

Azure Bot Service

Succinctly

By

Ed Freitas

Foreword by Daniel Jebaraj

www.dbooks.org

https://www.dbooks.org/

 3

Copyright © 2023 by Syncfusion, Inc.

2501 Aerial Center Parkway

Suite 200

Morrisville, NC 27560

USA

All rights reserved.

ISBN: 978-1-64200-227-0

Important licensing information. Please read.

This book is available for free download from www.syncfusion.com on completion of a

registration form.

If you obtained this book from any other source, please register and download a free copy from

www.syncfusion.com.

This book is licensed for reading only if obtained from www.syncfusion.com.

This book is licensed strictly for personal or educational use.

Redistribution in any form is prohibited.

The authors and copyright holders provide absolutely no warranty for any information provided.

The authors and copyright holders shall not be liable for any claim, damages, or any other

liability arising from, out of, or in connection with the information in this book.

Please do not use this book if the listed terms are unacceptable.

Use shall constitute acceptance of the terms listed.

SYNCFUSION, SUCCINCTLY, DELIVER INNOVATION WITH EASE, ESSENTIAL, and .NET

ESSENTIALS are the registered trademarks of Syncfusion, Inc.

Technical Reviewer: James McCaffrey

Copy Editor: Courtney Wright

Acquisitions Coordinator: Tres Watkins, VP of content, Syncfusion, Inc.

Proofreader: Graham High, senior content producer, Syncfusion, Inc.

http://www.syncfusion.com/
http://www.syncfusion.com/
http://www.syncfusion.com/

 4

Table of Contents

The Story Behind the Succinctly Series of Books ... 7

About the Author ... 9

Acknowledgments ..10

Introduction ...11

Chapter 1 Getting Started ..12

Overview ..12

Bot Framework Composer intro ..12

Installing Node.js ..12

Installing .NET Core SDK ...17

Installing Composer ..17

Chapter 2 Composer Bot Basics ...20

Overview ..20

Composer UI ..20

Zipcodebase ...21

Creating an empty bot ..23

First-time bot execution ..26

Adding a dialog...28

Summary ..31

Chapter 3 Expanding the Bot ..32

Overview ..32

Executing the dialog from a trigger ...32

Requesting user input...36

Output format ...38

Input validation ...38

www.dbooks.org

https://www.dbooks.org/

 5

Default zip value ...41

Summary ..41

Chapter 4 Working with the API ..42

Overview ..42

Getting the API key ..42

HTTP request ...42

HTTP status code ...45

Creating a branch ...45

Querying the API ..48

First assignment ...49

Other assignments ...51

Summary ..54

Chapter 5 Finalizing the Bot ..55

Overview ..55

API results as a response ...56

First execution ..57

Different status code branch ...59

Adding a package ...60

Interrupting the conversation ..62

Adding a CancelDialog ...64

Enabling interruptions ...65

Testing interruptions ...66

Nicer output ..67

Summary ..69

Chapter 6 Bot Code Structure ...70

Overview ..70

 6

Locating the project ..70

Project folder structure ...70

ZipcodeBot dialog ...74

The get_zip dialog ..77

appsettings.json ...81

Summary ..83

Chapter 7 Publishing the Bot ..84

Overview ..84

Prerequisites ..84

Azure Portal ...84

Resource provider registration ..85

Deploying from Composer ..86

Checking Azure resources ...92

Publishing ...93

Testing the Azure bot ...94

Closing thoughts ...96

www.dbooks.org

https://www.dbooks.org/

 7

The Story Behind the Succinctly Series
 of Books

Daniel Jebaraj, CEO

Syncfusion, Inc.

taying on the cutting edge

As many of you may know, Syncfusion is a provider of software components for the

Microsoft platform. This puts us in the exciting but challenging position of always

being on the cutting edge.

Whenever platforms or tools are shipping out of Microsoft, which seems to be about

every other week these days, we have to educate ourselves, quickly.

Information is plentiful but harder to digest

In reality, this translates into a lot of book orders, blog searches, and Twitter scans.

While more information is becoming available on the internet and more and more books are

being published, even on topics that are relatively new, one aspect that continues to inhibit us is

the inability to find concise technology overview books.

We are usually faced with two options: read several 500+ page books or scour the web for

relevant blog posts and other articles. Just as everyone else who has a job to do and customers

to serve, we find this quite frustrating.

The Succinctly series

This frustration translated into a deep desire to produce a series of concise technical books that

would be targeted at developers working on the Microsoft platform.

We firmly believe, given the background knowledge such developers have, that most topics can

be translated into books that are between 50 and 100 pages.

This is exactly what we resolved to accomplish with the Succinctly series. Isn’t everything

wonderful born out of a deep desire to change things for the better?

The best authors, the best content

Each author was carefully chosen from a pool of talented experts who shared our vision. The

book you now hold in your hands, and the others available in this series, are a result of the

authors’ tireless work. You will find original content that is guaranteed to get you up and running

in about the time it takes to drink a few cups of coffee.

S

 8

Free forever

Syncfusion will be working to produce books on several topics. The books will always be free.

Any updates we publish will also be free.

Free? What is the catch?

There is no catch here. Syncfusion has a vested interest in this effort.

As a component vendor, our unique claim has always been that we offer deeper and broader

frameworks than anyone else on the market. Developer education greatly helps us market and

sell against competing vendors who promise to “enable AJAX support with one click,” or “turn

the moon to cheese!”

Let us know what you think

If you have any topics of interest, thoughts, or feedback, please feel free to send them to us at

succinctly-series@syncfusion.com.

We sincerely hope you enjoy reading this book and that it helps you better understand the topic

of study. Thank you for reading.

Please follow us on Twitter and “Like” us on Facebook to help us spread the

word about the Succinctly series!

www.dbooks.org

mailto:succinctly-series@syncfusion.com
https://twitter.com/Syncfusion
https://www.facebook.com/Syncfusion
https://www.dbooks.org/

 9

About the Author

Ed Freitas is a consultant on business process automation and a software developer focused on
customer success.

He likes technology and enjoys hacking, learning, playing soccer, running, traveling, and being

around his family.

Ed is available at https://edfreitas.me.

https://edfreitas.me/

 10

Acknowledgments

A huge thank you to the fantastic Syncfusion team that helped this book become a reality—
especially Jacqueline Bieringer, Tres Watkins, and Graham High.

The manuscript manager and technical editor thoroughly reviewed the book's organization,
code quality, and overall accuracy—Graham High from Syncfusion and James McCaffrey from
Microsoft Research. Thank you all.

I dedicate this book to Chelin and Puntico—may both your journeys be blessed.

www.dbooks.org

http://www.syncfusion.com/
https://jamesmccaffrey.wordpress.com/
https://www.microsoft.com/en-us/research/people/jammc/
https://www.dbooks.org/

 11

Introduction

Microsoft describes Azure Bot Service as a comprehensive development environment that runs
on Microsoft Azure, created for designing and building enterprise-grade, conversational AI.

Azure Bot Service allows you to keep control of your data and simultaneously build multilingual
conversational bots for different business scenarios, such as customer support, employee
productivity, and sales.

Azure Bot Service delivers a comprehensive development experience by providing a visual
canvas called Bot Framework Composer, based on an extensible open-source tool set,
providing world-class conversational AI with high-quality natural language, speech, and other
Cognitive Services capabilities.

When using Azure Bot Service, you keep control of your data while securely connecting to
popular channels such as Skype, Microsoft Teams, Messenger, telephony, and many others.

One of the critical characteristics of Azure Bot Service is that it is easy to get started.
Furthermore, it comes with many prebuilt dialogs, components, and language models that
empower you to create sophisticated conversational designs that include interruption handling,
context switching, and cancellations in different languages and formats.

Azure Bot Service includes enterprise-grade security, high availability, compliance, and
manageability backed by Azure's core services by being part of Azure.

Another aspect of Azure Bot Service is that after you create a conversational bot, you will
deploy it to multiple channels with minimal or no changes, enabling your organization to have a
real-world, everyday platform experience.

Azure Bot Service is an exciting technology that allows you to create a bot with little or no code.
At the same time, you could create a bot using code with some of the most popular
programming languages, such as JavaScript, Python, and C#.

Throughout this book, we will take a low-code/no-code approach to develop bots with the Azure
Bot Service, explore some of the critical features of Bot Framework Composer, and see how to
deploy to Azure and some channels.

So, without further ado, let's explore what this promising technology has to offer.

https://www.microsoft.com/
https://azure.microsoft.com/en-us/services/bot-services/
https://docs.microsoft.com/en-us/composer/
https://en.wikipedia.org/wiki/Open-source_software
https://azure.microsoft.com/en-us/services/cognitive-services/
https://www.skype.com/
https://www.microsoft.com/en-us/microsoft-teams/
https://www.messenger.com/
https://en.wikipedia.org/wiki/Telephony
https://azure.microsoft.com/en-us/
https://en.wikipedia.org/wiki/JavaScript
https://en.wikipedia.org/wiki/Python_(programming_language)
https://en.wikipedia.org/wiki/C_Sharp_(programming_language)
https://en.wikipedia.org/wiki/Low-code_development_platform
https://en.wikipedia.org/wiki/No-code_development_platform

 12

Chapter 1 Getting Started

Overview

As is the case with other frameworks, services, and technologies, before we can use them, we
need to go through a process where we sign up for the services and install the required tools.
That's what we are going to cover throughout this chapter.

Bot Framework Composer intro

The Bot Framework Composer is an open-source integrated development environment (IDE)
built on top of the Bot Framework SDK, which provides an extensible SDK and tools to build,
test, deploy, and manage intelligent bots.

In contrast, the Bot Framework Composer provides a robust visual authoring canvas enabling
dialogs, language-understanding models, QnAMaker knowledge bases, and language
generation responses used to create conversational bots.

Composer (the term I'll be using going forward) is a desktop application for Windows, macOS,

and Linux.

Installing Node.js

Before installing Composer, you need to have Node.js and npm installed—this is a mandatory
requirement for the use of Composer.

I'm using a Windows machine, so the following steps are specific to Windows. Let's get Node.js
installed.

www.dbooks.org

https://docs.microsoft.com/en-us/composer/
https://en.wikipedia.org/wiki/Integrated_development_environment
https://docs.microsoft.com/en-us/azure/bot-service/index-bf-sdk?view=azure-bot-service-4.0
https://www.qnamaker.ai/
https://docs.microsoft.com/en-us/composer/install-composer
https://en.wikipedia.org/wiki/Microsoft_Windows
https://en.wikipedia.org/wiki/MacOS
https://en.wikipedia.org/wiki/Linux
https://nodejs.org/
https://docs.npmjs.com/downloading-and-installing-node-js-and-npm
https://www.dbooks.org/

 13

Figure 1-a: Node.js Website

Click the button on the left to install the the Long Term Support (LTS) version of Node.js, which

is recommended for most users.

If you already have a version of Node.js installed on your system that’s older than the suggested
LTS version downloadable from the website, download the current and most up-to-date version.

Once the Node.js installer has downloaded, execute it, and you should see a screen similar to
the following one.

Figure 2-b: Node.js Installer – Welcome Screen

 14

To continue with the process, click Next. You should see a screen similar to the following one.

Figure 3-c: Node.js Installer – End-User License Agreement Screen

To continue, select the I accept the terms in the License Agreement option and then click
Next. After that, you should see the following.

Figure 4-d: Node.js Installer – Destination Folder Screen

I will leave the default installation folder, but you are free to change it to another location. Click
Next to continue.

www.dbooks.org

https://www.dbooks.org/

 15

Figure 5-e: Node.js Installer – Custom Setup Screen

After that, you should see the following.

Figure 6-f: Node.js Installer – Tools for Native Modules

Here we are asked to automatically install the necessary tools that some npm modules might

require for compilation. There’s no harm in having these tools installed, so I recommend clicking

the option to install them. Then, click Next to continue.

 16

Figure 7-g: Node.js Installer – Ready to install Node.js Screen

Finally, we are ready to install Node.js—click the Install button to begin the installation process.
You'll see the installation taking place, and once it’s complete, you'll see a screen similar to the
following one.

Figure 8-h: Node.js Installer – Completed the Node.js Setup Wizard Screen

www.dbooks.org

https://www.dbooks.org/

 17

Awesome—click Finish to close the installer, and Node.js should be ready and good to go.

Installing .NET Core SDK

For C# template support, Composer requires having .NET Core SDK installed. In that case,
you'll need to install .NET Core SDK 3.1 or later if you plan to build bots with C#.

Installing Composer

I'm using Windows, so I'm going to use the Composer installer for Windows. Here are the

installers for macOS and Linux. Composer is an open-source tool hosted on GitHub.

Once you’ve downloaded Composer, execute the installer—this will display a screen similar to
the following one.

Figure 9-i: Composer Installer – Choose Installation Options Screen

You may choose to install the software by selecting Anyone who uses this computer (all

users) or selecting Only for me. I usually pick and recommend the first option; however, feel

free to choose the second option. Then, click Next to continue.

Next, we need to choose the Destination folder. I usually suggest leaving the default
installation path.

https://dotnet.microsoft.com/download/dotnet-core/3.1
https://aka.ms/bf-composer-download-win
https://aka.ms/bf-composer-download-mac
https://aka.ms/bf-composer-download-linux
https://github.com/microsoft/BotFramework-Composer

 18

Figure 10-j: Composer Installer – Choose Install Location Screen

You may specify a different installation path if you wish. Once you’re done, click Install—the

installation process will start, and in most cases, will take less than a minute to complete. Before

finalizing the setup process, you can choose to run Composer.

In some cases, there are available updates that you can choose to install immediately or later.

Figure 11-k: Composer – New update available

I recommend installing the latest updates, which I will do by selecting the first option and then

clicking Okay. You can choose the second option or click Cancel.

Composer will restart after installing any updates, and the installer with the latest updates will

execute again.

After installing the updates, you can choose to run Composer before closing the installer. The
main Composer screen looks as follows.

www.dbooks.org

https://www.dbooks.org/

 19

Figure 12-l: Composer – Main Screen

Excellent—we are now ready to start developing bots with Composer, which we will do in the
next chapter.

 20

Chapter 2 Composer Bot Basics

Overview

In the preceding chapter, we explored how to install Node.js and Composer and saw how
straightforward that process was.

In this chapter, we will use Composer to create a zip code bot using a third-party API, which will
give us some insights about zip code locations.

You might find some similarities between the steps and scenarios involved and those available
in the Composer documentation quickstart and tutorials (to maintain consistency with the official
docs); however, we'll dive deeper into details than those resources do.

This will be an exciting and fun project—so without further ado, let's get started.

Composer UI

First, let's get acquainted with the Composer UI to understand which components make up this

product's user interface.

Figure 2-a: Composer's Main Screen (Source: Microsoft)

www.dbooks.org

https://docs.microsoft.com/en-us/composer/quickstart-create-bot
https://docs.microsoft.com/en-us/composer/tutorial-create-weather-bot
https://docs.microsoft.com/en-us/composer/media/introduction/composer-overview-image.png#lightbox
https://www.dbooks.org/

 21

The Composer UI components highlighted in the preceding figure are the ones that we will be
primarily using throughout this book. These elements make up the following four main sections,
most commonly known as panes:

• The navigation pane: This is the main section that contains Composer's main options
and features.

• The bot explorer: This section displays the elements that make up your bot projects,
such as dialogs, triggers, intents, and other bot-specific items.

• The authoring canvas: This section is where the bot's logic resides, and it contains all
the actions associated with a selected trigger.

• The properties pane: This area is where you can set the properties for specific actions,
such as sending or receiving an external request, or requesting input from the user.

There is also a title bar containing the application's name and a menu bar that you can use to
start the execution of a bot, access your account settings, or view application alerts.

As you can see, the UI is self-descriptive and easy to navigate.

Zipcodebase

To create our zip code bot, we first need to sign up for an external third-party API called
Zipcodebase that will give us access to a database of zip code information worldwide.

 Note: We'll be using the Zipcodebase service; however, this is independent of
Composer, and you could use any other zip code API or service provider.

Figure 2-b: Zipcodebase Website

https://zipcodebase.com/

 22

To get started, click either the FREE PLAN or the REGISTER button—this will take you to a

screen similar to the following one.

Figure 2-c: Zipcodebase Website – Choosing a Subscription

Make sure the free plan is selected and then scroll to the bottom of the page to fill in the details
requested.

Figure 2-d: Zipcodebase Website – Creating a Profile

After you have registered for the service, you might be prompted to verify your email. Check

your email and verify it so you can start to use the service.

After verifying your email address, log in to Zipcodebase to get your API key. You should see

the following.

www.dbooks.org

https://www.dbooks.org/

 23

Figure 2-e: Zipcodebase Dashboard – API Key

Make sure you copy the API key to the clipboard.

We are now ready to create an empty bot using Composer.

Creating an empty bot

We are going to develop our zip code bot from scratch. Open Composer and click + Create
new.

Figure 2-f: Composer Main Screen – Create new Button

A screen similar to the following one will appear. Here you can select the bot template to use.

 24

Figure 2-g: Composer – Select a template Screen

Let's select the Empty Bot template for C# and then click Next. After doing that, you will see a

screen similar to the following one.

Figure 2-h: Composer – Create a bot project Screen

www.dbooks.org

https://www.dbooks.org/

 25

I've called the project ZipcodeBot, set the Runtime type to Azure Web App (you can also
choose Azure Functions), and set the location to a local folder on my machine (feel free to
select a different folder). After you’ve specified these fields, click Create.

Composer will download the bot template, build the runtime, and merge packages—this might

take a few seconds or up to a couple of minutes. Afterward, you will see the created bot.

Figure 2-i: Composer – ZipcodeBot Created

Here we can see that we have an empty bot with a dialog called ZipcodeBot, and under that,
there are two triggers (indicated by lightning icons): one called Greeting and another called
Unknown intent.

The Greeting intent executes when the user connects to the bot, sending the user a greeting.
On the other hand, the Unknown intent runs when the user sends a message, or the bot
cannot recognize the user's request. In that case, the bot responds to the user, indicating that it
cannot understand the user request.

To start giving our bot some personality, the first thing we need to do is change the Greeting
intent. To do that, let's click the Greeting intent under ZipcodeBot, and then click the Send a
response action.

Figure 2-j: Composer – Send a response Action Selected

Then, in the properties pane, find the Bot responses section and choose Welcome to your
bot. After doing that, you'll be able to edit the intended response.

 26

Figure 2-k: Composer – Editing a Bot Response

I'll type the following message: Welcome to ZipcodeBot. Please type the word 'zip' to start.
However, you can customize this to your taste.

First-time bot execution

Let's run our bot for the first time. To do that, click the Start bot button found just below the

menu bar.

Figure 2-l: Composer (Start bot Button)

Once the bot has successfully executed, you will see a dialog dropdown similar to the following.

Figure 2-m: Composer – Local bot runtime manager

Next, let's click the Open Web Chat option highlighted in Figure 2-m. After doing that, you will
see the web chat to interact with the bot.

www.dbooks.org

https://www.dbooks.org/

 27

Figure 2-n: Composer – ZipcodeBot Web Chat

To test the bot, type the word zip, which will cause the bot to respond with the following
message.

Figure 2-o: Composer – ZipcodeBot Web Chat – Response

As expected, the bot responds that it doesn't understand the intent provided because we

haven't programmed this logic yet.

Now that we have executed the bot for the first time, let's stop its execution, which you can do
by clicking on the stop icon highlighted in the following figure.

 28

Figure 2-p: Composer – Stop Bot Icon

Clicking that will stop the execution of the bot and make it inactive until it executes again.

Adding a dialog

Bots consist of various components, and some of the most important are dialogs. In other
words, most bots are structured as a sequence of dialogs.

A dialog includes specific bot functionality, such as asking the user for a response, sending a
reply, or making a request to an API.

Let's create a dialog that can get a zip code from the user. Within Composer's bot explorer
pane, select the ZipcodeBot top-level element. Next, click the ellipsis (…), and then the + Add
a dialog menu item.

Figure 2-q: Composer – Add a dialog Menu Item

The Create a dialog window will appear. Here we can enter a name and description. I'll call this

dialog get_zip, but you can call it something else.

www.dbooks.org

https://www.dbooks.org/

 29

Figure 2-r: Composer – Create a dialog Window

After entering those values, click OK. After that, you will see the get_zip dialog within the bot
explorer pane.

Figure 2-s: Composer – Bot Explorer – get_zip Dialog

To continue, click BeginDialog, and then go to the authoring canvas to the right of the bot

explorer.

 30

Figure 2-t: Composer – Authoring Canvas – BeginDialog

Under BeginDialog, click the + button and click on the Send a response menu item in the
authoring canvas.

Figure 2-u: Composer – BeginDialog – Send a response

Under Bot responses, let's type the following text: Let's check a zip code. What we have

done is created a dialog called get_zip, and this dialog has a trigger called BeginDialog, and

this trigger has an action called Send a response—which we can visualize as follows.

www.dbooks.org

https://www.dbooks.org/

 31

Figure 2-v: Dialog – Trigger – Action

The action, in this case, is the response that is sent to users when the get_zip dialog activates.

 Tip: To be able to test this new dialog, it is necessary to have a trigger in
ZipcodeBot—this will allow you to start the get_zip dialog.

Summary

We have taken the initial steps to create a bot, added some basic functionality, and explored

Composer's UI characteristics throughout this chapter.

The cool thing is that nothing we have done and looked at has involved writing any code so far.

In the following chapter, we will continue to expand the bot's functionality by initially executing
this dialog from a trigger.

 32

Chapter 3 Expanding the Bot

Overview

Conversational flows within bots are composed of different dialogs, which are connected one to
the other.

In the previous chapter, we created the basics of our ZipcodeBot and added a new dialog. To

be able to use that dialog, we need to invoke it. To do that, we need to start that dialog from a

trigger.

So, we need to connect the get_zip dialog to the ZipcodeBot dialog—the bot's main dialog. To
understand this better, let's look at the following figure.

Figure 3-a: ZipcodeBot (Main) Dialog to get_zip Dialog Relationship

Executing the dialog from a trigger

Let's link the get_zip dialog to the bot's main dialog—ZipcodeBot. To do that, click the main

dialog. Under Recognizer/Dispatch type, click Change—as seen in the properties pane in the

following figure.

Figure 3-b: Composer – Properties Pane – Recognizer/Dispatch type – Change

www.dbooks.org

https://www.dbooks.org/

 33

A window will appear, which will allow us to choose a recognizer type. Click the Regular

expression option and then click Done.

Figure 3-c: Choose a recognizer type Window

Next, click the ZipcodeBot dialog, click on the ellipsis (…), and click the + Add new trigger
menu item.

Figure 3-d: Composer – ZipcodeBot – Add new trigger

 34

Once those actions have occurred, an input dialog will appear, requesting the following info:

trigger type, trigger name, and regEx pattern.

Figure 3-e: Create a trigger Dialog

For the type of trigger, we can leave the default value, which is Intent recognized. I will call the
name of the trigger zip and use zip as the value of the regEx pattern. Next, click Submit.

The zip trigger will appear under Unknown intent in bot explorer. We can see that as follows.

Figure 3-f: Composer – zip Trigger

Let’s recap what we've just done. The zip trigger instructs the ZipcodeBot to look for the word
zip in any incoming message. To do that, we use regular expressions (also known as regEx).

www.dbooks.org

https://www.dbooks.org/

 35

Next, with the zip trigger selected, in the authoring canvas, click + > Dialog management >

Begin a new dialog.

Figure 3-g: Composer – Dialog management – Begin a new dialog

Once the dialog appears, click the Dialog name dropdown and choose the get_zip option from
the Dialog name on the properties pane.

Figure 3-h: Composer – Dialog name – get_zip

We have just created a trigger and indicated that our ZipcodeBot could recognize regular

expressions, using the word zip as the trigger.

 36

Requesting user input

For the ZipcodeBot to get the relevant information regarding a zip code, the bot needs to
request the user to enter the zip code, and for that, we need to use a Text input action.

Under the get_zip dialog within bot explorer, select BeginDialog and then click + under Begin

a new dialog in the authoring canvas.

Figure 3-i: Composer – get_zip – BeginDialog

Next, click the Ask a question menu item and then Text.

Figure 3-j: Composer – get_zip – BeginDialog – Ask a question – Text

We are prompted to enter the Prompt for text followed by the User input.

www.dbooks.org

https://www.dbooks.org/

 37

Figure 3-k: Composer – get_zip – BeginDialog – Prompt for text

Under Bot response, we can enter the following text: Please enter a zip code to continue.
With that done, select the User input (Text) action. Under User input, enter user.zip within the
Property box.

Figure 3-l: Composer – get_zip – BeginDialog – User input

 38

Output format

Now that we have specified the user input, we need to indicate the output format. To do that,

click the Output format box then enter the value trim(this.value) in the field.

The trim function is a prebuilt expression that removes leading and trailing spaces from a

value, and this is useful in case the user enters the zip code with a leading or trailing space.

Figure 3-m: Composer – get_zip – BeginDialog – User input – Output format

Input validation

We have managed to gather the user's input and set the output format at this stage. So far, so

good. Nevertheless, we need to ensure that the user's data is valid—an action known as input

validation.

As the user will be entering a zip code, we should at least confirm that the zip code provided is a
valid one. To do that, we can check if the zip code supplied is a valid U.S. zip code.

The Zipcodebase API is valid for multiple countries, and that's a lot of zip code country formats
to validate, so let's limit the input validation to U.S. zip codes only.

If the user indicates a U.S. zip code with fewer than five characters or more than five characters,
the input validation would be invalid. Otherwise, it would be valid.

Let's get that sorted. In the authoring canvas, click Other in the properties pane. Expand the
Recognizers section, click Add alternative, and enter the text shown in the following figure.

www.dbooks.org

https://www.dbooks.org/

 39

Figure 3-n: Composer – get_zip – BeginDialog – User input (Text) – Other – Unrecognized prompt

The text value is as follows: Apologies, I cannot understand '${this.value}'. Please specify a

5 digit zip code in US format i.e.12345.

That's the text response that the bot will return if the user input is not understood.

Next, we need to specify the validation rule to check whether the zip code entered is valid or
not. Click the Validation section, then under Validation Rules click Add new > Write an
expression.

Figure 3-o: Composer – get_zip – BeginDialog – User input (Text) – Other – Validation Rules

Enter the expression length(this.value) == 5, which will ensure that the zip code value is five
characters long.

 40

Figure 3-p: Composer – (get_zip – BeginDialog – User input (Text) – Other – Validation Rules

We also want to add a response that the bot can send back to the user if the zip code length is
different than five characters. We can do this by clicking Add alternative under Invalid prompt.

Figure 3-q: Invalid prompt – Add alternative

Enter the following text: The zip code '${this.value}' is not valid. Please enter a zip code

that is 5 digits long.

Figure 3-r: Invalid prompt – Text response

www.dbooks.org

https://www.dbooks.org/

 41

Default zip value

Although it is not strictly necessary, it’s also possible to add a default value for the zip code that

the bot can return.

To do that, click Prompt configurations, and under Default value, enter a valid U.S. zip code.
I'm going to enter 33165, but you may choose another.

Figure 3-s: Composer – get_zip – BeginDialog – User input (Text) – Other – Prompt Configurations

Summary

We have set the bot up so that whenever a user enters the message zip, the bot will respond
and request the user to indicate the zip code. If that value is valid, then it will be stored in the
user.zip variable.

If the value is not a valid zip code (not equal to five characters), the bot sends an error message

back to the user.

Next, we are going to explore how to make a call to the Zipcodebase API.

 42

Chapter 4 Working with the API

Overview

So far, we have created the bot with enough functionality to ask the user for a zip code and

send a reply in case the user's input is not adequate.

However, if the user's feedback is correct and the zip code valid, we cannot process it. That's

what we are going to do throughout this chapter.

Getting the API key

To retrieve the data and information related to the zip code, we need to invoke the Zipcodebase
API.

To use Zipcodebase, we need to call the API using an API key. Switching back to the

Zipcodebase web page, let's copy the value under API Key from the Dashboard.

Figure 4-a: Zipcodebase Dashboard with API Key

HTTP request

Going back to Composer, in the bot explorer, make sure that the BeginDialog is selected. Then

below all the existing actions added, click + > Access external resources > Send an HTTP

request.

www.dbooks.org

https://www.dbooks.org/

 43

Figure 4-b: Composer – BeginDialog – Access external resources – Send an HTTP request Menu Item

The following details are visible in the properties pane. Select the GET option under the HTTP
method.

Figure 4-c: Composer – BeginDialog – Send an HTTP request – HTTP method

At this stage, we need to get the API URL, which we can get from the Zipcodebase website as

highlighted in the following figure.

 44

Figure 4-d: Zipcodebase – API URL

The following is the Composer-compatible version of the URL, because the user.zip variable

contains the zip code submitted by the user.

https://app.zipcodebase.com/api/v1/search?codes=${user.zip}

Next, we need to add the API key to the URL and the country code. So let's copy the API Key

value from the Zipcodebase website to add it to the URL.

Figure 4-e: Zipcodebase Website API Key Value

In the following URL, replace API_KEY_VALUE_GOES_HERE with the value of your API key copied

from the Zipcodebase website.

https://app.zipcodebase.com/api/v1/search?apikey=API_KEY_VALUE_GOES_HERE&code
s=${user.zip}&country=US

Enter the URL into the Url field within the properties pane of Composer, as shown in the
following figure.

Figure 4-f: Composer – BeginDialog – Send an HTTP request – Url

When the bot performs the HTTP request, the response must be stored somewhere—in a
variable assigned to the Result property.

www.dbooks.org

https://www.dbooks.org/

 45

We will store the result within the dialog.api_response variable. The dialog is a scope that

retains its properties for the duration of a dialog, in this case, BeginDialog.

 Tip: To understand how properties and variable scopes work, I suggest looking at
the official documentation.

Figure 4-g: Composer – BeginDialog – Send an HTTP request – Result property

Next, we need to set the Response type value to json.

Figure 4-h: Composer – BeginDialog – Send an HTTP request – Response type

HTTP status code

When working with HTTP requests, status codes are essential. Status codes indicate whether
the request was successful or not.

Therefore, the bot must determine whether the response was successful before sending a

response to the user.

A status code with a value of 200 indicates that the response obtained from the API was
successful. A status code with a different value would suggest a problem accessing the API—in
a situation like this, we need to create a branch.

Creating a branch

To create a branch—which in programming would be the equivalent of using an if-else

condition—we need to go back to the authoring canvas and click + under Send an HTTP

request. Then, click Create a condition > Branch: If/else.

https://docs.microsoft.com/en-us/composer/concept-memory

 46

Figure 4-i: Composer – BeginDialog – Create a condition – Branch: If/else

The Branch: If/else appears in the authoring canvas. Select the branch, and in the properties
pane, under Condition, select the Write an expression option.

Figure 4-j: Composer – BeginDialog – Branch: If/else – Condition – Write an expression

As the Condition, set the value to: dialog.api_response.statusCode == 200.

Figure 4-k: Composer – Begin Dialog – Branch: If/else – Condition

Under the True branch, click +.

www.dbooks.org

https://www.dbooks.org/

 47

Figure 4-l: Composer – BeginDialog – Branch: If/else – True Branch

Once that is done, click Manage properties > Set properties.

Figure 4-m: Composer – BeginDialog – Branch: If/else – Manage properties – Set properties

You will then see the following.

Figure 4-n: Composer – BeginDialog – Branch: If/else – True Branch – Set properties

We will use the Set properties action because we want to assign the response values obtained
from the API to a few variables. This way, the results are provided to the user with the
requested zip code information.

 48

Querying the API

Before proceeding, we need to check which values the API can return. To do that, let's use
Hoppscotch, which is an open-source API development web application that allows you to query
and interact with any REST API.

So, point your browser to the Hoppscotch website (I usually use either Microsoft Edge or

Google Chrome, but feel free to use another modern browser). Add the following URL to the

field highlighted in the screenshot below.

https://app.zipcodebase.com/api/v1/search?apikey=API_KEY_VALUE_GOES_HERE&code
s=33165&country=US

Make sure you replace API_KEY_VALUE_GOES_HERE with the value of your Zipcodebase API

Key. For testing purposes, I've replaced ${user.zip} with 33165.

Figure 4-o: Hoppscotch Website Querying the Zipcodebase API

With the URL pasted, you can test the API by clicking Send. Let’s see what happens.

Figure 4-p: Hoppscotch Website – Zipcodebase API Query Raw Results

As seen in the preceding figure, the API returns a result. To see the result in full detail, click the

JSON tab. In most cases, when using the Hoppscotch website, the JSON tab will be the default

tab.

www.dbooks.org

https://hoppscotch.io/
https://en.wikipedia.org/wiki/Representational_state_transfer
https://hoppscotch.io/
https://www.microsoft.com/en-us/edge
https://www.google.com/chrome/
https://www.dbooks.org/

 49

Figure 4-q: Hoppscotch Website – Zipcodebase API Query JSON Results

By inspecting the result returned by the API, we can find two distinct sections: the query and

results sections. We want to get the data from the results section.

Notice that the results JSON object contains another JSON object with the zip code value

(33165) passed as a query parameter to the API call, which is an array of JSON objects with

one element in this case.

First assignment

For each of those values contained within that array element, we want to create a property and
assign its respective value so that the bot can return them to the user as a response.

To do that, go back to Composer, make sure that the Set properties action is selected, and

then within the properties pane, click Add new under Assignments.

 50

Figure 4-r: Composer – BeginDialog – Set properties – Assignments – Add new

Let's add dialog.postal_code as the Property name.

Let’s also add dialog.api_response.content.results[user.zip][0]['postal_code'] as

the Value, as seen in the following figure.

Figure 4-s: Composer – BeginDialog – Set properties – Assignments – Property/Value

So, let's analyze what we have just done here. We are going to store the zip code returned by
the API call within the dialog.postal_code variable. The zip code returned by the API is

accessible using dialog.api_response.content.results[user.zip][0]['postal_code'].

But how did I reach the conclusion that the zip code returned by the API is available through

dialog.api_response.content.results[user.zip][0]['postal_code']? To understand

this better, let's have a look at the following diagram.

www.dbooks.org

https://www.dbooks.org/

 51

Figure 4-t: Relationship between the API Response and Assignments Value

We can see that dialog.api_response corresponds to the complete response (highlighted in

purple) returned by the API, including the header and Response Body.

Contained within the Response Body, we find the content highlighted in green.The content

includes a query and a results object. Within the content object, highlighted in orange-

yellow, we see the results object.

Within the results object, we find another object (highlighted in light blue) that contains an

array, and this object has the same value as the zip code queried (which we previously stored in
the user.zip variable).

Finally, within the array's first element ([0]), highlighted in red, we find each of the properties.

We want to retrieve the value of the postal_code property.

Other assignments

Now that we have assigned the value of the first property (postal_code) returned by the API

call, let's do the same for the other properties returned by the API.

All we need to do is click Add new for each property we want to add from the results object.

By using dialog.api_response.content.results[user.zip][0]['country_code'], we

can retrieve the value of country_code. Store it as dialog.country_code.

 52

Figure 4-u: Composer – The dialog.country_code Property

Likewise, with dialog.api_response.content.results[user.zip][0]['latitude'], we

can retrieve the value of latitude. Store it as dialog.latitude.

Figure 4-v: Composer – The dialog.latitude Property

With dialog.api_response.content.results[user.zip][0]['longitude'], we can

retrieve the value of longitude. Store it as dialog.longitude.

Figure 4-w: Composer – The dialog.longitude Property

With dialog.api_response.content.results[user.zip][0]['city'], we can retrieve the

value of city. Store it as dialog.city.

Figure 4-x: Composer – The dialog.city Property

With dialog.api_response.content.results[user.zip][0]['state'], we can retrieve

the value of state. Store it as dialog.state.

www.dbooks.org

https://www.dbooks.org/

 53

Figure 4-y: Composer – The dialog.state Property

With dialog.api_response.content.results[user.zip][0]['city_en'], we can retrieve

the value of city_en. Store it as dialog.city_en.

Figure 4-z: Composer – The dialog.city_en Property

With dialog.api_response.content.results[user.zip][0]['state_en'], we can retrieve

the value of state_en. Store it as dialog.state_en.

Figure 4-aa: Composer – The dialog.state_en Property

With dialog.api_response.content.results[user.zip][0]['state_code'], we can

retrieve the value of state_code. Store it as dialog.state_code.

Figure 4-ab: Composer – The dialog.state_code Property

With dialog.api_response.content.results[user.zip][0]['province'], we can retrieve

the value of province. Store it as dialog.province.

 54

Figure 4-ac: Composer – The dialog.province Property

With dialog.api_response.content.results[user.zip][0]['province_code'], we can

retrieve the value of province_code. Store it as dialog.province_code.

Figure 4-ad: Composer – The dialog.province_code Property

 Note: Each Value field starts with a = character, whereas the Property fields do not.

 Tip: It is not necessary to save each value returned by the API, just the ones that
your bot will use. In this case, I've opted to store each value returned by the API call to
highlight how to do it.

Summary

Our bot is not ready yet. Nevertheless, the goal of this chapter was to explore how to interact
with the API, obtain a response, and store each response value, which we have done.

In the chapter that follows, we will add the remaining steps to finalize the creation of our bot.

www.dbooks.org

https://www.dbooks.org/

 55

Chapter 5 Finalizing the Bot

Overview

Looking at the authoring canvas, we can see that the BeginDialog looks as follows.

Figure 5-a: Composer – BeginDialog

We can see that the Set properties action now contains all the assignments we previously

created, which is excellent!

 56

API results as a response

Let’s send a response to the user with some of the details obtained using the API. Click + just
below Set properties. Then, click Send a response.

Figure 5-b: Composer – BeginDialog – Send a response

Select Send a response > Add alternative.

Figure 5-c: Composer – BeginDialog – Send a response – Responses

We can enter the answer that the bot will return to the user (obtained from the API). Let's
respond to the user with the city, state, and county (province).

So, let's enter the following text as a response: City: ${dialog.city}, State:

${dialog.state}, County: ${dialog.province}.

www.dbooks.org

https://www.dbooks.org/

 57

Figure 5-d: Composer – BeginDialog – Send a response – Bot responses

With that done, let's test our bot for the first time.

First execution

To execute the bot for the first time, click Start bot as shown in the following figure. Starting a

bot takes a few seconds.

Figure 5-e: Composer – Start a bot

Once the bot is running, click Open Web Chat.

Figure 5-f: Composer – Open Web Chat

The chat window will appear on the right-hand side of Composer.

 58

Figure 5-g: Composer – Chat Window (1)

To begin the conversation with the bot, let's type the word zip; this triggers the bot to respond
and request the user to enter a zip code to continue.

Figure 5-h: Composer – Chat Window (2)

Let's enter 98052 as the zip code and see how the bot responds.

Figure 5-i: Composer – Chat Window (3)

Great—we can see that the bot returned the city, state, and county corresponding to that zip
code using the Zipcodebase API.

To stop the execution of the bot, click the buttons highlighted in the following figure (first on 1

and then on 2).

www.dbooks.org

https://www.dbooks.org/

 59

Figure 5-j: Composer – How to Stop the Bot

Different status code branch

When we created the branch to check if the API returns a 200 HTTP status code, we finished
the branch that occurs when that condition is true; however, we did not specify what happens if
the API returns a status code different than 200.

We can first send a response to the user indicating that an error occurred when calling the API.

To do that, click + under False (Branch: If/else action) and then click Send a response.

Figure 5-k: Composer – BeginDialog – Branch: If/else – False Branch – Send a response

Then, under Responses, enter text that indicates that a problem happened when calling the
API in the properties pane.

 60

Figure 5-l: Composer – BeginDialog – Branch: If/else – False Branch – Send a response – Responses

In this branch, we need to remove the zip code value entered by the user so that the value
doesn't persist on the user.zip variable when the API returns an error or cannot process the

request.

To do that, click + under the Send a response action just added.

Figure 5-m: Composer – BeginDialog – Manage properties – Delete a property

The Delete a property action is shown. In the properties pane, enter user.zip for the Property
field.

Figure 5-n: Composer – BeginDialog – Delete a property – Property

If the call to the API fails, the bot will not store the zip code value that the user entered.

Adding a package

Another helpful feature that any bot should have is the ability to allow the user to interrupt the
conversation, which involves canceling the active dialog. So let's implement this. In Composer,
click the Package manager icon (which resembles three books).

www.dbooks.org

https://www.dbooks.org/

 61

Figure 5-o: Composer – Package Manager Icon

Then, within the search field, type helpandcancel and press Enter. Click the package
Microsoft.Bot.Components.HelpAndCancel to select it.

Figure 5-p: Composer – Package Manager – Microsoft.Bot.Components.HelpAndCancel (1)

Then, click the installation button.

Figure 5-q: Composer – Package Manager – Microsoft.Bot.Components.HelpAndCancel (2)

After that, Composer will install the package. Following the package installation, a Project

Readme pop-up window might appear. If it does, click OK.

Then you will see the package as installed.

 62

Figure 5-r: Composer – Package Manager – Microsoft.Bot.Components.HelpAndCancel (Installed)

Interrupting the conversation

Now we have the technical ability to interrupt the conversation if the user wishes to, but we still
need to implement that functionality.

The installation of this new package added a CancelDialog and a HelpDialog to the bot. If this

is not visible, close Composer and open it again. After opening Composer, you will see the

following welcome screen.

Figure 5-s: Composer – Welcome Screen

Click ZipcodeBot to open the bot. This will take you to the authoring canvas, where you can

continue to work on the bot. Notice that now, in bot explorer, you can see the CancelDialog and

HelpDialog added to the bot.

www.dbooks.org

https://www.dbooks.org/

 63

Figure 5-t: Composer – Bot Explorer – CancelDialog and HelpDialog

We will use the CancelDialog to give the user the option of canceling the conversation with the
bot.

To do that, select the ZipocodeBot dialog, and then click + Add new trigger.

Figure 5-u: Composer – ZipcodeBot – Add new trigger

As the trigger type, leave the default option Intent recognized. Let's enter cancel as the trigger

name, and as for the input pattern, let's enter the value stop|quit|cancel. When you’re done,

click Submit.

 64

Figure 5-v: Composer – Create a trigger

Now, Composer creates the cancel trigger.

Figure 5-w: Composer – The cancel Trigger

Next, we need to add a CancelDialog, so let's do that.

Adding a CancelDialog

In the authoring canvas, under cancel (Intent recognized), click + > Dialog management >
Begin a new dialog.

Figure 5-x: Composer – Dialog management – Begin a new dialog

Then in the properties pane, under Dialog name, select the option CancelDialog.

www.dbooks.org

https://www.dbooks.org/

 65

Figure 5-y: Composer – Cancel – Begin a new dialog – Dialog name – CancelDialog

The cancel trigger connects to the CancelDialog, and we have the basic framework for

allowing the user to stop the conversation with the bot.

Enabling interruptions

So far, the bot knows how to retrieve the zip code information using the Zipcodebase API, but it
still doesn't know what to do when the user wants to interrupt the conversation. Therefore, we
will now enable interruptions so that the conversation can stop when the user requests it.

In the bot explorer, click get_zip, and then select the BeginDialog trigger. In the authoring

canvas, select the Prompt for text action. Then, in the properties pane, under Other, change

the value of Allow Interruptions to true.

Figure 5-z: Composer – Enabling Interruptions

 66

By enabling interruptions following the steps described within the get_zip dialog, the bot can
respond to any cancellation requests that the user makes.

Testing interruptions

Let's give this a try. Click the Start bot button to execute the bot and start a new conversation.

Once the bot starts, click Open Web Chat.

Let's begin the conversation by entering the word zip. Then, after the bot responds, enter

cancel, stop, or quit.

Once you do that, the CancelDialog kicks in, and the bot responds by asking if you would like
to cancel the conversation. We can see this conversational flow as follows.

Figure 5-aa: Composer – ZipcodeBot Conversation – Using the CancelDialog (1)

The bot will stop the conversation when the Yes button is clicked, and when the No button is
clicked, the regular conversational flow will continue. I will click the Yes button.

Figure 5-ab: Composer – ZipcodeBot Conversation – Using the CancelDialog (2)

As you can see, the bot responded correctly to the request to stop the conversation. So, by

using the CancelDialog, we made the bot slightly more intelligent by understanding the intent to

abort a conversation.

www.dbooks.org

https://www.dbooks.org/

 67

Nicer output

The last thing I'd like to cover in this chapter is returning the bot’s response as a card rather
than a single line of text. By doing this, we make the bot’s response look better and more
professional.

Select the get_zip dialog in bot explorer (which is probably already selected). Choose the Send

a response action on the True branch in the authoring canvas.

With that done, go to the properties pane and click + > Attachments.

Figure 5-ac: Composer – True Branch – Send a response – Attachments

Next, click Add new attachment > Create from template > Adaptive card.

Figure 5-ad: Composer – Add new attachment – Create from template – Adaptive card

 68

In the editor, modify the text field with the following:

${user.zip} = ${dialog.city}, ${dialog.state} (${dialog.province} county)

Figure 5-ae: Composer – Attachment Editor (Expanded)

With that done, we can restart the bot and test it again. Click the Restart bot button, and then

Open Web Chat.

Figure 5-af: Restart bot Button

Click Restart conversation – new user ID to begin fresh. Then, as usual, enter the word zip,
and enter any valid U.S. zip code. I'll enter 80027.

www.dbooks.org

https://www.dbooks.org/

 69

Figure 5-ag: Conversation with an Adaptive Card Response

As you can see, the bot's response is an adaptive card rather than a line of text. Although it's

not state-of-the-art UI, it's a step forward.

Summary

Throughout this chapter, we went through the necessary steps to finalize our ZipcodeBot by
giving it the ability to stop conversations.

Although the bot's functionality is straightforward, the process for creating the bot has been
rather effortless. So far, we haven’t had to write a single line of code.

That's part of the magic of Composer—to take something as complex as a bot's code and

completely abstract it from the person creating the bot.

In the chapter that follows, we'll get to see firsthand all the work (and code) that Composer has
created behind the scenes for us, which otherwise we would have written (before Composer).

Furthermore, we'll take that generated code and push it to Azure so we can have a fully

functioning bot running in the cloud, using Azure Bot Service.

 70

Chapter 6 Bot Code Structure

Overview

Composer does a lot for us. It acts as an abstraction layer that hides all the underlying code
required to create and execute a bot.

Next, we will explore the bot project structure that Composer has bootstrapped and created for
us.

Locating the project

If you have Composer running, close and reopen it to locate the folder where Composer has
created the bot code. When Composer opens, you will see the name of your bot project and the
location on the disk where the project resides.

Figure 6-a: Composer – Welcome Screen – Location of the Bot Project

Let's navigate to the project's folder (Location) and look at what Composer has created.

Project folder structure

Within the bot project folder, we can find a Visual Studio solution file called ZipcodeBot.sln. We
can open it with the latest version of Visual Studio (in my case, the 2019 Community Edition).

www.dbooks.org

https://www.dbooks.org/

 71

Figure 6-b: Bot Folder Structure and Content

Double-click the ZipcodeBot.sln file to open it. Once it is open, go to Solution Explorer to look

at the project structure and files.

Figure 6-c: Bot Project Structure (Visual Studio)

As we can see, the ZipcodeBot project contains many folders, each with many files. If we had
to create this project structure manually, this would be a significant task; however, Composer
took care of this without us noticing.

 72

We won't go through all the details or look at every folder and file. Let's just look at the most

critical folders and files.

Figure 6-d: Bot Project Structure – Most Important Folders and Files

One of the critical elements of the bot is the controller. The controller—in this case,
BotController.cs—is the core engine for processing bot requests to the appropriate route. Let's
look at this file.

Code Listing 6-a: BotController.cs

using System;
using System.Collections.Generic;
using System.Linq;
using System.Threading.Tasks;
using Microsoft.AspNetCore.Mvc;
using Microsoft.Bot.Builder;
using Microsoft.Bot.Builder.Dialogs.Adaptive.Runtime.Settings;
using Microsoft.Bot.Builder.Integration.AspNet.Core;
using Microsoft.Extensions.Configuration;
using Microsoft.Extensions.Logging;

namespace ZipcodeBot.Controllers
{
 [ApiController]
 public class BotController : ControllerBase
 {
 private readonly Dictionary<string, IBotFrameworkHttpAdapter>
 _adapters = new Dictionary<string, IBotFrameworkHttpAdapter>();
 private readonly IBot _bot;
 private readonly ILogger<BotController> _logger;

 public BotController(
 IConfiguration configuration,
 IEnumerable<IBotFrameworkHttpAdapter> adapters,

www.dbooks.org

https://www.dbooks.org/

 73

 IBot bot,
 ILogger<BotController> logger)
 {
 _bot = bot ?? throw new ArgumentNullException(nameof(bot));
 _logger = logger;

 var adapterSettings = configuration.GetSection(
 AdapterSettings.AdapterSettingsKey).
 Get<List<AdapterSettings>>() ??
 new List<AdapterSettings>();
 adapterSettings.Add(AdapterSettings.CoreBotAdapterSettings);

 foreach (var adapter in adapters ??
 throw new ArgumentNullException(nameof(adapters)))
 {
 var settings = adapterSettings.FirstOrDefault(
 s => s.Enabled && s.Type == adapter.GetType().FullName);

 if (settings != null)
 {
 _adapters.Add(settings.Route, adapter);
 }
 }
 }

 [HttpPost]
 [HttpGet]
 [Route("api/{route}")]
 public async Task PostAsync(string route)
 {
 if (string.IsNullOrEmpty(route))
 {
 _logger.LogError($"PostAsync: No route provided.");
 throw new ArgumentNullException(nameof(route));
 }

 if (_adapters.TryGetValue(route,
 out IBotFrameworkHttpAdapter adapter))
 {
 if (_logger.IsEnabled(LogLevel.Debug))
 {
 _logger.LogInformation($"PostAsync: routed '{route}'
 to {adapter.GetType().Name}");
 }

 // Delegating the processing of the HTTP POST to the
 // appropriate adapter.
 // The adapter will invoke the bot.
 await adapter.ProcessAsync(Request,

 74

 Response, _bot).ConfigureAwait(false);
 }
 else
 {
 _logger.LogError($"PostAsync: No adapter
 registered and enabled for route {route}.");
 throw new KeyNotFoundException($"No adapter registered
 and enabled for route {route}.");
 }
 }
 }
}

Without delving into specific details, the BotController.cs code has two main functionalities.
The first is to initialize BotFrameworkHttpAdapter adapters—this occurs within the
BotController constructor.

The second functionality is to route incoming requests, which the Postasync method does, by

delegating the HTTP request processing to the appropriate adapter.

ZipcodeBot dialog

In Solution Explorer, scroll down, and there you'll find the ZipcodeBot.dialog file, which

contains the bot's main logic and rules.

Figure 6-e: The Project Root Files

Behind the scenes, the ZipcodeBot.dialog file loads when the bot executes, and this file
contains all the main settings that the bot uses to establish the conversation with the user. Let's
inspect the contents of this file.

Code Listing 6-b: ZipcodeBot.dialog

{
 "$kind": "Microsoft.AdaptiveDialog",
 "$designer": {

www.dbooks.org

https://docs.microsoft.com/en-us/dotnet/api/microsoft.bot.builder.integration.aspnet.webapi.botframeworkhttpadapter?view=botbuilder-dotnet-stable
https://www.dbooks.org/

 75

 "name": "ZipcodeBot",
 "description": "",
 "id": "A79tBe"
 },
 "autoEndDialog": true,
 "defaultResultProperty": "dialog.result",
 "triggers": [
 {
 "$kind": "Microsoft.OnConversationUpdateActivity",
 "$designer": {
 "id": "376720"
 },
 "actions": [
 {
 "$kind": "Microsoft.Foreach",
 "$designer": {
 "id": "518944",
 "name": "Loop: for each item"
 },
 "itemsProperty": "turn.Activity.membersAdded",
 "actions": [
 {
 "$kind": "Microsoft.IfCondition",
 "$designer": {
 "id": "641773",
 "name": "Branch: if/else"
 },
 "condition": "string(dialog.foreach.value.id) !=
 string(turn.Activity.Recipient.id)",
 "actions": [
 {
 "$kind": "Microsoft.SendActivity",
 "$designer": {
 "id": "859266",
 "name": "Send a response"
 },
 "activity": "${SendActivity_Greeting()}"
 }
]
 }
]
 }
]
 },
 {
 "$kind": "Microsoft.OnUnknownIntent",
 "$designer": {
 "id": "mb2n1u"
 },

 76

 "actions": [
 {
 "$kind": "Microsoft.SendActivity",
 "$designer": {
 "id": "kMjqz1"
 },
 "activity": "${SendActivity_DidNotUnderstand()}"
 }
]
 },
 {
 "$kind": "Microsoft.OnIntent",
 "$designer": {
 "id": "d5ER8p",
 "name": "zip"
 },
 "intent": "zip",
 "actions": [
 {
 "$kind": "Microsoft.BeginDialog",
 "$designer": {
 "id": "uvw6RC"
 },
 "activityProcessed": true,
 "dialog": "get_zip"
 }
]
 },
 {
 "$kind": "Microsoft.OnIntent",
 "$designer": {
 "id": "RkkXZi",
 "name": "cancel"
 },
 "intent": "cancel",
 "actions": [
 {
 "$kind": "Microsoft.BeginDialog",
 "$designer": {
 "id": "KM4gcW"
 },
 "activityProcessed": true,
 "dialog": "CancelDialog"
 }
]
 }
],
 "generator": "ZipcodeBot.lg",
 "id": "ZipcodeBot",

www.dbooks.org

https://www.dbooks.org/

 77

 "recognizer": {
 "$kind": "Microsoft.RegexRecognizer",
 "intents": [
 {
 "intent": "zip",
 "pattern": "zip"
 },
 {
 "intent": "cancel",
 "pattern": "stop|quit|cancel"
 }
]
 }
}

Essentially, we can see that most of the dialog details we created using Composer are here.
Notice that in one of the actions, there's a reference to the get_zip dialog. There are references
to the Branch: if/else and also the cancel dialog.

The get_zip dialog

Going back to Solution Explorer, double-click the get_zip file to open and inspect it.

Code Listing 6-c: get_zip.dialog

{
 "$kind": "Microsoft.AdaptiveDialog",
 "$designer": {
 "id": "dBaQjz",
 "name": "get_zip",
 "comment": "Get the zip code"
 },
 "autoEndDialog": true,
 "defaultResultProperty": "dialog.result",
 "triggers": [
 {
 "$kind": "Microsoft.OnBeginDialog",
 "$designer": {
 "name": "BeginDialog",
 "description": "",
 "id": "pCF5nd"
 },
 "actions": [
 {
 "$kind": "Microsoft.SendActivity",
 "$designer": {
 "id": "J7llQd"

 78

 },
 "activity": "${SendActivity_J7llQd()}"
 },
 {
 "$kind": "Microsoft.TextInput",
 "$designer": {
 "id": "qJM9qX"
 },
 "disabled": false,
 "maxTurnCount": 3,
 "alwaysPrompt": false,
 "allowInterruptions": true,
 "prompt": "${TextInput_Prompt_qJM9qX()}",
 "unrecognizedPrompt":
 "${TextInput_UnrecognizedPrompt_qJM9qX()}",
 "property": "user.zip",
 "outputFormat": "=trim(this.value)",
 "validations": [
 "=length(this.value) == 5"
],
 "invalidPrompt": "${TextInput_InvalidPrompt_qJM9qX()}",
 "defaultValue": "33165"
 },
 {
 "$kind": "Microsoft.HttpRequest",
 "$designer": {
 "id": "itxd2e"
 },
 "method": "GET",
 "url": "https://app.zipcodebase.com/api/v1/search?
 apikey=03b1edc0-2883-11ec-8073-777a767aae15
 &codes=${user.zip}&country=US",
 "headers": {},
 "resultProperty": "dialog.api_response",
 "responseType": "json"
 },
 {
 "$kind": "Microsoft.IfCondition",
 "$designer": {
 "id": "kOFBrL"
 },
 "condition": "=dialog.api_response.statusCode == 200",
 "actions": [
 {
 "$kind": "Microsoft.SetProperties",
 "$designer": {
 "id": "KhWRrn"
 },
 "assignments": [

www.dbooks.org

https://www.dbooks.org/

 79

 {
 "property": "dialog.postal_code",
 "value": "=dialog.api_response.content.
 results[user.zip][0]['postal_code']"
 },
 {
 "value": "=dialog.api_response.content.
 results[user.zip][0]['country_code']",
 "property": "dialog.country_code"
 },
 {
 "value": "=dialog.api_response.content.
 results[user.zip][0]['latitude'] ",
 "property": "dialog.latitude"
 },
 {
 "value": "=dialog.api_response.content.
 results[user.zip][0]['longitude']",
 "property": "dialog.longitude"
 },
 {
 "value": "=dialog.api_response.content.
 results[user.zip][0]['city']",
 "property": "dialog.city"
 },
 {
 "value": "=dialog.api_response.content.
 results[user.zip][0]['state']",
 "property": "dialog.state"
 },
 {
 "value": "=dialog.api_response.content.
 results[user.zip][0]['city_en']",
 "property": "dialog.city_en"
 },
 {
 "value": "=dialog.api_response.content.
 results[user.zip][0]['state_en']",
 "property": "dialog.state_en"
 },
 {
 "value": "=dialog.api_response.content.
 results[user.zip][0]['state_code']",
 "property": "dialog.state_code"
 },
 {
 "value": "=dialog.api_response.content.
 results[user.zip][0]['province']",
 "property": "dialog.province"

 80

 },
 {
 "value": "=dialog.api_response.content.
 results[user.zip][0]['province_code']",
 "property": "dialog.province_code"
 }
]
 },
 {
 "$kind": "Microsoft.SendActivity",
 "$designer": {
 "id": "Qmqx7A"
 },
 "activity": "${SendActivity_Qmqx7A()}"
 }
],
 "elseActions": [
 {
 "$kind": "Microsoft.SendActivity",
 "$designer": {
 "id": "tFVM0T"
 },
 "activity": "${SendActivity_tFVM0T()}"
 },
 {
 "$kind": "Microsoft.DeleteProperty",
 "$designer": {
 "id": "NSO8CP"
 },
 "property": "user.zip"
 }
]
 }
]
 }
],
 "generator": "get_zip.lg",
 "recognizer": "get_zip.lu.qna",
 "id": "get_zip"
}

As you might have noticed, the highlights of this file are the HTTP request to the Zipcodebase
API and the property assignments from the results obtained from the API.

Although this file is easy to read, its beauty is that Composer has abstracted the creation of this

definition file by providing us with a pleasant and easy-to-use UI.

www.dbooks.org

https://www.dbooks.org/

 81

appsettings.json

Another important file for the bot to function correctly is appsettings.json. This file contains
settings and definitions on how the project executes. Within Solution Explorer, under the
settings folder, double-click the file to open it.

The most critical section is the runtime part, and as you will see in the listing that follows, it

contains instructions on how to execute the project using the .NET Core run command.

You can verify this by right-clicking ZipcodeBot within Solution Explorer, then clicking

Properties.

Figure 6-f: ZipcodeBot Properties – Visual Studio

Here is the code for appSettings.json.

Code Listing 6-d: appsettings.json

{
 "customFunctions": [],
 "defaultLanguage": "en-us",
 "defaultLocale": "en-us",
 "importedLibraries": [],
 "languages": [
 "en-us"
],
 "Logging": {
 "LogLevel": {
 "Default": "Information",
 "Microsoft": "Warning",
 "Microsoft.Hosting.Lifetime": "Information"
 }
 },
 "luFeatures": {

 82

 "enableCompositeEntities": true,
 "enableListEntities": true,
 "enableMLEntities": true,
 "enablePattern": true,
 "enablePhraseLists": true,
 "enablePrebuiltEntities": true,
 "enableRegexEntities": true
 },
 "luis": {
 "authoringEndpoint": "",
 "authoringRegion": "",
 "defaultLanguage": "en-us",
 "endpoint": "",
 "environment": "composer",
 "name": "ZipcodeBot"
 },
 "MicrosoftAppId": "",
 "publishTargets": [],
 "qna": {
 "hostname": "",
 "knowledgebaseid": "",
 "qnaRegion": "westus"
 },
 "runtime": {
 "command": "dotnet run --project ZipcodeBot.csproj",
 "customRuntime": true,
 "key": "adaptive-runtime-dotnet-webapp",
 "path": "../"
 },
 "runtimeSettings": {
 "adapters": [],
 "features": {
 "removeRecipientMentions": false,
 "showTyping": false,
 "traceTranscript": false,
 "useInspection": false,
 "setSpeak": {
 "voiceFontName": "en-US-JennyNeural",
 "fallbackToTextForSpeechIfEmpty": true
 }
 },
 "components": [],
 "skills": {
 "allowedCallers": []
 },
 "storage": "",
 "telemetry": {
 "logActivities": true,
 "logPersonalInformation": false,

www.dbooks.org

https://www.dbooks.org/

 83

 "options": {
 "connectionString": ""
 }
 }
 },
 "skillConfiguration": {},
 "skillHostEndpoint": "http://localhost:3980/api/skills"
}

Summary

These .dialog files are the essence of the bot and contain its core logic. The C# code-behind
then parses the content of both files and executes the bot.

Now that we understand what lies behind the scenes, we are ready to publish our bot to the

Azure Bot Service, which we'll do in the next and final chapter.

 84

Chapter 7 Publishing the Bot

Overview

By going through all the steps explained throughout the book's previous chapters, we have
managed to create a small functional bot and looked at how some of its most critical parts work.
Our focus now will be on how to deploy and publish it to Azure Bot Service.

Prerequisites

To deploy and publish a bot, the following prerequisites are required:

• Microsoft Azure subscription.
• Node.js 12.13.0 or later.
• The latest version of the Azure CLI.
• PowerShell 6.0 or later.

Azure Portal

Before we can deploy the bot to Azure, we need to have an account. If you don't have an Azure
account, getting one is very easy—you can create a free account here if you don't have one.

Figure 7-a: Microsoft Azure Website

www.dbooks.org

https://azure.microsoft.com/en-us/
https://nodejs.org/
https://docs.microsoft.com/en-us/cli/azure/install-azure-cli
https://docs.microsoft.com/en-us/powershell/scripting/install/installing-powershell
https://azure.microsoft.com/en-us/
https://www.dbooks.org/

 85

Once you have set up an Azure account, you can log in by going to the Portal. Before deploying

and publishing the bot, you must ensure that your Azure subscription is registered to use

Microsoft.BotService—this is known as resource provider registration.

Resource provider registration

The official Azure documentation provides comprehensive information on how to resolve errors
for resource provider registration.

The Microsoft.BotService namespace is an essential requirement that must be registered to

your Azure subscription for Composer to deploy and publish your bot successfully.

Therefore, you must follow the steps described in the documentation (specifically on Solution 3
- Azure Portal). You can do this by checking your Azure subscription properties, then in
Resource providers, look for Microsoft.BotService and ensure that this provider is registered
(if it isn’t, click Register).

The following figure shows how the provider appears on my Azure subscription (called Visual

Studio Dev Essentials—your subscription might have a different name). You might find that

this provider is not registered; if so, you'll have to register it.

Whether the Microsoft.BotService provider appears as registered by default might be
dependent on the type of Azure subscription you have purchased.

Figure 7-b: Azure Portal – Subscription – Resource providers – Microsoft.BotService

https://portal.azure.com/
https://docs.microsoft.com/en-us/azure/azure-resource-manager/templates/error-register-resource-provider
https://docs.microsoft.com/en-us/azure/azure-resource-manager/templates/error-register-resource-provider

 86

Deploying from Composer

With Composer and your bot open, click the Publish icon on the navigation pane as shown in
the following figure.

Figure 7-c: Composer – Publish Icon – Navigation Pane

Then, select ZipcodeBot.

Figure 7-d: Composer – Publish your bots – ZipcodeBot

After that, we need to define a Publish target, so click the dropdown option, Manage profiles,

or the Publishing profile tab directly.

www.dbooks.org

https://www.dbooks.org/

 87

Figure 7-e: Composer – Publish your bots / Publish target / Manage profiles

Next, click Add new.

Figure 7-f: Composer – Publishing profile – Add new

The Create a publishing profile pop-up window appears. Here we need to enter the profile

name—in this case, ZipcodeBot, and as the Publishing target, choose Publish bot to Azure.

 88

Figure 7-g: Composer – Create a publishing profile (1)

Click Next, and you'll see the following options. Let's select Create new resources > Next.

Figure 7-h: Composer – Create a publishing profile (2)

A pop-up window appears, prompting you to sign in to Azure.

www.dbooks.org

https://www.dbooks.org/

 89

Figure 7-i: Composer – Azure Sign In

There, enter the email address that you used when you signed up for Azure, and click Next.

After that, enter the password, and click Sign in.

We'll have to enter the Azure and resource details. Select your Azure Subscription. As for the
Resource group, select Create new, and give it the name bots.

For the Operating System, leave the default option selected: Windows (Recommended).

For the Resource details, set the Name field to thezipcodebot (feel free to give it another

name).

As for the Region set to West US and the LUIS region set to West US, feel free to choose any

others if you wish; these are not mandatory.

Figure 7-j: Composer – Configure resources

 90

After entering those details, click Next to continue. You will see the list of Azure resources
required for the bot to run.

Figure 7-k: Composer – Add resources

As for the resources selected by default as Optional, such as Azure Cosmos DB or

Application Insights, I would recommend unselecting them all (except the two LUIS services)

to avoid incurring unnecessary Azure costs.

Check the complete list of Optional resources (from top to bottom) and remove all the ones

selected by default (except the two LUIS services).

If you want to experiment with LUIS, the Azure Language Understanding service, you must
leave the Microsoft Language Understanding Authoring Account and Prediction Account
resources selected.

Figure 7-l: Composer – Add resources – LUIS

www.dbooks.org

https://www.luis.ai/
https://www.dbooks.org/

 91

We will not cover LUIS in this book; however, I encourage you to explore the official LUIS

documentation and how you can use and integrate this functionality into your bot.

For my bot deployment, I'm going to leave the Microsoft Language Understanding Authoring

Account and Prediction Account resources selected.

After unselecting the resources that you won't use, click Next to continue.

Figure 7-m: Composer – Review resources to be created

Next, you'll see a screen with the list of resources that the bot will require at this stage. Click
Create to continue (the Create button is not visible in Figure 7-m, but it exists in the
application).

Composer will provision the required Azure resources to deploy and publish the bot.

Figure 7-n: Composer – Provisioning Azure Bot Resources

Once the operation finalizes, you will see the following message.

Figure 7-o: Composer – Provision success

https://docs.microsoft.com/en-us/azure/cognitive-services/luis/

 92

Checking Azure resources

Let's open a web browser, go to the Azure Portal, and click All resources to view the resources
created by Composer.

Figure 7-p: Azure Portal – Main Page

After clicking All resources, you will see the App Service Plan and the App Service, among
others.

Figure 7-q: Azure Portal – All resources

www.dbooks.org

https://www.dbooks.org/

 93

Publishing

Back in Composer, go to the Publish tab and set the bot's Publish target as ZipcodeBot.
Then, click Publish selected bots.

Figure 7-r: Composer – Publish selected bots

After clicking Published selected bots, you will see the following pop-up window.

Figure 7-s: Composer – Publish

To publish the bot, click Okay—you will see the following message.

Figure 7-t: Composer – Publishing one bot

 94

The deployment and publishing process might take a few minutes depending on your internet

connection speed.

You will also see message updates depending on what stage of the process the deployment
and publishing are, such as Creating build artifact….

Figure 7-u: Composer – Publishing one bot – Creating build artifact

Once you’re done, you will see the following Success message.

Figure 7-v: Composer – Publishing one bot – Success

Testing the Azure bot

With the bot successfully deployed and published, the next thing to do is test it. Let's go back to
Azure Portal, then click All resources.

In my case, the Azure Bot Service is the first item on my list of resources. Make sure you click
the element that has the column Type value set to Azure Bot.

www.dbooks.org

https://www.dbooks.org/

 95

Figure 7-w: Azure Portal – All resources – Azure Bot Highlighted

After you click the Azure Bot item, you'll see the Azure Bot blade. Ensure your browser has

cookies enabled (indicated by the small eye icon highlighted in red in the upper-right side of

Figure 7-x)—which most browsers do by default; however, some cookies might not be allowed.

Click Test in Web Chat and start a conversation with the bot. As you can see in the following
figure, the bot works just great, the same as it did in Composer.

 96

Figure 7-x: Azure Portal – Azure Bot Service – Test in Web Chat

Excellent—we have achieved our goal!

Closing thoughts

Although we have created a basic bot that returns information about zip codes using a third-

party API through the course of this book, we got a working and fully functional bot deployed to

the Azure cloud without a single line of code. If that's not impressive, I don't know what is!

The other exciting aspect of this tale is that we could have added more sophisticated features to
the bot without writing any code, such as by using LUIS.

In my opinion, combining Composer and Azure Bot Service is powerful, yet easy to understand

and do.

From the initial days of the Microsoft Bot Framework—reserved mostly for highly qualified C#
developers—creating bots with Microsoft technologies has come a long way.

These technologies now empower non-professional developers (also known as citizen
developers) to create compelling bots without any coding knowledge, which interests
businesses.

www.dbooks.org

https://www.dbooks.org/

 97

I invite you to keep exploring what you can do with Composer and Azure Bot Service—we’ve
barely scratched the surface of what's possible.

Consider adding LUIS-enabled capabilities to your bot so that it can understand natural
language intents or use more articulated dialogs. The possibilities are endless.

A great way to continue your journey is to explore the official Microsoft documentation, look at

some of the samples available, and add your ideas to the mix. If you come up with something

cool, I'd love to hear about it.

I hope this book has given you some valuable pointers that you can take on that journey.
Thanks for reading—until next time, take care, keep learning, and have fun!

https://docs.microsoft.com/en-us/azure/bot-service/?view=azure-bot-service-4.0

	Table of Contents
	The Story Behind the Succinctly Series of Books
	taying on the cutting edge
	Information is plentiful but harder to digest
	The Succinctly series
	The best authors, the best content
	Free forever
	Free? What is the catch?
	Let us know what you think

	About the Author
	Acknowledgments
	Introduction
	Chapter 1 Getting Started
	Overview
	Bot Framework Composer intro
	Installing Node.js
	Installing .NET Core SDK
	Installing Composer

	Chapter 2 Composer Bot Basics
	Overview
	Composer UI
	Zipcodebase
	Creating an empty bot
	First-time bot execution
	Adding a dialog
	Summary

	Chapter 3 Expanding the Bot
	Overview
	Executing the dialog from a trigger
	Requesting user input
	Output format
	Input validation
	Default zip value
	Summary

	Chapter 4 Working with the API
	Overview
	Getting the API key
	HTTP request
	HTTP status code
	Creating a branch
	Querying the API
	First assignment
	Other assignments
	Summary

	Chapter 5 Finalizing the Bot
	Overview
	API results as a response
	First execution
	Different status code branch
	Adding a package
	Interrupting the conversation
	Adding a CancelDialog
	Enabling interruptions
	Testing interruptions
	Nicer output
	Summary

	Chapter 6 Bot Code Structure
	Overview
	Locating the project
	Project folder structure
	ZipcodeBot dialog
	The get_zip dialog
	appsettings.json
	Summary

	Chapter 7 Publishing the Bot
	Overview
	Prerequisites
	Azure Portal
	Resource provider registration
	Deploying from Composer
	Checking Azure resources
	Publishing
	Testing the Azure bot
	Closing thoughts

