

1

www.dbooks.org

https://www.dbooks.org

Svelte Succinctly

Ed Freitas

Foreword by Daniel Jebaraj

3

Copyright © 2023 by Syncfusion, Inc.

2501 Aerial Center Parkway

Suite 111

Morrisville, NC 27560

USA

All rights reserved.

ISBN: 978-1-64200-230-0

Important licensing information. Please read.

This book is available for free download from www.syncfusion.com on completion of a

registration form.

If you obtained this book from any other source, please register and download a free copy from

www.syncfusion.com.

This book is licensed for reading only if obtained from www.syncfusion.com.

This book is licensed strictly for personal or educational use.

Redistribution in any form is prohibited.

The authors and copyright holders provide absolutely no warranty for any information provided.

The authors and copyright holders shall not be liable for any claim, damages, or any other

liability arising from, out of, or in connection with the information in this book.

Please do not use this book if the listed terms are unacceptable.

Use shall constitute acceptance of the terms listed.

SYNCFUSION, SUCCINCTLY, DELIVER INNOVATION WITH EASE, ESSENTIAL, and .NET

ESSENTIALS are the registered trademarks of Syncfusion, Inc.

Technical Reviewer: James McCaffrey

Copy Editor: Courtney Wright

Acquisitions Coordinator: Tres Watkins, VP of content, Syncfusion, Inc.

Proofreader: Jacqueline Bieringer, content producer, Syncfusion, Inc.

www.dbooks.org

http://www.syncfusion.com/
http://www.syncfusion.com/
http://www.syncfusion.com/
https://www.dbooks.org

 4

Table of Contents

The Succinctly Series of Books .. 7

About the Author ... 8

Acknowledgments ... 9

Introduction ...10

Chapter 1 Getting Started ..11

Svelte architecture ..11

Installing Node.js ..12

Svelte with VS Code ...16

Creating a Svelte project ..17

Recap ...20

Chapter 2 Project Organization ...21

Quick intro ..21

Project structure ...21

Recap ...24

Chapter 3 Setting Up a Back End ..25

Quick intro ..25

Getting started with Firebase ..25

Creating a datastore ...35

Setting permissions ..37

Enabling authentication ..38

Recap ...39

Chapter 4 Finished App Features ...40

The finished app ...40

The finished Sign in page ...41

5

The finished Sign up page ..42

The finished main page (signed in) ...42

The finished Favorites page (signed in) ..44

Recap ...46

Chapter 5 Main User Interface ...47

Quick intro ..47

The app.html file ...47

The lib folder ..50

The routes folder ..51

index.svelte ..51

__layout.svelte ...56

Sign in page (login.svelte) ..63

Sign up page (register.svelte) ...72

Recap ...81

Chapter 6 Favorites UI and Books Component ...82

Quick intro ..82

Favorites page (__layout.svelte) ...83

Favorites page (index.svelte) ..87

Books.svelte ...90

Recap ...96

Chapter 7 Back-end App Functionality ...97

Quick intro ..97

api/index.js ...97

utils.js ...99

firebase.js ... 105

hooks.js .. 109

www.dbooks.org

https://www.dbooks.org

 6

Running the app ... 110

Next steps and final thoughts ... 114

7

The Succinctly Series of Books
Daniel Jebaraj

CEO of Syncfusion, Inc.

When we published our first Succinctly series book in 2012, jQuery Succinctly, our goal was to
produce a series of concise technical books targeted at software developers working primarily
on the Microsoft platform. We firmly believed then, as we do now, that most topics of interest
can be translated into books that are about 100 pages in length.

We have since published over 200 books that have been downloaded millions of times.
Reaching more than 2.7 million readers around the world, we have more than 70 authors who
now cover a wider range of topics, such as Blazor, machine learning, and big data.

Each author is carefully chosen from a pool of talented experts who share our vision. The book
before you and the others in this series are the result of our authors’ tireless work. Within these
pages, you will find original content that is guaranteed to get you up and running in about the
time it takes to drink a few cups of coffee.

We are absolutely thrilled with the enthusiastic reception of our books. We believe the
Succinctly series is the largest library of free technical books being actively published today.
Truly exciting!

Our goal is to keep the information free and easily available so that anyone with a computing
device and internet access can obtain concise information and benefit from it. The books will
always be free. Any updates we publish will also be free.

Let us know what you think

If you have any topics of interest, thoughts, or feedback, please feel free to send them to us at
succinctlyseries@syncfusion.com.

We sincerely hope you enjoy reading this book and that it helps you better understand the topic
of study. Thank you for reading.

Please follow us on social media and help us spread the word about the Succinctly series!

www.dbooks.org

mailto:succinctlyseries@syncfusion.com
https://twitter.com/Syncfusion
https://www.facebook.com/Syncfusion
https://www.linkedin.com/company/syncfusion
https://www.dbooks.org

 8

About the Author

Ed Freitas is a consultant on business process automation and a software developer focused on
customer success.

He likes technology and enjoys learning, playing soccer, running, traveling, and being around

his family.

Ed is available at https://edfreitas.me.

https://edfreitas.me/

9

Acknowledgments

A huge thank you to the fantastic Syncfusion team that helped this book become a reality—
especially Jacqueline Bieringer, Tres Watkins, and Graham High.

The manuscript managers and technical editor thoroughly reviewed the book's organization,
code quality, and overall accuracy—Jacqueline Bieringer and Graham High from Syncfusion,
and James McCaffrey from Microsoft Research. Thank you all.

I dedicate this book to my beloved “Chelin” and “Puntico.” May your journeys be blessed.

www.dbooks.org

http://www.syncfusion.com/
https://jamesmccaffrey.wordpress.com/
https://www.microsoft.com/en-us/research/people/jammc/
https://www.dbooks.org

 10

Introduction

Let's begin by explaining what Svelte is. To do that, we first need to understand what Svelte
isn’t.

In the traditional context of modern declarative JavaScript frameworks such as React and Vue,
Svelte departs from the virtual DOM approach by compiling the code you write into native-
browser JavaScript when you build your application.

Svelte allows you to do the same things as React and Vue, such as creating reusable UI
components, data-binding or event-handling, and creating single-page applications.

But Svelte compiles your code during build time instead of using differences to update the DOM.
The result is minimal and highly optimized pure JavaScript that the browser executes with no
overhead (it ships no runtime, like React and Vue do).

When creating an application using React or Vue, the runtimes of these frameworks are
included along with your application code build, resulting in a heavier app deployment. In other
words, this runtime ships along with your app and executes your application code.

For example, when you write an application using Vue, your application contains code written in
a way only the Vue framework can interpret and execute. This code will include one or more
Vue components and other Vue-specific constructs.

When you build and deploy your Vue app, those Vue-specific code constructs and components
get bundled into a deployable Vue application. Additionally, for your app to run, the Vue runtime
is also deployed to the browser with your app. The same is true for React.

So, when the browser is running your Vue or React application, what is happening behind the
scenes is that the browser executes the framework runtime, which then interprets and executes
your application’s specific logic.

Svelte does not deploy a runtime, since that’s additional code for the browser to execute, and
instead deploys the application’s optimized JavaScript code.

Svelte can achieve this because it establishes a convention for how you should write your
application code so that the Svelte compiler can then take that code and convert it into
optimized JavaScript, ready for the browser to run.

Therefore, the main difference between Svelte and traditional virtual DOM-oriented frameworks
like React and Vue is that Svelte compiles your app code into JavaScript before it ships,
behaving like a compiler and a wrapper around conventional JavaScript.

Svelte does a great job at working with the native languages of the web, such as HTML, CSS,
and JavaScript.

Beyond that, Svelte also eliminates unused code (that never runs) from the final app build and
includes a rich toolset.

https://svelte.dev/
https://reactjs.org/
https://vuejs.org/
https://en.wikipedia.org/wiki/Virtual_DOM

11

Chapter 1 Getting Started

Svelte architecture

To understand how Svelte works, let’s explore the following diagram.

Figure 1-a: Svelte Architectural Design

A Svelte application, just like a React or Vue application, also includes components. The Svelte

compiler reads these components, and the result is JavaScript that directly updates the DOM.

In contrast, a React or Vue application's architecture uses the virtual DOM approach, which we
can observe in the following figure.

Figure 1-b: Virtual DOM Architectural Design

www.dbooks.org

https://www.dbooks.org

 12

So we have an app that also has components, and there’s a virtual representation of how the
application’s UI looks, kept in memory and synced with the current DOM.

Those UI differences between the virtual and actual DOM are reconciled, and then the DOM
that the browser executes is updated as needed. In other words, with a React or Vue
application, there’s much more going on behind the scenes.

Technically speaking, there’s nothing wrong with the virtual DOM approach used by frameworks
like React and Vue—otherwise, they wouldn’t be as popular as they are. It’s just a different way
of doing things with Svelte.

There are certain performance advantages and less code overhead when using a nonvirtual
DOM approach. To better understand what inspired Svelte’s creator to use a compiled method,
take a look at this article that dives a bit deeper into the subject.

Now that we have a high-level understanding of Svelte’s architecture, let’s install it.

Installing Node.js

To get started with Svelte, we need to have Node.js installed. You can verify if you have Node.js

installed by opening the command prompt or terminal and executing the following command.

Code Listing 1-a: Check if Node.js Is Installed

node --version

In my case, I have version 16.14.0 installed.

Figure 1-c: Node.js Version Installed

Any version of Node.js later than version 8 is sufficient for working with Svelte. However, I

encourage you to use one of the most recent versions, which you can download from the

Node.js website. The long-term support (LTS) version is always a safe bet.

https://svelte.dev/blog/virtual-dom-is-pure-overhead
https://nodejs.org/

13

Figure 1-d: Node.js Website Front Page

Once you have downloaded Node.js, execute the installer file. Once you have run the installer,
you'll see the following screen. Click Next to continue the installation process.

Figure 1-e: Initial Node.js Installation Screen

You’ll be asked to accept the license terms and click Next to carry on with the installation. At
this stage, you'll see the screen where you can select the Node.js installation folder.

www.dbooks.org

https://www.dbooks.org

 14

Figure 1-f: Node.js Installation (Destination Folder Screen)

I usually leave the default installation folder and click Next; however, you can choose a different

folder if you prefer. With that done, click Next to continue the installation.

At this point, you'll see the Custom Setup screen. In my case, I always use the default options,
as you can see in the following figure.

Figure 1-g: Node.js Installation (Custom Setup Screen)

To continue the installation, click Next. After doing that, you should see the following screen.

15

Figure 1-h: Node.js Installation (Tools for Native Modules Screen)

You may select the option Automatically install the necessary tools, which allows the

Node.js installer to install any other dependency needed using Chocolatey. To continue the

installation, click Next.

Figure 1-i: Node.js Installation (Ready to install Node.js Screen)

Click Install to deploy the Node.js runtime and files in the installation folder previously selected.

The process is usually quick.

www.dbooks.org

https://chocolatey.org/
https://www.dbooks.org

 16

If a previous version of Node.js exists on your machine, that version gets removed before

deploying the newer version. Once the new files have been installed, you'll see the following

screen.

Figure 1-j: Node.js Installation (Node.js Setup Wizard Screen—Finish)

To finalize the installation, all we need to do is click Finish. Now that Node.js is installed, the
next step is to prepare the development environment.

Svelte with VS Code

I’ll use Visual Studio Code (VS Code) as my editor and development environment of choice

throughout this book. You should add the Svelte for VS Code extension, because it is a

requirement and will provide the necessary tooling to work with Svelte components, templates,

and syntax.

We can get this extension by clicking the extension's icon in VS Code, writing the word Svelte

under the extensions search box, and then clicking the extension’s Install button.

https://code.visualstudio.com/

17

Figure 1-k: Svelte for VS Code Extension

Creating a Svelte project

With VS Code and the Svelte extension ready, we can create a Svelte application. The easiest

(but no longer maintained) way to do this is using the Svelte template—which you can do by

executing the following commands.

Code Listing 1-b: Creating a Svelte Project (Using the Svelte Template)—No Longer Maintained

npx degit sveltejs/template svelte-app

cd svelte-app

Another way is to use Vite (pronounced “Veet”) and select the svelte option by running the
following command.

Code Listing 1-c: Creating a Svelte Project (Using Vite)

npm init vite

A third (and my preferred) way is to use SvelteKit, a Svelte framework for creating web apps
with file system-based routing and server-side rendering, among other benefits. This is the
option we’ll be using.

Within VS Code, open the built-in terminal by clicking the Terminal menu option, then click New
Terminal and enter the following command.

www.dbooks.org

https://github.com/sveltejs/template
https://vitejs.dev/
https://kit.svelte.dev/
https://www.dbooks.org

 18

Code Listing 1-d: Creating a Svelte Project (Using the SvelteKit)

npm create svelte svelte-app

If the create-svelte package is not installed, you’ll be prompted to install it. So, to continue, enter
y.

Figure 1-l: Installing create-svelte (SvelteKit)

Once create-svelte has been installed, you’ll have to choose a Svelte template: SvelteKit demo

app or the Skeleton project.

You can use the arrow keys to choose the template you’re interested in establishing as the base

for the project and then press Enter.

In my case, I choose the Skeleton project, which is the barebones Svelte project—for following

along quickly, I suggest you choose the same one.

Following that, we can choose whether to add type checking with TypeScript. I select No, given
that this is not an essential feature for beginners.

Figure 1-m: Selecting Type Checking

Next, we’ll be asked whether or not to add ESLint for code linting, and I’ll also select No.

Following that, we’re asked whether we want to add Prettier for code formatting, and I choose
No.

There’s also an option to add Playwright for browser testing, and I select No.

19

With that done, the project is ready, and the following steps can be executed.

Figure 1-n: SvelteKit Skeleton Project Ready

To run the project as is, we can type in the cd svelte-app command within the built-in VS

Code terminal, then run npm install to get all the required project dependencies installed, and

then execute npm run dev.

Code Listing 1-e: Final Preparation Steps (SvelteKit Skeleton Project)

cd svelte-app

npm install

npm run dev

Once done, you’ll be able to open your browser and point to the Local URL. In my case, this is
http://localhost:3000/.

Figure 1-o: SvelteKit Skeleton Project Running (Built-in Terminal View)

When you open the browser, you’ll see the following webpage.

www.dbooks.org

https://www.dbooks.org

 20

Figure 1-p: SvelteKit Skeleton Project Running (in the Browser)

Recap

If you’ve followed along until now, well done. We now have our barebones Svelte project

created and ready, and we have everything we need to explore Svelte features and transform

this into a practical application.

21

Chapter 2 Project Organization

Quick intro

Throughout this book, we’ll be building a Svelte application using the barebones project we
have just created, and this way, we’ll also cover Svelte features as we go along. In this short
chapter, we'll review the structure of the current skeleton project—this will help us organize our
code later.

Project structure

By default, the Svelte project we created in the previous chapter has a project structure that we

need to understand in order to add features and modify the application.

Figure 2-a: Default Project Structure (VS Code)

As we add features to the application, we’ll aim to keep the default project structure. In other
words, we will keep all the folders and configuration files that the application creation or
scaffolding process has created and add application-specific Svelte pages and component files
as needed.

Several configuration files within the application’s root folder allow the project to be built and

executed. Let’s explore these.

www.dbooks.org

https://www.dbooks.org

 22

The vite.config.js file contains the required settings for Vite to bundle the app’s code and serve

it.

Code Listing 2-a: Vite Configuration (vite.config.js)

import { sveltekit } from '@sveltejs/kit/vite';

/** @type {import('vite').UserConfig} */

const config = {

 plugins: [sveltekit()]

};

export default config;

All this does is import SvelteKit (sveltekit) and add it as a Vite plugin (plugins:
[sveltekit()]). The code is straightforward to grasp.

The svelte.config.js file exposes the Svelte core adapter to SvelteKit. As you can see in the

following listing, the code is short and straightforward.

Code Listing 2-b: SvelteKit Configuration (svelte.config.js)

import adapter from '@sveltejs/adapter-auto';

/** @type {import('@sveltejs/kit').Config} */

const config = {

 kit: {

 adapter: adapter()

 }

};

export default config;

The README.md file, as its name implies, contains valuable information about building and
deploying the SvelteKit application we’ve created and scaffolded.

The package.json file contains information about version dependencies and scripts used to
execute and build the application, as well as the name and version of the app.

Code Listing 2-c: Project Dependencies and Scripts (package.json)

{

 "name": "svelte-app",

 "version": "0.0.1",

 "scripts": {

 "dev": "vite dev",

23

 "build": "vite build",

 "package": "svelte-kit package",

 "preview": "vite preview",

 "prepare": "svelte-kit sync"

 },

 "devDependencies": {

 "@sveltejs/adapter-auto": "next",

 "@sveltejs/kit": "next",

 "svelte": "^3.44.0",

 "vite": "^2.9.13"

 },

 "type": "module"

}

We can see that the script refers to Vite, which is responsible for creating the development
version of the app, as well as making the final production build.

We can also see that Svelte and Vite are both development dependencies only—not actual
dependencies—which means they do not get deployed with the actual application.

Beyond that, we can find the .npmrc (node package manager runtime configuration) file, a

configuration file that can be used globally or at a user level to optimize the npm environment.

We can also see a .gitignore file, indicating folders and files for Git to ignore. If we look at this
file, we can see what folders and files are ignored by Git.

Code Listing 2-d: The Git Ignore File (.gitignore)

.DS_Store

node_modules

/build

/.svelte-kit

/package

.env

.env.*

!.env.example

As for the specific project folders, we can see the static, src, node_modules, and .svelte-kit
folders.

As its name implies, the static folder contains fixed assets that the application will use, such as
the favicon.png file. The static folder is also used to include CSS files, images, and third-party
JavaScript files.

We will be doing all our work in the src folder. Within the src folder, there’s an app.html file, and
you can also find the routes subfolder, which contains the index.svelte file, which is the
application’s main page.

www.dbooks.org

https://docs.npmjs.com/cli/v8/configuring-npm/npmrc
https://git-scm.com/docs/gitignore
https://en.wikipedia.org/wiki/Git
https://www.dbooks.org

 24

Figure 2-b: The src Folder Content

We’ll come back to the src folder a bit later. For now, let’s move our attention to the other
remaining folders of our project. The nodes_modules folder contains all the packages that both
Svelte and Vite require to work.

On the other hand, the .svelte-kit folder, as its name implies, includes the Svelte compiler and
runtime files.

Recap

Now that we know how our project’s folders and files are organized, we can move on to greener

fields by setting up a back end, learning about Svelte, and adding features to our application.

25

Chapter 3 Setting Up a Back End

Quick intro

If you’ve read some of my other Succinctly series books, you’ve probably noticed that I’m a
frequent user (and big fan) of Google Firebase.

Firebase makes it easy to get a back end up and running for any web application (independently
of the front-end framework used).

Figure 3-a: Firebase Front Page

 Note: The Firebase webpages shown throughout this chapter might change over
time. However, you should still be able to continue with the steps provided easily.

Most of the time, I leave the process of setting up the back end for the last part of my books, but

this time around, I will do the opposite.

I’m going to focus on the back end and leave it ready so that in the remaining chapters, we can

focus exclusively on the creation of the application with Svelte. Let’s do that.

Getting started with Firebase

Getting started with Firebase is very easy. You need to be signed in with a Google Workspace
or Gmail account.

On the Firebase home page, click Get started—this will take us to the Firebase console.

www.dbooks.org

https://firebase.google.com/
https://www.dbooks.org

 26

Figure 3-b: Firebase Console Front Page

Next, click Create a project. At this stage, we can indicate our Firebase project name. In my
case, I’ll be calling the project SvelteSuccinctlyApp.

Figure 3-c: Creating a Firebase Project (Step 1 of 3)

Once you’ve entered the project name, click Continue.

27

Figure 3-d: Creating a Firebase Project (Step 2 of 3)

By default, Firebase enables Google Analytics for this project, but we’ll disable it since we don’t

need it.

Now, click Create project to create the Firebase project.

Figure 3-e: Creating a Firebase Project

www.dbooks.org

https://www.dbooks.org

 28

Figure 3-f: Creating a Firebase Project (Step 3 of 3)

Once the Firebase project is ready, click Continue, and we’ll be directed to the project’s
overview page within the Firebase console.

Figure 3-g: Firebase Project Overview Page

Click the web icon (highlighted in red in Figure 3-g) to add an app to the Firebase project. In our
case, we will be building a web application using Svelte, so we need to click the web icon.

Next we’ll see the Add Firebase to your web app page, where we can register our app. In my
case, I’ll name it SvelteWebApp.

29

Figure 3-h: Add Firebase to your web app

I’m also going to select the option Also set up Firebase Hosting for this app, which will later

allow us to deploy the application to Firebase Hosting without breaking a sweat. To continue,

click Register app.

We’ll see the steps to include the Firebase SDK in our Svelte project, as shown in the following
figure.

www.dbooks.org

https://www.dbooks.org

 30

Figure 3-i: Add Firebase SDK

 Note: I’ve hidden the apiKey, messagingSenderId, and appId, as these are
specific to my Firebase environment and cannot be shared. For your Firebase
environment, you’ll have different values.

Adding the Firebase SDK includes two steps. The first step is to install Firebase in the project by

executing the npm install firebase command.

31

Let’s switch over to our project in VS Code and execute the following command using the built-
in terminal.

Code Listing 3-a: Installing Firebase in Our Project

npm install firebase

After executing this command, you’ll see within the built-in terminal an output similar to the
following.

Figure 3-j: Installing Firebase within VS Code

With the Firebase SDK installed, let’s initialize Firebase. To do that, let’s create within the src
folder of our Svelte project a new file called firebase.js. Copy the code shown in Figure 3-i. This
is how it appears in VS Code on my environment.

Figure 3-k: The firebase.js File (VS Code)

www.dbooks.org

https://www.dbooks.org

 32

 Note: I’ve hidden the apiKey, messagingSenderId, and appId, as these are
specific to my Firebase environment and cannot be shared. For your Firebase
environment, you’ll have different values.

Here is the actual firebase.js code.

Code Listing 3-b: The firebase.js Code

import { initializeApp } from "firebase/app";

const firebaseConfig = {

 apiKey: "Aiz...",

 authDomain: "sveltesuccinctlyapp.firebaseapp.com",

 projectId: "sveltesuccinctlyapp",

 storageBucket: "sveltesuccinctlyapp.appspot.com",

 messagingSenderId: "209...",

 appId: "1:209..."

};

// Initialize Firebase

const app = initializeApp(firebaseConfig);

 Note: I’ve removed the apiKey, messagingSenderId, and appId values (highlighted
in yellow), as these are specific to my Firebase environment and cannot be shared.
For your Firebase environment, you’ll have different values.

Now that we’ve set up the Firebase SDK and created the firebase.js file within VS Code, we can
click Next within the Firebase console.

Figure 3-l: Add Firebase SDK (Final Step)

33

The next step is to install the Firebase CLI, which will allow you to deploy the application to

Firebase Hosting later (if you wish to do that).

Figure 3-m: Install Firebase CLI

Let’s switch back to VS Code, and within the built-in terminal, execute the npm install -g

firebase-tools command.

Figure 3-n: Installing the Firebase CLI

Once the Firebase CLI is installed, let’s click Next in the Firebase console.

www.dbooks.org

https://www.dbooks.org

 34

Figure 3-o: Installing the Firebase CLI (Final Step)

We’ll now be able to see the following.

Figure 3-p: How to Deploy to Firebase Hosting

Within this step, you’ll see the commands you can later use to deploy the Svelte application to
Firebase Hosting (if you wish to do so).

 Note: Copy these commands individually and save them, so they can be used
later to deploy to Firebase Hosting the Svelte application you will build.

To finalize this phase, let’s click Continue to console. Notice that the application appears on

the console’s main page (highlighted in red).

35

Figure 3-q: Firebase Console (With the App Created)

Creating a datastore

Now that we have created the Firebase application, we need a Firestore database, where the
application’s data will be kept. So, click this option and then click Create database.

Figure 3-r: Firebase Console (The Firebase Database Option—Cloud Firestore)

We’ll be presented with the following screen.

www.dbooks.org

https://www.dbooks.org

 36

Figure 3-s: Firebase Console (Create database—Step 1)

Make sure you select the option Start in test mode and click Next. You’ll see the following
screen.

Figure 3-t: Firebase Console (Create database—Step 2)

37

At this point, you can choose a different option for the Cloud Firestore location. In my case, I will

go with the default option with which I’ve been presented.

If you would like your database hosted in a different region, please select another location now,

since you won’t be able to change it later.

Click Enable, and you’ll be directed to the following screen.

Figure 3-u: Firebase Console—Cloud Firestore Dashboard

Setting permissions

Our application must handle multiple users, so we must ensure that the correct permissions are
in place. To do that, click the Rules tab (as highlighted in red in Figure 3-u).

Now you’ll be able to change the default rule. We’ll set the rule to Allow authenticated access

on all collections, which is nicely explained on this Stack Overflow thread.

Changing the rule is easy, so copy the snippet from the following code listing (the same one I
used on my Firebase environment) and paste it into the editor on the Firebase console.

Code Listing 3-c: New Rule—Allow Authenticated Access on All Collections

service cloud.firestore {

 match /databases/{database}/documents {

 match /{document=**} {

 allow read, write: if request.auth != null;

 }

www.dbooks.org

https://stackoverflow.com/questions/70904538/firestore-could-not-reach-cloud-firestore-backend-connection-failed-1-times
https://www.dbooks.org

 38

 }

}

The editor will detect unpublished changes, and you must click Publish.

Figure 3-v: Firebase Console—Cloud Firestore (Edit Rules)

Enabling authentication

With the correct permissions in place, the next thing to do is enable user authentication. To do

that, click the Authentication option, then click on the Sign-in method tab > Add new

provider > Email/Password, as highlighted in red in the following figure.

39

Figure 3-w: Firebase Console—Enabling Email/Password Authentication (Step 1)

Click Enable and Save, as highlighted in red in the following figure. There’s no need to enable
the Email link (passwordless sign-in) option, since we won’t use this feature.

Figure 3-x: Firebase Console—Enabling Email/Password Authentication (Step 2)

Now we have all our back end configured, and there’s nothing else we need to do with Firebase
except add code for our app to work with it (which we’ll see later).

Recap

We’ve created the back end that our Svelte application will use—well done! Next, we’ll start

exploring the features of our application.

www.dbooks.org

https://www.dbooks.org

 40

Chapter 4 Finished App Features

The finished app

We are going to create an application that keeps a list of our favorite Succinctly books.

You can find this application's finished and complete source code in this GitHub repository.
Before jumping into the code and what it does, let’s explore the finished application.

Figure 4-a: The Finished App (Main Page Using the Default Dark Mode)

The application has a main page that contains a static list of the most recent Succinctly books.

The list of the most recent books is obtained through an API endpoint that the application serves
and returns as JSON.

You can also easily toggle between dark and light mode by clicking on the “moon” icon next to
the Sign in button.

https://github.com/ed-freitas/sveltesuccinctly
https://en.wikipedia.org/wiki/JSON

41

Figure 4-b: The Finished App (Main Page Using Light Mode)

The application comes with built-in authentication powered by Firebase, which means that if you

sign up, you’ll then become a user of the app and be able to sign in and add any of those books

to your list of favorites.

The finished Sign in page

So, the finished Sign in page comes with built-in validation. Validation is executed to ensure that
the user name (email address) is properly formatted (is an actual email address).

Validation also ensures that the database's user name and password combination exist, and the
user can be retrieved from Firebase and authenticated.

Figure 4-c: The Sign in Page

www.dbooks.org

https://www.dbooks.org

 42

 Note: I refer to this page as “Sign in” rather than “Sign-in” (because of the
caption on the button on the top-right navigation bar), which is grammatically the
correct way of writing it. The page is only accessible if you have not signed in. If you
attempt to manually type in the URL of this page in the browser and you’re signed in,
you’ll be redirected to the Favorites page.

The finished Sign up page

The Sign up page is almost identical to the Sign in page, except an additional password field is
used to re-enter the password (to ensure they match).

The Sign up page also comes with full, built-in validation functionality and ensures that two
users with the same email address cannot sign up. This functionality is visible in the following
figure.

Figure 4-d: The Sign up Page

The finished main page (signed in)

Once we have an account and are signed in to the application, you’ll notice an Add to favorites

button below each book, which allows you to add the book to your favorites list.

The Add to favorites button for each book is not visible if you are not signed in.

43

Figure 4-e: The App’s Main Page (Signed In)

When you click the Add to favorites button for a particular book, you’ll add that book to your
favorites list.

Notice that on this page, you’ll also see the user name of the signed in user on the top-left side

of the navigation bar, next to the application’s name.

Figure 4-f: The Signed-In User Name (Top-Left Navigation Bar—Main Page Signed In)

Notice that on the top-right part of the navigation bar, the Sign in button (which used to have a
yellow background color) now reads as Sign out (with a green background color).

Figure 4-g: Favorites Link and Sign out Button (Top-right Navigation Bar—Main Page Signed In)

If you click Sign out, you’ll be signed out of the application and routed back to the main page

(and the Add to favorites buttons will no longer be visible).

Notice that on the top-right of the main page’s navigation bar, there’s a Favorites link, which, as
you might have guessed, will redirect you to the Favorites page.

www.dbooks.org

https://www.dbooks.org

 44

The finished Favorites page (signed in)

The Favorites page is where the signed-in user has their list of favorite books, and it is only

accessible if a user has signed in.

 Note: If you attempt to manually type in the URL of the Favorites page in the
browser and you’re not signed in, you’ll be redirected to the app’s Sign in page.

Here, the user can remove books from the favorites list by clicking the Remove button of a

specific book. The list of favorites will differ from user to user.

Figure 4-h: The Favorites Page (As Seen by the User with the Yahoo Email Address)

45

Figure 4-i: The Favorites Page (As Seen by the User with the Gmail Email Address)

Notice that the navigation bar of the Favorites page includes the user’s email address on the
top-left side, as shown in Figure 4-j.

Figure 4-j: The Signed-In User Name (Top-Left Navigation Bar—Favorites Page Signed In)

The navigation bar of the Favorites page includes the Sign out button on the top-right side, as

shown in Figure 4-k.

Figure 4-k: The Sign out Button (Top-Right Navigation Bar—Favorites Page Signed In)

Unlike the top-right navigation bar of the main page, the Favorites link is no longer visible; this is

because we are already on the Favorites page.

If the signed-in user wants to add another book to their favorites list, the user must navigate to
the main page (by clicking the FavBooks link on the top-left side) and then click Add to
favorites for the relevant book.

www.dbooks.org

https://www.dbooks.org

 46

 Note: For code reusability, the list of books displayed on the main page and the
list of favorite books shown on the Favorites page are rendered by the same Svelte
component. The difference is that the books on the main page are retrieved via an API
endpoint as JSON, and the favorites are fetched and stored in the Cloud Firestore
Database (Firebase). We’ll explore this topic in depth later.

Recap

Now that we know what the finished app looks like, what it does, and what its features do, we
have a solid foundation to delve into the code and put things together. This is what we’ll do next
with the main user interface functionality.

47

Chapter 5 Main User Interface

Quick intro

In this chapter, we’ll get our hands dirty and create the application’s main user interface (the

main page, log in, and register functionality). Let’s focus on the HTML markup and its related

functionality.

 Note: As a reminder, you can find the code repository of the finished application
on Github.

The app.html file

The application’s entry point is the app.html file that resides within the project’s src folder. It’s
the equivalent of an index.html file for a website (in other words, the application’s entry point).

Code Listing 5-a: The Finished app.html File

<!DOCTYPE html>

<html lang="en">

 <head>

 <meta charset="utf-8" />

 <link rel="icon" href="%sveltekit.assets%/favicon.png" />

 <!-- Font awesome -->

 <link rel="stylesheet"

 href="https://cdnjs.cloudflare.com/ajax/libs

 /font-awesome/4.7.0/css/font-awesome.min.css"

 integrity=

 "sha256-eZrrJcwDc/3uDhsdt61sL2oOBY362qM3lon1gyExkL0="

 crossorigin="anonymous" />

 <link href="https://fonts.googleapis.com/

 css2?family=Roboto:wght@400;

 500;700&display=swap"

 rel="stylesheet">

 <!-- Halfmoon CSS -->

 <link href="%sveltekit.assets%/css/halfmoon.min.css"

 rel="stylesheet" />

 <meta name="viewport"

 content="width=device-width, initial-scale=1" />

 %sveltekit.head%

www.dbooks.org

https://github.com/ed-freitas/sveltesuccinctly
https://www.dbooks.org

 48

 </head>

 <body class="dark-mode with-custom-webkit-scrollbars

 with-custom-css-scrollbars" data-dm-shortcut-enabled="true">

 <div>%sveltekit.body%</div>

 <script src="%sveltekit.assets%/js/halfmoon.min.js"></script>

 <script>

 var exports = {};

 halfmoon.onDOMContentLoaded();

 </script>

 </body>

</html>

 Note: I split the two link tags highlighted in yellow in Code Listing 5-a into various
readable lines so they could fit into the listing. However, each of those statements
should be placed in one line.

Let’s explore what we have here. The first thing we find within the head section of the HTML

markup is the meta tag that sets the encoding the application will use, in this case utf-8.

Then, we find a link tag indicating where the application's favicon can be found. As you might

have noticed, a relative path is used, which is %sveltekit.assets%/.

The shorthand %sveltekit.assets% indicates the resource will be found under the project’s

static folder.

Next, we can see two link tags highlighted in yellow that import Font Awesome. These should

be placed in one line each.

Following that, we import the reference to the Halfmoon library, which I have downloaded and

placed into the css subfolder within the project’s static folder (src/static/css).

Figure 5-a: The Halfmoon Library CSS Files within the scr/static/css Project Folder (VS Code)

 Note: Even though I’m using a Windows-based machine to build this Svelte
application, since this is a web application, I will be using the forward-slash (/)
convention when referring to folders and file paths, rather than the traditional

https://en.wikipedia.org/wiki/Favicon
https://fontawesome.com/
https://www.gethalfmoon.com/docs/introduction/
https://www.gethalfmoon.com/docs/download/

49

backslash (\) pattern commonly used in Windows. Thus, I’m referring to the folder
path as scr/static/css, rather than src\static\css.

Halfmoon is a lightweight library that offers a wide range of CSS classes that will be familiar to
Bootstrap developers and allow us to create modern and beautiful layouts.

 Note: I’m not affiliated with Halfmoon. I just stumbled upon it and was captivated
by its simplicity, beautiful design, and robust features.

After that, we can see the meta tag that defines the markup’s viewport, determining where the

web content will be displayed.

The following statement is %sveltekit.head%, which specifies the page’s title displayed in the

browser title bar.

Within the body section of the HTML markup, we can see the dark-mode with-custom-

webkit-scrollbars with-custom-css-scrollbars classes, which provide the default dark

mode that the application uses.

Next, we can see the %sveltekit.body% placeholder enclosed within a div tag. All this does is

inject the body of each page into that div, which represents the content for each page.

Following that, we find the script tag that imports the JavaScript part of the Halfmoon library.

The script tag that follows initializes Halfmoon.

The JavaScript part of the Halfmoon library also needs to be downloaded from the Halfmoon
website, and I’ve placed it into the project’s src/static/js folder.

Figure 5-b: The Halfmoon JavaScript File within the scr/static/js Project Folder (VS Code)

As you have seen, it’s nothing complicated. Most of the markup was automatically generated
when the Svelte project was scaffolded, and I just added the Font Awesome and Halfmoon tags
and statements.

By exploring the app.html file, we also covered all the files found under the src/static folder and

subfolders that our project includes.

www.dbooks.org

https://www.gethalfmoon.com/docs/download/
https://www.dbooks.org

 50

The lib folder

By default, when a Svelte project is scaffolded using SvelteKit (as we’ve done), you won’t find a
lib folder within your project structure.

Creating a lib subfolder under the project’s src folder is a non-official but widely adopted folder-

naming convention used when creating a Svelte application.

A lib subfolder encourages the excellent practice of keeping any application-specific Svelte

components separate from the application’s pages (located in the src/routes subfolder).

Now, within the VS Code EXPLORER, select the src folder and click the New Folder icon, as
shown in the following figure.

Figure 5-c: The New Folder Icon (VS Code EXPLORER—For Creating a lib Subfolder within src)

Name the new folder lib and press Enter.

Figure 5-d: The New Folder Icon (VS Code EXPLORER—Naming the New Folder lib)

The lib folder will contain two files, a Svelte component called Books.svelte that’s shared among
different pages of the application, and a utility JavaScript file (utils.js) that will be used across
several project files.

We’ll get to those later. For now, we need to have this folder created, as this is not part of the
default project structure.

51

The routes folder

A routes subfolder is added under the src folder when a SvelteKit project is created using the

default process.

SvelteKit creates application routes based on the name of the folder structure and file names
found under the routes folder.

Let’s look at the finished folder structure and files within the routes folder to understand how

routing works with SvelteKit.

Figure 5-e: The routes Folder (Finished App—VS Code EXPLORER)

We can see various files within the root of the src/routes folder and two subfolders, api and
favorites. Let’s first focus on the root folder.

index.svelte

The index.svelte file is the application’s main route, the app’s main page, which contains the list

of books available to add as favorites. Visually, the application’s main page looks as follows.

www.dbooks.org

https://www.dbooks.org

 52

Figure 5-f: The App’s Main Page

Most of the HTML markup required to produce the main’s page visual appearance has been
placed into the __layout.svelte file found under the root of the src/routes folder, and index.svelte
is mainly limited to fetching the list of available books to display.

Here is the finished code for index.svelte found within the root of the src/routes folder.

Code Listing 5-b: The Finished index.svelte File (Root of the routes Folder)

<script context="module">

 import Books from "$lib/Books.svelte"

 export const load = async({fetch}) => {

 const res = await fetch("/api")

 const books = await res.json()

 return {

 props: {

 books,

 },

 }

 }

</script>

<script>

 import { addFav }

 from "../firebase.js";

 import { goto } from "$app/navigation"

53

 export let books

 const fav = ""

 const btnAction = async (e) => {

 await addFav(e.detail)

 await goto("/favorites")

 }

</script>

<svelte:head>

 <title>FavBooks</title>

</svelte:head>

<Books {books} {fav}

 btnText="Add to favorites"

 on:btnAction={btnAction} />

The following diagram shows how the markup code relates to the finished user interface for the
main page.

Figure 5-g: Main Page UI and Markup (index.svelte) Relationship (without Considering the Navigation
Bar)

The preceding figure shows that most of the main page’s UI comes from the Books component.

www.dbooks.org

https://www.dbooks.org

 54

So, to understand what is going on, let’s explore each part of the code. First, we have the
<script context="module"> section.

In Svelte, a <script> code block includes code that runs when a component instance is

initialized. For most components, that's all that’s required.

Nevertheless, on some occasions, you might need to run some code outside of an individual
component instance. You can do this by using a <script context="module"> code block.

Within the <script context="module"> code block, the first thing we do is import the Books

component from the Books.svelte file, which we’ll explore later. We do this with the following

statement.

import Books from "$lib/Books.svelte"

Using the relative $lib/ file path, we indicate that Svelte can find the Books.svelte file within

the lib subfolder of the project’s src folder.

The Books component displays a list of books, either obtained from the application’s API (the

list of latest books, which is static) or the list of favorites from Firebase.

The functionality was refactored into a Books component to avoid recreating the same logic

twice. We’ll have a look at how this component works later.

Next, we find the asynchronous (async) load function.

export const load = async({fetch}) => {

 const res = await fetch("/api")

 const books = await res.json()

 return { props: { books, }, }

}

This function uses the browser’s fetch API (part of the browser context) to retrieve the static list

of available books from the application’s /api endpoint. The list of books is returned as a JSON

response.

Then, we find the <script> section, which executes when the component instance initializes.

Within this section, we import the addFav function from the firebase.js file—a utility file that

includes the logic that allows the application to interact with Firebase. We’ll explore this later.

import { addFav } from "../firebase.js";

The addFav function adds a book to the list of favorites. Next, we find the following import

statement, which imports the goto method from Svelte’s navigation module (app/navigation).

import { goto } from "$app/navigation"

The goto method will redirect the user to the Favorites page once a book has been added to

the favorites list.

55

Then, we declare but do not initialize the books variable that will store the list of the available

books obtained from the application’s API.

Following that, we declare the constant fav, which will be used to indicate whether the list of

available books will display the Add to favorites button for each book. If the value of fav is

empty, then the Add to favorites buttons will not be shown.

Next, we find the btnAction function; this is the event that gets fired when clicking on the Add

to favorites button.

const btnAction = async (e) => {

 await addFav(e.detail)

 await goto("/favorites")

}

The e parameter passed to the btnAction function contains specific event information. The
detail property (e.detail) includes the information about the book to be added to the

favorites list, which occurs when the addFav function is invoked.

After the book is added to the favorites list, the goto method is invoked, redirecting the user to

the favorites page (/favorites).

Following the script part of index.svelte, we have the HTML markup. The <svelte:head> tag is

Svelte’s way of adding or modifying the page header. In this case, the title of the page is
changed as follows.

<svelte:head>

 <title>FavBooks</title>

</svelte:head>

Finally, the body of the HTML file includes the Books component, which displays the list of

available books. Here is what the Books component looks like for the finished application.

Figure 5-h: The Books Component

www.dbooks.org

https://www.dbooks.org

 56

As you can see, the Books component is represented as a tag, which has four properties. The

first property is the list of books to display, and the second property indicates whether the Add

to favorites buttons (fav) will be shown or not.

<Books {books} {fav} btnText="Add to favorites" on:btnAction={btnAction} />

The third property is the caption of the Add to favorites or Remove button (btnText), and the

fourth property is the event's name (btnAction), triggered when any Add to favorites or

Remove buttons are clicked (btnAction).

Notice the syntax difference between books, fav, and btnText. The reason for this difference is

that I’m using a Svelte shorthand.

When the name of the property and the name of the object assigned to the property are the

same, then we can use this shorthand. So, instead of writing the following statement:

<Books books=books fav=fav btnText="Add to favorites"
on:btnAction={btnAction} />

We can change books=books to {books} and fav=fav to {fav}, and we end up with a more

concise statement.

Books {books} {fav} btnText="Add to favorites" on:btnAction={btnAction} />

__layout.svelte

You might have noticed that the index.svelte file found within the root of the routes folder has

barely any HTML markup. There are two reasons for this.

The first reason is that a significant part of the HTML markup shown, such as the list of books, is
encapsulated in the Books component.

The second reason for the minimal amount of HTML in the index.svelte file concerns the nice
navigation bar on the main page. Well, that is included within the __layout.svelte file contained
within the root of the src/routes folder.

Now, let me warn you: there’s more to the navigation bar than you expect. As you might have

noticed from the figures in the previous chapter, the navigation bar knows if a user has signed in

or not. The logic that regulates this behavior is part of the __layouts.svelte file.

The following diagram shows how the markup code relates to the finished user interface for the
navigation bar of the main page, __layout.svelte.

57

Figure 5-i: Main Page UI and Markup (__layout.svelte) Relationship (Just Considering the Navigation Bar)

As you can see, I’ve split the markup code of the __layout.svelte file into smaller chunks and
colored each to match its corresponding UI element.

For example, the code highlighted in yellow corresponds to the Sign out button, and the code
highlighted in blue corresponds to the signed-in user’s email address.

The code in green corresponds to the dark mode button, the code in orange to the app title
(FavBooks), and the code in red to the favorites link.

Here is finished code of the __layout.svelte file contained within the root of the src/routes folder.

Code Listing 5-c: The finished __layout.svelte File (Root of the routes Folder)

<script>

 import { onAuthStateChanged, signOut } from "Firebase/auth"

 import { onMount } from "svelte"

 import { auth } from "../firebase.js"

 import { getStores } from "$app/stores"

 import { goto } from "$app/navigation"

 let { session } = getStores()

 onMount(() => {

 onAuthStateChanged(

 auth,

www.dbooks.org

https://www.dbooks.org

 58

 (user) => {

 session.set({ user })

 },

 (error) => {

 session.set({ user: null })

 console.log(error)

 }

);

 });

 const logOut = async () => {

 await signOut(auth)

 await goto('/login')

 }

</script>

<div class="page-wrapper with-navbar">

 <nav class="navbar">

 FavBooks

 {#if $session['user'] != null}

 {$session['user'].email}

 {/if}

 <div class="navbar-content ml-auto">

 <button

 class="btn btn-action mr-5"

 type="button"

 onclick="halfmoon.toggleDarkMode()">

 <i class="fa fa-moon-o"

 aria-hidden="true">

 </i>

 <span

 class="sr-only">

 Toggle dark mode

 </button>

 {#if $session['user'] != null}

 <a href="/favorites"

59

 class="mr-5 btn btn-link"

 role="button"

 >

 Favorites

 <a href={null}

 class="mr-5 btn btn-success"

 role="button"

 on:click={() => logOut()}

 >

 Sign out

 {:else}

 <a href="/login"

 class="mr-5 btn btn-secondary"

 role="button">

 Sign in

 {/if}

 </div>

 </nav>

 <slot />

 </div>

As you have seen, there’s much more code than in index.svelte. So, to properly understand this,
let’s break it down into smaller bits. Let’s begin with the import statements.

import { onAuthStateChanged, signOut } from "Firebase/auth"

import { onMount } from "svelte"

import { auth } from "../firebase.js"

import { getStores } from "$app/stores"
import { goto } from "$app/navigation"

First, we begin by importing the onAuthStateChanged and signOut methods from the

Firebase/auth module. We’ll need these to know whether a user has signed in and is active

and to sign out the active user.

Then, we import the onMount component lifecycle event from the core Svelte module

(svelte), which executes following the component's rendering to the DOM.

After that, we import the auth object from the firebase.js utility file, which we’ll explore later;

this is used for retrieving the information about the authenticated user.

Next, we import the getStores method from the app/stores module responsible for state

management in SvelteKit.

www.dbooks.org

https://svelte.dev/tutorial/onmount
https://www.dbooks.org

 60

And finally, we import the goto method from the app/navigation module responsible for

redirecting the navigation to another page.

Following the import statements, we retrieve session information for the signed-in user, which

is done by invoking getStores.

let { session } = getStores()

Next, we have the onMount lifecycle event code, which subscribes to the onAuthStateChanged

Firebase event that gets triggered when there’s a change to the state of the signed-in user.

onMount(() => {

 onAuthStateChanged(

 auth,

 (user) => {

 session.set({ user })

 },

 (error) => {

 session.set({ user: null })

 console.log(error)

 }

);
});

The onAuthStateChanged event uses three parameters. The first is auth, which indicates the

current authentication state of the app from Firebase.

The second is a function that sets the session state for the current user. The third is a function

that sets the session state for the current user to null if an error occurs.

In other words, whenever there’s a change to a user’s authentication state in Firebase and no

errors are produced, the currently signed-in user (if any) will be saved with the session state.

All this happens on the onMount lifecycle event of __layout.svelte.

session.set({ user })

Next, we have the logOut function. All this function does is sign out the currently signed-in

(authenticated) user. The sign-out process is done by invoking the signOut method and

passing the authentication details (auth).

const logOut = async () => {

 await signOut(auth)

 await goto('/login')

}

Once the sign-out process has taken place, we redirect the user to the Sign in page (/login)

by invoking the goto method.

https://firebase.google.com/docs/auth/web/manage-users

61

Next, we have the HTML markup that makes up the navigation bar. Now, I’d like to clarify that

I’m not going to focus on the CSS classes used to style the navigation bar, as this is all nicely

documented on the Halfmoon website. Instead, I’d like to focus on specific Svelte functionality.

Here is the first piece of Svelte functionality included within the navigation bar markup.

 {#if $session['user'] != null}

 {$session['user'].email}

 {/if}

What we have here is conditional rendering. We will only display the currently signed-in user’s
email address $session['user'].email if (#if) a user has signed in ($session['user'] !=
null).

Because we are including Svelte logic within the actual markup, we must wrap this logic using

curly braces {}.

Notice that the opening if tag (#if) has to be closed with a corresponding end if tag (/if). With

this short example, we’ve just learned how to perform conditional rendering, which means that
this markup will only be displayed when that specific condition is met.

The next exciting part I’d like to discuss is displaying the Sign in button or Sign out button—

which is also done with conditional rendering, as follows.

{#if $session['user'] != null}
 <a href="/favorites"
 class="mr-5 btn btn-link"
 role="button"
 >
 Favorites

 <a href={null}
 class="mr-5 btn btn-success"
 role="button"
 on:click={() => logOut()}
 >
 Sign out

{:else}
 <a href="/login"
 class="mr-5 btn btn-secondary"
 role="button">
 Sign in

{/if}

www.dbooks.org

https://www.gethalfmoon.com/docs/navbar/
https://www.dbooks.org

 62

By examining the previous code, we can see that the Favorites link and the Sign out button only
show when a user has signed in—in other words, if $session['user'] != null is true.

On the other hand, if a user is not signed in, then the Sign in button shows—in other words, if
$session['user'] != null is false (so, when $session['user'] == null).

Notice that the Sign out button includes a click event that triggers the execution of the logOut

function, which is done as follows.

on:click={() => logOut()}

Notice that the syntax is not written as on:click={logOut} because doing so only references

the function and doesn’t invoke it.

The function's execution is done by creating an anonymous arrow function (() =>) that invokes

the logOut function.

And finally, the slot tag is significant and can be easily missed. Svelte uses slots to indicate that
a parent component can receive a child component, just like regular HTML elements have
children.

In other words, the slot tag indicates where the child component will be placed within the

parent component. To understand this better, let’s look at the following diagram.

Figure 5-j: index.svelte Markup Injected into the __layout.svelte Slot (Code Approach)

In this figure, notice that the markup from index.svelte is placed by Svelte during compilation
time into the slot available within __layout.svelte. So, __layout.svelte represents the parent
component and index.svelte the child.

To understand this better, let’s look at the following image.

https://svelte.dev/tutorial/slots

63

Figure 5-k: index.svelte Markup Injected into the __layout.svelte Slot (UI Approach)

This image shows that the Books component is placed into the slot tag within the

__layout.svelte markup, which, as you have seen, includes the navigation bar markup.

Sign in page (login.svelte)

Now that we have looked at the main page, let’s explore the Sign in page. Before we look at the

complete finished code, let’s see how the markup corresponds to the UI elements of this page.

In the following figure, I’ve highlighted how each UI part of the Sign in page corresponds to its
markup counterpart within login.svelte.

For example, the part highlighted in purple corresponds to the navigation bar (__layout.svelte).
The orange part corresponds to the Sign in form caption. The green part is only shown if an
error occurs.

The red part corresponds to the User name field, the blue corresponds to the Password field,
and the yellow part corresponds to the Submit button and the Don’t have an account link.

www.dbooks.org

https://www.dbooks.org

 64

Figure 5-l: Sign in Page UI and Markup (login.svelte) Relationship

Here is the finished code for login.svelte.

Code Listing 5-d: The Finished login.svelte File (Root of the routes Folder)

<script context="module">

 export const load = async ({ session }) => {

 let { user } = session

 if (user != null) {

 return {

 status: 302,

 redirect: "/favorites",

 }

 }

 return {

 status: 200,

 }

 }

</script>

<script>

 import { loginChecks, fbLoginChecks }

 from "$lib/utils.js"

 import { signInWithEmailAndPassword } from "Firebase/auth"

 import { auth, userDoc } from "../firebase.js"

65

 import { goto } from "$app/navigation"

 import { setDoc } from "Firebase/firestore/lite"

 export let error = undefined

 export let username = ""

 export let pwd = ""

 const checkFields = () => {

 if (username === "" &&

 pwd === "") {

 error = undefined

 }

 }

 const signIn = async (email, pwd) => {

 if (email !== undefined &&

 pwd !== undefined) {

 error = loginChecks(email, pwd)

 if (error === undefined) {

 try {

 let user = await

 signInWithEmailAndPassword(auth, email, pwd)

 await setDoc(

 userDoc(auth.currentUser.uid),

 { username: user.user.displayName,

 email: user.user.email })

 await goto("/favorites")

 }

 catch (e) {

 error = fbLoginChecks(e)

 }

 }

 }

 }

</script>

<svelte:head>

 <title>Sign in</title>

</svelte:head>

<div class="content-wrapper">

 <div class="container-fluid">

 <div class="content">

www.dbooks.org

https://www.dbooks.org

 66

 <div class="row">

 <div class="col-sm"></div>

 <div class="card col-sm">

 <h2 class="text-center content-title">

 Sign in

 </h2>

 {#if error !== undefined}

 <div class="mb-15 alert {error.alertType}"

 role="alert">

 <h4 class="alert-heading">{error.title}</h4>

 {error.content}

 </div>

 {/if}

 <form on:submit|preventDefault=

 {() => signIn(username, pwd)}>

 <div>

 <label for="username"

 class="required">User name:</label>

 <div class="form-row row-eq-spacing-md">

 <div class="col-md-12">

 <input type="text"

 class="form-control"

 id="username"

 placeholder=

 "Please type in your user name"

 required="required"

 bind:value={username}

 on:keyup={() => checkFields()}

 >

 </div>

 </div>

 </div>

 <div>

 <label for="pwd"

 class="required">Password:</label>

 <div

 class="form-row row-eq-spacing-md">

 <div class="col-md-12">

 <input type="password"

 class="form-control"

 id="pwd"

 placeholder=

 "Please type in your password"

67

 required="required"

 bind:value={pwd}

 on:keyup={() => checkFields()}

 >

 </div>

 </div>

 </div>

 <div class="text-center">

 <input

 class="btn btn-primary"

 type="submit"

 value="Submit">

 </div>

 <div class="pt-10 text-center">

 Don't have an account?

 </div>

 </form>

 </div>

 <div class="col-sm"></div>

 </div>

 </div>

 </div>

</div>

As you can see, we have a part that runs outside of an individual component instance, which is
done using the <script context="module"> code block.

This code block only includes the load function, which checks whether a user is signed in

(user != null). If so, the user is redirected to the Favorites page (/favorites), and the Sign

in page is not shown.

The reason for doing that (redirecting the user to the Favorites page when a user has already

signed in) is that there is no need to execute another sign-in until the currently signed-in user

signs out.

export const load = async ({ session }) => {

 let { user } = session

 if (user != null) {

 return {

 status: 302,

 redirect: "/favorites",

www.dbooks.org

https://www.dbooks.org

 68

 }

 }

 return {

 status: 200,

 }
}

If a user has not signed in (user == null), then the Sign in page is shown so a user can sign

in. The following diagram explains how this flow works.

Figure 5-m: Login Flow

Next, we find the script section that executes within the individual component instance. Let’s

start by looking at the import statements.

import { signInWithEmailAndPassword } from "Firebase/auth"
import { auth, userDoc } from "../firebase.js"
import { goto } from "$app/navigation"
import { setDoc } from "Firebase/firestore/lite"

First, we can see that from the Firebase authentication module (Firebase/auth), we import

the signInWithEmailAndPassword method. As the method name implies, we’ll use it to

authenticate any application user with Firebase.

Then, from the utility firebase.js file, we import the auth object and userDoc method. These

are used to check if authentication has occurred and access the signed-in user.

Next, we import the goto method, which we use to redirect the user to the Favorites page if the

user has signed in.

Then, we have the setDoc method, used for adding data to the Cloud Firestore database, which

is why we import the Firebase Firestore Lite module (Firebase/firestore/lite).

Next, we declare the three variables for the Sign in page, error, username, and pwd. By

adding the export keyword, we specify that these variables can be used outside of login.svelte.

https://firebase.google.com/docs/firestore/manage-data/add-data

69

export let error = undefined
export let username = ""
export let pwd = ""

Although we won’t be using these variables outside of login.svelte, it’s a good idea to export
these variables if in the future we want to refactor login.svelte and register.svelte into a single
component.

After that, we find the checkFields function, which checks that the username, pwd, and error

variables have their initial values set as an empty string, or undefined in the case of the error

variable.

const checkFields = () => {
 if (username === "" &&
 pwd === "") {
 error = undefined
 }
}

This function is used when the user deletes the content of either the username or pwd fields,

and if a login error has occurred (and is still shown on the Sign in form), so that the error can

be cleared (removed from the screen).

The checkFields function executes when the keyup event for the username or pwd field gets

triggered. The keyup event occurs when the user presses and releases a key on either the

username or pwd field.

Next, we find the signIn function. As its name implies, this function is responsible for

authenticating the user against Firebase.

const signIn = async (email, pwd) => {
 if (email !== undefined &&
 pwd !== undefined) {

 error = loginChecks(email, pwd)
 if (error === undefined) {
 try {
 let user = await
 signInWithEmailAndPassword(auth, email, pwd)
 await setDoc(
 userDoc(auth.currentUser.uid),
 { username: user.user.displayName,
 email: user.user.email })
 await goto("/favorites")
 }
 catch (e) {
 error = fbLoginChecks(e)
 }
 }
 }
}

www.dbooks.org

https://www.dbooks.org

 70

As you can see, the function is asynchronous (async), and the user’s email (which represents

the value of the username field) and pwd are passed as parameters.

The function first checks both the values of the email and pwd to ensure they are not

undefined, which is performed by the if (email !== undefined && pwd !== undefined)

condition.

Then, both email and pwd are checked to ensure that they are valid for login, which is done by

the loginChecks function. As we’ll see later, this function verifies that the email variable's

value is a valid email address, and the pwd field's value is good enough for a password

(minimum length check).

If the loginChecks validation goes well and there are no errors (error === undefined), then

we can authenticate the user to Firebase by calling the signInWithEmailAndPassword

method.

If the authentication process succeeds, the currently active user can be set up by invoking the

setDoc function, in which userDoc is passed as a first parameter, and an object containing the

user information is passed as a second parameter.

setDoc(userDoc(auth.currentUser.uid), { username: user.user.displayName,
 email: user.user.email })

Once that succeeds, the user is redirected to the Favorites page, which is done by executing
the goto("/favorites") instruction. At this stage, the user is authenticated.

Suppose the authentication process fails at any given point (thus why it is wrapped around a

try-catch statement). In that case, an error (e) is reported by Firebase, and the

fbLoginChecks function then processes that error.

In that case, the fbLoginChecks converts the error to a user-friendly message displayed above

the username field.

Moving on, we find the <svelte:head> section that sets the page’s title, and we can see the

rest of the markup.

As for the remaining markup, I won’t go over the specifics of the Halfmoon CSS classes used

(this is covered extensively within their excellent documentation), but instead focus solely on

Svelte-specific instructions.

Notice the following conditional rendering, which is responsible for displaying an error in case
there is one.

{#if error !== undefined}
 <div class="mb-15 alert {error.alertType}"
 role="alert">
 <h4 class="alert-heading">{error.title}</h4>
 {error.content}
 </div>
{/if}

https://www.gethalfmoon.com/docs/introduction/

71

An error will display if the error variable's value is different than undefined. Depending on the

type of error (error.alertType), a specific CSS class will be applied. The error.title and

error.content are shown.

The following interesting Svelte logic relates to the form submission.

<form on:submit|preventDefault={() => signIn(username, pwd)}>

This binds the form to the submit event and prevents the default browser form behavior

(preventDefault), which would be to submit the form and redirect the user to another page.

So, what happens instead is that a submit event occurs, and the signIn function is executed,

passing the value of the submitted username and pwd fields.

Notice that the function is executed because it is called through an anonymous function: () =>

signIn(username, pwd). Otherwise, it wouldn't run and only be referenced.

Then, we have the input element used for entering the username variable, for which we can

see the code as follows.

<input type="text"
 class="form-control" id="username"
 placeholder="Please type in your user name"
 required="required"
 bind:value={username}
 on:keyup={() => checkFields()}
>

Notice that this input element (id="username") binds to the username variable. Whatever

value is entered into the input element is automatically assigned to username.

Furthermore, the input element has a keyup event, which executes the checkFields function

we covered before.

We can see the input element for entering the password (id="pwd"). Notice that the element

binds to the pwd field; whatever value is entered into the input element is automatically

assigned to pwd.

<input type="password"
 class="form-control" id="pwd"
 placeholder="Please type in your password"
 required="required"
 bind:value={pwd}
 on:keyup={() => checkFields()}
>

This input element also has a keyup event, which executes the checkFields function we

covered before.

www.dbooks.org

https://www.dbooks.org

 72

Finally, we can see the Submit button. When you click this button, the submit event of the form

is triggered.

<input class="btn btn-primary" type="submit" value="Submit">

That’s all there is to the Sign in page—as you have seen, it’s relatively straightforward.

Sign up page (register.svelte)

With the Sign in page covered, let’s now focus our attention on the Sign up page. The

functionality is almost identical to the Sign in page. First, let’s look at how the UI relates to the

markup.

Figure 5-n: Sign up Page UI and Markup (register.svelte) Relationship

As you can see, the part highlighted in purple corresponds to the navigation bar
(__layout.svelte).

The light green part is only shown if an error occurs. The red part corresponds to the User
name field, the blue to the Password field, the bright green to the Password again field, and
the yellow part corresponds to the Submit button and the Already have an account? link.

The only significant difference between Sign in and this page is that a different password-related

field is used for repeating the password.

Now, let’s look at the finished code for the Sign up page.

73

Code Listing 5-e: The Finished register.svelte File (Root of the routes Folder)

<script context="module">

 export const load = async ({ session }) =>{

 let { user } = session

 if (user != null) {

 return {

 status: 302,

 redirect: "/favorites",

 }

 }

 return {

 status: 200,

 }

 }

</script>

<script>

 import { registerChecks, fbRegisterChecks }

 from "$lib/utils.js"

 import { createUserWithEmailAndPassword,

 updateProfile } from "Firebase/auth"

 import { goto } from "$app/navigation"

 import { auth, userDoc } from "../firebase.js"

 import { setDoc } from "Firebase/firestore/lite"

 export let

 error = undefined,

 username = "", pwd = "", pwd2 = ""

 const checkFields = () => {

 if (username === "" &&

 pwd === "" &&

 pwd2 === "") {

 error = undefined

 }

 }

 const signUp = async (email, pwd, pwd2) => {

 if (email !== undefined &&

 pwd !== undefined &&

 pwd2 !== undefined) {

 error = registerChecks(email, pwd, pwd2)

www.dbooks.org

https://www.dbooks.org

 74

 if (error === undefined) {

 try {

 let user = await

 createUserWithEmailAndPassword(

 auth,

 email,

 pwd

);

 await updateProfile(user.user,

 { displayName: username });

 await setDoc(

 userDoc(auth.currentUser.uid), {

 username: user.user.displayName,

 email: user.user.email

 });

 await goto("/favorites")

 }

 catch (e) {

 error = fbRegisterChecks(e)

 }

 }

 }

 }

</script>

<svelte:head>

 <title>Sign up</title>

</svelte:head>

<div class="content-wrapper">

 <div class="container-fluid">

 <div class="content">

 <div class="row">

 <div class="col-sm"></div>

 <div class="card col-sm">

 <h2 class="text-center content-title">

 Sign up

 </h2>

 {#if error !== undefined}

 <div class="mb-15 alert {error.alertType}"

 role="alert">

 <h4 class="alert-heading">{error.title}</h4>

 {error.content}

 </div>

75

 {/if}

 <form on:submit|preventDefault=

 {() => signUp(username, pwd, pwd2)}>

 <div>

 <label for="username"

 class="required">User name:</label>

 <div class="form-row row-eq-spacing-md">

 <div class="col-md-12">

 <input type="text"

 class="form-control"

 id="username"

 placeholder=

 "Please type in your user name"

 required="required"

 bind:value={username}

 on:keyup={() => checkFields()}

 >

 </div>

 </div>

 </div>

 <div>

 <label for="pwd"

 class="required">Password:</label>

 <div

 class="form-row row-eq-spacing-md">

 <div class="col-md-12">

 <input type="password"

 class="form-control"

 id="pwd"

 placeholder=

 "Please type in your password"

 required="required"

 bind:value={pwd}

 on:keyup={() => checkFields()}

 >

 </div>

 </div>

 </div>

 <div>

 <label for="pwd2"

 class="required">Password again:</label>

 <div

www.dbooks.org

https://www.dbooks.org

 76

 class="form-row row-eq-spacing-md">

 <div class="col-md-12">

 <input type="password"

 class="form-control"

 id="pwd2"

 placeholder=

 "Please retype your password"

 required="required"

 bind:value={pwd2}

 on:keyup={() => checkFields()}

 >

 </div>

 </div>

 </div>

 <div class="text-center">

 <input

 class="btn btn-primary"

 type="submit"

 value="Submit"

 >

 </div>

 <div class="pt-10 text-center">

 Already have an account?

 </div>

 </form>

 </div>

 <div class="col-sm"></div>

 </div>

 </div>

 </div>

</div>

As you can see in the preceding code, just like with the Sign in page, we have a part that runs
outside of an individual component instance, which is done using the <script
context="module"> code block.

This code block only includes the load function, which checks whether a user is signed in

(user != null). If so, the user is redirected to the Favorites page (/favorites), and the Sign

up page is not shown.

77

The reason for doing that (redirecting the user to the Favorites page when a user has already

signed up) is that there is no need to execute another sign up on the same browser session

because the signed-up user will be signed in automatically.

export const load = async ({ session }) => {

 let { user } = session

 if (user != null) {

 return {

 status: 302,

 redirect: "/favorites",

 }

 }

 return {

 status: 200,

 }
}

Next, we find the script section that executes within the individual component instance. Let’s

start by looking at the import statements.

import { registerChecks, fbRegisterChecks } from "$lib/utils.js"
import { createUserWithEmailAndPassword, updateProfile } from "Firebase/auth"
import { goto } from "$app/navigation"
import { auth, userDoc } from "../firebase.js"
import { setDoc } from "Firebase/firestore/lite"

First, from the utility file (util.js) found within the src/lib folder, we import the registerChecks

and fbRegisterChecks functions used for validating the entered data.

Next, we can see that from the Firebase authentication module (Firebase/auth), we import

the createUserWithEmailAndPassword method. As the method name implies, we’ll use it to

register any application user with Firebase. Once the user is registered, the user profile is
updated using the updateProfile method.

Then, we import the goto method, which we use to redirect the user to the Favorites page if

the user has signed up (which automatically signs the user in).

Next, from the utility firebase.js file, we import the auth object and userDoc method. These

are used to check if authentication has occurred and access the signed-in user details.

Then, we have the setDoc method, used for adding data to the Cloud Firestore, which is why

we import the Firebase Firestore Lite module (Firebase/firestore/lite).

After that, just like we did for the Sign in page, we define the variables we will use for the sign-
up process.

export let error = undefined, username = "", pwd = "", pwd2 = ""

In this case, the difference is that we have an additional variable (pwd2) that we did not need on

the Sign in page.

www.dbooks.org

https://firebase.google.com/docs/firestore/manage-data/add-data
https://www.dbooks.org

 78

Moving on, we find the checkFields function, which is almost identical to its counterpart within

the Sign in page, except that the pwd2 field is included.

const checkFields = () => {
 if (username === "" &&
 pwd === "" && pwd2 === "") {
 error = undefined
 }
}

This function is used when the user deletes the content of the username, pwd, or pwd2 fields,

and if a register error has occurred (and is still shown on the Sign up form), so that the error

can be cleared (not shown anymore on the screen).

The last part of the user Sign up page logic is the user registration process, done with the
signUp function.

const signUp = async (email, pwd, pwd2) => {

 if (email !== undefined &&

 pwd !== undefined &&

 pwd2 !== undefined) {

 error = registerChecks(email, pwd, pwd2)

 if (error === undefined) {

 try {

 let user = await createUserWithEmailAndPassword(auth, email, pwd)

 await updateProfile(user.user, { displayName: username })

 await setDoc(userDoc(auth.currentUser.uid), {

 username: user.user.displayName,

 email: user.user.email

 });

 await goto("/favorites")

 }

 catch (e) {

 error = fbRegisterChecks(e)

 }

 }

 }
}

Paying close attention to the signUp function, we can see that the sequence of instructions is

almost identical to the signIn process from the Sign in page.

The main differences are that for input validation, we are now using the registerChecks

function; for error validation, the fbRegisterChecks function is used, and the user registration

is done when the createUserWithEmailAndPassword function is invoked.

79

Once the user registration has taken place, the user profile is updated, which is done with the
updateProfile function.

If the authentication process succeeds, the currently active user can be set up by invoking the

setDoc function, in which userDoc is passed as a first parameter, and an object containing the

user information is passed as a second parameter.

setDoc(userDoc(auth.currentUser.uid), { username: user.user.displayName,
 email: user.user.email })

If the registration and subsequent automatic authentication are successful, the user is redirected

to the Favorites page, which is done by executing the goto("/favorites") instruction. At this

stage, the user is authenticated.

Suppose the authentication process fails at any given point (thus why it is wrapped around a

try-catch statement). In that case, an error (e) is returned by Firebase, and the

fbRegisterChecks function then processes that error.

Moving on, we find the <svelte:head> section that sets the page’s title, and we can see the

rest of the markup.

As for the remaining markup, as I mentioned previously, I won’t go over the specifics of the

Halfmoon CSS classes, but instead focus solely on Svelte-specific instructions.

Looking at the markup, we can see that the following code displays the error if its value is not

undefined, which should look familiar to you.

{#if error !== undefined}

 <div class="mb-15 alert {error.alertType}" role="alert">

 <h4 class="alert-heading">{error.title}</h4>

 {error.content}

 </div>
{/if}

Depending on the type of error (error.alertType), a specific CSS class will be applied. The

error.title and error.content are shown.

The next instruction relates to the form submission.

<form on:submit|preventDefault={() => signUp(username, pwd, pwd2)}>

This binds the form to the submit event and prevents the default browser form behavior

(preventDefault), which would be to submit the form and redirect the user to another page.

What happens instead is that the submit event occurs and the signUp function runs, passing

the value of the submitted username, pwd, and pwd2 fields.

Notice that the function is executed because it is called through an anonymous function: () =>

signUp(username, pwd, pwd2). Otherwise, it wouldn't run, and only be referenced.

www.dbooks.org

https://www.gethalfmoon.com/docs/introduction/
https://www.dbooks.org

 80

Moving on, we have the input element for entering the username variable, for which we can

see the code as follows.

<input type="text"
 class="form-control" id="username"
 placeholder="Please type in your user name"
 required="required"
 bind:value={username}
 on:keyup={() => checkFields()}
>

Notice that this input element (id="username") binds to the username variable; whatever

value is entered into the input element is automatically assigned to username.

Additionally, notice that the input element has a keyup event, which executes the

checkFields function we covered before. It is specific for user registration, as it also evaluates

the value of pwd2.

Next, we can see the input element for entering the password (id="pwd"). Notice that the

element binds to the pwd field; whatever value is entered into the input element is automatically

assigned to pwd. This is the same functionality we used for the Sign in page.

<input type="password"
 class="form-control" id="pwd"
 placeholder="Please type in your password"
 required="required"
 bind:value={pwd}
 on:keyup={() => checkFields()}
>

The difference, though, is that for the Sign up page, we have another password field, which
needs to match the value of the first password field (the values of pwd and pwd2 must be the

same).

<input type="password" class="form-control" id="pwd2"

 placeholder="Please retype your password"

 required="required"

 bind:value={pwd2}

 on:keyup={() => checkFields()}
>

The main difference here is that this input element binds to the pwd2 field instead of pwd. This

input element also has a keyup event, which executes the checkFields function we

previously explored.

Finally, we can see the following markup for the Submit button. When you click on this button,

the submit event of the form is triggered.

<input class="btn btn-primary" type="submit" value="Submit">

81

That’s all there is to the Sign up page—which, as you have seen, is also straightforward.

Recap

We have made substantial progress in creating and gluing our application's main user interface
functionality. However, we are not entirely done.

We still have to put together the UI of the Favorites page and delve into the Books component,

which is used by the app’s main page, and the Favorites page. That’s what the next chapter is
all about.

www.dbooks.org

https://www.dbooks.org

 82

Chapter 6 Favorites UI and Books
Component

Quick intro

We will focus on the Favorites page's user interface, which is only accessible once a user has
signed in.

The Favorites page resides within the src/routes/favorites folder within the project’s structure
and has two parts, __layout.svelte and index.svelte.

To get a visual understanding of how the __layout.svelte and index.svelte files make up the

Favorites page, let’s look at the following figure.

Figure 6-a: Favorites Page (__layout.svelte and index.svelte)

We can see that the Favorites page has a navigation bar and that markup is found within the
__layout.svelte file (highlighted in purple).

The Favorites page also displays a list of favorite books, and that markup is found within the
index.svelte file (highlighted in yellow).

As we’ll see later, most of the index.svelte references Books.svelte, which is the component that

encapsulates the markup for displaying the list of books.

Let’s begin by exploring __layout.svelte.

83

Favorites page (__layout.svelte)

The following listing shows the finished code for the __layout.svelte file found within the
src/routes/favorites folder (not to be confused with the __layout.svelte file located under the root
of the src/routes folder).

Code Listing 6-a: The finished __layout.svelte File (src/routes/favorites folder)
<script>

 import { onAuthStateChanged, signOut } from "Firebase/auth"

 import { onMount } from "svelte"

 import { auth } from "../../firebase.js"

 import { getStores } from "$app/stores"

 import { goto } from "$app/navigation"

 let { session } = getStores()

 onMount(() => {

 onAuthStateChanged(

 auth,

 (user) => {

 session.set({ user })

 },

 (error) => {

 session.set({ user: null })

 console.log(error)

 }

);

 });

 const logOut = async () => {

 await signOut(auth)

 await goto('/')

 }

</script>

<div id="page-wrapper"

 class="page-wrapper with-navbar"

 data-sidebar-type="overlayed-sm-and-down">

 <nav class="navbar">

 <div class="navbar-content">

 </div>

 <a href="/"

 class="navbar-brand ml-10 ml-sm-20">

www.dbooks.org

https://www.dbooks.org

 84

 FavBooks

 {#if $session['user'] != null}

 {$session['user'].email}'s favorites

 {/if}

 <div class="navbar-content ml-auto">

 <button

 class="btn btn-action mr-5"

 type="button"

 onclick="halfmoon.toggleDarkMode()">

 <i class="fa fa-moon-o"

 aria-hidden="true">

 </i>

 <span

 class="sr-only">

 Toggle dark mode

 </button>

 {#if $session['user'] != null}

 <a href={null}

 class="mr-5 btn btn-success"

 role="button"

 on:click={() => logOut()}

 >

 Sign out

 {:else}

 <a href="/login"

 class="mr-5 btn btn-secondary"

 role="button">

 Sign in

 {/if}

 </div>

 </nav>

 <slot />

</div>

85

Before reviewing the details of the code, let’s have a quick look at the following figure, to get a
visual understanding of how __layout.svelte is structured.

Figure 6-b: Favorites Page (Focusing on __layout.svelte)

Looking at the preceding image, we can see that the part highlighted in yellow corresponds to
the page's title. When you click it, you’ll be redirected to the app’s main page.

The section in red corresponds to the user's email that is signed in. The section highlighted in
green corresponds to the dark mode toggle button.

The section in purple corresponds to the Sign out button, and the section in blue corresponds
to the slot tag where the list of favorite books is shown.

Now, let’s focus on the code. Let’s begin with the import statements.

import { onAuthStateChanged, signOut } from "Firebase/auth"
import { onMount } from "svelte"
import { auth } from "../../firebase.js"
import { getStores } from "$app/stores"
import { goto } from "$app/navigation"

From the Firebase/auth library, we import the onAuthStateChanged event and the signOut

method.

From the Svelte core module (svelte), we import the onMount lifecycle event. Then, we

import the auth object from the firebase.js utility file (which we’ll explore later).

We also import the getStores method from the app/stores module and the goto method

from app/navigation.

www.dbooks.org

https://www.dbooks.org

 86

By invoking the getStores method, we can get the current session information by

destructuring the result. The session information is used for accessing user details.

let { session } = getStores()

When the component mounts, we subscribe to the Firebase onAuthStateChanged event, which

we can use to assign the current user details to the active session.

onMount(() => {
 onAuthStateChanged(
 auth,
 (user) => {
 session.set({ user })
 },
 (error) => {
 session.set({ user: null })
 console.log(error)
 }
);
});

This way, we always know which user is active and signed in. Finally, the logOut function

executes when the Sign out button is clicked.

const logOut = async () => {
 await signOut(auth)
 await goto('/')
}

This function invokes the Firebase signOut method, which logs out the signed-in user, and then

redirects the user to the application’s main page.

With regards to the markup, we find the following conditional rendering.

{#if $session['user'] != null}

 {$session['user'].email}'s favorites

{/if}

For the currently signed-in user ($session['user'] != null), the user’s email address will be

shown {$session['user'].email}.

The Sign out button will be rendered if the user has signed in ($session['user'] != null).

Otherwise, the Sign in button is displayed (as a fail-safe option).

{#if $session['user'] != null}
 <a href={null}
 class="mr-5 btn btn-success"
 role="button"
 on:click={() => logOut()}

87

 >
 Sign out

{:else}
 <a href="/login"
 class="mr-5 btn btn-secondary"
 role="button">
 Sign in

{/if}

You might have noticed that it’s not in the __layout.svelte file that the redirection to login.svelte
happens when there’s no signed-in user. This occurs in the load function of index.svelte, as

we’ll see shortly.

Within __layout.svelte, we subscribe and retrieve the current session and user details, and

do not take action based on the user status (signed-in or not).

Finally, we have the slot tag.

Favorites page (index.svelte)

The markup content of the index.svelte file will be inserted into the slot tag found within

__layout.svelte.

Let’s have a look at the finished code of index.svelte found within the src/routes/favorites folder.

Code Listing 6-b: The Finished index.svelte File (src/routes/favorites folder)

<script context="module">

 import Books from "$lib/Books.svelte"

 import { auth,

 delFav } from "../../firebase.js"

 export const load = async () => {

 if (auth?.currentUser == null) {

 return {

 status: 302,

 redirect: "/login",

 }

 }

 return {

 status: 200

 }

 }

www.dbooks.org

https://www.dbooks.org

 88

</script>

<script>

 import { navigating } from '$app/stores'

 const fav = "fav"

 const btnAction = async (event) => {

 await delFav(event.detail.uuid)

 }

</script>

{#if $navigating}

 <p>Fetching favorites...</p>

{:else}

 <Books books=favorites {fav}

 btnText="Remove"

 on:btnAction={btnAction} />

{/if}

The code within the <script context="module"> tag runs outside the component instance.

First, we import what we need.

import Books from "$lib/Books.svelte"

import { auth, delFav } from "../../firebase.js"

In this case, we import the Books component from the Books.svelte file and import the auth

object and delFav function from our firebase.js utility file.

Next, we find the load function, which checks whether the current user is authenticated, and if

not, redirects the user to the Sign in page (login.svelte).

export const load = async () => {
 if (auth?.currentUser == null) {
 return {
 status: 302,
 redirect: "/login",
 }
 }

 return {
 status: 200
 }
}

If the current user is authenticated, then a status with a value of 200 is returned, and no

redirect takes place, which means that the browser stays on the Favorites page.

89

Next, within the script tag that runs within the component instance, we import navigating

from app/stores. We’ll use navigating to know whether the browser has fully loaded the

page or not.

Then, because we are within the Favorites page, we declare fav and give it a non-empty

value: const fav = "fav".

If we don’t do this, when we pass an empty value to the Books component, the Books

component will assume that we are working with the static list of available books, not the list of

favorite books (obtained from Firebase).

 Note: Assigning the value “fav” to fav is critical for the Books component and
the Favorites page to function correctly.

Next, we find the btnAction function, responsible for removing a specific book from the list of

favorite books (stored in Firebase).

const btnAction = async (event) => {
 await delFav(event.detail.uuid)
}

Notice that this function receives the event parameter dispatched from the Books component,

which contains the book's details to be removed from the list of favorite books.

The book's details to be removed are accessible via the detail property (event.detail), and

uuid (event.detail.uuid) represents the book's unique identifier within Firebase.

The book's removal from Firebase is done by invoking the delFav function contained within the

firebase.js utility file, which we’ll explore later.

Regarding the markup, all that happens is that we conditionally render the Books component (to

show the list of favorite books) if the page has fully loaded (determined by checking the value of

$navigating).

{#if $navigating}
 <p>Fetching favorites...</p>
{:else}
 <Books books=favorites {fav}
 btnText="Remove"
 on:btnAction={btnAction} />
{/if}

Notice that on this occasion, as part of the Books component parameters, we assign to the

books property the value of favorites, and to the button’s text (btnText), the text Remove is

assigned.

Notice how the function btnAction binds to btnAction dispatched from within the Books

component.

www.dbooks.org

https://www.dbooks.org

 90

Great! We are now ready to see where the magic happens by exploring the Books component.

Books.svelte

One fundamental part of the UI is required by both the application’s main page and the

Favorites page, and that’s the Books component.

The Books.svelte file is located under the src/lib folder, and it encapsulates all the logic of the
reusable Books component.

Perhaps the most remarkable feature of the component is its ability to display the list of
available books obtained through the execution of src/routes/api/index.js and the list of favorite
books from Firebase.

We already know how the Books component renders its elements. For example, the Books

component displays the list of available books on the application’s main page (when a user is
not signed in).

Figure 6-c: The Books Component (As Seen on the Main Page—No Signed-in User)

The following figure shows how the Books component displays the list of favorite books for a

signed-in user.

91

Figure 6-d: The Books Component (As Seen on the Favorites Page—The User Signed In)

The difference between both scenarios is the value passed to the books property and how the

Books component reacts accordingly. To understand this better, let’s explore this component's

finished code.

Code Listing 6-c: The Finished Books.svelte File (src/lib folder)

<script>

 import { createEventDispatcher,

 onMount } from "svelte"

 import { getStores } from "$app/stores"

 import { getFavs } from "../firebase.js"

 const dispatch = createEventDispatcher()

 let { session } = getStores()

 export let books = []

 export let fav = ""

 export let btnText

 onMount(async () => {

 if (fav !== "") {

 books = []

 books = await getFavs()

 }

 })

 const emitBtnAction = (book) => {

 dispatch("btnAction", book)

 if (fav !== "") {

 books = books.filter(item => item.title != book.title)

www.dbooks.org

https://www.dbooks.org

 92

 }

 }

 </script>

{#if books?.length > 0}

 <div class="content-wrapper">

 <div class="container-fluid">

 <div class="content">

 <h2 class="content-title">

 Books

 </h2>

 </div>

 <div class="row row-eq-spacing">

 {#each books as book}

 <div class="col-6 col-lg-3">

 <div class="mb-20 card">

 <img src={book.cover}

 class="img-fluid rounded"

 alt="book cover" />

 <div

 class=

 "{fav === 'fav' ?

 'alert-secondary ' :

 'alert-primary '}

 text-center alert"

 role="alert">

 {book.description}

 {#if $session['user'] != null}

 <a href={null}

 class=

 "{fav === 'fav' ?

 'btn-danger ' :

 'btn-primary '}

 mt-10 btn

 btn-block"

 role="button"

 on:click={() => emitBtnAction(book)}>

 {btnText}

 {/if}

 </div>

 </div>

93

 </div>

 {/each}

 </div>

 </div>

 </div>

{:else}

 <div class="content-wrapper">

 <div class="row row-eq-spacing">

 <div class="col-sm"></div>

 <div class="col-sm">

 <div class="text-center alert alert-primary" role="alert">

 <h4 class="text-center alert-heading">

 No {fav !== "" ? 'favorites' : 'books'} found

 </h4>

 Click here to add one :).

 </div>

 </div>

 <div class="col-sm"></div>

 </div>

 </div>

{/if}

When the component instance runs, the code contained within the script tag executes. We

begin, as usual, by importing what we need.

import { createEventDispatcher, onMount } from "svelte"
import { getStores } from "$app/stores"
import { getFavs } from "../firebase.js"

First, we import createEventDispatcher and the onMount lifecycle event from the Svelte core

module (svelte).

Next, we import the getStores method from app/stores, which we’ll use to get the session

and user details.

And finally, we import the getFavs function from our firebase.js utility file, which will be

responsible for retrieving from Firebase the list of favorite books for the signed-in user.

Following that, we create an event dispatcher instance, which, as its name implies, will be used

to emit an event to the parent components that will implement the Books component. The parent

components are src/routes/index.svelte and src/routes/favorites/index.svelte.

const dispatch = createEventDispatcher()

Next, we invoke the getStores method to get the current session information.

let { session } = getStores()

www.dbooks.org

https://svelte.dev/tutorial/component-events
https://www.dbooks.org

 94

After we declare the component properties in Svelte (as exported variables), this is how Svelte

component properties are created:

export let books = []
export let fav = ""
export let btnText

Then, on the component’s onMount lifecycle event, if the value of fav is not an empty string

(which means that we want to get the list of favorite books), the getFavs function is invoked,

and the list of favorite books is retrieved from Firebase.

onMount(async () => {
 if (fav !== "") {
 books = []
 books = await getFavs()
 }})

Then, we have the emitBtnAction function, primarily responsible for dispatching the

btnAction event to the parent components that implement the Books component.

const emitBtnAction = (book) => {
 dispatch("btnAction", book)

 if (fav !== "") {
 books = books.filter(item => item.title != book.title)
 }
}

That event dispatching is needed so that src/routes/index.svelte can implement the Add to
favorites button functionality for each book, and src/routes/favorites/index.svelte can implement
the Remove button functionality for each book.

Remember that the Add to favorites button functionality adds the book to Firebase as a favorite

book, and the Remove button functionality deletes the book from Firebase.

Notice, however, that the actual deletion of a book from the books array (only when the

Favorites page is displayed—fav !== "") is not delegated to a parent component, but done

directly within the Books component.

That’s because the books array is not the responsibility of any parent component, but instead of

the Books component. The Books component contains the local copy of the list of books on

display.

Moving on to the markup, we find the following conditional rendering.

{#if books?.length > 0}

This means that the list of books (either the static list of available books or the list of favorite

books obtained from Firebase) will only be rendered if the books array contains at least one

book.

95

Otherwise ({:else}), a message is shown telling the user that there are no books to display,

and how the user can add a book to the favorites list—redirecting the user to the application’s
main page.

<div class="text-center alert alert-primary" role="alert">
 <h4 class="text-center alert-heading">
 No {fav !== "" ? 'favorites' : 'books'} found
 </h4>
 Click here to add one :).
</div>

Notice that this message and scenario only apply to the Favorites page because the static list of
available books is prefilled and never empty, as we’ll see later.

Here comes the exciting part: how the books are rendered. This is possible thanks to Svelte’s

iterator: {#each books as book}.

In essence, for every book contained within the books array, the book’s properties, including the

book’s cover (book.cover), will be rendered.

Notice that only if a user has signed in ($session['user'] != null) will the Add to favorites

button or the Remove button be shown, depending on the value of fav.

The value of fav also determines the button’s color by establishing the correct CSS class to

apply to the button.

{#if $session['user'] != null}
 <a href={null}
 class=
 "{fav === 'fav' ?
 'btn-danger ' :
 'btn-primary '}
 mt-10 btn
 btn-block"
 role="button"
 on:click={() => emitBtnAction(book)}>
 {btnText}

{/if}

When fav === 'fav', it means that the book is already part of the favorites list, and as such,

the btn-danger CSS class makes the button red, making it a Remove button.

When fav !== 'fav', it means that the book is not part of the favorites list but instead part of

the static list of available books, and as such, the btn-primary CSS class makes the button

blue; making it an Add to favorites button.

When either the Add to favorites button or the Remove button is clicked, the emitBtnAction

function is executed. Thus, the event is dispatched to the parent component to implement the

respective functionality, with the currently selected book passed as a parameter.

www.dbooks.org

https://www.dbooks.org

 96

Recap

Well done for following along until now! We finally have the application’s UI ready. Next, we’ll
wrap up the application and book by exploring the code that makes the back-end part of the app
work.

97

Chapter 7 Back-end App Functionality

Quick intro

We’ve covered quite a bit of ground and are now ready to wrap up this book with this final
chapter, which will cover application-specific, back-end functionality. Let’s begin by talking about
the static list of available books.

api/index.js

The list of books on the application’s main page is retrieved from the index.js file within the
src/routes/api folder.

Code Listing 7-a: The Finished index.js File (src/routes/api Folder)

export const get = () => {

 return {

 body: [

 { b_id: 1,

 title:

 'MonoGame Role-Playing Game Development Succinctly',

 cover: 'https://cdn.syncfusion.com/

 content/images/downloads/

 ebook/ebook-cover/

 monogame-role-playing-game-development-succinctly.png',

 description: 'For MonoGame developers looking to build

 their own role-playing game.',

 url: 'https://www.syncfusion.com/succinctly-free-

 ebooks/

 monogame-role-playing-game-development-succinctly'

 },

 {

 b_id: 2,

 title: 'Database Design Succinctly',

 cover: 'https://cdn.syncfusion.com/

 content/images/downloads/

 ebook/ebook-cover/

 database-design-succinctly.png',

 description: 'Model the user’s information

 into data in a computer database system.',

 url: 'https://www.syncfusion.com/succinctly-free-

 ebooks/database-design-succinctly'

www.dbooks.org

https://www.dbooks.org

 98

 },

 {

 b_id: 3,

 title: 'Azure Virtual Desktop Succinctly',

 cover: 'https://cdn.syncfusion.com/

 content/images/downloads/

 ebook/ebook-cover/

 azure-virtual-desktop-succinctly.png',

 description: 'Azure Virtual Desktop is a way to serve

 Windows resources over the internet.',

 url: 'https://www.syncfusion.com/succinctly-free-

 ebooks/azure-virtual-desktop-succinctly'

 },

 {

 b_id: 4,

 title: 'Azure Durable Functions Succinctly',

 cover: 'https://cdn.syncfusion.com/

 content/images/downloads/

 ebook/ebook-cover/

 azure-durable-functions-succinctly.png',

 description: 'Using Durable Functions,

 create stateful objects

 entirely managed by the extension.',

 url: 'https://www.syncfusion.com/succinctly-free-

 ebooks/azure-durable-functions-succinctly'

 },

],

 };

};

 Note: The items and lines highlighted in yellow in the preceding listing are single-
line strings, and I’ve split them into multiple lines to make the listing more readable.
However, if you are going to copy and paste the content of this listing elsewhere,
make sure those highlighted items aren’t split into multiple lines.

Let’s review what’s going on. Essentially, we are exporting a single function called get that

returns a hard-coded JSON object containing a body property with an array of objects (each

representing a book).

Each book object has various properties, such as the book ID (b_id), the book title (title), the

book cover (cover), the book description (description), and the book URL (url).

index.js is exposed as an API endpoint, which means that if you run the application from the
built-in terminal in VS Code using the npm run dev command, you’ll be able to access the

endpoint as http://localhost:3000/api (if your app runs on port 3000, like mine).

http://localhost:3000/api

99

Following is how it looks in my environment.

Figure 7-a: The Static List of Available Books (Exposed as an API Endpoint)

 Note: I just included four books within that list. You can add others if you wish.
You can also think for the future about how to make this list dynamic and store the
available books in Firebase instead.

The list of static books is retrieved within index.svelte (found under the root of the src/routes

folder) by the load function, which uses the browser’s built-in fetch API to access the

application’s API endpoint (/api) and get the data.

export const load = async({fetch}) => {
 const res = await fetch("/api")
 const books = await res.json()
 return {
 props: {
 books,
 },
 }
}

That’s how the list of available books is retrieved. As you can see, it’s straightforward to create
an API endpoint with SvelteKit.

utils.js

Another key aspect of our application is the set of utility functions available for validating data

used by the Sign in and Sign up pages. Let’s have a look at these functions.

Code Listing 7-b: The Finished utils.js File (src/lib Folder)

export const checkEmail = (email) => {

 const pattern = new RegExp("([!#-'*+/-9=?A-Z^-~-]+(\.[!#-'*+/-9=?A-

Z^-~-]+)*|\"\(\[\]!#-[^-~ \t]|(\\[\t -~]))+\")@([!#-'*+/-9=?A-Z^-~-

]+(\.[!#-'*+/-9=?A-Z^-~-]+)*|\[[\t -Z^-~]*])")

 return pattern.test(email)

}

export const loginChecks = (email, pwd) => {

www.dbooks.org

https://www.dbooks.org

 100

 let res = undefined

 if (!checkEmail(email)) {

 res = {

 content: "The email is not formatted correctly.",

 title: "Invalid email",

 alertType: "alert-primary",

 }

 }

 else if (pwd?.length < 8) {

 res = {

 content: "The password must be at least 8 characters long.",

 title: "Password too short",

 alertType: "alert-secondary",

 }

 }

 return res

}

export const registerChecks = (email, pwd, pwd2) => {

 let res = undefined

 if (!checkEmail(email)) {

 res = {

 content: "The email is not formatted correctly.",

 title: "Invalid email",

 alertType: "alert-primary",

 }

 }

 else if (pwd?.toLowerCase() !== pwd2?.toLowerCase()) {

 res = {

 content: "The passwords provided do not match.",

 title: "Passwords do not match",

 alertType: "alert-secondary",

 }

 }

 else if (pwd?.length < 8 || pwd2?.length < 8) {

 res = {

 content: "The password must be at least 8 characters long.",

 title: "Password too weak",

 alertType: "alert-secondary",

 }

 }

101

 return res

}

export const fbLoginChecks = (e) => {

 let res = undefined

 if (e.toString().indexOf("wrong-password") > 0) {

 res = {

 content:

 "The password is incorrect. Please try the correct one.",

 title: "Incorrect password",

 alertType: "alert-secondary",

 }

 }

 else if (e.toString().indexOf("user-not-found") > 0) {

 res = {

 content:

 "This user does not exist. Please use a different user or sign up.",

 title: "User does not exist",

 alertType: "alert-secondary",

 }

 }

 else {

 res = {

 content: "Internal database error. Please try again later.",

 title: "Internal error",

 alertType: "alert-danger",

 }

 }

 return res

}

export const fbRegisterChecks = (e) => {

 let res = undefined

 console.log(e.toString())

 if (e.toString().indexOf("in-use") > 0) {

 res = {

 content:

 "This user already exists. Please try with a different email.",

 title: "User exists",

 alertType: "alert-secondary",

www.dbooks.org

https://www.dbooks.org

 102

 }

 }

 else {

 res = {

 content: "Internal database error. Please try again later.",

 title: "Internal error",

 alertType: "alert-danger",

 }

 }

 return res

}

First, we have the checkEmail function. As its name implies, this function validates (using a

regular expression) that the email provided is valid (correctly formatted as a proper email

address).

Then, we have the loginChecks function, which invokes the checkEmail function and checks

the minimum password (pwd) length, returning a message to the user if validation fails. This

function is used by the Sign in page.

export const loginChecks = (email, pwd) => {
 let res = undefined

 if (!checkEmail(email)) {
 res = {
 content: "The email is not formatted correctly.",
 title: "Invalid email",
 alertType: "alert-primary",
 }
 }
 else if (pwd?.length < 8) {
 res = {
 content: "The password must be at least 8 characters long.",
 title: "Password too short",
 alertType: "alert-secondary",
 }
 }

 return res
}

Then, we have the registerChecks function, which performs the same validations as the

loginChecks function.

https://en.wikipedia.org/wiki/Regular_expression

103

The only difference is that the registerChecks function also validates that both the password

(pwd) and the repeated password (pwd2) are the same. The registerChecks function is used

by the Sign up page.

export const registerChecks = (email, pwd, pwd2) => {
 let res = undefined

 if (!checkEmail(email)) {
 res = {
 content: "The email is not formatted correctly.",
 title: "Invalid email",
 alertType: "alert-primary",
 }
 }
 else if (pwd?.toLowerCase() !== pwd2?.toLowerCase()) {
 res = {
 content: "The passwords provided do not match.",
 title: "Passwords do not match",
 alertType: "alert-secondary",
 }
 }
 else if (pwd?.length < 8 || pwd2?.length < 8) {
 res = {
 content: "The password must be at least 8 characters long.",
 title: "Password too weak",
 alertType: "alert-secondary",
 }
 }

 return res
}

Next, we have the fbLoginChecks function, which executes if an error occurs when attempting

to authenticate the user with Firebase.

This function is used by the Sign in page and interprets possible Firebase errors, and it outputs
a user-friendly version of the error.

export const fbLoginChecks = (e) => {
 let res = undefined

 if (e.toString().indexOf("wrong-password") > 0) {
 res = {
 content:
 "The password is incorrect. Please try the correct one.",
 title: "Incorrect password",
 alertType: "alert-secondary",
 }
 }
 else if (e.toString().indexOf("user-not-found") > 0) {

www.dbooks.org

https://www.dbooks.org

 104

 res = {
 content:
 "This user does not exist. Please use a different user or sign up.",
 title: "User does not exist",
 alertType: "alert-secondary",
 }
 }
 else {
 res = {
 content: "Internal database error. Please try again later.",
 title: "Internal error",
 alertType: "alert-danger",
 }
 }

 return res
}

Then, we have the fbRegisterChecks function, which has a similar purpose and functionality

as the fbLoginChecks function but is used by the Sign up page.

export const fbRegisterChecks = (e) => {
 let res = undefined

 console.log(e.toString())
 if (e.toString().indexOf("in-use") > 0) {
 res = {
 content:
 "This user already exists. Please try with a different email.",
 title: "User exists",
 alertType: "alert-secondary",
 }
 }
 else {
 res = {
 content: "Internal database error. Please try again later.",
 title: "Internal error",
 alertType: "alert-danger",
 }
 }

 return res
}

These are the utility functions used by the Sign in and Sign up pages, primarily for data
validation and handling any possible Firebase errors during authentication or user registration.

105

firebase.js

The firebase.js file, which resides in the root of the src folder of our project, as its name implies,

handles everything to do with Firebase.

If you recall, we added the required Firebase parameters in one of the earlier chapters. Here is

the finished file.

Code Listing 7-c: The Finished firebase.js File (src Folder)

import { initializeApp } from "firebase/app";

import { getAuth } from "Firebase/auth"

import { collection, query, where,

 doc, addDoc, getDocs, getFirestore,

 serverTimestamp, deleteDoc }

 from "Firebase/firestore/lite"

// Your web app's Firebase configuration

const firebaseConfig = {

 apiKey: "<< Your Firebase apiKey goes here >>",

 authDomain: "<< Your Firebase authDomain goes here >>",

 projectId: "<< Your Firebase projectId goes here >>",

 storageBucket: "<< Your Firebase storageBucket goes here >>",

 messagingSenderId: "<< Your Firebase messagingSenderId goes here >>",

 appId: "<< Your Firebase appId goes here >>"

}

let app = initializeApp(firebaseConfig);

const auth = getAuth(app);

let db = getFirestore(app);

const favCollection = collection(db, "favs");

const userDoc = (userId) => doc(db, "users", userId);

const favDoc = (id) => doc(db, "favs", id)

const delFav = async(id) => {

 await deleteDoc(favDoc(id))

}

const addFav = async(book) => {

 const q = query(collection(db, "favs"),

 where("title", "==", book.title),

 where("owner", "==", auth?.currentUser?.uid))

 const querySnapshot = await getDocs(q)

 if (querySnapshot?.docs?.length === 0) {

 await addDoc(favCollection, {...book,

www.dbooks.org

https://www.dbooks.org

 106

 owner: auth.currentUser.uid,

 timestamp: serverTimestamp()})

 }

}

const getFavs = async() => {

 let books = []

 let fv = collection(db, "favs")

 if (auth?.currentUser?.uid !== undefined) {

 const q = query(fv, where("owner", "==",

 auth?.currentUser?.uid))

 const snapshot = await getDocs(q)

 books = snapshot.docs.map(doc => {

 return {

 ...doc.data(),

 uuid: doc.id

 }

 })

 }

 return books

}

export {

 auth,

 db,

 favCollection,

 userDoc,

 favDoc,

 addFav,

 getFavs,

 delFav

}

Let’s have a look at what’s going on. We import the required libraries and modules, such as the

Firebase SDK and authentication library.

import { initializeApp } from "firebase/app";
import { getAuth } from "Firebase/auth"

Then, we import the objects and methods we need to use to interact with the Cloud Firestore

database.

107

import { collection, query, where, doc, addDoc, getDocs, getFirestore,
 serverTimestamp, deleteDoc } from "Firebase/firestore/lite"

Then, we specify the Firebase configuration parameters. As explained earlier, please note that
these will be specific to your Firebase project.

const firebaseConfig = {

 apiKey: "<< Your Firebase apiKey goes here >>",

 authDomain: "<< Your Firebase authDomain goes here >>",

 projectId: "<< Your Firebase projectId goes here >>",

 storageBucket: "<< Your Firebase storageBucket goes here >>",

 messagingSenderId: "<< Your Firebase messagingSenderId goes here >>",

 appId: "<< Your Firebase appId goes here >>"
}

After that, we declare the constants and variables we will use to interact with Firebase. I’ve
added a comment to each so you can understand what each represents.

let app = initializeApp(firebaseConfig); // Firebase app reference

const auth = getAuth(app); // Firebase authentication object

let db = getFirestore(app); // Cloud Firestore database reference

const favCollection = collection(db, "favs"); // List of favorite books

const userDoc = (userId) => doc(db, "users", userId); // Specific user

const favDoc = (id) => doc(db, "favs", id) // Specific book within favorites

Then we have the delFav function, which invokes the deleteDoc method from Firebase that

removes a document (a specific book—favDoc(id)) from the Cloud Firestore database.

const delFav = async(id) => {

 await deleteDoc(favDoc(id))
}

Next, we have the addFav function. As its name implies, this function is responsible for adding a

specific book to the list of favorites for the signed-in user, if it’s not been added before.

This function works because the book to be added to the list of favorites is passed as a

parameter to the function.

Then, the favs Cloud Firestore collection that contains the list of favorite books is queried for

a book with a title equal to book.title and whose owner is the user currently signed in

(auth?.currentUser?.uid).

const addFav = async(book) => {

 const q = query(collection(db, "favs"),

www.dbooks.org

https://www.dbooks.org

 108

 where("title", "==", book.title),

 where("owner", "==", auth?.currentUser?.uid))

 const querySnapshot = await getDocs(q)

 if (querySnapshot?.docs?.length === 0) {

 await addDoc(favCollection, {...book,

 owner: auth.currentUser.uid,

 timestamp: serverTimestamp()})

 }
}

Suppose that query yields no result (meaning that the book is not yet part of the list of favorite

books). In that case, the book is added to the collection by invoking the Firebase addDoc

method, indicating the owner (the currently signed-in user: auth.currentUser.uid) and the

server timestamp.

Moving on, we find the getFavs function, which retrieves the list of all the favorite books for a

specific user (the user currently signed in: auth?.currentUser?.uid).

const getFavs = async() => {

 let books = []

 let fv = collection(db, "favs")

 if (auth?.currentUser?.uid !== undefined) {

 const q = query(fv, where("owner", "==",

 auth?.currentUser?.uid))

 const snapshot = await getDocs(q)

 books = snapshot.docs.map(doc => {

 return {

 ...doc.data(),

 uuid: doc.id

 }

 })

 }

 return books

}

The list of favorite books for the user currently signed in is returned as books.

And finally, we export all the objects, variables, and functions that the rest of the application

code will consume as follows.

export {

 auth,

 db,

109

 favCollection,

 userDoc,

 favDoc,

 addFav,

 getFavs,

 delFav

}

As you have seen, the Firebase-related functionality of our application was pretty

straightforward.

hooks.js

There’s one last item I’d like to cover before we finish the application: Svelte Hooks and server-

side rendering (SSR) with the handle function.

Within the root of the src folder of our project, I’ve added a file called hooks.js. Let’s have a look
at the finished code for hooks.js.

Code Listing 7-d: The Finished hooks.js File (src folder)

// See: https://kit.svelte.dev/docs/hooks#handle

/** @type {import('@sveltejs/kit').Handle} */

export async function handle({ event, resolve }) {

 const response = await resolve(event, {

 ssr: event.url.pathname.startsWith('/favorites')

 });

 return response;

}

We can override how SvelteKit does server-side rendering by default for a specific route within
our application, in this case, for the Favorites page (/favorites).

By default, SvelteKit prerenders the page on the server-side instead of delivering a blank HTML

to the client (browser).

However, by using the handle function, we can indicate if we want to disable SSR for a specific

route.

If you think about it, we don’t need the Favorites page to be prerendered, as it’s a protected

page and can only be accessed once a user is authenticated.

www.dbooks.org

https://kit.svelte.dev/docs/hooks
https://kit.svelte.dev/docs/hooks#handle
https://www.dbooks.org

 110

Disabling SSR for that specific page is as simple as setting the value of the ssr property to

false. So, if we want to disable SSR for the Favorites page, we must do the following.

ssr: !event.url.pathname.startsWith('/favorites')

We would need to negate the value of event.url.pathname.startsWith('/favorites') as

highlighted in yellow in the preceding code.

In other words, hooks.js doesn’t alter the functionality of the application. Still, it’s a nice feature

that can give you more control over how you can interact with SvelteKit’s default behavior.

Running the app

Running the application in development mode is easy, and you must execute the npm run dev

command from the built-in terminal within VS Code.

Figure 7-b: Built-in Terminal in VS Code—Running the App

If you’re on a Windows machine and press the Ctrl key and then click on the Local URL (in my
case, http://localhost:3000/), you’ll see that your default browser (in my case, Edge) will open
and show the application.

http://localhost:3000/

111

Figure 7-c: Running the App—Edge Browser

 Note: If you’re using a Mac instead of a Windows machine, press the Command
key instead of Ctrl.

 Note: As a reminder, you can find the code repository of the finished application
on Github.

Let’s give the application a try. Perform these steps:

1. Click Sign in on the app’s main page.
2. Click the Don’t have an account? link on the bottom of the Sign in page.
3. On the Sign up page, enter the new account details using a valid email address you own,

and click Submit.

Figure 7-d: Testing the App (Signing up)

www.dbooks.org

https://github.com/ed-freitas/sveltesuccinctly
https://www.dbooks.org

 112

If this is a new user, you’ll automatically register, authenticate, and see the following on the

Favorites page.

Figure 7-e: Testing the App (Empty Favorites Page)

Notice that the Favorites page is empty, and the Sign out button is now visible.

You’ll have to click the Click here to add one :) link to add a book to the favorites list, which will
take you to the application’s main page.

Figure 7-f: Testing the App (Main Page—User Signed In)

On the application’s main page, notice the Sign out button is also visible, and for each book
available, there’s an Add to favorites button.

So, click Add to favorites for the first book (as seen from left to right). Once you do that, you’ll

be redirected to the Favorites page, and the book should appear on your list of favorites.

113

Figure 7-g: Testing the App (Favorites Page with a Book Added—User Signed In)

Great, you have added a book to the list of favorites for this new user!

If you navigate to your Firebase console, click your project, then navigate to the Firestore
Database section, you should see your new book within the favs collection, which in my case,
looks as follows.

Figure 7-h: Testing the App (Checking the Newly Added Favorite Book—Firebase Console)

You can continue testing the application further and playing with it by creating other user

accounts and adding or removing more books from the favorites list for those other users.

www.dbooks.org

https://console.firebase.google.com/
https://www.dbooks.org

 114

Next steps and final thoughts

Well done! It’s exciting that you’re here and have followed along. Hopefully you’ve managed to
get everything up and running.

Throughout this book, my goal was to give you a condensed overview of how to build something
with Svelte using SvelteKit. I believe we managed to achieve that with the app that we created.

Although we couldn’t cover everything that Svelte and SvelteKit have to offer, we did manage to

get acquainted with the essential aspects of Svelte in a short period, and in a succinct way.

Deployment is one aspect we couldn’t cover, given that it depends on the back-end platform of
choice. However, we did enable Firebase Hosting as a deployment option, something you might
want to explore in your spare time. Nevertheless, many other deployment options are available
in the market to consider and explore.

Before closing, I’d like to leave you with some challenges and thoughts on possible next steps in
your Svelte learning journey. Something you might want to explore is how to refactor the
existing code even further.

For instance, there are quite a few similarities between login.svelte and register.svelte, so it’s
perfectly possible to create a common component with shared functionality that both pages can
use.

You could also think of making the list of books available non-static and creating an admin panel
(accessible only for authenticated users) where you could add and remove those books directly
from Firebase.

You could add other authentication features for Google or Microsoft accounts to the
application's user authentication mechanism.

Those examples come to mind, but there could be many things to do with the application. If you
pursue any of them, implement something extraordinary, and improve on what I’ve done, I’d
love to hear from you.

Hopefully, this is just the start of your journey in learning Svelte. Thank you for reading. Until
next time, all the best.

	Table of Contents
	The Succinctly Series of Books
	Let us know what you think

	About the Author
	Acknowledgments
	Introduction
	Chapter 1 Getting Started
	Svelte architecture
	Installing Node.js
	Svelte with VS Code
	Creating a Svelte project
	Recap

	Chapter 2 Project Organization
	Quick intro
	Project structure
	Recap

	Chapter 3 Setting Up a Back End
	Quick intro
	Getting started with Firebase
	Creating a datastore
	Setting permissions
	Enabling authentication
	Recap

	Chapter 4 Finished App Features
	The finished app
	The finished Sign in page
	The finished Sign up page
	The finished main page (signed in)
	The finished Favorites page (signed in)
	Recap

	Chapter 5 Main User Interface
	Quick intro
	The app.html file
	The lib folder
	The routes folder
	index.svelte
	__layout.svelte
	Sign in page (login.svelte)
	Sign up page (register.svelte)
	Recap

	Chapter 6 Favorites UI and Books Component
	Quick intro
	Favorites page (__layout.svelte)
	Favorites page (index.svelte)
	Books.svelte
	Recap

	Chapter 7 Back-end App Functionality
	Quick intro
	api/index.js
	utils.js
	firebase.js
	hooks.js
	Running the app
	Next steps and final thoughts

