

 1

www.dbooks.org

https://www.dbooks.org/

SQL Server Metadata

Succinctly

By
Joseph D. Booth

Foreword by Daniel Jebaraj

 3

Copyright © 2019 by Syncfusion, Inc.

2501 Aerial Center Parkway

Suite 200

Morrisville, NC 27560

USA

All rights reserved.

Important licensing information. Please read.

This book is available for free download from www.syncfusion.com on completion of a

registration form.

If you obtained this book from any other source, please register and download a free copy from

www.syncfusion.com.

This book is licensed for reading only if obtained from www.syncfusion.com.

This book is licensed strictly for personal or educational use.

Redistribution in any form is prohibited.

The authors and copyright holders provide absolutely no warranty for any information provided.

The authors and copyright holders shall not be liable for any claim, damages, or any other

liability arising from, out of, or in connection with the information in this book.

Please do not use this book if the listed terms are unacceptable.

Use shall constitute acceptance of the terms listed.

SYNCFUSION, SUCCINCTLY, DELIVER INNOVATION WITH EASE, ESSENTIAL, and .NET

ESSENTIALS are the registered trademarks of Syncfusion, Inc.

Technical Reviewer: James McCaffrey

Copy Editor: Courtney Wright

Acquisitions Coordinator: Tres Watkins, content development manager, Syncfusion, Inc.

Proofreader: Jacqueline Bieringer, content producer, Syncfusion, Inc.

www.dbooks.org

http://www.syncfusion.com/
http://www.syncfusion.com/
http://www.syncfusion.com/
https://www.dbooks.org/

 4

Table of Contents

The Story Behind the Succinctly Series of Books .. 9

About the Author ..11

Chapter 1 Introduction ...12

Metadata ..12

SQL metadata ..12

Information schema ...12

System and data management views ..12

Summary ..13

Chapter 2 Information Schema ...14

Tables ..14

Table constraints ..15

Columns ...16

Domains ...17

column_domain_usage ..17

Domain queries..18

Routines ...19

Routine columns ..20

Parameters ..21

Routine queries..21

Views ...22

View table usage ...23

View column usage ..23

View queries ..24

Tips and tricks ..24

 5

Find which tables contain a column name ..24

Same name, different types and sizes ...25

Similarly named columns ...26

Routines and parameters ...26

Summary ..26

Chapter 3 Server Information ..28

Host version ...28

SQL Server version information ..29

@@version ..29

xp_msver ...29

SERVERPROPERTY ..30

CLR version information ...30

Memory ..31

Disk usage ...31

Enumerate file system ..33

Registry information ...33

Databases on the server ..33

Files for current database ...34

Configuration ..34

Reading configuration data ..35

Updating configuration data ...35

SERVERPROPERTY ...36

Summary ..37

Chapter 4 Database properties ...38

Sys.databases ..38

DATABASEPROPERTYEX() ..39

www.dbooks.org

https://www.dbooks.org/

 6

General information ..39

Basic information ...39

Backup information ..40

Size information ...40

Files ...41

Options ...42

Automatic settings ...43

ANSI and NULL settings ..43

Other database properties ...44

DATABASEPROPERTYEX() ..45

Comparing two databases ...45

Database permissions ..46

Database permissions ...46

database_principals ...47

Who can edit? ..48

Who can select database objects?...48

What can the public role do?..48

Summary ..49

Chapter 5 Tables and Columns ...50

Tables ..50

sys.identity_columns (starting with SQL 2008) ...50

sys.computed_columns (starting with SQL 2008) ..51

sys.default_constraints (starting with SQL 2008) ...51

sys.index_columns (starting with SQL 2008) ...52

sys.key_constraints (starting with SQL 2008) ..52

sys.check_constraints (starting with SQL 2008) ...53

 7

sys.masked_columns (starting with SQL 2016) ...53

Putting it all together ...54

Searching for deprecated columns ...55

Numeric columns ..56

Approximate column types ...57

Unexpected columns ..57

Max characters ..57

Nondate columns ...58

Summary ..58

Chapter 6 Performance ..59

What is happening on the server? ..59

Who is running SQL Management Studio? ..60

Who is blocking others? ...61

Who has open transactions?..61

What are they doing? ...61

Worst queries ...63

Worst CPU usage ..63

Worst I/O ...64

Why is a query sometimes slow? ...65

Is another processing blocking your query? ...65

How busy is TempDB? ..65

Autogrowth and other settings ...66

Tables and indexes ..66

Duplicate indexes ..67

Unused indexes ...67

Missing indexes ...68

www.dbooks.org

https://www.dbooks.org/

 8

LIKE clause ..70

Simple solution ..71

Summary ..71

Chapter 7 Security ...72

Attack surface ..72

Demo databases ..72

Guest user ...73

SQL logins ...73

Password policy ...74

Duplicate passwords ..75

Blank passwords ..76

Common passwords ..76

Recent accounts ..77

Auditing logins ...77

SA account ..79

Users ..79

Public role in database ...80

What is on my server? ..81

Unneeded applications ..81

Newly added files ...81

Summary ..82

Summary ...83

INFORMATION_SCHEMA ...83

Microsoft sys schema ...83

Dynamic management views ..83

Appendix A: Information Schema ...84

 9

The Story Behind the Succinctly Series
 of Books

Daniel Jebaraj, Vice President
Syncfusion, Inc.

taying on the cutting edge

As many of you may know, Syncfusion is a provider of software components for the
Microsoft platform. This puts us in the exciting but challenging position of always
being on the cutting edge.

Whenever platforms or tools are shipping out of Microsoft, which seems to be about
every other week these days, we have to educate ourselves, quickly.

Information is plentiful but harder to digest
In reality, this translates into a lot of book orders, blog searches, and Twitter scans.

While more information is becoming available on the Internet and more and more books are
being published, even on topics that are relatively new, one aspect that continues to inhibit us is
the inability to find concise technology overview books.

We are usually faced with two options: read several 500+ page books or scour the web for
relevant blog posts and other articles. Just as everyone else who has a job to do and customers
to serve, we find this quite frustrating.

The Succinctly series
This frustration translated into a deep desire to produce a series of concise technical books that
would be targeted at developers working on the Microsoft platform.

We firmly believe, given the background knowledge such developers have, that most topics can
be translated into books that are between 50 and 100 pages.

This is exactly what we resolved to accomplish with the Succinctly series. Isn’t everything
wonderful born out of a deep desire to change things for the better?

The best authors, the best content
Each author was carefully chosen from a pool of talented experts who shared our vision. The
book you now hold in your hands, and the others available in this series, are a result of the
authors’ tireless work. You will find original content that is guaranteed to get you up and running
in about the time it takes to drink a few cups of coffee.

Free forever
Syncfusion will be working to produce books on several topics. The books will always be free.
Any updates we publish will also be free.

S

www.dbooks.org

https://www.dbooks.org/

 10

Free? What is the catch?

There is no catch here. Syncfusion has a vested interest in this effort.

As a component vendor, our unique claim has always been that we offer deeper and broader
frameworks than anyone else on the market. Developer education greatly helps us market and
sell against competing vendors who promise to “enable AJAX support with one click,” or “turn
the moon to cheese!”

Let us know what you think

If you have any topics of interest, thoughts, or feedback, please feel free to send them to us at
succinctly-series@syncfusion.com.

We sincerely hope you enjoy reading this book and that it helps you better understand the topic
of study. Thank you for reading.

Please follow us on Twitter and “Like” us on Facebook to help us spread the
word about the Succinctly series!

mailto:succinctly-series@syncfusion.com
https://twitter.com/Syncfusion
https://www.facebook.com/Syncfusion

 11

About the Author

Joseph D. Booth has been programming since 1981 in a variety of languages including BASIC,
Clipper, FoxPro, Delphi, Classic ASP, Visual Basic, JavaScript, Visual C#, and the .NET
Framework. He has also worked in various database platforms, including DBASE, Paradox,
Oracle, and SQL Server.

He is the author of GitHub Succinctly, Accounting Succinctly, Regular Expressions
Succinctly, Visual Studio Add-Ins Succinctly, and Natural Language Processing Succinctly from
Syncfusion, as well as six books on Clipper and FoxPro programming, network programming,
and client/server development with Delphi. He has also written several third-party developer
tools, including CLIPWKS, which allows developers to programmatically create and read native
Lotus and Excel spreadsheet files from Clipper applications.

Joe has worked for a number of companies, including Yprime, Sperry Univac, MCI-WorldCom,
Ronin, Harris Interactive, Thomas Jefferson University, People Metrics, and Investor Force. He
is one of the primary authors of Results for Research (market-research software), PEPSys
(industrial-distribution software), and a key contributor to AccuBuild (accounting software for the
construction industry).

He has a background in accounting (Accounting Succinctly), having worked as a controller for
several years in the industrial distribution field, but his real passion is computer programming.

In his spare time, Joe is an avid tennis player. He also practices yoga and martial arts, and
plays with his first granddaughter, Blaire. You can visit his website for more information.

www.dbooks.org

https://www.syncfusion.com/ebooks/github_succinctly
https://www.syncfusion.com/ebooks/accounting
https://www.syncfusion.com/ebooks/regularexpressions
https://www.syncfusion.com/ebooks/regularexpressions
https://www.syncfusion.com/ebooks/visualstudio
https://www.syncfusion.com/ebooks/natural_language_processing_succinctly
https://www.syncfusion.com/ebooks/accounting
http://www.joebooth-consulting.com/
https://www.dbooks.org/

 12

Chapter 1 Introduction

In the classic Star Trek episode called "The Enterprise Incident," the crew steals the Romulan
cloaking device and attempts to integrate it into their ship. By reading the device’s metadata, the
crew was able to figure out how to make the device work and successfully evade those nasty
Romulans. While it seems unlikely that the technology would be similar, most devices provide
"metadata" about themselves.

Metadata

Metadata is very common in most digital devices and files. Pictures taken by a digital camera
can have over 400 tags of metadata associated with the photo, including type of digital device
used, where and when the photo was taken, and so on. Your phone call log also has metadata,
like where you called from, who you called, and how long you talked. You can visit this website
(or search for “photo metadata” on Google) to get a sense of the data that is stored.

Privacy concerns aside, it is clear that metadata is very prevalent in the digital world.

SQL metadata

Microsoft SQL Server (and other SQL systems) also provide a large amount of data about their
servers, users, tables, and stored procedures. In this book, we are going to explore that
metadata and provide example scripts and queries to learn a lot of information about your SQL
environment.

Information schema

Information schema views are a series of SQL-92 ANSI standard views that are generally found
in most SQL systems (Oracle being a notable exception). These views provide information
about tables, columns, views, and stored procedures, and for the most part, the queries using
these views will work across database platforms.

Note: The ANSI standard is not specific to Microsoft, so some of the field and view
names might not use the same terminology that SQL Server uses.

System and data management views

The system and data management views in SQL Server provide the same information the
information schema views do, and a whole lot more information that is unique to SQL Server. If
you look behind the scenes at the views in INFORMATION_SCHEMA, you will discover they are

wrapper views to system tables.

https://www.startrek.com/database_article/enterprise-incident-the
https://photographylife.com/what-is-metadata-in-photography

 13

Code Listing 1: Object Definition for information_schema.tables

-- Script: Peek_Definition.sql
-- Look at definition of information_schema view
--
DECLARE @srcCode VARCHAR(max)
SELECT @srcCode =
OBJECT_DEFINITION(object_id('INFORMATION_SCHEMA.tables'))

PRINT @srcCode

-- The following result would be displayed by the PRINT statement

CREATE VIEW INFORMATION_SCHEMA.TABLES
AS
SELECT
 DB_NAME() AS TABLE_CATALOG,
 s.name AS TABLE_SCHEMA,
 o.name AS TABLE_NAME,
 CASE o.type
 WHEN 'U' THEN 'BASE TABLE'
 WHEN 'V' THEN 'VIEW'
 END AS TABLE_TYPE
FROM
 sys.objects o LEFT JOIN sys.schemas s
 ON s.schema_id = o.schema_id
WHERE
 o.type IN ('U', 'V')

The system tables provide much more information, but the information schema views are closer
to the ANSI standard, and generally can be used across database products.

Note: The SQL code in this book was tested using SQL 2017, and most of the
views and functions will work on older versions of SQL, as well. Scripts that don’t
work on older versions will be noted.

Summary

In this book, we will start with the information schema views and provide some handy queries
about the server's data tables. We will then explore some of the views that are unique to
Microsoft and provide very useful information about SQL Server.

www.dbooks.org

https://www.dbooks.org/

 14

Chapter 2 Information Schema

In most relational databases, the information schema (INFORMATION_SCHEMA) is an ANSI-

standard set of read-only views that provide information about the tables, views, etc., in the
database. SQL Server implements these views, although some of the terminology is slightly
different, as shown in Table 1.

Table 1: Naming differences

SQL Server Information schema

Database Catalog

User-defined data type Domain

The information schema views will use the catalog and domain terminology to meet the ANSI
standard. However, to the Microsoft SQL developer, the database and the user-defined data
type are the more common terms. You can find these views under the System Views list in SQL
Server Management Studio (SSMS).

Note: Although the information schema views are available in each database, the
table catalog (which is always the current database) is returned in the various views.
This will come in handy if you need to write a procedure to iterate all databases on a
server.

Tables

The Tables view holds four columns.

Table 2: Tables columns

Column name Description

TABLE_CATALOG Catalog (or database name)

TABLE_SCHEMA Schema (or owner) of the table

TABLE_NAME Actual name of the table

TABLE_TYPE BASE TABLE: Physical table

VIEW: View

The first three columns are generally used as identifiers (with different field names) for almost all
information schema views. Use this view to identify the schema that the tables are owned by
and whether it is a physical table or view.

https://en.wikipedia.org/wiki/Relational_database
https://en.wikipedia.org/wiki/ANSI

 15

Tip: SQL Server allows you not to specify the table owner schema when
referencing a table. This can cause some subtle bugs when a table occurs in multiple
schemas. The following query can identify table names that occur in more than one
schema.

SELECT Table_Name,count(*) as Owners
FROM [INFORMATION_SCHEMA].[tables]
GROUP BY Table_Name HAVING count(*)>1

Table constraints

Constraints are rules applied to columns in a database table. They generally limit the type of
data that can be added to a column. The TABLE_CONSTRAINTS view lists the tables and

constraints on those tables. The columns are shown in Table 3.

Table 3: TABLE_CONSTRAINTS columns

Column name Description

CONSTRAINT_CATALOG
Catalog (or database name) for the constraint.

CONSTRAINT_SCHEMA
Schema (or owner) of the table.

CONSTRAINT_NAME
Name of the constraint itself.

TABLE_CATALOG
Catalog (or database name) for the table the constraint
applies to.

TABLE_SCHEMA
Schema (or owner) of the table.

TABLE_NAME
Actual name of the table.

CONSTRAINT_TYPE
One of four values:

CHECK: Expressions to limit column content.

FOREIGN KEY: Reference to another table's primary

key.

PRIMARY KEY: Primary key for table.

UNIQUE: Values in this column must be unique.

IS_DEFERRABLE
In SQL Server, always returns NO.

INITIALLY_DEFERRED
In SQL Server, always returns NO.

The CHECK constraint definitions are found in the CHECK_CONSTRAINTS view, which includes the

CHECK_CLAUSE column to show the definition of the constraint.

www.dbooks.org

https://www.dbooks.org/

 16

The remaining constraint types (FOREIGN KEY, PRIMARY KEY, and UNIQUE) reference tables and

columns and can be found in the CONSTRAINT_COLUMN_USAGE view. You can combine these

tables to create a query that returns the constraint type and name, and an expression column
showing the expression or key columns. Code Listing 2 shows the query.

Code Listing 2: Constraint definition query

-- Script: Constraint_Definitions.sql
-- Show various table constraints

SELECT constraint_type AS TYPE,TC.constraint_name AS NAME
 CASE
 WHEN tc.constraint_type = 'CHECK'
 THEN cc.check_clause
 ELSE cu.table_name+'.'+cu.column_Name COLLATE DATABASE_DEFAULT
 END AS EXPRESSION
FROM INFORMATION_SCHEMA.table_constraints tc
LEFT JOIN INFORMATION_SCHEMA.check_constraints cc
 ON cc.CONSTRAINT_NAME=tc.CONSTRAINT_NAME
 AND tc.CONSTRAINT_TYPE='CHECK'
LEFT JOIN INFORMATION_SCHEMA.constraint_column_usage cu
 ON cu.constraint_name=tc.CONSTRAINT_NAME
ORDER BY constraint_type,tc.constraint_name

This will return a table with the following sample data.

Table 4

Type Name Expression

CHECK CK_Base_Location_Latitude ([Latitude]>=(-90) AND
[Latitude]<=(90))

UNIQUE UK_User_Id Users.User_ID

PRIMARY KEY PK_Client_ID Clients.ID

Note: In this query, we are only joining on the constraint name for simplicity. If
you have multiple schemas in your database, you should include schema names as
part of your join condition.

Columns

The columns view begins with the table information (catalog, schema, and table name) followed
by all the columns in the table and information about those columns. Some of the key column
fields are shown in Table 5.

 17

Table 5: Column fields

Column name Description

COLUMN_NAME Column name in the table.

ORDINAL_POSITION Column position.

COLUMN_DEFAULT The default value for the column or NULL.

IS_NULLABLE Can the column value be NULL (YES or NO)?

DATA_TYPE String description of the column data type.

CHARACTER_MAXIMUM_LENGTH Length of the column, if a character column.

NUMERIC_PRECISION Length for numeric columns.

 Note: Certain column data types (such as bit and uniqueidentifer) don’t have size
information in the table. If a character column is defined as MAX, the character length
column will contain a -1.

Domains

Domains (or “user-defined data types” in SQL Server parlance) are useful concepts that make it
easier to maintain columns by creating your own column type. For example, you might want to
create a domain to set the properties you want all phone number fields to use. The domains
view contains most of the same column definitions as the columns view.

Table 6: Domain fields

Column name Description

DOMAIN_NAME Name of the domain.

DATA_TYPE Data type of this domain.

DOMAIN_DEFAULT The default value for the column or NULL.

CHARACTER_MAXIMUM_LENGTH Length of the column, if a character column.

NUMERIC_PRECISION Length for numeric columns.

NUMERIC_SCALE Scale of the numeric data.

DOMAIN_DEFAULT Text of the default constraint for this
domain.

column_domain_usage

The column_domain_usage view provides a list of all tables that reference one of the user-

defined columns (domains).

www.dbooks.org

https://www.dbooks.org/

 18

Table 7: Column Domain Usage fields

Column name Description

DOMAIN_CATALOG Name of the database the domain is in.

DOMAIN_SCHEMA Name of the schema of the domain.

DOMAIN_NAME Actual name of domain (link to Domains view).

TABLE_CATALOG Name of database that uses the domain.

TABLE_SCHEMA Name of the schema using the domain.

TABLE_NAME Actual table name using the domain.

COLUMN_NAME Column name using the domain.

Domain queries

You can perform some basic queries to view your user-defined types and the tables that use
them. Code Listing 3 simply shows the user-defined types and displays the size information in a
nicely formatted way.

Code Listing 3: List user-defined types

-- Script: List_User_Defined_Types.sql
-- Show existing user-defined data types

SELECT domain_schema,domain_name,
CASE
WHEN data_type='DECIMAL' THEN data_type+'('+CAST(Numeric_Precision as
varchar(3))+'.'+CAST(Numeric_Scale as varchar(3))+')'
WHEN data_type IN ('char','varchar','nchar','nvarchar')
 THEN
 CASE
 WHEN character_maximum_length<0 THEN data_type+'(MAX)'
 ELSE data_type+'('+
 CAST(Character_Maximum_Length as Varchar(3))+')'
 END
ELSE data_type
END AS RootDateType
FROM INFORMATION_SCHEMA.domains
ORDER BY domain_schema,domain_name

Code Listing 4 shows a similar result but includes the count of columns that are referencing the
domain.

Code Listing 4: Domain Usage Counts

-- Script: Domains_Usage_Counts.sql
-- Show existing user-defined data types

 19

SELECT d.domain_schema,d.domain_name,
CASE
WHEN data_type='DECIMAL' THEN data_type+'('+
 CAST(Numeric_Precision as varchar(3))+'.'+
 CAST(Numeric_Scale as varchar(3))+')'
WHEN data_type IN ('char','varchar','nchar','nvarchar')
 THEN
 CASE
 WHEN character_maximum_length<0 THEN data_type+'(MAX)'
 ELSE data_type+'('+
 CAST(Character_Maximum_Length as Varchar(3))+')'
 END
ELSE data_type
END AS RootDateType,
count(du.column_name) as ColumnsUsing
FROM INFORMATION_SCHEMA.domains d
LEFT JOIN INFORMATION_SCHEMA.column_domain_usage du on
d.domain_name=du.domain_name
GROUP BY d.domain_schema,d.domain_name,data_type,
character_maximum_length,numeric_precision,numeric_scale
ORDER BY d.domain_schema,d.domain_name

You can view user-defined types in SQL Server Management Studio (SSMS) by using the
Programmability menu of the object inspector, as shown in Figure 1.

Figure 1: Object inspect user defined types

Routines

The ROUTINES view returns over 50 columns about the various stored procedures and functions

in the database. It includes the source code and a flag indicating if the routine updates or simply
reads the data. Some representative columns from the view are shown in Table 8.

www.dbooks.org

https://www.dbooks.org/

 20

Table 8: Routine fields

Column name Description

ROUTINE_CATALOG Name of the database the routine is in.

ROUTINE_SCHEMA Name of the schema the routine is in.

ROUTINE_NAME Name of the view.

ROUTINE_TYPE FUNCTION or PROCEDURE.

DATA_TYPE If a FUNCTION, this indicates the return type.

ROUTINE_DEFINITION SQL Source code of the routine.

SQL_DATA_ACCESS MODIFIES (routine updates data) or READS (only
reads data).

Note: The routine definition column only contains 4,000 bytes of the routine. If you
are writing code to get the complete routine body, consider using SP_HelpText
instead.

Routine columns

If the routine is a table-valued function (it returns a table rather than a single value), the
ROUTINE_COLUMNS view returns the column information for the returned table.

Table 9: Routine column fields

Column name Description

TABLE_CATALOG Name of the database the function is in.

TABLE_SCHEMA Name of the schema the function is in.

TABLE_NAME Name of the function.

COLUMN_NAME Column name from returned table.

ORDINAL_POSITION Sequence of columns in returned table.

DATA_TYPE Data type of the returned table column.

CHARACTER_MAXIMUM_LENGTH Size of column (-1 max).

IS_NULLABLE YES or NO, can column contain NULL.

Code Listing 5 shows the code used to identify the type of routine and whether it updates data.

Code Listing 5: Detailed routine types

-- Script: Routine_type_details.sql
-- Type and data access of routines

SELECT r.routine_name,

 21

CASE
WHEN rc.table_name is null AND r.routine_type='FUNCTION' THEN 'Scalar
Function'
WHEN rc.table_name is not null and r.routine_type='FUNCTION' THEN 'Table
Valued Function'
ELSE 'Stored procedure'
END AS RoutineType,
r.sql_data_access
FROM INFORMATION_SCHEMA.routines r
LEFT JOIN
(SELECT DISTINCT table_name FROM INFORMATION_SCHEMA.routine_columns) rc
ON rc.table_name=r.routine_name
ORDER BY RoutineType,routine_name

Parameters

The PARAMETERS view returns many columns about the various input and output parameters to

all the stored procedures and functions in the routines view. Table 10 lists some of the common
columns in the view.

Table 10: Parameters fields

Column name Description

SPECIFIC_CATALOG Name of the database the routine parameter is in.

SPECIFIC_SCHEMA Name of the schema the parameter is in.

SPECIFIC_NAME Name of the routine.

ORDINAL_POSITION Sequence number of the parameter.

PARAMETER_MODE IN or OUT.

PARAMETER_NAME Name of the parameter (if MODE = IN).

DATA_TYPE Data type of the parameter.

CHARACTER_MAXIMUM_LENGTH Size of the parameter (-1 = MAX).

Routine queries

Code Listing 6 is a query that returns the routine name and type, and a column containing all
the parameters used by the routine. The following table shows a sample of the output.

Table 11: Sample routine query output

Routine name Type Parameters

CheckAuditTableColumns PROC @debug tinyint

CheckDataPointTableTypeExists PROC No parameters

www.dbooks.org

https://www.dbooks.org/

 22

Routine name Type Parameters

CheckForCalculations PROC @ClientID int @VisitId int

Code Listing 6 can provide a simple documentation overview of the database code.

Code Listing 6: Routine and parameters

-- Script: Routine_and_parameter_details.sql
-- Routine names and parameters

SELECT r.routine_schema,r.routine_name,left(routine_type, 4) AS [type],
 CASE left(routine_type,1)
 WHEN 'P' THEN IsNull(px.column_names,'No parameters')
 ELSE IsNull('(returns)=>' + px.column_names,'No parameters')
 END AS Parameters
 FROM INFORMATION_SCHEMA.routines r
 LEFT JOIN
 (SELECT specific_schema, specific_name,
 LEFT(column_names, LEN(column_names)) AS column_names
 FROM INFORMATION_SCHEMA.parameters AS extern
 CROSS APPLY
 (SELECT parameter_name + ' '+
 CASE
 WHEN DATA_TYPE like '%varchar%'
 AND CHARACTER_MAXIMUM_LENGTH <0 THEN DATA_TYPE+'(MAX) '
 WHEN CHARACTER_MAXIMUM_LENGTH >0 THEN DATA_TYPE+'('+
CAST(CHARACTER_MAXIMUM_LENGTH as varchar)+') '
 ELSE DATA_TYPE+' '
 END
 FROM INFORMATION_SCHEMA.parameters AS intern
 WHERE extern.specific_name = intern.specific_name
 FOR XML PATH('')) pre_trimmed(column_names)
 GROUP BY specific_schema,specific_name, column_names
) px on px.specific_schema=r.routine_schema AND
 px.specific_name=r.specific_name
ORDER BY r.routine_schema, r.routine_name

Views

The VIEWS view holds details about the views defined in the database. Notice that the column

names are called TABLE, even though the content is the view itself. The view definition column

contains a SQL Create View script to create the view. This column is limited to 4,000 bytes,
which should be enough for all but the most complex views.

 23

Table 12: View fields

Column name Description

TABLE_CATALOG Name of the database the view is in.

TABLE_SCHEMA Name of the schema the view is in.

TABLE_NAME Name of the view.

VIEW_DEFINITION The source code for the view.

IS_UPDATABLE YES or NO, can data manipulation operations be
performed on the view?

CHECK_OPTION Will return “CASCADE” if view was created using the

WITH CHECK OPTION, “NONE” if the option was not

applied when the view was created.

View table usage

The VIEW_TABLE_USAGE view provides details on which tables are referenced in which views.

Table 13 lists the fields in this view.

Table 13: View table usage fields

Column name Description

VIEW_CATALOG Name of the database the view is in.

VIEW_SCHEMA Name of the schema the view is in.

VIEW_NAME Name of the view.

TABLE_CATALOG Name of the database the referenced table is in.

TABLE_SCHEMA Name of the schema the referenced table is in.

TABLE_NAME Name of the table referenced by the view.

View column usage

The VIEW_COLUMN_USAGE view provides details on which tables and column are referenced in

which views. Table 14 lists the fields in this view.

Table 14: View column usage fields

Column name Description

VIEW_CATALOG Name of the database the view is in.

VIEW_SCHEMA Name of the schema the view is in.

VIEW_NAME Name of the view.

TABLE_CATALOG Name of the database the referenced table is in.

www.dbooks.org

https://www.dbooks.org/

 24

Column name Description

TABLE_SCHEMA Name of the schema the referenced table is in.

TABLE_NAME Name of the table referenced by the view.

COLUMN_ NAME Name of the column in the table referenced by the
view.

View queries

Code Listing 7 contains a query that will display each view name and the tables that it
references.

Code Listing 7: Views and referenced tables

-- Script: Views_and_Table_Usage.sql
-- Views and the tables referenced

SELECT v.table_schema,v.table_name AS 'ViewName',
 IsNull(xx.RefObjects,'') AS 'References'
 FROM INFORMATION_SCHEMA.views v
 LEFT JOIN(Select distinct ST2.view_schema + '.' +
 ST2.view_name as ViewRollup,
 ltrim(substring((Select ', ' + ST1.table_name
AS[text()]
 FROM INFORMATION_SCHEMA.view_table_usage ST1
 WHERE ST1.view_schema + '.' + ST1.view_name = ST2.view_schema +
 '.' + ST2.view_name
 ORDER BY ST1.view_schema + '.' + ST1.view_name
 FOR XML PATH('')), 2, 8000))[RefObjects]
 FROM INFORMATION_SCHEMA.view_table_usage ST2
) xx ON xx.ViewRollup = v.table_schema + '.' + v.table_name
ORDER BY v.table_schema,v.table_name

Tips and tricks

There are some SQL queries using information schema views that can be helpful when working
with a SQL database.

Find which tables contain a column name

If you are working in an application that accesses SQL data, you can use the following query to
determine all tables and views in which a column is used.

 25

Code Listing 8: Find a column

-- Script: Find_Column.sql
-- Search for a column by name

SELECT table_schema,table_name
FROM INFORMATION_SCHEMA.columns
WHERE column_name='IsSupported'
ORDER BY table_schema,table_name

Same name, different types and sizes

In some databases, developers might have created a field in several tables, but the type or size
information is different. This can cause some subtle, hard-to-find bugs in application code. For
example, if a C# string variable reads a varchar column, the value is trimmed, but if it reads a

char column, it will contain the trailing spaces, which could cause some unexpected

comparison results.

This query identifies columns with the same name, but different types or sizes.

Code Listing 9: Same name, different type or size

-- Script: Mismatched_Columns.sql
-- Columns with same name, but different types/sizes

SELECT column_name,
CASE
WHEN min(data_type)<>max(data_type) THEN 'Type mismatch'
ELSE ''
END AS TypeError,
CASE
WHEN min(character_maximum_length) <> max(character_maximum_length) THEN
'Size differences'
ELSE ''
END AS SizeError,count(*) AS NumTables
FROM INFORMATION_SCHEMA.columns
GROUP BY column_name
HAVING (min(data_type)<>max(data_type))
OR (min(character_maximum_length) <> max(character_maximum_length))

Tip: You can test collation sequence, nullable, etc., by changing your HAVING
conditions in the query.

www.dbooks.org

https://www.dbooks.org/

 26

Similarly named columns

Often, over time and multiple developers, column names might have slight naming variations
that can create application errors. This query finds all columns that contain the text “phone”.

Code Listing 10: Similar column names

-- Script: Similarly_named_Column.sql
-- Look for columns with similar names

SELECT table_schema,table_Name,column_Name
FROM INFORMATION_SCHEMA.COLUMNS
WHERE column_Name LIKE '%phone%'

In this example database, we found phone and phonenumber were both used to hold a phone

number field for an organization.

Routines and parameters

You can check your stored procedures and functions and see what parameters they expect (in
order) by using the following query.

Code Listing 11: Routines and parameters summary

-- Script: Routines_summary.sql
-- Routines and parameters

SELECT r.routine_type,r.specific_name,rc.parameter_name
FROM INFORMATION_SCHEMA.routines r
JOIN INFORMATION_SCHEMA.parameters rc ON r.specific_name=rc.specific_name
WHERE rc.parameter_mode='IN'
ORDER BY r.specific_name,rc.ordinal_position

Summary

The information schema views are a handy and generic (SQL-92 standard) way to identify your
database structure and look for potential problem areas.

Note: While Oracle doesn't implement the information schema, it does have views
to provide the same information. For example, the ALL_TABLE view is like the
TABLES view, and ALL_TAB_COLUMNS view is like the COLUMNS view.

 27

No matter which database you use, having programmable access to the underlying structures
can help you to understand the database and solve problems. If you want more information
about the information schema views in SQL Server, you can visit this website. In this chapter,
we only focused on some columns in the views; this site will provide complete details of all the
columns in the views.

www.dbooks.org

https://docs.microsoft.com/en-us/sql/relational-databases/system-information-schema-views/system-information-schema-views-transact-sql?view=sql-server-2017
https://www.dbooks.org/

 28

Chapter 3 Server Information

In this chapter, we will explore some of the hardware, operating system, and SQL version
information, as well as the various configuration options of the server. All this information is
available through various views in the sys schema. Most of the information comes from the

subset called dynamic management views within the sys schema. These views begin with dm_

and provide a lot of information about the SQL environment.

Note: Your account may not have permission to access the various views
described in this chapter, particularly if you are on a remote server. You will generally
need the VIEW SERVER STATE permission for most of these queries.

Host version

You can determine the operating system information and version number by using the newly
added sys.dm_os_host_info view (SQL 2017). Note that SQL Server does not return as much

information if SQL is running on a Linux host.

Table 15: dm_os_host_info

Column name Description

host_platform Windows or Linux.

host_distribution Description of the operating system.

host_release Version number on Windows OS, empty on Linux.

host_service_pack_level Service pack level (Windows) or empty (Linux).

host_sku Window stock keeping unit (maps to a Windows
product version) NULL on Linux systems

• 4 is Enterprise Edition

• 7 is Standard Server Edition

• 8 is Datacenter Server Edition

• 10 is Enterprise Server Edition

• 48 is Professional Edition

os_language_version Windows Locale identifier (LCID) of operating system.

You can find out more about the Windows version information at this website.

The locale ID can be found here.

https://docs.microsoft.com/en-us/windows/win32/sysinfo/operating-system-version
https://docs.microsoft.com/en-us/openspecs/windows_protocols/ms-lcid/a9eac961-e77d-41a6-90a5-ce1a8b0cdb9c

 29

If you are using an older version of SQL, the dm_os_windows_info view provides similar

information (without the platform or distribution columns). Table 16 lists the columns in that
view.

Table 16: dm_os_windows_info

Column name Description

windows_release Version number of Windows OS

windows_service_pack_level Service pack level

windows_sku Window stock keeping unit (maps to a Windows
product version)

windows_os_language_version Windows Locale identifier (LCID)

SQL Server version information

There are a variety of ways to determine which version of SQL is being run.

@@version

The simplest approach is to use the @@version global variable. This will return a string

containing the version and copyright information.

Microsoft SQL Server 2017 (RTM-CU14-GDR) (KB4494352) - 14.0.3103.1 (X64)
Mar 22 2019 22:33:11
Copyright (C) 2017 Microsoft Corporation
Developer Edition (64-bit) on Windows Server 2016 Datacenter 10.0 <X64>
(Build 14393:) (Hypervisor)

If you want to report on this data, you can save it to a variable and split the variable on the
linefeed (char(10)) character.

xp_msver

Another option is to use the extended stored procedure xp_msver in the master database. This

returns a four-column table containing version and copyright information about the server. Table
17 shows some sample rows from this procedure.

Table 17: Sample xp_msver result

Index Name Internal_Value Character_Value

1 ProductName NULL Microsoft SQL Server

www.dbooks.org

https://www.dbooks.org/

 30

2 ProductVersion 917504 14.0.3103.1

3 Language 1033 English (United States)

4 Platform NULL NT x64

SERVERPROPERTY

While the previous two approaches show the version number and description, you might want to
simply get a numeric indication of the version number (for example, your procedure only runs on
a version of the server). For this approach, you can use the SERVERPROPERTY function and get

the ProjectMajorVersion, as shown in the following.

select SERVERPROPERTY('ProductMajorVersion')

Table 18 shows the mapping between the product version and the SQL version.

Table 18: Project Major Version

Major version ID SQL version

8 SQL 2000

9 SQL 2005

10 SQL 2008

10.5 SQL 2008 R2

11 SQL 2012

12 SQL 2014

13 SQL 2016

14 SQL 2017

15 SQL 2019

We will cover the SERVERPROPERTY function in more detail later in this chapter.

CLR version information

You can use the sys.dm_clr_properties view to determine what version of the Common

Language Runtime (CLR) is installed on the SQL Server box. The view returns three rows with
a name and value set of columns. Table 19 shows the CLR properties.

 31

Table 19: CLR properties

Name Value

directory C:\Windows\Microsoft.NET\Framework64\v4.0.30319\

version v4.0.30319

State CLR is initialized

The dm_clr_loaded_assemblies view will show all CLR assemblies running on the SQL

server. SQL will generally keep these assemblies loaded for performance reasons but can
unload them in a memory pressure situation.

Memory

SQL Server is designed to manage memory itself, rather than require administrators to allocate
the memory. Basically, SQL will greedily take as much memory as it can get but will release
memory to the operating system if the OS is needy (low memory situation). You can use the
dm_os_sys_memory view to query the amount of memory on the server. Code Listing 12 is an

example query.

Code Listing 12: Server memory

--
-- Script: Server_memory.sql
-- Reports memory usage on the server
--
SELECT
 [total_physical_memory_kb] / 1024 as TotalPhysMemoryMB
 ,[available_physical_memory_kb]/ 1024 as AvailMemoryMB
 ,[total_page_file_kb]/1024 as PageFileTotalMB
 ,[available_page_file_kb]/1024 as PageFileAvailMB
 ,[system_memory_state_desc]
 FROM [sys].[dm_os_sys_memory]

The system_memory_state_desc fields indicate whether memory is high (SQL can keep using

it) or low (SQL needs to release some to operating system). Ideally, there are not a lot of
memory-intensive processes running on the SQL server machine.

Disk usage

You can use the xp_fixedDrives stored procedure or, starting with SQL 2017, the new

Dynamic Management view called dm_os_enumerate_fixed_drives. The stored procedure

returns two columns: the drive letter and megabytes free. The new view returns the drive path
and drive type (usually fixed or network), and the bytes free. Code Listing 13 uses the new view.

www.dbooks.org

https://www.dbooks.org/

 32

Code Listing 13: Drive information

-- Script: Basic_Drive_info.sql
-- Show free space on drives

if object_id('sys.dm_os_enumerate_fixed_drives') is not null
 SELECT fixed_drive_path,drive_type_desc,
 free_space_in_bytes/(1024*1024) as MB_Free
 FROM sys.dm_os_enumerate_fixed_drives
else
 exec xp_fixedDrives

You can combine this view with the sys.master_files view to determine where the various

databases reside. Code Listing 14 shows the master and tempdb databases, as well as the
database and log files for the current database.

Code Listing 14: Where databases are stored

--
-- Script: Detailed_Drive_info.sql
-- Show free space and system and database files
--
IF object_id('sys.dm_os_enumerate_fixed_drives') is not null
 SELECT mf.type_desc,mf.name,mf.physical_name,
 fd.drive_type_desc,fd.free_space_in_bytes/(1024*1024)
as MB_Free
 FROM sys.master_files mf
 JOIN sys.dm_os_enumerate_fixed_drives fd
 on substring(mf.physical_name,1,3)=fd.fixed_drive_path
 WHERE database_id in (1,2,db_id())
ELSE
 BEGIN
 create table #tmpDrives (drive char(1),free_space_in_bytes
bigint)
 INSERT INTO #tmpDrives
 exec xp_fixeddrives
 SELECT mf.type_desc,mf.name,mf.physical_name,
 'FIXED' as
drive_type_desc,round((fd.free_space_in_bytes*1.0)/1024,0) as MB_Free
 FROM sys.master_files mf
 JOIN #tmpDrives fd on
substring(mf.physical_name,1,1)=fd.drive
 WHERE database_id in (1,2,db_id())
 DROP TABLE #tmpDrives
 END

You should expect to see that the log and data files are stored on separate drives, and that the
tempdb files (could be multiple files) are on their own drive, as well. While this hard drive
configuration could vary, those are the generally recommended guidelines for performance
purposes.

 33

Enumerate file system

SQL Server 2017 added a new table-valued function called dm_os_enumerate_file_system.

This function takes two parameters, the starting folder, and a search pattern. For example, to
find out if any new DLLs were added recently, you could run the following SQL command.

SELECT * from sys.dm_os_enumerate_filesystem('c:\windows\system32\','*.dll')
WHERE creation_time>=dateadd(m,-3,getDate())

Registry information

SQL Server uses the system registry of the server machine to hold several settings, such as the
SQL image, startup parameters, or port. You can use the dm_server_registry view to peek at

these registry settings.

SELECT * FROM [sys].[dm_server_registry]

Table 20 shows some of the values this view returns.

Table 20: dm_server_registry

registry_key value_name value_data

HKLM...\MSSQLSERVER ObjectName YPRIMECLOUD\svc_sql_az-irtsqldev

HKLM...\MSSQLSERVER ImagePath C:\Program Files\...\sqlservr.exe

HKLM...\SQLSERVERAGENT ObjectName svc_sql_az-irtsqldev@yprimecloud.local

HKLM...\SQLSERVERAGENT ImagePath C:\Program Files\...\SQLAGENT.EXE

HKLM...\SQLSERVERAGENT DependOnService MSSQLSERVER

HKLM\... CurrentVersion CurrentVersion 14.0.1000.169

HKLM\... \Tcp TcpDynamicPorts 1434

Databases on the server

A typical SQL server has multiple databases on it, some required by the server and those for
your application data. The sys.databases view provides information about all the databases

installed on the server. Code Listing 15 is a query that returns basic database names and
version information.

Code Listing 15: Server databases

-- Script: Server_databases.sql

www.dbooks.org

https://www.dbooks.org/

 34

-- Server databases and versions

SELECT database_id,[name],create_date,
CASE compatibility_level
WHEN 80 THEN 'SQL 2005'
when 90 then 'SQL 2005'
when 100 then 'SQL 2008'
when 110 then 'SQL 2012'
when 120 then 'SQL 2014'
when 130 then 'SQL 2016'
when 140 then 'SQL 2017'
when 150 then 'SQL 2019'
else 'Unknown version'
end as SQL_Level
from sys.databases
order by database_id

The first four databases (master, tempdb, model, and msdb) are SQL internal databases.

Files for current database

The SQL tables are stored in a physical disk file (MDF files), and you can determine the files
that are holding the current database tables using the sys.database_files view. Code Listing

16 shows a query to return the database file names.

Code Listing 16: Database files

-- Script: Database_files.sql
-- Files for current database

SELECT type_desc,name,physical_name
FROM sys.database_files

The type_desc will be either ROWS or LOGS. The logs and rows should be on separate drives for

better performance.

Configuration

The sys.configurations view has key fields of a name, value, and description. Many of the

configuration options are represented by a named row in this view. You can visit the Microsoft
website to determine the usage of the various settings.

You can also view most of the configuration information in SSMS by opening the Properties
dialog on the server name, as shown in Figure 2.

https://docs.microsoft.com/en-us/sql/database-engine/configure-windows/server-configuration-options-sql-server?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/database-engine/configure-windows/server-configuration-options-sql-server?view=sql-server-2017

 35

Figure 2: Server properties

Reading configuration data

You can run queries against the sys.configurations view to get the values of the settings.

For example, the following SQL query checks whether CLR (common language runtime
assemblies) are allowed on this server.

SELECT * FROM sys.configurations WHERE [name]='clr enabled'

You can also use the sp_configure stored procedure to look at any of the settings. You specify

the setting name or leave off the parameter to see all settings available.

EXEC sp_configure 'clr enabled'

Advanced settings

Many of configuration settings are considered "advanced" as determined by the Is_advanced

flag in the sys.configurations view. For example, the xp_cmdshell allows users to issue

operating system commands on the server. By default, SQL Server is configured with this option
disabled.

Updating configuration data

Configuration data is updated using the sp_configure stored procedure. It gets passed two

parameters: the configuration name and new value. For example, the following command will
enable CLR assemblies.

EXEC sp_configure 'clr enabled',1

www.dbooks.org

https://www.dbooks.org/

 36

SQL administrators will generally use scripts of sp_configure commands to configure the

server. The Microsoft defaults are generally set toward a minimum machine, so the server will
run even in lower memory/hardware configurations. Open connections allowed, server memory
and query memory are often customized to get better performance based on knowledge of your
server's hardware.

Note: Updating server configuration is the realm of experienced SQL
administrators. In a well-designed system, developers would not have access to
update the configuration. While you can use the configuration view to see how the
server is set up, leave the configuration changes to the administrators.

SERVERPROPERTY

The SERVERPROPERTY function also provides a good deal of information about the server. It

takes a single parameter, the property name, and returns the current property value. For
example, the following code snippet shows the edition of SQL Server being run.

select SERVERPROPERTY('edition') as ServerEdition

Table 21: SERVERPROPERTY

ServerEdition

Developer Edition (64-bit)

The Microsoft website provides details as to the various server property parameters.

You can use the SERVERPROPERTY function to put together a detailed list of server information,

as shown in Code Listing 17.

Code Listing 17: Server property snapshot

-- Script: ServerProperties.sql
-- Reporting server information

select 'SQL Server: ' as Label,
SERVERPROPERTY('ProductVersion') as Version,
SERVERPROPERTY('edition') as ServerEdition,
SERVERPROPERTY('productLevel') as ServerEdition,
SERVERPROPERTY('MachineName') as Machine,
CASE
SERVERPROPERTY('IsIntegratedSecurityOnly')
WHEN 0 Then 'SQL and Windows logins'
ELSE 'Windows Authentication'
END as AuthMode

https://docs.microsoft.com/en-us/sql/t-sql/functions/serverproperty-transact-sql

 37

Summary

In this chapter we covered a few of the dynamic management views you can use to explore the
details of your SQL Server installation. There are over 100 different views to provide all sorts of
server information. Hopefully, this chapter whetted your appetite to explore them further.

We will cover some additional views in later chapters and discuss indexing and performance.

www.dbooks.org

https://www.dbooks.org/

 38

Chapter 4 Database Properties

Within a SQL Server instance, there can be any number of databases containing related tables
and objects. In this chapter, we will explore how to use the SQL views to determine information
about the individual databases. Figure 3 shows the database properties table from SSMS.

Figure 3: Database properties

Note: Your account may not have permission to access the various views
described in this chapter. You will generally need the VIEW DATABASE STATE
permission for most of these queries.

Sys.databases

The primary view for database information is the sys.databases view. This view holds a row of

information for each database in the server. You can restrict it to just the current database by
filtering to the current database ID, as shown in the following code.

SELECT * from sys.databases
WHERE database_id=db_id()

The function db_id() returns the numeric ID of the current database (or takes a parameter of

database name and returns the database ID).

 39

DATABASEPROPERTYEX()

The SQL function DATABASEPROPERTYEX () provides additional information about any database

in the system. It takes two parameters: the database name (using db_name() for current

database) and the property you want to view.

General information

The General tab of the Properties page provides some simple status information, such as
database size and date of the last backup. This information can be assembled using the
sys.databases view and the DATABASEPROPERTYEX() function.

Basic information

Code Listing 18 uses the sys.databases view and DATABASEPROPERTYEX() function to

duplicate much of the information from the General tab. In the following query, we are filtering to
just the current database on the WHERE clause. If you remove the WHERE clause, you can obtain

the general information for all databases to which you have access.

Code Listing 18: Database information

-- Script: DatabaseInformation.sql
-- Some basic database information

SELECT db.name AS databaseName,
 DATABASEPROPERTYEX(db.name, 'Status') AS 'Status',
 su.Name AS 'Owner',
 db.create_date AS 'Date Created',
 CONVERT(VARCHAR,mf.size*8/1024)+' MB' AS [Total disk space]
FROM sys.databases db
JOIN (select database_id, sum(size) AS Size
 from sys.master_files group by database_id) mf ON
db.database_id=mf.database_id
LEFT join sys.sql_logins su ON su.sid=db.owner_sid
WHERE db.database_Id=db_Id()

Table 22 shows the sample output.

Table 22: Sample database information

databaseName Status Owner Date created Total disk space

JDB Demo ONLINE sa 2019-07-31 21:27 144 MB

www.dbooks.org

https://www.dbooks.org/

 40

Backup information

The backup information is retrieved from the backupset table in the MSDB (Microsoft

Database) database. We can retrieve the backup information for both the data and the logs
using Code Listing 19.

Code Listing 19: Database backup information

-- Script: BackupInfo.Sql
-- Backup information for current database

SELECT
case type
when 'D' then 'Database'
when 'L' then 'Logs'
end as BackupType,
max(backup_finish_date) as LastBackup
FROM msdb.dbo.backupset
WHERE database_name=db_name()
GROUP BY database_name,type

There is other information available in the backupset table, such as the backup size, whether it

is encrypted or not, recovery model, compressed size, etc. Although we are only interested in
the backup dates, you might find occasional need to access the other fields.

Size information

The size of any database can be retrieved easily from the sys.master_files view, but the

actual use (needed to compute space available) requires a bit more effort. Code Listing 20
provides this information.

Code Listing 20: Size information for database

-- Script: DBSizeInfo.Sql
-- Size information for the current database

SELECT db_name() as database_name,
 ltrim(str((CASE
 WHEN sf.dbsize >= pt.reservedpages
 THEN (convert(DECIMAL(15,2),sf.dbsize) -
 convert(DECIMAL(15,2),pt.reservedpages)) * 8192 / 1048576
 ELSE 0 END),15,2) + ' MB') as 'Space Available'
FROM (
 SELECT
sum(convert(BIGINT, CASE WHEN sf.STATUS & 64 = 0 THEN size ELSE 0 END))
as dbSize
 FROM dbo.sysfiles sf
) AS sf,

 41

 (SELECT reservedpages = sum(a.total_pages)
 FROM sys.partitions p
 INNER JOIN sys.allocation_units a
ON p.partition_id = a.container_id
) AS pt

The sp_spaceused stored procedure returns this information as well, but it currently returns two

result sets, so you cannot execute it to a temporary table.

Note: SQL 2016 added a new parameter, @oneResultSet, which allows
sp_spaceused to return a single result if set to 1.

Files

The Files tab on the database properties shows basic information about the files and growth on
the database.

Figure 4: Files information

The information about the database files and growth is available from the sysFiles view. Code

Listing 21 converts the data to mimic the Files tab available from the SSMS Properties tab.

Code Listing 21: File information for current database

-- Script: DBFileInfo.Sql
-- File information for current database

SELECT sf.[name] AS Logical_Name,
 CASE
 WHEN Status = 2 THEN 'ROWS Data'
 WHEN Status = 66 THEN 'LOG'
 END AS FileType,
 IsNull(fg.type_desc,'Not Applicable') AS FileGroup,
 size*8.0/1024 as 'Current Size (MB)',

www.dbooks.org

https://www.dbooks.org/

 42

 growth*8.0/1024 as 'Autogrowth (MB)',
 CASE
 WHEN maxsize = 0 THEN 'No growth'
 WHEN maxsize < 0 THEN 'Unlimited'
 WHEN maxsize*8.0/1024 >=cast(268435456/8 as bigint) THEN '2
TerraBytes'
 ELSE CAST(Round(maxsize*8.0/1024,0) as varchar(20))+'MB'
 END as MaxSize,
 FileName AS 'Path'
FROM sys.sysfiles sf
LEFT join sys.filegroups fg on fg.data_space_id=sf.fileid

Note that sizes are expressed in pages (one page is 8K bytes), so we multiply the size by 8 to
get the pages converted to bytes, and then divide by 1,024 to show the results in megabytes.

Options

Many of the database flags and options shown on the Options tab (Figure 5) can be obtained
via the DATABASEPROPERTYEX() SQL function.

Figure 5: Database options

In addition to the DATABASEPROPERTYEX function, most of these bit fields also exist in the

sys.database view. Table 19 lists the key column in sys.databases to see the various

configuration options.

 43

Automatic settings

Be aware that the automatic settings can impact server performance. For example, if the last
user logs out and the database closes automatically, the next user will experience a slight delay
as the database gets re-opened.

Table 23: Automatic settings

Column name Description

is_auto_close_on
Will database close after last user logs off?

is_auto_create_stats_incremental_on
Rather than full scan, statistics are only created
for table partitions that might have changed,
which can increase performance while creating
statistics.

is_auto_create_stats_on
Should the optimizer create statistics on columns
that do not have statistics as they are used in a
query?

is_auto_update_stats_on
If SQL detects certain data modifications that
indicate statistics might be out of date, it updates
them.

is_auto_update_stats_async_on
When on, the query is run first, and then stats
are updated. When off, outdated stats are
updated first.

If you do not automatically update stats, you should put a job or plan in to do so. Outdated
statistics can cause the query optimizer not to generate an optimal plan, and the query will run
slower than it could.

Tip: If you are unfamiliar with statistics, imagine a table holding a list of students,
containing name, gender, and GPA. If a query was run to determine female students
with a 3.0 or better GPA, the optimizer would likely search the GPA column first, and
then consider gender. This assumes that GPA 3.0 would return fewer records to
check gender against. However, if the system was aware that this was an all-male
school with only four female students, it would likely check gender first, and then
GPA. Statistics provide the information to allow the query optimizer to create the best
query plan.

ANSI and NULL settings

These options can impact the way SQL queries and stored procedures operate and can be
different between databases on the same server. If you are writing stored procedures, be sure
you review these options to make sure your code takes them into account. Table 24 lists some
of the settings that impact ANSI and NULL behavior in each database.

www.dbooks.org

https://www.dbooks.org/

 44

Table 24: ANSI and NULL options

Column name Description

is_ansi_nulls_on When ON, you need the IS NULL operator to test for
NULL value (ANSI Standard). When OFF, = NULL will
find null values.

is_ansi_warnings_on When ON, any aggregate function (SUM, COUNT, etc.)

will issue a warning if NULL values appear.

is_arithabort_on If ON, a query will abort for overflow or div by zero
errors.

is_concat_null_yields_null_on If ON, string + NULL results in NULL value.

is_numeric_roundabort_on If ON, a loss of numeric precision will return an error,
otherwise the value will be rounded, and no warning
returned.

For a programming example, the code in Code Listing 22 will return different results depending
on the setting of is_concat_null_yields_null_on. (Note that this example assumes the

database has a table called site.)

Code Listing 22

-- Script: TellUserAboutMissingName.sql
-- Warn user to assign a name to the site

SELECT IsNull('Site Name:'+name,'Please assign a name to site '+
 cast(siteNumber as varchar)) as Msg
FROM site

Since these settings can change the behavior of SQL queries, it is at a minimum a good idea to
check them in the database you are writing code in. Even better, set them to your expected
value for the procedure and then restore them when done.

Note: In a future version of SQL Server, you will not be able to change the value of
CONCAT equals NULL; it will also default to ON.

If you find some inconsistent behavior between databases, be sure to check these options that
impact how the server operates.

Other database properties

There are a fair number of other properties that appear on the Properties tab and can be read
from the databases view. Table 25 lists three of these.

 45

Table 25: Other options

Column name Description

user_access_desc SINGLE_USER, RESTRICTED_USER, MULTI_USER

is_read_only Is database in read-only mode?

default_language_name Default language (English) for the current database.

The best way to get familiar with them is to look at the database properties tab in SSMS and
find the corresponding option in the sys.databases view.

DATABASEPROPERTYEX()

In addition to the databases view, you can also use the SQL DATABASEPROPERTYEX() function

to get a lot of the configuration options, as well. The function takes two parameters: the name of
the database and the property you want to look at.

Many of the properties provide the same information as the sys.database view. A few sample

properties are shown in Table 26.

Table 26: DATABASEPROPERTYEX() parameters

Column name Description

LCID Locale identifier for Windows

Collation Collation name for the database

IsNullConcat How is NULL concatenation handled?

You can see the list of all parameters on the Microsoft website.

Comparing two databases

Sometimes it is useful to compare properties between databases, and DATABASEPROPERTYEX

can be very handy for that. Code Listing 23 shows code that compares two databases for a list
of property values.

Code Listing 23: Compare database properties

-- Script: CompareDBProperties.sql
-- Compare some properties between databases

DECLARE @targetDB varchar(128)
SET @targetDB='' -- SET NAME HERE

www.dbooks.org

https://docs.microsoft.com/en-us/sql/t-sql/functions/databasepropertyex-transact-sql
https://www.dbooks.org/

 46

CREATE TABLE #tmpProps (PropertyName varchar(100))
INSERT INTO #tmpProps values ('LCID'),('Collation'),
 ('UserAccess'),('IsArithmeticAbortEnabled'),
('IsNullConcat')
SELECT PropertyName,
 DATABASEPROPERTYEX(db_name(),PropertyName) as CurrentDB_Property,
 DATABASEPROPERTYEX(@targetDB,PropertyName) as TargetDB_Property
FROM #tmpProps
DROP TABLE #tmpProps

You can adjust the contents of the #tmpProps table to see the properties you want to compare.

Database permissions

There are two system views that you can use to determine who has various types of
permissions for your database.

Database permissions

This view lists all the database permissions, whether they’ve been granted or denied, and the
group, role, user, etc., who was granted the permission and who granted the permission. Table
27 shows the fields in the view.

Table 27: Permissions view

Column name Description

class Number class value.

class_desc Description of the class value (DATABASE, OBJECT_OR_COLUMN,

SCHEMA, etc.).

major_id 0 for the database itself; >0 for user objects; <0 for system objects

You can use the OBJECT_NAME() function to get the object name

associated with the major_id field.

minor_id Most often 0, or the column ID number of a table/view object.

grantee_principal_id User/role/group who has been granted or denied permission.

grantor_principal_id User/role/group who granted or denied the permission to the
grantee.

type Short code for type of permission.

permission_name Full name of permission, UPDATE, SELECT, etc.

 47

Column name Description

state D – Deny

R – Revoke

G – Granted

W – Grant with option to grant

state_desc Full name of state code

database_principals

This view lists the various database users, roles, groups, etc., that have access to the database.
Table 28 lists the key columns needed to show permissions within the database.

Table 28: Database principals

Column name Description

Name Object name (role, user, group).

principal_id ID for object, used to link with permissions table (grantor and
grantee).

type One-letter code for type object

R – Database role

S – SQL user

G – Windows group

See complete list of types here.

type_desc Full name of type code.

create_date Date this object was created.

modify_date Date object was modified.

authentication_type 0 – None

1 – Instance

2 – Database (SQL Login)

3 – Windows Auth

We can join the permissions and principals views to explore who has what permissions in

our database. The next section lists a few sample scripts to explore permissions.

www.dbooks.org

https://docs.microsoft.com/en-us/sql/relational-databases/system-catalog-views/sys-database-principals-transact-sql
https://www.dbooks.org/

 48

Who can edit?

Code Listing 24 shows a list of all users, roles, groups, etc., that can manipulate data with your
database.

Code Listing 24: Who can edit?

--
-- Script: WhoCanEdit.SQL
-- List users, groups, roles with edit ability
--
SELECT
pr.name,pr.type,p.permission_name
FROM sys.database_permissions p
JOIN sys.database_principals pr ON pr.principal_id=p.grantee_principal_id
WHERE permission_name IN ('DELETE','UPDATE','INSERT') AND state='G'

Who can select database objects?

You might want to see which groups and roles can select from various tables, including system
metadata tables. Code Listing 25 provides this information.

Code Listing 25: Who and what can they select?

--
-- Script: WhoHasSelectRights.sql
-- List users, groups, roles with selectable objects
--
SELECT
pr.name,pr.type,p.permission_name,OBJECT_NAME(major_id) as AllowedView
FROM sys.database_permissions p
JOIN sys.database_principals pr ON pr.principal_id=p.grantee_principal_id
WHERE permission_name IN ('SELECT') AND p.state='G'
ORDER BY AllowedView

What can the public role do?

You might also want to see what rights the public role has, since all users inherit these rights.
Code Listing 26 shows how to find what everyone can do.

Code Listing 26: Public role permissions

--
-- Script: WhatCanPublicDo.SQL
-- List all permissions granted to public role
--
SELECT
 p.permission_name,OBJECT_NAME(major_id) as AllowedView
FROM sys.database_permissions p
JOIN sys.database_principals pr on pr.principal_id=p.grantee_principal_id

 49

WHERE pr.name = 'Public' and state='G' and class<>0
ORDER BY AllowedView

In a production environment, you should limit what the public role has access to. Even if just
SELECT rights, a lot of the metadata could be exposed to the public role.

Summary

SQL provides a lot of information about the database you are working in. Every property that
you can see on the Properties tab in SSMS can be pulled from system views or functions.

www.dbooks.org

https://www.dbooks.org/

 50

Chapter 5 Tables and Columns

Although we covered the information schema views back in Chapter 2, SQL Server provides
additional views and procedures we can use to view our tables and columns in more depth. In
this chapter, we will look at the sys.tables and various sys column views to provide some

table and column analysis.

Note: Many of these views are derived from sys.objects. Every “object” in a SQL
database (tables, procedures, triggers, etc.) has an object ID associated with it, and
sys objects hold the information about the object. The OBJECT_NAME() SQL function
returns an object name from the object_id parameter.

Tables

We can join the sys.tables view with other views to determine information about our table

design. This allows us to perform additional table analysis beyond the basic information schema
views. When referencing the sys.tables view, we can use the object_schema_name and

object_name SQL functions to create a table name (schema + table name).

sys.identity_columns (starting with SQL 2008)

This table holds information about tables that have identity columns present.

Code Listing 27: Identity columns

-- Script: Identity_columns.sql
-- List all identity columns

SELECT
OBJECT_SCHEMA_NAME(st.object_id)+'.'+st.name AS [TableName],
ic.name AS KeyName,
t.name AS dataType,
ic.seed_value,ic.increment_value,
isNull(ic.last_value,0) AS Last_Value
FROM sys.tables st
JOIN sys.identity_columns ic ON ic.object_id=st.object_id
JOIN sys.types t ON t.system_type_id=ic.system_type_id
ORDER BY [TableName]

This listing shows tables that have an Identity column, along with the seed value and

increment for the column. If the table has rows, the Last_value column will report the last seed

number.

 51

Tip: You can use the DBCC CHECKIDENT ('[TableName]', RESEED, 0) command to
reset an identity column’s value.

sys.computed_columns (starting with SQL 2008)

This view allows you to get the definitions for any computed columns in the database. The
definition will be a SQL expression that is used to provide the column value.

Code Listing 28: Computed columns

-- Script: Computed_Columns.sql
-- List all computed columns

SELECT
OBJECT_SCHEMA_NAME(st.object_id)+'.'+st.name AS [TableName],
cc.name AS KeyName,
t.name AS dataType,
cc.definition AS [Column_Definition],cc.is_persisted
FROM sys.tables st
JOIN sys.computed_columns cc on cc.object_id=st.object_id
JOIN sys.types t on t.system_type_id=cc.system_type_id
ORDER BY [TableName]

Note: If a computed column is persisted, the value will be stored on disk, and can
be used for indexing, checking constraints, etc. It will be updated when the data is
updated. If it is not persisted, the value will be virtual and will be computed every time
the column is referenced.

sys.default_constraints (starting with SQL 2008)

A database table may have a default value to provide during an INSERT when the

corresponding field is NULL. The following script lists all the default constraints and the table
and columns they are found in.

Code Listing 29: Default constraints

-- Script: Default_Constraints.sql
-- List all default constraints

SELECT object_schema_name(dc.parent_object_id)+'.'+
 object_name(dc.parent_object_id) as TableName,
 c.name as ColumnName,
 dc.definition
FROM sys.default_constraints AS dc

www.dbooks.org

https://www.dbooks.org/

 52

INNER JOIN sys.columns AS c
ON dc.parent_object_id = c.object_id
AND dc.parent_column_id = c.column_id
ORDER BY tableName,columnName

Note: If a column has a default of NewID() to generate a new UniqueIdentifier and
this column is part of an index, you should consider using NewSequentialId() instead.
Because NewID() generates a random unique identifier, it is likely to cause an index
split, as it attempts to insert the record into the index. (The NewSequentialID()
function generates a unique identifier higher than the prior one.) So while you can
improve creation performance with NewSequentialID, it is also a privacy risk to use
sequential (hence predictable) identifiers.

sys.index_columns (starting with SQL 2008)

This script will identify all the columns that are used as indexes in the various tables. This can
be a handy way to determine whether a new search you want to add is already indexed in the
table (improving performance).

Code Listing 30: Index columns

-- Script: Index_columns.sql
-- List all indexed columns

SELECT st.name as TableName
 ,i.name as IndexName
 ,COL_NAME(ic.object_id,ic.column_id) AS ColumnName
FROM sys.indexes AS i
INNER JOIN sys.index_columns AS ic ON i.object_id = ic.object_id AND
i.index_id = ic.index_id
JOIN sys.tables st on st.object_id=ic.object_id
ORDER BY [TableName],ic.index_column_id,ColumnName

You can add the WHERE expression ic.index_column = 1 to find only those columns that are

the first expression in the index. You could also specify all columns you need to retrieve to see
whether there is a covering index for your search parameters.

sys.key_constraints (starting with SQL 2008)

This script is used to identify the columns that are being used as primary keys in a table. It
shows the table and index name, as well as the column(s) making up the key.

Code Listing 31: Key constraints

-- Script: Key_constraints.sql

 53

-- List all key constraint columns

select object_schema_name(tb.object_id)+'.'+tb.name as [TableName],
 object_name(kc.object_id) as IndexName,
 sc.name as ColumnName
from sys.tables tb
join sys.key_constraints kc on kc.parent_object_id=tb.object_id
join sys.index_columns ic
 on ic.object_id=kc.parent_object_id and
kc.unique_index_id=ic.index_id
join sys.columns sc on sc.object_id=ic.object_id and
ic.index_column_id=sc.column_id
where tb.type='U' and kc.type='PK'
order by tableName,ic.index_column_id

sys.check_constraints (starting with SQL 2008)

A check constraint is a SQL expression that is applied to a column to validate the type of data
allowed in that column. For example, you might use the following LIKE expression to ensure a

zip code field only contains five digits.

zip LIKE '[0-9][0-9][0-9][0-9][0-9]'

Code Listing 32 will list all columns in the database that have check constraints applied to them.

Code Listing 32: Check constraints

-- Script: Check_constraints.sql
-- List all check constraints

SELECT object_schema_name(dc.parent_object_id)+'.'+
 object_name(dc.parent_object_id) as TableName,
c.name as ColumnName,
dc.definition
FROM sys.check_constraints AS dc
INNER JOIN sys.columns AS c
ON dc.parent_object_id = c.object_id
AND dc.parent_column_id = c.column_id
ORDER BY tableName,columnName

sys.masked_columns (starting with SQL 2016)

In SQL 2016, a new feature called Dynamic Data Masking was added, which provides the ability
to apply masked to a column, so users querying the data will not see the actual column contents.

To create a masked column, you add the MASKED WITH (expression) to the table column. For

example, to make an email column, you could use the following.

Email VARCHAR(150) MASKED WITH (Function = ‘email()’)

www.dbooks.org

https://www.dbooks.org/

 54

When the Email column appears in a query, it will be displayed as jXXX@XXX.net. It is a handy

feature for simple security in a database. You can identify all the masked columns in a database
using the following query.

Code Listing 33: Masked columns

-- Script: Masked_Columns.sql
-- List all masked columns

if SERVERPROPERTY('ProductMajorVersion')>='13'
 SELECT object_schema_name(tb.object_id)+'.'+tb.name as [TableName],
 c.name AS column_name, c.masking_function
 FROM sys.masked_columns AS c
 JOIN sys.tables AS tb ON c.object_id = tb.object_id
 WHERE is_masked = 1
ELSE
 SELECT 'Requires SQL 2016 or higher'

Putting it all together

You can combine the various queries to produce a report of tables and columns in your system,
along with column information. Code Listing 34 shows a table/column reporting script.

Code Listing 34: Table/column detail script

-- Script: Column_Report.sql
-- List column details

SELECT object_schema_name(tb.object_id)+'.'+
 object_name(tb.object_id) as TableName,
 c.name as ColumnName,
 isNull(pk.PK,'') as IsKey,
 isNull(ic.IdentityColumn,'') as Identity_Column,
 isNull(cc.CheckConstraint,'') as Check_Constraint,
 isNull(dc.DefaultConstraint,'') as Default_Constraint
FROM sys.tables as tb
JOIN sys.columns AS c on c.object_id=tb.object_id
LEFT JOIN (
select ic.object_id,ic.index_column_id,'PRIMARY' as PK
 from sys.tables tb
 join sys.key_constraints kc on kc.parent_object_id=tb.object_id
 join sys.index_columns ic on ic.object_id=kc.parent_object_id
 and kc.unique_index_id=ic.index_id
 where tb.type='U' and kc.type='PK'
) pk on pk.object_id=tb.object_id and pk.index_column_id=c.column_id
LEFT JOIN (
 SELECT ic.object_id,ic.name,ic.name+' identity('+

 55

 cast(ic.seed_value as varchar(10))+','+
 cast(ic.increment_value as varchar(10))+') ' as
IdentityColumn
 from sys.tables st
 join sys.identity_columns ic on ic.object_id=st.object_id
) ic ON tb.object_id=ic.object_id and c.name=ic.name
LEFT JOIN (
 SELECT dc.parent_object_id,dc.parent_column_id,
 dc.definition as CheckConstraint
 FROM sys.check_constraints AS dc
 INNER JOIN sys.columns AS c ON dc.parent_object_id = c.object_id
AND dc.parent_column_id = c.column_id
) cc on cc.parent_object_id=tb.object_id and
cc.parent_column_id=c.column_id
LEFT JOIN (
 SELECT dc.parent_object_id,dc.parent_column_id,
 dc.definition as DefaultConstraint
 FROM sys.default_constraints AS dc
 INNER JOIN sys.columns AS c ON dc.parent_object_id = c.object_id
AND dc.parent_column_id = c.column_id
) dc on dc.parent_object_id=tb.object_id and
dc.parent_column_id=c.column_id
ORDER BY tableName,column_id

When this script is run, it will produce a report of all table names and columns, and indicate
which columns are primary keys, identity columns, constraints, and so on.

Searching for deprecated columns

In early versions of SQL, there were text and image columns called text, nText, and image.

These columns (while still supported) were deprecated in SQL Server 2005. The following script
allows you to search for deprecated column types and indicates the appropriate replacement
column type.

Code Listing 35: Deprecated columns

-- Script: Deprecated_columns.sql
-- List all columns with deprecated types

select t.name,c.name as ColName, 'Deprecated: '+
 CASE
 WHEN tp.name = 'text' then 'Replace [text] with varchar(max)'
 WHEN tp.name = 'ntext' then 'Replace [ntext] with nvarchar(max)'
 WHEN tp.name = 'image' then 'Replace [image] with varbinary(max)'
 ELSE 'Table contains Text,nText, or Image fields' END as Msg
from sys.columns c
join sys.tables t on c.object_id=t.object_id
join sys.types tp on tp.user_type_id=c.user_type_id

www.dbooks.org

https://www.dbooks.org/

 56

where t.is_ms_shipped=0 and tp.name in ('text','ntext','image')

If you are using any of these column data types, you should plan on changing the data type to
keep current with SQL Server.

Numeric columns

SQL Server and most database servers perform much better with integer values, rather than a
numeric data type. If a decimal or numeric column has a scale of 0 (no decimal place), you
should consider replacing that column with the equivalent integer column. Code Listing 36 will
search for any numeric columns with a zero scale and suggest the equivalent integer column
type.

Code Listing 36: Suggest integer columns

-- Script: Suggest_integers.sql
-- Convert numeric columns to integers

SELECT tb.table_schema, tb.table_name, tc.column_name as colname,
CASE
 WHEN numeric_precision <= 2
 THEN 'Convert '+tc.Data_type+'('+
 CAST(numeric_precision as varchar)+',0) to tinyint data type'
 WHEN numeric_precision <= 4
 THEN 'Convert '+tc.Data_type+
 '('+CAST(numeric_precision as varchar)+',0) to smallint data type'
 WHEN numeric_precision <= 9
 THEN 'Convert '+tc.Data_type+
 '('+CAST(numeric_precision as varchar)+',0) to int data type'
 WHEN numeric_precision <= 18
 THEN 'Convert '+tc.Data_type+
 '('+CAST(numeric_precision as varchar)+',0) to bigint data type'
 ELSE 'Consider using an integer data type'
END as Msg
FROM INFORMATION_SCHEMA.columns tc
JOIN INFORMATION_SCHEMA.tables tb ON
 tb.table_name = tc.table_name and tb.table_schema = tc.table_schema
WHERE tb.Table_Type='BASE TABLE'
 AND tc.data_type IN('numeric','decimal')
 AND tc.numeric_scale = 0
 AND tc.numeric_precision <= 18
ORDER BY tb.table_schema,tb.table_name,tc.column_name

 57

Approximate column types

The float and real column types in a database are approximations, rather than exact values.

Generally, graphic applications use floats for smaller storage requirement, and can accept the
loss of precision. So, while a float or real data type might be necessary, you should review your
usage to make sure it is necessary.

Code Listing 37 searches for float and real columns in your database tables.

Code Listing 37: Real and float columns

-- Script: SearchFloatColumns.sql
-- Identify float and real columns

SELECT schema_name(o.schema_id) AS SchemaName,
 o.name AS TableName,c.name AS columnName,
 t.Name AS ColumnType
FROM sys.all_columns c
JOIN sys.objects o ON c.object_id=o.object_id
JOIN sys.types t ON t.user_type_id=c.user_type_id
WHERE t.name IN ('float','real') AND o.type='U'

You can read this article to see if floating point arithmetic is necessary for your application.

Unexpected columns

There are often columns in a database table that hold standard information (such as phone
numbers, email addresses, and state codes). Sometimes, these columns have unexpected
sizes. (For example, one system used a varchar(max) to store phone numbers).

Max characters

Code Listing 38 shows all columns using varchar or nvarchar max, even though the column

name suggests it is not needed. You should adjust the list of searched column names for more
common suggestions, based on your knowledge of your application.

Code Listing 38: Max columns check

-- Script: VarChar_Max_check.sql
-- Maximum columns that might not be needed

SELECT schema_name(o.schema_id) AS SchemaName,
 o.name AS TableName,c.name AS columnName,
 t.Name+'(max)' AS ColumnType
FROM sys.all_columns c
JOIN sys.objects o on c.object_id=o.object_id

www.dbooks.org

https://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html
https://www.dbooks.org/

 58

JOIN sys.types t on t.user_type_id=c.user_type_id
WHERE t.name like '%varchar%' and c.max_length < 0
AND o.schema_id <> 4
AND (c.name LIKE '%phone%' or c.name LIKE '%address%')

Nondate columns

Another scenario seen in databases is columns that are holding dates, but not using a date
column type. Code Listing 39 searches for such a column type.

Code Listing 39: Date columns using other data types

-- Script: Date_columns_check.sql
-- Date values possibly stored in nondate columns

SELECT schema_name(o.schema_id) AS SchemaName,
 o.name AS TableName,c.name AS columnName,
 t.Name AS ColumnType
FROM sys.all_columns c
JOIN sys.objects o on c.object_id=o.object_id
JOIN sys.types t on t.user_type_id=c.user_type_id
WHERE t.name not like '%date%'
AND (c.name LIKE '%date%')
AND o.schema_id <> 4
ORDER BY SchemaName,TableName,columnName

Note that in both these queries, we are filtering out schema_id 4 (the sys schema).

Summary

You can use the various views to optimize your columns, hopefully identifying problematic
columns and, where possible, simplifying the data types. SQL Server is a powerful tool, and by
giving it the best column types and size, you can improve database integrity and performance.

 59

Chapter 6 Performance

SQL Server is a dynamic system that is constantly running queries, scheduled jobs, and system
maintenance. In this chapter, we are going to look at views and functions that allow us a peek
into some of the processes and work happening on the server.

What is happening on the server?

The view sys.sysprocesses provides a list of all connections currently open on the server.

Table 29 lists some of the columns you can use to query this view.

Table 29: Sys Processes

Column name Description

spid SQL Server session ID.

kpid Windows thread ID.

blocked spid of session blocking this process.

waittime How long process has been waiting (milliseconds) or 0.

lastwaittype String description of last wait encountered.

dbid Database ID (use db_name() to see name) of database.

cpu Cumulative CPU usage time for this process.

physical_io Cumulative disk reads/writes.

memusage Current number of memory pages allocated to process.

login_time When this process was logged in.

last_batch Last time a statement was run by process.

open_tran Current number of open transactions used by this process.

status String description of current status:

• Running

• Background

• Runnable

• Sleeping

www.dbooks.org

https://www.dbooks.org/

 60

hostname Name of the workstation.

program_name Name of the application.

cmd Type of command being executed (SELECT, DELETE, etc.).

nt_domain Windows domain, if using Windows authentication.

nt_username Username, if Windows authentication or trusted connection.

loginname User’s login name.

sql_handle Memory pointer to the currently executing command.

stmt_start Offset into handle of current statement.

stmt_end Ending offset for current statement.

The information in this table provides the ability to determine what exactly the server is doing,
and who is doing it. Some example usages appear in the next few queries. Note that dbid of 1

through 4 are system databases, so activity in those databases is typically done by SQL
Services. Database ID number 2 is tempdb, which might be worth checking out if you hit

performance issues.

Who is running SQL Management Studio?

SQL Management Studio allows users to run queries, updates, etc., in a database. Typically,
developers and database administrators will be using this tool. Any other users might be worth
reviewing.

Code Listing 40: Who is using SSMS?

--
-- Script: Find_SMSS.SQL
-- Find users running SQL Server Management Studio
--
select loginame,login_time,cmd
from sys.sysprocesses
where dbid>4 and program_name like '%SQL Server Man%'
order by loginame

Note: We once had a user who didn’t know the difference between NULL and
“NULL”, and set all of a particular field to “NULL” (string). It took a bit of digging to
realize she had SSMS installed and ran the query, invalidating all the records. (She
now has read-only access.)

Similarly, you can identify .NET applications by looking for a program name like ‘.Net%’.

 61

Who is blocking others?

You can see who might be blocking other processes using the code in Code Listing 41.

Code Listing 41: Who is blocking?

--
-- Script: WhoIsBlocking.sql
-- Report users blocking other users

select 'Process '+str(sp.spid)+', user '+
 sp.loginame+' is being blocked by '+str(bl.spid)+
 ' user '+bl.loginame as BlockedMsg
from sys.sysprocesses sp
join sys.sysprocesses bl on sp.blocked=bl.spid
where sp.dbid>4 and sp.blocked <> 0

Who has open transactions?

If a user has a transaction open, the tables impacted within that transaction will block other
update operations (and possibly select statements, depending on isolation level). You can use
the code in Code Listing 42 to identify processes with open transactions.

Code Listing 42: Who has open transactions?

--
-- Script: OpenTransactions.sql
-- Sessions with open transactions

SELECT 'Process '+ltrim(str(sp.spid))+', user '+
 sp.loginame+' has '+str(sp.open_tran)+' open transactions'
FROM sys.sysprocesses sp
WHERE sp.dbid>4 AND sp.open_tran <> 0

You’ve seen from these examples that you can see what is happening on the server using the
view, and possibly diagnose some sessions that could be impacting performance.

What are they doing?

The sql_handle column in the view provides the ability to see what is being done by the

session. You can use the sys.dm_exec_sql_text table-valued function to look at the actual

work being done. Code Listing 43 shows a simple example using the function to see what a
spid is doing.

Code Listing 43: Look at entire query text

--
-- Script: EntireQueryText.sql
-- Look at the content of a particular session

www.dbooks.org

https://www.dbooks.org/

 62

SELECT sp.spid,sp.loginame, st.text
FROM sys.sysprocesses sp
CROSS APPLY sys.dm_exec_sql_text(sp.sql_handle) st
WHERE sp.dbid>4
AND sql_handle <> 0
AND spid = @YourSpid

This will return the entire code being executed by the session. You can also drill down further, if
the statement starting offset is known. Code Listing 44 shows the statement being extracted
from the full query text.

Code Listing 44: Extracting statement from query

--
-- Script: ExtractStatement.sql
-- Look at the statement within the session
--
select sp.spid,sp.loginame,
 case
 when sp.stmt_start >=0 and sp.stmt_end>0
 then substring(st.text,sp.stmt_start,(sp.stmt_end-
sp.stmt_start)+1)
 else st.text
 end as QueryText
from sys.sysprocesses sp
CROSS APPLY sys.dm_exec_sql_text(sp.sql_handle) st
where sp.dbid>4
and sql_handle <> 0
and sp.spid = @YourSpid

You can use the dm_exec_sql_text function to look at cached plans as well. The view

sys.dm_exec_cached_plans holds query plans that SQL has cached. The objType column

indicates the type of code, such as a trigger or ad hoc query. Code Listing 45 shows an
example of how to look at the top 10 ad hoc queries based on project CPU usage.

Code Listing 45: Top 10 cached plans

--
-- Script: Top10CachedPlans.sql
-- Top 10 cached plans by usage
--
select top 10 cacheobjtype,objtype,st.text as Query,*
from sys.dm_exec_cached_plans cp
CROSS APPLY sys.dm_exec_sql_text(cp.plan_handle) st
where objtype = 'Adhoc'
order by usecounts desc

 63

Worst queries

SQL Server keeps query stats in a dynamic management view called dm_exec_query_stats.

This view is very handy for looking at the queries that are potentially causing issues in your
server. This view provides the pointer to the code (plan_handle) as well as counters for key

values of the query. Table 30 shows some of the key fields in the view.

Table 30: dm_exec_query_stats

Field Description

plan_handle Binary pointer to query code.

total_worker_time Time used by the CPU.

total_physical_reads Disk reads performed by the query.

total_physical_writes Disk writes performed.

total_logical_reads Logical reads by query.

total_logical_writes Logical writes by query.

total_CLR_time Time spent in CLR procedures.

total_elapsed_time Time (milliseconds) query takes.

total_rows Number of rows query takes.

While we are looking at the total values, there are corresponding fields for last, min, and max

values, as well.

Worst CPU usage

CPU time is measured by the worker_time value, so we can order by total worker time to

identify those plans using a lot of CPU time.

Code Listing 46: Worst five plans based on CPU usage

--
-- Script: WorstPlansByCPU.SQL
-- Worst 5 plans based on CPU usage
--
SELECT TOP 5
 st.text as SrcCode,
 qp.query_plan,
 qs.execution_count,qs.last_execution_time
FROM sys.dm_exec_query_stats qs
CROSS APPLY sys.dm_exec_sql_text(qs.plan_handle) st
CROSS APPLY sys.dm_exec_query_plan(qs.plan_handle) qp

www.dbooks.org

https://www.dbooks.org/

 64

ORDER BY total_worker_time DESC

Worst I/O

The input/output (I/O) totals indicate how often a query needs to read something from the disk.
Ideally, in a query, you should read the minimum amount of data needed. When a query uses
SELECT * or a lot of table scans, SQL is bringing back more data than is needed. For example,

imagine a personnel table that includes a binary image of the person. If your code does a
SELECT * from this table, but only displays the name and phone number, you’ve had SQL bring

back extra data (the binary image, among other fields), when all it needed was two fields.

One of the statistics that tracks how much I/O a query uses is called logical reads.

Code Listing 47: Worst 5 by logical I/O

--
-- Script: WorstPlansByIO.SQL
-- Worst 5 plans based on I/O
--
SELECT TOP 5
 st.text as SrcCode,
 qp.query_plan,
 qs.execution_count,qs.last_execution_time
FROM sys.dm_exec_query_stats qs
CROSS APPLY sys.dm_exec_sql_text(qs.plan_handle) st
CROSS APPLY sys.dm_exec_query_plan(qs.plan_handle) qp
ORDER BY total_logical_reads DESC

Note: Logical reads versus physical reads: A physical read means the data was
pulled from the disk subsystem, while a logical read means the data could have been
pulled from the disk. However, it might have come from the memory cache, instead.
The amount of memory SQL has helps determine its cache content, so when
optimizing a query, focus on logical reads, and let the hardware guys make sure your
server has a lot of memory.

When exploring the query stats for optimization purposes, keep in mind that there can be many
factors making up a good versus bad query. For example, imagine a query has a high number
of logical reads, but returns very few rows. This would suggest bringing in extra fields that are
not needed, so you might want to look for SELECT * statements, or tables with large varchar

fields.

Also, pay attention to the execution count and last execution time. If you are looking to optimize
queries, a query that is frequently and recently run should be more of a focus than a query that
is run once every month.

 65

Why is a query sometimes slow?

Sometimes a query runs fine, but occasionally will slow down. There can be other factors
besides the query itself that can impact performance. Your query does not run in isolation; many
other things can be happening on the server. Check these items out before focusing on the fast
query itself.

Is another processing blocking your query?

You can investigate the sys.dm_os_waiting_tasks view for the blocked column of your target

spid. If some other process is blocking your query, focus on the blocker first. Similarly, if

another query has open transactions, that might be the culprit slowing your query down.

You can use the SQL global variable @@SPID to get your session ID in SQL.

Code Listing 48: Who might be blocking me?

--
-- Script: WhoMightBeBlocking.SQL
-- Who might be blocking me?

SELECT wait_type, blocking_session_id,p.program_name,p.loginame
FROM sys.dm_os_waiting_tasks wt
JOIN sys.sysprocesses p on p.sid=wt.blocking_session_id
WHERE session_id=@@spid

Note: You might occasionally see a CXPACKET wait type, and it looks like you are
blocking yourself. This can occur when SQL is using hyperthreading, and it broke
your query into pieces for each processor to handle, Basically, one piece of your
query is waiting for the other piece to complete. These waits will almost always clear
themselves.

How busy is TempDB?

TempDB is a shared database file that all databases can use for sorting, temporary tables, etc.
If TempDB is busy, or the data files making up TempDB have grown large, this can impact
overall query performance. Code Listing 49 shows a sample query to check out TempDB usage.

Code Listing 49: How busy is TempDB?

--
-- Script: TempDB_Usage.sql
-- Anything slowing tempDB?

SELECT 'Blocked processes' as Msg,count(*) as Total
FROM sys.sysprocesses
WHERE db_name(dbid)='tempDB' AND blocked <>0
UNION

www.dbooks.org

https://www.dbooks.org/

 66

SELECT 'Waiting processes',count(*) as Total
FROM sys.sysprocesses
WHERE db_name(dbid)='tempDB' AND waittime >0

Autogrowth and other settings

There are configuration settings that allow the server to grow or shrink the database
automatically and to update statistics. If this process gets started by the server, your query
might slow down during this time frame. If the autogrowth parameter is too small, for example,

the server may frequently slow down to grow the database. Code Listing 50 reports these
potential settings.

Code Listing 50: Autogrowth settings

--
-- Script: AutoGrowth.sql
-- Autogrowth settings that might impact performance

SELECT
CASE
WHEN growth = 0 then 'No growth allowed'
WHEN status>100 then Cast(growth as varchar(3))+'% growth%'
ELSE cast((growth*8.0/1024) as varchar)+' MB'
END AS growth,
CASE
 WHEN maxsize = 0 THEN 'No growth'
 WHEN maxsize < 0 THEN 'Unlimited'
 WHEN maxsize*8.0/1024 >=cast(268435456/8 as bigint) THEN '2
TerraBytes'
 ELSE CAST(Round(maxsize*8.0/1024,0) as varchar(20))+'MB'
END AS MaxGrowth
FROM sys.sysfiles

Tables and indexes

Indexes are one of the key ways to increase performance in a SQL Server application. An index
allows one or more columns in a database table to be maintained so that queries can use the
smaller index to find the larger data row from the table. Developers will often create an index on
the most commonly used fields to improve performance in their applications.

While indexes speed up performance during queries, they negatively impact table update
operations. Every time a row is inserted, modified, or removed, the index needs to be updated
to reflect the change. There needs to be a reasonable balance between indexes that are
needed for querying performance, but without having too many indexes to slow down the CRUD
(CREATE, READ, UPDATE, DELETE) operations.

 67

Duplicate indexes

Sometimes, indexes get created that are duplicates (same columns) of other indexes
associated with the table. The following script can be used to identify indexes that contain the
exact same column. Note that we also check to make sure the duplicate is not only duplicated
by column name, but also whether the key is descending.

Code Listing 51: Duplicated indexes

--
-- Script: Duplicated_indexes.sql
-- List all indexes that contain same keys and order

SELECT OBJECT_SCHEMA_NAME(tb.object_id)+'.'+tb.name AS [TableName],
 ix.name AS FirstIndex,
 Dupes.name AS SecondIndex,
 c.name AS ColumnName
FROM sys.tables AS tb
JOIN sys.indexes AS ix ON tb.object_id = ix.object_id
JOIN sys.index_columns ic ON ic.object_id = ix.object_id
 AND ic.index_id = ix.index_id
 AND ic.index_column_id = 1
JOIN sys.columns AS c ON c.object_id = ic.object_id
 AND c.column_id = ic.column_id
CROSS APPLY
(SELECT ind.index_id,ind.name
 FROM sys.indexes AS ind
 JOIN sys.index_columns AS ico ON ico.object_id = ind.object_id
 AND ico.index_id = ind.index_id
 AND ico.index_column_id = 1
 WHERE ind.object_id = ix.object_id AND ind.index_id > ix.index_id
 AND ico.column_id =
ic.column_id
AND ico.is_descending_key= ic.is_descending_key
) Dupes
ORDER BY [TableName],ix.index_id

If the script detects any duplicate indexes, they should be reviewed, and one of the indexes
should be removed. You should not remove a clustered index if you have the choice, since the
clustered index is generally the fastest indexing option.

Unused indexes

SQL Server has a very useful view, called sys.dm_db_index_usage_stats. This view keeps

track of activity performed against an index file, such as when the index was last used (for a
seek, scan, or lookup operation). By using this view, we can create a script to remove indexes
that are not used.

Code Listing 52: Unused indexes

www.dbooks.org

https://www.dbooks.org/

 68

--
-- Script: Unused_indexes.sql
-- List all indexes that have not been used

SELECT OBJECT_SCHEMA_NAME(i.object_id)+'.'+
 OBJECT_NAME(i.OBJECT_ID) AS TableName,
 i.name AS UnusedIndexName, i.type_desc AS index_type
FROM sys.indexes AS i
LEFT JOIN sys.dm_db_index_usage_stats AS usage
 ON usage.OBJECT_ID = i.OBJECT_ID AND i.index_id =
usage.index_id
 AND usage.database_id = DB_ID()
WHERE OBJECTPROPERTY(i.object_id, 'IsIndexed') = 1
 AND usage.index_id IS NULL -- No entry in usage table
 OR (usage.user_updates > 0 -- Updated by DML command
 AND usage.user_seeks = 0 -- But never used in a
query
 AND usage.user_scans = 0
 AND usage.user_lookups = 0)
GROUP BY i.object_id, i.name, i.type_desc
ORDER BY TableName

We are confirming that the table has at least one index (ObjectProperty). If the index never

appears in the usages stats table, or appears (has been updated), but never used in a query,
we consider the index unused. You can review the indexes reported and consider removing
them to increase performance during your DML operations.

Note: Some indexes might be created in anticipation of how a user might be
querying the data, and early in a deployment lifecycle, those indexes might not have
been used. Be careful removing “unused” indexes, particularly on a new system.

Missing indexes

When SQL gets a query to run, it invokes the SQL optimizer to determine the most efficient way
to run the query. The optimizer takes a lot of factors into consideration, such as which indexes
are available, or the size of the tables. One of the first steps is to make a guess as to how much
this query will cost (some internal measurement to the optimizer).

Tip: When we see cost times from the optimizer, we tend to want to associate them
with real-world costs (time? dollars?). However, there is no real-world meaning to the
value. Just know that the higher the cost, the longer the query will take, and more
resources will be used.

After the optimizer runs the query, it looks to see if the query could be improved with some
additional indexes. It assembles this information into a series of missing_index views. We can

use these views to see if we might be able to improve performance with the addition of an index.

 69

The following query looks at the assembled missing index data, and “suggests” how things can
be improved via indexes.

Code Listing 53: Missing indexes

--
-- Script: Missing_indexes.sql
-- List all indexes that are missing

SELECT DMID.statement as [TableName],
 avg_user_impact,
 unique_compiles,
 equality_columns,
 inequality_columns,
 included_columns
FROM sys.dm_db_missing_index_groups AS DMIG
INNER JOIN sys.dm_db_missing_index_group_stats AS DMIGS
 ON DMIGS.group_handle = DMIG.index_group_handle
INNER JOIN sys.dm_db_missing_index_details AS DMID
 ON DMID.index_handle = DMIG.index_handle
WHERE database_id>=DB_ID()
ORDER BY avg_user_impact DESC,unique_compiles

Understanding the columns is the key to determining whether you should create the
recommended index.

The TableName column is the table that was being queried when the missing index was

detected. It includes the database name and schema name.

The avg_user_impact is a percentage guess as to how much the query would be improved if

this index were added. However, it is a guess made by the optimizer, not a guaranteed
improvement.

The unique_compiles is a guess as to the number of queries that would benefit from the

addition of the index. Basically, the optimizer says, “I found a number of different queries that I
think this index will help.” Table 31 shows some sample results.

Table 31: Sample “missing indexes”

TableName avg_user_impact unique_compiles equality_columns

[dbo].[Device] 83.13 50 [AssignUserId]

This result says that this index would help 50 “queries” and improve them by over 80%.
However, keep in mind that these statistics are gathered from the time SQL was last started. If
you start SQL every day, 50 queries with an 80%+ improvement is worth considering. If SQL
has been up for six months, or you see a small number of compiles or a low improvement
percentage, you are probably safe ignoring the recommended index.

The next three columns indicate the fields SQL was using for which it felt an index would be
helpful. The columns contain comma-delimited field names to assist in creating the index.

www.dbooks.org

https://www.dbooks.org/

 70

Equality columns

These fields contain the list of columns where SQL was looking for a match (for example,
UserID = 50).

Inequality columns

These are fields where SQL was looking for anything other than a match, such as the following.

LoginDate > ‘7/1/2019’ or IsActive <> 1

Included columns

These are columns that SQL recommends you include in the index, to help improve
performance.

Keep in mind that there are limitations to the missing indexes system, and it is only intended to
point a developer or administrator to an area to consider, not to fine-tune index configuration.
Some of the limitations are:

• It can only gather 500 index groups.
• The index order is not suggested.
• If the query only contains inequality columns, the cost information is less accurate.
• Filtered indexes are not considered.

There are other tuning tools provided, and any experience reading execution plans can really
help fine-tune your indexes and query performance. While the missing index tables might help
identify which tables/columns to look at, a good developer or DBA is your best bet to optimize
the index usage.

LIKE clause

The LIKE clause is a powerful SQL feature, allowing a person to find “matches” in a table, rather

than exact values. However, it is possible to create a condition where SQL must use a table
scan (slower) rather than any indexes to resolve the like expression. This can impact
performance when applying the like clause to large tables.

If you were creating a system to allow people to search by last name, you might want to use
LIKE as shown in the following.

Beginning with => LIKE ‘Mc%’
Ending with => LIKE ‘%son’

The first LIKE clause will use an index (assuming one exists on the last name column).

However, the second clause will require a table scan, which can slow performance by quite a
bit. To the user of the system, though, the difference might not be understandable as to why one
search is quick and the other quite slow.

 71

Simple solution

If you need to improve performance for the second scenario, you can take advantage of SQL’s
computed and persisted columns.

Add a computed and persisted column that consists of the REVERSE(last_name) column.

When the user wants to search for last names ending with a pattern, simply reverse their input
string and add the wildcard to the end.

DECLARE @reversed varchar(32) = REVERSE(@SearchName)+’%’

This is a simple solution to address name searching and performance in large tables.

Summary

SQL Server provides the ability to review and analyze your table and index structure, to help
eliminate potential development gotchas, and to improve performance. In this chapter, we used
these views and functions to give you a heads-up on improving your database performance.

The Dynamic Management Views and functions are very thorough and helpful for exploring
what is going on inside your server. We just touched upon a few of them here, but hopefully this
chapter will encourage you to explore them further to better optimize your SQL server.

www.dbooks.org

https://www.dbooks.org/

 72

Chapter 7 Security

The data held by an organization is an important business asset, and it is the job of a SQL
administrator to ensure this data is secure from hackers and other unauthorized users. In this
chapter, we will focus on using the views and features to determine any areas where the SQL
databases might be at risk.

Attack surface

The attack surface represents all the areas of a system that an unauthorized user can use to
gain access to the system. As an administrator of a SQL server, it is necessary to defend all
potential areas, since the hacker only needs to use one to perform nefarious deeds.

Demo databases

SQL Server provides two sample databases (AdventureWorks and WorldWideImporters). In
this script, we will check to see if these sample databases are still installed on a server. It is not
a good idea to leave unmonitored sample databases in a production server environment.

Note: Prior SQL versions had sample databases called Northwind and Pubs.

Code Listing 54: Script to check for sample databases

--
-- Script: Sample_Databases.sql
-- Are demo/sample databases included on the server?

SELECT name as [DatabaseName],
 'This is a demo database, consider removing it' as Msg
 FROM sys.databases
WHERE [name] in ('AdventureWorks', 'WorldWideImporters',
 'Pubs', 'Northwind')

A database administrator (DBA) should always be aware of what databases are installed on a
production server. The following script can be used to identify new databases added within the
past two weeks. A development database that gets installed on a production probably lacks
security and could give an attacker a way to get to the production server.

Code Listing 55: Recently installed databases

-- Script: Recently_Installed.sql
-- Any databases recently installed?

SELECT name as [DatabaseName],create_date

 73

FROM sys.databases
WHERE create_date >= dateadd(WEEK,-2,getDate())

If the list of databases is small, you could also write a script to identify any databases outside of
the expected database list.

Guest user

Every SQL database has a guest user, and although it has minimum privileges, it still represents
an attack surface. You cannot remove the guest user, but you can prevent it from being used to
access a database. The following script identifies whether the guest account can connect to the
current database.

Code Listing 56: Guest Login accounts

-- Script: Guest_Logins.sql
-- Suggest removing GUEST login if enabled

SELECT DISTINCT 'Consider disabling the GUEST account in '+db_Name() as
Msg
 FROM sys.database_principals dp
 INNER JOIN sys.server_permissions sp
 ON dp.principal_id = sp.grantee_principal_id
WHERE name = 'guest' AND permission_name = 'CONNECT'

If you’ve identified that the guest user is still in the database, you can run the following SQL
script to prevent the account from accessing the database.

REVOKE CONNECT FROM guest

SQL logins

In SQL Server, a login is an ID that allows you to connect to the server itself. This is separate
from a user (which is an ID within a database). The sys.syslogins view contains all the logins

on the server. Table 32 lists the key columns in the view.

Table 32: SQL logins view

Field Description

SID Security identifier.

createdate Date login was added to the system.

updatedate Date login was last updated.

name Login name of the user.

www.dbooks.org

https://www.dbooks.org/

 74

Field Description

dbname Name of the default database when user connects.

hasaccess Does account have access to the server?

isntname 1 = Windows user or group, 0 = SQL Server login

isntgroup 1 = A Windows group

isntuser 1 = A Windows user

sysadmin 1 = Member of sys admin role (can perform any server activity)

securityadmin 1 = Member of the security admin role (used to manage logins
and properties)

serveradmin 1 = Member of server admin role (can change server-wide
configuration and shut down the server)

setupadmin 1 = Member of setup admin role (add and remove remote servers)

processadmin 1 = Member of process admin role (can end processes running
SQL Server)

diskadmin 1 = Member of disk admin role (manages disk files)

dbcreator 1 = Member of dbcreator (create, alter, drop, restore databases)

bulkadmin 1 = Member of bulk admin (can run the BULK INSERT statement)

loginname Login name for this account.

Note: All SQL logins belong to the public role as well.

Windows users (isntuser) and Windows group (isntgroup) have their credentials managed

by Active Directory. However, SQL logins (isntname=0) are managed by SQL. The

sql_logins view is a list of just the SQL logins from the list of login accounts. We can use

some SQL code to perform security checks on these logins. The sql_logins view adds fields

for policy check, expiration check, and the password hash. Although we can’t extract the
password from the encrypted hash, we can make use of it to do some password checking.

Password policy

In general, the password policy and expiration date should be checked on all SQL logins. The
password policy SQL Server uses is generally the same policy that Windows uses, including:

• Cannot contain username.

 75

• Is at least eight characters long.
• Contains at least three of (upper case, lower case, digits, and special characters).

Code Listing 57 checks that the password policy and password expiration policy are set for SQL
logins.

Code Listing 57: Check password and expiration

--
-- Script: CheckPasswordPolicy.sql
-- Identify accounts not using password policies
--
SELECT name,
CASE
WHEN is_policy_checked=0 and is_expiration_checked=0
THEN 'Password policy and expiration dates are not checked'
WHEN is_policy_checked=0 and is_expiration_checked=1
THEN 'Password policy is not checked'
WHEN is_policy_checked=1 and is_expiration_checked=0
THEN 'Password expiration is not checked'
END AS Msg
FROM sys.sql_logins
WHERE is_disabled=0
AND (is_policy_checked=0 or is_expiration_checked=0)
ORDER BY name

Duplicate passwords

In some environments, users might have multiple accounts, and use the same password for
each login. This can create a situation where if an attacker can compromise a single account,
they could gain access to multiple logins, potentially ones with more permissions and rights.
Code Listing 58 provides a simple script to identify accounts that have duplicate passwords.

Code Listing 58: Duplicate password check

-- Script: Duplicated_passwords.sql
-- Accounts using the same password

SELECT [name] as Account,
 'have a duplicate passwords' as Msg
FROM sys.sql_logins
WHERE password_hash in
 (SELECT password_hash
 FROM sys.sql_logins
 GROUP BY[password_hash] HAVING count(*)> 1
)

www.dbooks.org

https://www.dbooks.org/

 76

In this code, we are grouping by the password hash field simply to check for any time a hash
occurs more than once. We won’t know the actual password, but we will know that multiple
accounts are using the same one.

Blank passwords

If a password is blank, or the password is the same as the account name, it can easily be
hacked. This simple script allows you to identify these risky accounts.

Code Listing 59: Blank passwords

-- Script: Blank_Passwords.sql
-- Blank or passwords same as account name

SELECT name as [AccoutName],
CASE
WHEN PWDCOMPARE('', password_hash) = 1
THEN 'This account has an empty password'
WHEN PWDCOMPARE(name, password_hash)= 1
THEN 'This accounts password is the same as the name'
END as Msg
FROM sys.sql_logins
WHERE(PWDCOMPARE('', password_hash) = 1 or
 PWDCOMPARE(name, password_hash) = 1)

Note that if password policy is enforced, this condition should never occur.

Common passwords

While you cannot expose account passwords using SQL Server, you can check a password
against a text string. By creating a table of common passwords, you can compare accounts
against this list and identify those accounts using simple passwords.

Code Listing 60: Common passwords

-- Script: Common_Passwords.sql
-- Commonly used, simple passwords

CREATE TABLE #passwords (PasswordString varchar(32))
INSERT INTO #passwords VALUES ('password'),('123456'),('qwerty'),
 ('Admin'), ('password1'), ('abc123')

SELECT name as [Account],
 p.PasswordString+' is not a secure password' as Msg
FROM sys.sql_logins l
JOIN #passwords p on (1=1)
WHERE PWDCOMPARE(p.passwordString,l.Password_hash)=1

 77

DROP TABLE #passwords

Note that this script will show the account and the bad password. You can change the msg string

if you want to find the account, but not expose the actual password used.

Tip: There are many sites that have common password lists available for download,
such as this one.

If password policy is enforced, your common password list should be adjusted to meet the
password complexity rules (eight digits, upper, lower, and digit), but still common. For example,
Abcd1234 and Password1 meet the complexity rules, but are simple passwords.

Recent accounts

If a hacker gains access to your server, one thing they might do is create their own account in
case the hacked account gets detected. This script reports any recently added or modified
accounts, which possibly could be a sign of suspicious activity.

Code Listing 61: Recent accounts adds/updates

--
-- Script: Recent_Accounts.sql
-- Look for any recent accounts added or modified
--
SELECT name AS 'Account Name',
 'Login created recently' as Msg
 FROM master.sys.server_principals
 WHERE type LIKE 's' and datediff(d,create_date,getdate())< 14
 UNION
SELECT name,
 'Login modified recently' as Msg
 FROM master.sys.server_principals
 WHERE type LIKE 's' and datediff(d,modify_date,getdate())< 14

Auditing logins

The SQL Server Security menu at the server level allows you to specify authentication (either
Windows or SQL and Windows) and the login auditing to use.

www.dbooks.org

https://www.geeknoob.com/1000-most-common-passwords.html
https://www.dbooks.org/

 78

Figure 6: SQL Server security

The Windows authentication login is considered more secure because of its reliance on Active
Directory and is recommended for that reason. In addition, your server should ideally audit all
login attempts, but at a minimum, it should log failed logins. The following listing checks for the
server authentication mode and the login level. This listing uses the SERVERPROPERTY function

to determine the authentication mode.

Code Listing 62: Check authentication mode

--
-- Script: AuthenticationMode.sql
-- Check authentication mode
--
SELECT
CASE SERVERPROPERTY('IsIntegratedSecurityOnly')
WHEN 0 THEN 'SQL and Windows Authentication'
ELSE 'Windows Authentication only '
END as AuthMode

This listing uses the system stored procedure to read the audit level from the registry and
returns both the audit level and a description.

Code Listing 63: Check login auditing level

-- Script: Audit_Level.sql
-- Check on audit level of server

DECLARE @auditLevel INT;
EXEC MASTER.dbo.xp_instance_regread N'HKEY_LOCAL_MACHINE',
 'Software\Microsoft\MSSQLServer\MSSQLServer', 'AuditLevel',
@AuditLevel OUTPUT;
SELECT
@auditLevel as AuditLevel,

 79

CASE @auditLevel
WHEN 1 THEN 'No login auditing'
WHEN 2 THEN 'Failed Logins only'
WHEN 3 THEN 'Successful logins only'
ELSE 'All Logins'
END as AuditRules

SA account

The system administrator or SQL administrator (SA) account is a well-known and powerful
account on a SQL server. If it is enabled, it must be protected with a strong password. The
following listing checks the SA password against empty or sa, or any other weak passwords.

Code Listing 64: Check for weak SA password

--
-- Script: Weak_SA_Password.sql
-- Report weak SA passwords

CREATE TABLE #passwords (PasswordString varchar(32))
INSERT INTO #passwords VALUES ('password'),('123456'),('Qwerty'),
 ('Admin'), ('Password1'), ('abc123'),(''),('sa')

SELECT 'ERROR: '+p.PasswordString+' is not a secure password on the sa
account' as Msg
FROM sys.sql_logins l
JOIN #passwords p on (1=1)
WHERE PWDCOMPARE(p.passwordString,l.Password_hash)=1 and [name]='sa'
DROP TABLE #passwords

You should add your own common password lists, particularly if you know passwords commonly
used with your organization. This is a back door you do not want to leave unlocked.

Users

The sys.database_principals view shows the user with the current database. You can use

this table to identify SQL logins and Windows logins that have access to the current database.
Code Listing 65 lists various users in the database, their type, and what database roles they
have.

Code Listing 65: Database users

-- Script: Database_Users.sql
-- Users in the current database

SELECT p.[name],p.type_desc,p.create_date,p.modify_date,rl.name as
RoleName

www.dbooks.org

https://www.dbooks.org/

 80

FROM sys.database_principals p
LEFT JOIN sys.database_role_members rm
 ON rm.member_principal_id=p.principal_id
LEFT JOIN sys.database_principals rl ON
rl.principal_id=rm.role_principal_id
WHERE p.type in ('S','U')

The Guest, sys, and INFORMATION_SCHEMA principals will appear in each database, although

they are not accounts that can log in, and typically have limited rights. You should monitor any
newly added users, and particularly those with write access to the database.

Public role in database

Every user in the database has access to the public role. If you grant the public role UPDATE,
DELETE, and INSERT rights, or give the role rights to all tables and system stored procedures,
you could be putting your server at risk of any user who manages to connect to it. Code Listing
66 lists some items to which the public role most likely should not have access.

Code Listing 66: Check public role

--
-- Script: What_CanPublicRole_do.sql
-- Can the public role see all items
--
SELECT p.permission_name,OBJECT_NAME(major_id) as AllowedView
FROM sys.database_permissions p
JOIN sys.database_principals pr on pr.principal_id=p.grantee_principal_id
WHERE pr.name = 'Public' and state='G' and class<>0
AND object_name(major_id) like 'All[_]%' and p.permission_name='SELECT'
UNION
SELECT p.permission_name,OBJECT_NAME(major_id) as AllowedView
FROM sys.database_permissions p
JOIN sys.database_principals pr on pr.principal_id=p.grantee_principal_id
WHERE pr.name = 'Public' and state='G' and class<>0
AND object_name(major_id) like 'SP[_]%' and p.permission_name='EXECUTE'
UNION
SELECT p.permission_name,''
FROM sys.database_permissions p
JOIN sys.database_principals pr on pr.principal_id=p.grantee_principal_id
WHERE pr.name = 'Public' and state='G' and class<>0
AND p.permission_name in ('UPDATE','DELETE','INSERT')
ORDER BY p.permission_name,AllowedView

You can tweak this query to check the public role’s access, but in general, the public role should
be very limited, particularly on a production server.

 81

What is on my server?

Ideally, SQL Server and its supporting tools are the only major applications that are running on
your SQL Server hardware. However, it is possible that other programs are installed, and these
could represent a security risk to the server.

Unneeded applications

While the Microsoft Office suite is a common product, I would not expect it to be available on my
SQL server box. Code Listing 67 uses the new enumerate_filesystem function to look for

Microsoft Office or Visual Studio. You can supplement the code to include your own list of
applications that should not be installed on a production server.

Code Listing 67: Check for unneeded applications

-- Script: Check_for_Applications.sql
-- See if any unexpected applications are installed

IF SERVERPROPERTY('ProductMajorVersion') >= '14'
BEGIN
 SELECT file_or_directory_name,creation_time
 from sys.dm_os_enumerate_filesystem('C:\Program Files\','*.*') x
 WHERE x.is_directory=1 AND
 (file_or_directory_name LIKE 'Microsoft Office%' or
 file_or_directory_name LIKE 'Microsoft Visual Studio%')
END
ELSE
 SELECT 'Requires SQL 2017 or higher' as Msg

Newly added files

Code Listing 68 will check the Windows folders for any new .dll or .exe files added to the server.

Code Listing 68: Check for new .dll or .exe files

-- Script: Check_ForNewFiles.sql
-- Check if any DLL or EXE were added to server recently

DECLARE @numDays INT = -14

IF SERVERPROPERTY('ProductMajorVersion') >= '14'
BEGIN
 SELECT file_or_directory_name,creation_time
 from sys.dm_os_enumerate_filesystem('c:\windows\system32\','*.dll')
 WHERE creation_time>=dateadd(DAY,@numDays,getDate())
 UNION
 SELECT file_or_directory_name,creation_time

www.dbooks.org

https://www.dbooks.org/

 82

 from sys.dm_os_enumerate_filesystem('c:\windows\system32\','*.exe')
 WHERE creation_time>=dateadd(DAY,@numDays,getDate())
 ORDER BY creation_time DESC
END
ELSE
 SELECT 'Requires SQL 2017 or higher' as Msg

Summary

By reducing the potential surface area that a hacker can attack, you can improve the security of
the company’s data. You should also monitor user accounts—a powerful account with a simple
password can be dangerous in the hands of an attacker. And finally, there are certain stored
procedures that are very powerful, but should be carefully protected. Imagine the damage a
hacker could do via xp_cmdshell and access to the operating system the server is running on.

These scripts should give you a starting point to monitor the security of your server and to take
steps to keep the data protected from prying eyes and keyboards.

 83

Summary

SQL Server is a very complex and powerful product, but it provides tremendous amounts of
data about itself. You can use this data to improve your database design, increase performance,
review security, and more. There are several groupings of these views.

INFORMATION_SCHEMA

Provides ANSI standard views for accessing database objects (tables, procedures, columns,
etc.).

Microsoft sys schema

These views are unique to SQL Server and provide the content for INFORMATION_SCHEMA with

additional information. All the information schema views pull their information from the sys

schema.

Dynamic management views

These views are updated with information about how SQL is operating and can often offer
performance and security information.

Dig in and explore the views we covered in this book (and a lot of other ones) to help you
understand and optimize your SQL Server environment.

www.dbooks.org

https://www.dbooks.org/

 84

Appendix: Information Schema

The following is a listing of all the views in the information schema. When possible, these views
should be your first resource for querying tables, columns, views, routines, and so on. Using
these views allows you to create queries that should run on other SQL dialects, as well.

View Description

CHECK_CONSTRAINTS Check (column content) constraints.

COLUMN_DOMAIN_USAGE Columns using a domain (user-defined type).

COLUMN_PRIVILEGES Column-level privileges, if used.

COLUMNS Every column in every table and view.

CONSTRAINT_COLUMN_USAGE Columns used in constraints, link to domain or referential
constraints.

CONSTRAINT_TABLE_USAGE Tables used in constraints.

DOMAIN_CONSTRAINTS Constraints for data types (domains) in database.

DOMAINS User-defined types (domain in ANSI terminology).

KEY_COLUMN_USAGE Each column used a key.

PARAMETERS Parameters passed to functions or stored procedures.

REFERENTIAL_CONSTRAINTS Foreign key constraint and cascade rules.

ROUTINE_COLUMNS Columns returned from table-valued function.

ROUTINES Stored procedures and user-defined functions.

 85

View Description

SCHEMATA
Each schema in the database.

SEQUENCES
Sequence objects in database.

TABLE_CONSTRAINTS
Constraints applied to a table (Check, PK, etc.).

TABLE_PRIVILEGES
Privileges assigned to users for table access.

TABLES
Schemas and tables/views.

VIEW_COLUMN_USAGE
What columns are used in a view.

VIEW_TABLE_USAGE
What tables are used by various views.

VIEWS
List of views in current database.

www.dbooks.org

https://www.dbooks.org/

	The Story Behind the Succinctly Series of Books
	Information is plentiful but harder to digest
	The Succinctly series
	The best authors, the best content
	Free forever
	Free? What is the catch?
	Let us know what you think

	About the Author
	Chapter 1 Introduction
	Metadata
	SQL metadata
	Information schema
	System and data management views

	Summary

	Chapter 2 Information Schema
	Tables
	Table constraints
	Columns
	column_domain_usage
	Domain queries

	Routines
	Routine columns
	Parameters
	Routine queries

	Views
	View table usage
	View column usage
	View queries

	Tips and tricks
	Find which tables contain a column name
	Same name, different types and sizes
	Similarly named columns
	Routines and parameters

	Summary

	Chapter 3 Server Information
	Host version
	SQL Server version information
	@@version
	xp_msver
	SERVERPROPERTY

	CLR version information
	Memory
	Disk usage
	Enumerate file system
	Registry information
	Databases on the server
	Files for current database
	Configuration
	Reading configuration data
	Advanced settings

	Updating configuration data

	SERVERPROPERTY
	Summary

	Chapter 4 Database Properties
	Sys.databases
	DATABASEPROPERTYEX()
	General information
	Basic information
	Backup information
	Size information

	Files
	Options
	Automatic settings
	ANSI and NULL settings
	Other database properties

	DATABASEPROPERTYEX()
	Comparing two databases

	Database permissions
	Database permissions
	database_principals
	Who can edit?
	Who can select database objects?
	What can the public role do?

	Summary

	Chapter 5 Tables and Columns
	Tables
	sys.identity_columns (starting with SQL 2008)
	sys.computed_columns (starting with SQL 2008)
	sys.default_constraints (starting with SQL 2008)
	sys.index_columns (starting with SQL 2008)
	sys.key_constraints (starting with SQL 2008)
	sys.check_constraints (starting with SQL 2008)
	sys.masked_columns (starting with SQL 2016)

	Putting it all together
	Searching for deprecated columns
	Numeric columns
	Approximate column types

	Unexpected columns
	Max characters
	Nondate columns

	Summary

	Chapter 6 Performance
	What is happening on the server?
	Who is running SQL Management Studio?
	Who is blocking others?
	Who has open transactions?
	What are they doing?

	Worst queries
	Worst CPU usage
	Worst I/O

	Why is a query sometimes slow?
	Is another processing blocking your query?
	How busy is TempDB?
	Autogrowth and other settings

	Tables and indexes
	Duplicate indexes
	Unused indexes
	Missing indexes
	Equality columns
	Inequality columns
	Included columns

	LIKE clause
	Simple solution

	Summary

	Chapter 7 Security
	Attack surface
	Demo databases
	Guest user
	SQL logins
	Password policy
	Duplicate passwords
	Blank passwords
	Common passwords
	Recent accounts
	Auditing logins
	SA account

	Users
	Public role in database
	What is on my server?
	Unneeded applications
	Newly added files

	Summary

	Summary
	INFORMATION_SCHEMA
	Microsoft sys schema
	Dynamic management views

	Appendix: Information Schema

