — ADD_TX (X)

! &

X =25 —— X += 5

| -
= > ADD_TX (X
X 5 1 -1 (X) ﬂ
X =10 < } X += 5
1 ]
X = 10 (flushed) T END'_TX
|
process crash

X = @ <« ROLL BACK MECHANISM

Figure 12-5. The rollback mechanism for the unfinished transaction in Thread 1
is also overriding the changes made by Thread 2, even though the transaction for
Thread 2 finishes correctly

In Figure 12-5, time is shown in the y axis with time progressing downward. These

operations occur in the following order:
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Assume X=0 when the application starts.

Amain() function creates two threads: Thread 1 and Thread 2. Both
threads are intended to start their own transactions and acquire the
lock to modify X.

Since Thread 1 runs first, it acquires the lock on X first. It then

adds the X variable to the transaction before incrementing X by 5.
Transparent to the program, the value of X (X=0) is added to the undo
log when X was added to the transaction. Since the transaction is not
yet complete, the application has not yet explicitly flushed the value.

Thread 2 starts, begins its own transaction, acquires the lock, reads
the value of X (which is now 5), adds X=5 to the undo log, and
increments it by 5. The transaction completes successfully, and
Thread 2 flushes the CPU caches. Now, x=10.
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e Unfortunately, the program crashes after Thread 2 successfully
completes its transaction but before Thread 1 was able to finish its
transaction and flush its value.

This scenario leaves the application with an invalid, but consistent, value of x=10.
Since transactions are atomic, all changes done within them are not valid until they
successfully complete.

When the application starts, it knows it must perform a recovery operation due
to the previous crash and will replay the undo logs to rewind the partial update made
by Thread 1. The undo log restores the value of X=0, which was correct when Thread 1
added its entry. The expected value of X should be X=5 in this situation, but the undo log
puts X=0. You can probably see the huge potential for data corruption that this situation
can produce.

We describe concurrency for multithreaded applications in Chapter 14. Using
libpmemobj-cpp, the C++ language binding library to 1ibpmemobj, concurrency issues
are very easy to resolve because the API allows us to pass a list of locks using lambda
functions when transactions are created. Chapter 8 discusses 1ibpmemobj-cpp and
lambda functions in more detail.

Listing 12-27 shows how you can use a single mutex to lock a whole transaction. This
mutex can either be a standard mutex (std: :mutex) if the mutex object resides in volatile
memory or a pmem mutex (pmem: :obj: :mutex) if the mutex object resides in persistent
memory.

Listing 12-27. Example of a libpmemobj++ transaction whose writes are both
atomic - with respect to persistent memory - and isolated - in a multithreaded
scenario. The mutex is passed to the transaction as a parameter

transaction::run (pop, [&] {
// all writes here are atomic and thread safe

}, mutex);

Consider the code in Listing 12-28 that simultaneously adds the same memory
region to two different transactions.
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Listing 12-28. Example of two threads simultaneously adding the same
persistent memory location to their respective transactions

33 #include <libpmemobj.h>
34 #include <pthread.h>

35

36 struct my root {
37 int value;
38 int is_odd;
39 )

40

41 POBJ_LAYOUT BEGIN(example);

42 POBJ_LAYOUT ROOT(example, struct my root);
43 POBJ_LAYOUT END(example);

44

45 pthread mutex_t lock;

46

47 // function to be run by extra thread

48 void *func(void *args) {

49 PMEMobjpool *pop = (PMEMobjpool *) args;

50

51 TX_BEGIN(pop) {

52 pthread mutex lock(8lock);

53 TOID(struct my root) root

54 = POBJ _ROOT(pop, struct my root);

55 TX_ADD(root);

56 D RW(root)->value = D RO(root)->value + 3;
57 pthread mutex unlock(&lock);

58 } TX_END

59 }

60

61 int main(int argc, char *argv[]) {

62 PMEMobjpool *pop= pmemobj create("/mnt/pmem/pool”,
63 POBJ_LAYOUT NAME (example),
64 (1024 * 1024 * 10), 0666);
65

236



CHAPTER 12 DEBUGGING PERSISTENT MEMORY APPLICATIONS

66 pthread t thread;

67 pthread mutex init(&lock, NULL);

68

69 TX_BEGIN(pop) {

70 pthread mutex lock(&lock);

71 TOID(struct my root) root

72 = POBJ_ROOT(pop, struct my root);

73 TX_ADD(root);

74 pthread create(&thread, NULL,

75 func, (void *) pop);

76 D RW(root)->value = D RO(root)->value + 4;
77 D RW(root)->is odd = D RO(root)->value % 2;
78 pthread mutex_unlock(&lock);

79 // wait to make sure other thread finishes 1st
80 pthread join(thread, NULL);

81 } TX_END

82

83 pthread mutex_destroy(&lock);

84 return 0;

85 }

Line 69: The main thread starts a transaction and adds the root data
structure to it (line 73).

Line 74: We create a new thread by calling pthread create() and
have it execute the func() function. This function also starts a
transaction (line 51) and adds the root data structure to it (line 55).

Both threads will simultaneously modify all or part of the same data
before finishing their transactions. We force the second thread to
finish first by making the main thread wait on pthread_join().

Listing 12-29 shows code execution with pmemcheck, and the result warns us that we

have overlapping regions registered in different transactions.
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Listing 12-29. Running pmemcheck with Listing 12-28

$ valgrind --tool=pmemcheck ./listing 12-28

==97301==
==97301==
==97301==
==97301==
==97301==
==97301==
==97301==
==97301==
==97301==

==97301==
==97301==

==97301==

==97301==

::97301::

==97301==

==97301==

::97301::

==97301==

==97301==

==97301==

==97301==
==97301==
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pmemcheck-1.0, a simple persistent store checker

Copyright (c) 2014-2016, Intel Corporation

Using Valgrind-3.14.0 and LibVEX; rerun with -h for copyright info
Command: ./listing 12-28

Number of stores not made persistent: 0

Number of overlapping regions registered in different
transactions: 1
Overlapping regions:
[0] at 0x4E6BOBC: pmemobj tx add snapshot (in /usr/1lib64/
libpmemobj.s0.1.0.0)
by Ox4E6B5F8: pmemobj tx add common.constprop.18 (in /usr/
1ib64/1ibpmemobj.s0.1.0.0)
by Ox4E6C62F: pmemobj tx add range (in /usr/1ib64/libpmemobj.
$0.1.0.0)
by 0x400DAC: func (listing 12-28.c:55)
by 0x4C2DDD4: start thread (in /usr/1ib64/libpthread-2.17.so0)
by 0x5180EAC: clone (in /usr/1ib64/libc-2.17.s0)
Address: 0x7dc0550 size: 8 tx_id: 2
First registered here:
[0]" at Ox4E6BOBC: pmemobj tx add snapshot (in /usr/lib64/
libpmemobj.s0.1.0.0)
by Ox4E6B5F8: pmemobj tx add common.constprop.18 (in /usr/
1ib64/1ibpmemobj.s0.1.0.0)
by Ox4E6C62F: pmemobj tx add range (in /usr/1ib64/libpmemobj.
$0.1.0.0)
by 0x400F23: main (listing 12-28.c:73)
Address: 0x7dc0550 size: 8 tx_id: 1
ERROR SUMMARY: 1 errors
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Listing 12-30 shows the same code run with Persistence Inspector, which also reports
“Overlapping regions registered in different transactions” in diagnostic 25. The first 24
diagnostic results were related to stores not added to our transactions corresponding
with the locking and unlocking of our volatile mutex; these can be ignored.

Listing 12-30. Generating a report with Intel Inspector - Persistence Inspector
for code Listing 12-28

$ pmeminsp rp -- ./listing 12-28

transaction
in /data/listing 12-28!main at listing 12-28.c:69 - OXEB6
in /1ib64/1ibc.so.6! libc_start_main at <unknown_file>:<unknown_line>
- 0x223D3
in /data/listing 12-28! start at <unknown_file>:<unknown_line> - 0xB44

protects

memory region
in /data/listing_12-28!main at listing 12-28.c:73 - OxFi1F
in /1ib64/1ibc.so.6! libc_start_main at <unknown_file>:<unknown_line>
- 0x223D3
in /data/listing 12-28! start at <unknown_file>:<unknown_line> - 0xB44

overlaps with

memory region
in /data/listing 12-28!func at listing 12-28.c:55 - OxDA8
in /1ib64/libpthread.so.0!start thread at <unknown_ file>:<unknown line>
- 0x7DCD
in /1ib64/1ibc.so.6! clone at <unknown_file>:<unknown_line> - OxFDEAB

Analysis complete. 25 diagnostic(s) reported.
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Memory Overwrites

When multiple modifications to the same persistent memory location occur before
the location is made persistent (that is, flushed), a memory overwrite occurs. This is
a potential data corruption source if a program crashes because the final value of the
persistent variable can be any of the values written between the last flush and the crash.
It is important to know that this may not be an issue if it is in the code by design. We
recommend using volatile variables for short-lived data and only write to persistent
variables when you want to persist data.

Consider the code in Listing 12-31, which writes twice to the data variable inside the
main() function (lines 62 and 63) before we call flush() on line 64.

Listing 12-31. Example of persistent memory overwriting - variable data -
before flushing

33 #include <emmintrin.h>

34 #include <stdint.h>

35 #include <stdio.h>

36 #include <sys/mman.h>

37 #include <fcntl.h>

38 #include <valgrind/pmemcheck.h>

39

40 void flush(const void *addr, size t len) {

41 uintptr_t flush_align = 64, uptr;

42 for (uptr = (uintptr t)addr & ~(flush align - 1);
43 uptr < (uintptr_t)addr + len;

44 uptr += flush align)

45 _mm_clflush((char *)uptr);

46 }

47

48 int main(int argc, char *argv[]) {

49 int fd, *data;

50

51 fd = open("/mnt/pmem/file", O _CREAT|O_RDWR, 0666);
52 posix fallocate(fd, 0, sizeof(int));

53
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54 data = (int *)mmap(NULL, sizeof(int),

55 PROT READ | PROT_WRITE,

56 MAP_SHARED VALIDATE | MAP_SYNC,

57 fd, 0);

58 VALGRIND PMC REGISTER PMEM MAPPING(data,

59 sizeof(int));
60

61 // writing twice before flushing

62 *data = 1234;

63 *data = 4321;

64 flush((void *)data, sizeof(int));

65

66 munmap(data, sizeof(int));

67 VALGRIND PMC_REMOVE_PMEM MAPPING(data,

68 sizeof(int));
69 return 0;

70 }

Listing 12-32 shows the report from pmemcheck with the code from Listing 12-31.
To make pmemcheck look for overwrites, we must use the --mult-stores=yes option.

Listing 12-32. Running pmemcheck with Listing 12-31

$ valgrind --tool=pmemcheck --mult-stores=yes ./listing 12-31
==25609== pmemcheck-1.0, a simple persistent store checker
==25609== Copyright (c) 2014-2016, Intel Corporation

==25609== Using Valgrind-3.14.0 and LibVEX; rerun with -h for copyright info
==25609== Command: ./listing 12-31

==25609==

==25609==

==25609== Number of stores not made persistent: 0

==25609==

==25609== Number of overwritten stores: 1

==25609== Overwritten stores before they were made persistent:
==25609== [0] at 0x400962: main (listing 12-31.c:62)
==25609== Address: 0x4023000 size: 4 state: DIRTY
==25609== ERROR SUMMARY: 1 errors
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pmemcheck reports that we have overwritten stores. We can fix this problem by either
inserting a flushing instruction between both writes, if we forgot to flush, or by moving
one of the stores to volatile data if that store corresponds to short-lived data.

At the time of publication, Persistence Inspector does not support checking for
overwritten stores. As you have seen, Persistence Inspector does not consider a missing
flush an issue unless there is a write dependency. In addition, it does not consider this a
performance problem because writing to the same variable in a short time span is likely
to hit the CPU caches anyway, rendering the latency differences between DRAM and
persistent memory irrelevant.

Unnecessary Flushes

Flushing should be done carefully. Detecting unnecessary flushes, such as redundant
ones, can help improve code performance. The code in Listing 12-33 shows a redundant
call to the flush() function on line 64.

Listing 12-33. Example of redundant flushing of a persistent memory variable

33 #include <emmintrin.h>

34 #include <stdint.h>

35 #include <stdio.h>

36 #include <sys/mman.h>

37 #include <fcntl.h>

38 #include <valgrind/pmemcheck.h>

39

40 void flush(const void *addr, size t len) {
41 uintptr t flush align = 64, uptr;

42 for (uptr = (uintptr t)addr & ~(flush align - 1);
43 uptr < (uintptr t)addr + len;
44 uptr += flush align)

45 _mm_clflush((char *)uptr);

46 }

47

48 int main(int argc, char *argv[]) {

49 int fd, *data;

50
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fd = open("/mnt/pmem/file", O CREAT|O _RDWR, 0666);
posix _fallocate(fd, 0, sizeof(int));

data = (int *)mmap(NULL, sizeof(int),
PROT_READ | PROT WRITE,
MAP_SHARED VALIDATE | MAP_SYNC,
fd, 0);

VALGRIND PMC_REGISTER PMEM_MAPPING(data,
sizeof(int));

*data = 1234;
flush((void *)data, sizeof(int));
flush((void *)data, sizeof(int)); // extra flush

munmap(data, sizeof(int));

VALGRIND PMC_REMOVE_PMEM MAPPING(data,
sizeof(int));

return 0;

We can use pmemcheck to detect redundant flushes using - -flush-check=yes option,

as shown in Listing 12-34.

Listing 12-34. Running pmemcheck with Listing 12-33

$ valgrind
==104125==
==104125==
==104125==
==104125==
==104125==
==104125==
==104125==
==104125==

--tool=pmemcheck --flush-check=yes ./listing 12-33
pmemcheck-1.0, a simple persistent store checker

Copyright (c) 2014-2016, Intel Corporation

Using Valgrind-3.14.0 and LibVEX; rerun with -h for copyright info
Command: ./listing 12-33

Number of stores not made persistent: 0
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==104125== Number of unnecessary flushes: 1

==104125== [0] at 0x400868: flush (emmintrin.h:1459)
==104125== by 0x400989: main (listing 12-33.c:64)
==104125== Address: 0x4023000 size: 64
==104125== ERROR SUMMARY: 1 errors

To showcase Persistence Inspector, Listing 12-35 has code with a write dependency,
similar to what we did for Listing 12-11 in Listing 12-19. The extra flush occurs on line 65.

Listing 12-35. Example of writing to persistent memory with a write
dependency. The code does an extra flush for the flag

33 #include <emmintrin.h>
34 #include <stdint.h>
35 #include <stdio.h>
36 #include <sys/mman.h>
37 #include <fcntl.h>
38 #include <string.h>

39

40 void flush(const void *addr, size t len) {

41 uintptr t flush align = 64, uptr;

42 for (uptr = (uintptr t)addr & ~(flush align - 1);
43 uptr < (uintptr_t)addr + len;

44 uptr += flush align)

45 _mm_c1lflush((char *)uptr);

46 }

47

48 int main(int argc, char *argv[]) {

49 int fd, *ptr, *data, *flag;

50

51 fd = open("/mnt/pmem/file", O CREAT|O _RDWR, 0666);
52 posix_fallocate(fd, 0, sizeof(int) * 2);

53

54 ptr = (int *) mmap(NULL, sizeof(int) * 2,

55 PROT_READ | PROT WRITE,

56 MAP_SHARED VALIDATE | MAP_SYNC,

57 fd, 0);
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58 data = &(ptr[1]);

59 flag = &(ptr[o0]);

60

61 *data = 1234;

62 flush((void *) data, sizeof(int));
63 *flag = 1;

64 flush((void *) flag, sizeof(int));
65 flush((void *) flag, sizeof(int)); // extra flush
66

67 munmap (ptr, 2 * sizeof(int));

68 return 0;

69 }

Listing 12-36 uses the same reader program from Listing 12-15 to show the analysis
from Persistence Inspector. As before, we first collect data from the writer program,
then the reader program, and finally run the report to identify any issues.

Listing 12-36. Running Intel Inspector - Persistence Inspector with Listing 12-35
(writer) and Listing 12-15 (reader)

$ pmeminsp cb -pmem-file /mnt/pmem/file -- ./listing 12-35
++ Analysis starts

++ Analysis completes
++ Data is stored in folder "/data/.pmeminspdata/data/listing 12-35"

$ pmeminsp ca -pmem-file /mnt/pmem/file -- ./listing 12-15
++ Analysis starts

data = 1234

++ Analysis completes
++ Data is stored in folder "/data/.pmeminspdata/data/listing 12-15"

$ pmeminsp rp -- ./listing 12-35 ./listing 12-15

Cache flush
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of size 64 at address 0x7F3220C55000 (offset 0x0 in /mnt/pmem/file)

in /data/listing_12-35!flush at listing 12-35.c:45 - 0x674

in /data/listing 12-35!main at listing 12-35.c:64 - 0x73F

in /1ib64/1ibc.so.6! libc_start main at <unknown_file>:<unknown_line>
- 0x223D3

in /data/listing 12-35! start at <unknown_file>:<unknown_line> - 0x574

is redundant with regard to

cache flush

of size 64 at address 0x7F3220C55000 (offset 0x0 in /mnt/pmem/file)

in /data/listing 12-35!flush at listing 12-35.c:45 - 0x674

in /data/listing 12-35!main at listing 12-35.c:65 - 0x750

in /1ib64/1ibc.so.6! libc_start main at <unknown_file>:<unknown line>
- 0x223D3

in /data/listing 12-35! start at <unknown_file>:<unknown_line> - 0x574

of

memory store
of size 4 at address 0x7F3220C55000 (offset 0x0 in /mnt/pmem/file)
in /data/listing 12-35!main at listing 12-35.c:63 - 0x72D
in /1ib64/1ibc.so.6! libc_start_main at <unknown_file>:<unknown_line>
- 0x223D3
in /data/listing 12-35! start at <unknown_file>:<unknown line> - 0x574

The Persistence Inspector report warns about the redundant cache flush within
the main() function on line 65 of the listing 12-35.c program file - “main at
listing 12-35.c:65" Solving these issues is as easy as deleting all the unnecessary
flushes, and the result will improve the application’s performance.
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Out-of-Order Writes

When developing software for persistent memory, remember that even if a cache line is
not explicitly flushed, that does not mean the data is still in the CPU caches. For example,
the CPU could have evicted it due to cache pressure or other reasons. Furthermore, the
same way that writes that are not flushed properly may produce bugs in the event of an
unexpected application crash, so do automatically evicted dirty cache lines if they violate
some expected order of writes that the applications rely on.

To better understand this problem, explore how flushing works in the x86_64
and AMD64 architectures. From the user space, we can issue any of the following
instructions to ensure our writes reach the persistent media:

¢ CLFLUSH

« CLFLUSHOPT (needs SFENCE)

e CLWB (needs SFENCE)

e Non-temporal stores (needs SFENCE)

The only instruction that ensures each flush is issued in order is CLFUSH because
each CLFLUSH instruction always does an implicit fence instruction (SFENCE). The other
instructions are asynchronous and can be issued in parallel and in any order. The CPU
can only guarantee that all flushes issued since the previous SFENCE have completed
when a new SFENCE instruction is explicitly executed. Think of SFENCE instructions as
synchronization points (see Figure 12-6). For more information about these instructions,
refer to the Intel software developer manuals and the AMD software developer manuals.
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CPU | Persistent Memory

write (A)

write (B)

CLFLUSHOPT (A)

CLFLUSHOPT (B)

SFENCE

write (C) ..*
1

]~(out of order)

P |

(synchronization point)

CLFLUSHOPT (C)

\;

Figure 12-6. Example of how asynchronous flushing works. The SFENCE
instruction ensures a synchronization point between the writes to A and B on one
side and to C on the other side

'y

As Figure 12-6 shows, we cannot guarantee the order with respect to how A and B
would be finally written to persistent memory. This happens because stores and flushes
to A and B are done between synchronization points. The case of C is different. Using
the SFENCE instruction, we can be assured that C will always go after A and B have been
flushed.

Knowing this, you can now imagine how out-of-order writes could be a problem in
a program crash. If assumptions are made with respect to the order of writes between
synchronization points, or if you forget to add synchronization points between writes
and flushes where strict order is essential (think of a “valid flag” for a variable write,
where the variable needs to be written before the flag is set to valid), you may encounter
data consistency issues. Consider the pseudocode in Listing 12-37.
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Listing 12-37. Pseudocode showcasing an out-of-order issue

1 writer () {

2 pcounter = 0;

3 flush (pcounter);

4 for (i=0; i<max; i++) {

5 pcounter++;

6 if (rand () % 2 == 0) {

7 pcells[i].data = data ();
8 flush (pcells[i].data);

9 pcells[i].valid = True;

10 } else {

11 pcells[i].valid = False;
12 }

13 flush (pcells[i].valid);

14 }

15 flush (pcounter);

16 }

17

18 reader () {

19 for (i=0; i<pcounter; i++) {

20 if (pcells[i].valid == True) {
21 print (pcells[i].data);
22 }

23 }

24 '}

For simplicity, assume that all flushes in Listing 12-37 are also synchronization
points; that is, flush() uses CLFLUSH. The logic of the program is very simple. There are
two persistent memory variables: pcells and pcounter. The first is an array of tuples
{data, valid} where data holds the data and valid is a flag indicating if data is valid
or not. The second variable is a counter indicating how many elements in the array have
been written correctly to persistent memory. In this case, the valid flag is not the one
indicating whether or not the array position was written correctly to persistent memory.
In this case, the flag’s meaning only indicates if the function data() was called, that is,
whether or not data has meaningful data.

249

www. dbooks. or g


https://www.dbooks.org/

CHAPTER 12  DEBUGGING PERSISTENT MEMORY APPLICATIONS

At first glance, the program appears correct. With every new iteration of the loop,
the counter is incremented, and then the array position is written and flushed. However,
pcounter is incremented before we write to the array, thus creating a discrepancy
between pcounter and the actual number of committed entries in the array. Although it
is true that pcounter is not flushed until after the loop, the program is only correct after
a crash if we assume that the changes to pcounter stay in the CPU caches (in that case, a
program crash in the middle of the loop would simply leave the counter to zero).

As mentioned at the beginning of this section, we cannot make that assumption. A
cache line can be evicted at any time. In the pseudocode example in Listing 12-37, we
could run into a bug where pcounter indicates that the array is longer than it really is,
making the reader () read uninitialized memory.

The code in Listings 12-38 and 12-39 provide a C++ implementation of the
pseudocode from Listing 12-37. Both use 1ibpmemobj-cpp from the PMDK. Listing 12-38
is the writer program, and Listing 12-39 is the reader.

Listing 12-38. Example of writing to persistent memory with an out-of-order
write bug

33 #include <emmintrin.h>

34 #include <unistd.h>

35 #include <stdio.h>

36 #include <string.h>

37 #include <stdint.h>

38 #include <libpmemobj++/persistent ptr.hpp>
39 #include <libpmemobj++/make persistent.hpp>
40 #include <libpmemobj++/make persistent array.hpp>
41 #include <libpmemobj++/transaction.hpp>

42 #include <valgrind/pmemcheck.h>

43

44 using namespace std;

45 namespace pobj = pmem::obj;

46

47 struct header t {

48 uint32_t counter;

49 uint8 t reserved[60];
50 };
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struct record t {
char name[63];
char valid;
b
struct root {
pobj::persistent ptr<header t> header;
pobj::persistent ptr<record t[]> records;

}s
pobj::pool<root> pop;
int main(int argc, char *argv[]) {

// everything between BEGIN and END can be
// assigned a particular engine in pmreorder
VALGRIND PMC_EMIT LOG("PMREORDER TAG.BEGIN");

pop = pobj::pool<root>::open("/mnt/pmem/file",
"RECORDS");
auto proot = pop.root();

// allocation of memory and initialization to zero
pobj::transaction::run(pop, [&] {
proot->header
= pobj::make_persistent<header t>();
proot->header->counter = 0;
proot->records
= pobj::make_persistent<record t[]>(10);
proot->records[0].valid = 0;

1

pobj::persistent ptr<header t> header
= proot->header;

pobj::persistent ptr<record t[]> records
= proot->records;
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VALGRIND PMC_EMIT LOG("PMREORDER TAG.END");

header->counter = 0;
for (uint8 t i = 0; i < 10; i++) {
header->counter++;
if (rand() % 2 == 0) {
snprintf(records[i].name, 63,

"record #%u", i + 1);
pop.persist(records[i].name, 63); // flush
records[i].valid = 2;

} else
records[i].valid = 1;
pop.persist(&(records[i].valid), 1); // flush
}
pop.persist(&(header->counter), 4); // flush

pop.close();
return 0;

Listing 12-39. Reading the data structure written by Listing 12-38 to persistent

memory

252

33 #include <stdio.h>
34 #include <stdint.h>
35 #include <libpmemobj++/persistent ptr.hpp>

36

37 using namespace std;

38 namespace pobj = pmem::obj;

39

40 struct header t {

41
42

43 };

uint32_t counter;
uint8 t reserved[60];
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struct record t {

};

char name[63];
char valid;

struct root {

};

pobj::persistent_ptr<header_ t> header;
pobj::persistent ptr<record t[]> records;

pobj::pool<root> pop;

int main(int argc, char *argv[]) {

}

pop = pobj::pool<root>::open("/mnt/pmem/file",
"RECORDS");
auto proot = pop.root();
pobj::persistent ptr<header t> header
= proot->header;
pobj::persistent ptr<record t[]> records
= proot->records;

for (uint8 t i = 0; i < header->counter; i++) {
if (records[i].valid == 2) {
printf("found valid record\n");
printf(" name = %s\n",
records[i].name);

pop.close();
return 0;

Listing 12-38 (writer) uses the VALGRIND _PMC_EMIT LOG macro to emit a pmreorder
message when we get to lines 66 and 87. This will make sense later when we introduce

out-of-order analysis using pmemcheck.
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Now we will run Persistence Inspector first. To perform out-of-order analysis, we
must use the -check-out-of-order-store option to the report phase. Listing 12-40
shows collecting the before and after data and then running the report.

Listing 12-40. Running Intel Inspector - Persistence Inspector with Listing 12-38
(writer) and Listing 12-39 (reader)

$ pmempool create obj --size=100M --layout=RECORDS /mnt/pmem/file

$ pmeminsp cb -pmem-file /mnt/pmem/file -- ./listing 12-38
++ Analysis starts

++ Analysis completes
++ Data is stored in folder "/data/.pmeminspdata/data/listing 12-38"

$ pmeminsp ca -pmem-file /mnt/pmem/file -- ./listing 12-39
++ Analysis starts

found valid record

name = record #2
found valid record
name = record #7

found valid record
name = record #8

++ Analysis completes
++ Data is stored in folder "/data/.pmeminspdata/data/listing 12-39"

$ pmeminsp rp -check-out-of-order-store -- ./listing 12-38 ./listing 12-39

Memory store
of size 4 at address 0x7FD7BEBCO5D0 (offset 0x3C05D0 in /mnt/pmem/file)
in /data/listing 12-38!main at listing 12-38.cpp:91 - 0x1DOC
in /1ib64/1ibc.so.6! libc_start_main at <unknown_file>:<unknown_line>
- 0x223D3
in /data/listing 12-38! start at <unknown_file>:<unknown line> - 0x1624
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is out of order with respect to

memory store
of size 1 at address 0x7FD7BEBCO68F (offset 0x3C068F in /mnt/pmem/file)
in /data/listing 12-38!main at listing 12-38.cpp:98 - Ox1DAF
in /1ib64/1ibc.so.6! libc_start main at <unknown_file>:<unknown_line>
- 0x223D3
in /data/listing 12-38! start at <unknown_file>:<unknown line> - 0x1624

The Persistence Inspector report identifies an out-of-order store issue. The tool
says that incrementing the counter in line 91 (main at listing 12-38.cpp:91)is
out of order with respect to writing the valid flag inside a record in line 98 (main at
listing 12-38.cpp:98).

To perform out-of-order analysis with pmemcheck, we must introduce a new tool
called pmreorder. The pmreorder tool is included in PMDK from version 1.5 onward.
This stand-alone Python tool performs a consistency check of persistent programs
using a store reordering mechanism. The pmemcheck tool cannot do this type of analysis,
although it is still used to generate a detailed log of all the stores and flushes issued by an
application that pmreorder can parse. For example, consider Listing 12-41.

Listing 12-41. Running pmemcheck to generate a detailed log of all the stores
and flushes issued by Listing 12-38

$ valgrind --tool=pmemcheck -q --log-stores=yes --log-stores-
stacktraces=yes
--log-stores-stacktraces-depth=2 --print-summary=yes
--log-file=store_log.log ./listing 12-38

The meaning of each parameter is as follows:
o -gsilences unnecessary pmemcheck logs that pmreorder cannot parse.
o --log-stores=yes tells pmemcheck to log all stores.

o --log-stores-stacktraces=yes dumps stacktrace with each logged
store. This helps locate issues in your source code.

o --log-stores-stacktraces-depth=2 is the depth of logged
stacktraces. Adjust according to the level of information you need.
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e --print-summary=yes prints a summary on program exit. Why not?
o --log-file=store log.loglogs everythingto store log.log.

The pmreorder tool works with the concept of “engines.” For example, the ReorderFull
engine checks consistency for all the possible combinations of reorders of stores and
flushes. This engine can be extremely slow for some programs, so you can use other
engines such as ReorderPartial or NoReorderDoCheck. For more information, refer to the
pmreorder page, which has links to the man pages (https://pmem.io/pmdk/pmreorder/).

Before we run pmreorder, we need a program that can walk the list of records
contained within the memory pool and return 0 when the data structure is consistent, or
1 otherwise. This program is similar to the reader shown in Listing 12-42.

Listing 12-42. Checking the consistency of the data structure written in
Listing 12-38

33 #include <stdio.h>

34 #include <stdint.h>

35 #include <libpmemobj++/persistent ptr.hpp>
36

37 using namespace std;

38 namespace pobj = pmem::obj;

39

40 struct header t {

41 uint32_t counter;

42 uint8 t reserved[60];

43 };

44 struct record t {

45 char name[63];

46 char valid;

47 };

48 struct root {

49 pobj::persistent ptr<header t> header;
50 pobj::persistent ptr<record t[]> records;
51 };

52
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53 pobj::pool<root> pop;

54

55 int main(int argc, char *argv[]) {

56

57 pop = pobj::pool<root>::open("/mnt/pmem/file",
58 "RECORDS");

59 auto proot = pop.root();

60 pobj::persistent ptr<header t> header

61 = proot->header;

62 pobj::persistent ptr<record t[]> records

63 = proot->records;

64

65 for (uint8 t i = 0; i < header->counter; i++) {
66 if (records[i].valid < 1 or

67 records[i].valid > 2)
68 return 1; // data struc. corrupted

69 }

70

71 pop.close();

72 return 0; // everything ok

73 }

The program in Listing 12-42 iterates over all the records that we expect should have
been written correctly to persistent memory (lines 65-69). It checks the valid flag for
each record, which should be either 1 or 2 for the record to be correct (line 66). If an
issue is detected, the checker will return 1 indicating data corruption.

Listing 12-43 shows a three-step process for analyzing the program:

1. Create an object type persistent memory pool, known as a
memory-mapped file, on /mnt/pmem/file of size 100MiB, and
name the internal layout “RECORDS.

2. Use the pmemcheck Valgrind tool to record data and call stacks
while the program is running.

3. The pmreorder utility processes the store. log output file from
pmemcheck using the ReorderFull engine to produce a final report.
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Listing 12-43. First, a poolis created for Listing 12-38. Then, pmemcheck is run
to get a detailed log of all the stores and flushes issued by Listing 12-38. Finally,
pmreorder is run with engine ReorderFull

$ pmempool create obj --size=100M --layout=RECORDS /mnt/pmem/file

$ valgrind --tool=pmemcheck -q --log-stores=yes --log-stores-
stacktraces=yes --log-stores-stacktraces-depth=2 --print-summary=yes
--log-file=store.log ./listing 12-38

$ pmreorder -1 store.log -o output file.log -x PMREORDER
TAG=NoReorderNoCheck -r ReorderFull -c prog -p ./listing 12-38

The meaning of each pmreorder option is as follows:

o -1 store log.logis the input file generated by pmemcheck with all
the stores and flushes issued by the application.

o -0 output_file.log is the output file with the out-of-order analysis
results.

e -X PMREORDER TAG=NoReorderNoCheck assigns the engine
NoReorderNoCheck to the code enclosed by the tag PMREORDER_TAG
(see lines 66-87 from Listing 12-38). This is done to focus the analysis
on the loop only (lines 89-105 from Listing 12-38).

e -1 ReorderFull sets the initial reorder engine. In our case, ReorderFull.

e -c progis the consistency checker type. It can be prog (program) or
1ib (library).

e -p ./checker is the consistency checker.

Opening the generated file output_file.log, you should see entries similar to those
in Listing 12-44 that highlight detected inconsistencies and problems within the code.

Listing 12-44. Content from “output_file.log” generated by pmreorder showing a
detected inconsistency during the out-of-order analysis

WARNING:pmreorder:File /mnt/pmem/file inconsistent
WARNING:pmreorder:Call trace:
Store [0]:
by 0x401D0C: main (listing 12-38.cpp:91)
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The report states that the problem resides at line 91 of the listing 12-38.cpp writer
program. To fix 1isting 12-38.cpp, move the counter incrementation after all the data
in the record has been flushed all the way to persistent media. Listing 12-45 shows the
corrected part of the code.

Listing 12-45. Fix Listing 12-38 by moving the incrementation of the counter to
the end of the loop (line 95)

86 for (uint8 t i = 0; i < 10; i++) {
87 if (rand() % 2 == 0) {
88 snprintf(records[i].name, 63,
89 "record #%u", i + 1);
90 pop.persist(records[i].name, 63);
91 records[i].valid = 2;
92 } else
93 records[i].valid = 1;
94 pop.persist(&(records[i].valid), 1);
95 header->counter++;
96 }
Summary

This chapter provided an introduction to each tool and described how to use them.
Catching issues early in the development cycle can save countless hours of debugging
complex code later on. This chapter introduced three valuable tools - Persistence
Inspector, pmemcheck, and pmreorder - that persistent memory programmers will want
to integrate into their development and testing cycles to detect issues. We demonstrated
how useful these tools are at detecting many different types of common programming
errors

The Persistent Memory Development Kit (PMDK) uses the tools described here to
ensure each release is fully validated before it is shipped. The tools are tightly integrated
into the PMDK continuous integration (CI) development cycle, so you can quickly catch
and fix issues.
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Open Access This chapter is licensed under the terms of the Creative

Commons Attribution 4.0 International License (http://creativecommons.
org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution and
reproduction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need
to obtain permission directly from the copyright holder.
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CHAPTER 13

Enabling Persistence
Using a Real-World
Application

This chapter turns the theory from Chapter 4 (and other chapters) into practice.

We show how an application can take advantage of persistent memory by building

a persistent memory-aware database storage engine. We use MariaDB (https://
mariadb.org/), a popular open source database, as it provides a pluggable storage
engine model. The completed storage engine is not intended for production use and
does not implement all the features a production quality storage engine should. We
implement only the basic functionality to demonstrate how to begin persistent memory
programming using a well known database. The intent is to provide you with a more
hands-on approach for persistent memory programming so you may enable persistent
memory features and functionality within your own application. Our storage engine is
left as an optional exercise for you to complete. Doing so would create a new persistent
memory storage engine for MariaDB, MySQL, Percona Server, and other derivatives. You
may also choose to modify an existing MySQL database storage engine to add persistent
memory features, or perhaps choose a different database entirely.

We assume that you are familiar with the preceding chapters that covered the
fundamentals of the persistent memory programming model and Persistent Memory
Development Kit (PMDK). In this chapter, we implement our storage engine using C++
and libpmemobj-cpp from Chapter 8. If you are not a C++ developer, you will still find this
information helpful because the fundamentals apply to other languages and applications.

The complete source code for the persistent memory-aware database storage engine
can be found on GitHub at https://github.com/pmem/pmdk-examples/tree/master/
pmem-mariadb.
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The Database Example

A tremendous number of existing applications can be categorized in many ways. For
the purpose of this chapter, we explore applications from the common components
perspective, including an interface, a business layer, and a store. The interface interacts
with the user, the business layer is a tier where the application’s logic is implemented,
and the store is where data is kept and processed by the application.

With so many applications available today, choosing one to include in th