BY ED FREITAS

am ¢

SUCCINCTLY EBOOK SERIES sEESyncfusion

Azure Bot Service
Succinctly

By
Ed Freitas

Foreword by Daniel Jebaraj

.:.Sgncfusmn

https://www.dbooks.org/

Copyright © 2023 by Syncfusion, Inc.

2501 Aerial Center Parkway
Suite 200

Morrisville, NC 27560

USA

All rights reserved.

ISBN: 978-1-64200-227-0

Important licensing information. Please read.

This book is available for free download from www.syncfusion.com on completion of a
registration form.

If you obtained this book from any other source, please register and download a free copy from
www.syncfusion.com.

This book is licensed for reading only if obtained from www.syncfusion.com.

This book is licensed strictly for personal or educational use.
Redistribution in any form is prohibited.
The authors and copyright holders provide absolutely no warranty for any information provided.

The authors and copyright holders shall not be liable for any claim, damages, or any other
liability arising from, out of, or in connection with the information in this book.

Please do not use this book if the listed terms are unacceptable.
Use shall constitute acceptance of the terms listed.

SYNCFUSION, SUCCINCTLY, DELIVER INNOVATION WITH EASE, ESSENTIAL, and .NET
ESSENTIALS are the registered trademarks of Syncfusion, Inc.

Technical Reviewer: James McCaffrey

Copy Editor: Courtney Wright

Acquisitions Coordinator: Tres Watkins, VP of content, Syncfusion, Inc.
Proofreader: Graham High, senior content producer, Syncfusion, Inc.

http://www.syncfusion.com/
http://www.syncfusion.com/
http://www.syncfusion.com/

Table of Contents

The Story Behind the Succinctly Series of BOOKS..........iiiiiiiiiiiiiiii i, 7
ADOUL thE AULNOT i 9
ACKNOWIEAGMENTS ..ttt 10
[g1a geTo [T T o1 T o] o HE PP TP PP PP PPPPPRRPPPON 11
Chapter 1 Getting STartedccccoiiieiiieee s 12
OVEIVIEW ... 12
Bot Framework COMPOSET N0iieiiii e e e e et e e e e e e e e e e e e e e eet e e e e e e e e eaersaaaaaas 12
Tty r= U T [o T\ oo L= 1= 12
INSTAING .NET COIE SDKiiiiiiiiiitiiieiiitiitetiiieieeeeeeeesseebaeee s eb e s s bbb ssssesbbesbssnnnnnnees 17
INSLAIING COMPOSEL ... et e et e e e e e e e e e e et a e e e e e e e seatt b e e eaeeeeasteannnaes 17
Chapter 2 CompoSer BOt BASICS.....ccuuuuiiiiiiiiiiieeiiiiiis ettt e e e e e e e e e r e e e e 20
OVEIVIBW ..o 20
COMPOSET Ul ...t e e ettt e e e e et e e e e et e e e e e et e e nrbbnaa e e eeeeas 20
WA o [ofo o [T o T- L1 PTT SRR 21
Creating an eMPLY DOtuiiii e e e e e e e e e e e 23
FIrSt-TimMe DO @XECULION ...ttt 26
FaXo (o [T aTo Jr= o [F= 1 (o Lo FO PSSR PPPROPRR 28
0L 0] =T P 31
Chapter 3 EXpanding the BOt ... 32
L@ V=T V=P 32
Executing the dialog from @ trigQerooeeeeeii e 32
REQUESTING USEI IMPUL. ...ttt 36
OULPUL TOMMAL ... 38
1T o T8 1 Y= T = o) o ST 38

www.dbooks.org

https://www.dbooks.org/

DEfaUIt ZIP VAIUE ..o 41

ST 101 =TSSP 41
Chapter 4 Working With the APl ... e e 42
OVEIVIEW ... 42
GettiNg the AP KY ... 42
o I =0 [0 1 USSP 42
HTTP STATUS COUR.....ueiiiiiiiiiiiiiieee ettt 45
Creating @ BranCh ... 45
QUENYING The AP ... e e e e e e e e et e e e e e e e e ettt e e e eaaeas 48
TS A= TSE] T 1 =T | OSSP 49
OthEr @SSIGNMENTS ... 51
IS L 0] = PP 54
Chapter 5 FINalizing the BOt......ooo e e 55
OVEIVIEW ... 55
AP TESUILS @S @ NS IONSE ... tttttttttttttteteeeeee ettt ettt ettt 56
FIrST @XECULION ...ttt e e e e e et e e e e e e e et r e e e e e e e aana 57
Different status Code DranCh...........ooiii it 59
P Yo [0 1 g o =W 0 T=Tod = To [PP P TP TP P PP P PP PORRPRRPPRRPRRRN 60
INterrupting the CONVEISALIONii it e e e e et e e e e e e e e eanaaaaas 62
Adding @ CanCEeIDIAIOYcooeiiiiiie i e 64
EN@DIING INTEITUPTIONS ... ettt 65
TeSHNG INTEITUPTIONS ..o 66
AN L0t = o o | PSS 67
SUIMIMIBIY ¢ttt et e e ettt et e b oo oo e e e ettt et ba e e e e e e et e e e bbb e e e e e e e eennbbn e e eeeeas 69
Chapter 6 BOt COU@ SIIUCTUIE ..o 70

(@ V=T VL= TP 70

LOCALING TN PIOJECE ... ettt es 70

Project fOIAEN SITUCIUNE ..o e e e et e e e e e e e aerea s 70
AT oTodoTo (=12 0] i L= o o PSSP 74
The get_zip dialogooooiiiiiiii 77
APPSEIINGS.JSON ..o 81
ST 01 =TSP 83
Chapter 7 Publishing the BoOt ... 84
OVEIVIEW ... 84
e =T CCTo [N IS (=SSP 84
AZUIE POITAL ...ttt e e e e e e e e e e e e e e e e 84
RESOUICe Provider rEQISTIATION. e ueitieeeiiieiitiieeeeibeeeeeeebbb bbb bbeebensnnnnene 85
Deploying fromM COMPOSETuuuiiei ettt e e e e e e e e e e e ettt e e e e e e e eeessaaaa s 86
CRECKING AZUIE FESOUITES ...uuuiieeeieeieiiiee e e e e e e ettt ee e e e e e e e e e e et a e e e e e e e e e ast b e e e aaeeeeanrtaanaeaaaes 92
PUBDIISNING . .t 93
TestiNg the AZUIE DOLcooiiiiiiii 94
ClOSING tNOUQGNTS...... e e e e e e et e e e e e e e e e a et e e e eaaeas 96

www.dbooks.org

https://www.dbooks.org/

The Story Behind the Succinctly Series
of Books

Daniel Jebaraj, CEO
Syncfusion, Inc.

taying on the cutting edge

As many of you may know, Syncfusion is a provider of software components for the
Microsoft platform. This puts us in the exciting but challenging position of always
being on the cutting edge.

Whenever platforms or tools are shipping out of Microsoft, which seems to be about
every other week these days, we have to educate ourselves, quickly.

Information is plentiful but harder to digest
In reality, this translates into a lot of book orders, blog searches, and Twitter scans.

While more information is becoming available on the internet and more and more books are
being published, even on topics that are relatively new, one aspect that continues to inhibit us is
the inability to find concise technology overview books.

We are usually faced with two options: read several 500+ page books or scour the web for
relevant blog posts and other articles. Just as everyone else who has a job to do and customers
to serve, we find this quite frustrating.

The Succinctly series

This frustration translated into a deep desire to produce a series of concise technical books that
would be targeted at developers working on the Microsoft platform.

We firmly believe, given the background knowledge such developers have, that most topics can
be translated into books that are between 50 and 100 pages.

This is exactly what we resolved to accomplish with the Succinctly series. Isn’t everything
wonderful born out of a deep desire to change things for the better?

The best authors, the best content

Each author was carefully chosen from a pool of talented experts who shared our vision. The
book you now hold in your hands, and the others available in this series, are a result of the
authors’ tireless work. You will find original content that is guaranteed to get you up and running
in about the time it takes to drink a few cups of coffee.

Free forever

Syncfusion will be working to produce books on several topics. The books will always be free.
Any updates we publish will also be free.

Free? What is the catch?

There is no catch here. Syncfusion has a vested interest in this effort.

As a component vendor, our unique claim has always been that we offer deeper and broader
frameworks than anyone else on the market. Developer education greatly helps us market and
sell against competing vendors who promise to “enable AJAX support with one click,” or “turn
the moon to cheese!”

Let us know what you think

If you have any topics of interest, thoughts, or feedback, please feel free to send them to us at
succinctly-series@syncfusion.com.

We sincerely hope you enjoy reading this book and that it helps you better understand the topic

of study. Thank you for reading.

Please follow us on Twitter and “Like” us on Facebook to help us spread the
word about the Succinctly series!

www.dbooks.org

mailto:succinctly-series@syncfusion.com
https://twitter.com/Syncfusion
https://www.facebook.com/Syncfusion
https://www.dbooks.org/

About the Author

Ed Freitas is a consultant on business process automation and a software developer focused on
customer success.

He likes technology and enjoys hacking, learning, playing soccer, running, traveling, and being
around his family.

Ed is available at https://edfreitas.me.

https://edfreitas.me/

Acknowledgments

A huge thank you to the fantastic Syncfusion team that helped this book become a reality—
especially Jacqueline Bieringer, Tres Watkins, and Graham High.

The manuscript manager and technical editor thoroughly reviewed the book's organization,

code quality, and overall accuracy—Graham High from Syncfusion and James McCaffrey from
Microsoft Research. Thank you all.

I dedicate this book to Chelin and Puntico—may both your journeys be blessed.

10

www.dbooks.org

http://www.syncfusion.com/
https://jamesmccaffrey.wordpress.com/
https://www.microsoft.com/en-us/research/people/jammc/
https://www.dbooks.org/

11

Introduction

Microsoft describes Azure Bot Service as a comprehensive development environment that runs
on Microsoft Azure, created for designing and building enterprise-grade, conversational Al.

Azure Bot Service allows you to keep control of your data and simultaneously build multilingual
conversational bots for different business scenarios, such as customer support, employee
productivity, and sales.

Azure Bot Service delivers a comprehensive development experience by providing a visual
canvas called Bot Framework Composer, based on an extensible open-source tool set,
providing world-class conversational Al with high-quality natural language, speech, and other
Cognitive Services capabilities.

When using Azure Bot Service, you keep control of your data while securely connecting to
popular channels such as Skype, Microsoft Teams, Messenger, telephony, and many others.

One of the critical characteristics of Azure Bot Service is that it is easy to get started.
Furthermore, it comes with many prebuilt dialogs, components, and language models that
empower you to create sophisticated conversational designs that include interruption handling,
context switching, and cancellations in different languages and formats.

Azure Bot Service includes enterprise-grade security, high availability, compliance, and
manageability backed by Azure's core services by being part of Azure.

Another aspect of Azure Bot Service is that after you create a conversational bot, you will
deploy it to multiple channels with minimal or no changes, enabling your organization to have a
real-world, everyday platform experience.

Azure Bot Service is an exciting technology that allows you to create a bot with little or no code.
At the same time, you could create a bot using code with some of the most popular
programming languages, such as JavaScript, Python, and C#.

Throughout this book, we will take a low-code/no-code approach to develop bots with the Azure
Bot Service, explore some of the critical features of Bot Framework Composer, and see how to
deploy to Azure and some channels.

So, without further ado, let's explore what this promising technology has to offer.

https://www.microsoft.com/
https://azure.microsoft.com/en-us/services/bot-services/
https://docs.microsoft.com/en-us/composer/
https://en.wikipedia.org/wiki/Open-source_software
https://azure.microsoft.com/en-us/services/cognitive-services/
https://www.skype.com/
https://www.microsoft.com/en-us/microsoft-teams/
https://www.messenger.com/
https://en.wikipedia.org/wiki/Telephony
https://azure.microsoft.com/en-us/
https://en.wikipedia.org/wiki/JavaScript
https://en.wikipedia.org/wiki/Python_(programming_language)
https://en.wikipedia.org/wiki/C_Sharp_(programming_language)
https://en.wikipedia.org/wiki/Low-code_development_platform
https://en.wikipedia.org/wiki/No-code_development_platform

Chapter 1 Getting Started

Overview

As is the case with other frameworks, services, and technologies, before we can use them, we
need to go through a process where we sign up for the services and install the required tools.
That's what we are going to cover throughout this chapter.

Bot Framework Composer intro

The Bot Framework Composer is an open-source integrated development environment (IDE)
built on top of the Bot Framework SDK, which provides an extensible SDK and tools to build,
test, deploy, and manage intelligent bots.

In contrast, the Bot Framework Composer provides a robust visual authoring canvas enabling
dialogs, language-understanding models, QnAMaker knowledge bases, and language
generation responses used to create conversational bots.

Composer (the term I'll be using going forward) is a desktop application for Windows, macOS,
and Linux.

Installing Node.js

Before installing Composer, you need to have Node.js and npm installed—this is a mandatory
requirement for the use of Composer.

I'm using a Windows machine, so the following steps are specific to Windows. Let's get Node.js
installed.

12

www.dbooks.org

https://docs.microsoft.com/en-us/composer/
https://en.wikipedia.org/wiki/Integrated_development_environment
https://docs.microsoft.com/en-us/azure/bot-service/index-bf-sdk?view=azure-bot-service-4.0
https://www.qnamaker.ai/
https://docs.microsoft.com/en-us/composer/install-composer
https://en.wikipedia.org/wiki/Microsoft_Windows
https://en.wikipedia.org/wiki/MacOS
https://en.wikipedia.org/wiki/Linux
https://nodejs.org/
https://docs.npmjs.com/downloading-and-installing-node-js-and-npm
https://www.dbooks.org/

nede

HOME ABOUT DOWNLOADS DOCS GET INVOLVED SECURITY CERTIFICATION NEWS

Node.js® is a JavaScript runtime built on Chrome's V8 JavaScript engine.

Download for Windows (x64)

14.17.6 LTS 16.10.0 Current

Recommended For Most Users Latest Features

Other Downloads | Changelog | APIDocs Other Downloads | Changelog | API Docs

Or have a look at the Long Term Support (LTS) schedule

Figure 1-a: Node.js Website

Click the button on the left to install the the Long Term Support (LTS) version of Node.js, which
is recommended for most users.

If you already have a version of Node.js installed on your system that’s older than the suggested
LTS version downloadable from the website, download the current and most up-to-date version.

Once the Node.js installer has downloaded, execute it, and you should see a screen similar to
the following one.

ﬁ'.::z%_:f%i.:: - >

Welcome to the Node.js Setup Wizard

n ‘ d e The Setup Wizard will install Node.js on your computer.
(9

Figure 2-b: Node.js Installer — Welcome Screen

13

To continue with the process, click Next. You should see a screen similar to the following one.

End-User License Agreement n d
Please read the following license agreement carefully .I c
Node.js is licensed for use as follows: o

Copyright Node.js contributors. All rights reserved.

Permission is hereby granted, free of charge, to any person

obtaining a copy of this software and associated documentation

files (the "Software"), to deal in the Software without restriction,
including without limitation the rights to use, copy, modify, merge,
publish, distribute, sublicense, and/or sell copies of the Software,

and to permit persons to whom the Software is furnished to do so, v

Iaccept the terms in the License Agreement

Print Back Cancel

Figure 3-c: Node.js Installer — End-User License Agreement Screen

To continue, select the | accept the terms in the License Agreement option and then click
Next. After that, you should see the following.

5

Destination Folder

Choose a custom location or click Next to install. n . d c
US|

Install Node.js to:

C:\Program Files\nodejs\,

Change...

Figure 4-d: Node.js Installer — Destination Folder Screen

I will leave the default installation folder, but you are free to change it to another location. Click
Next to continue.

14

www.dbooks.org

https://www.dbooks.org/

15

L5

Custom Setup

Select the way you want features to be installed. n . d c
UsS)

Click the icons in the tree below to change the way features will be installed.

Install the core Mode.js runtime
/S9~| corepack manager (node.exe).

=3~| npm package manager

Elvl Online documentation shortcuts

This feature requires 239KB on your
hard drive. It has 1 of 1 subfeatures
selected. The subfeatures require OKB
on your hard drive.

Browse...
Reset Disk Usage Back Next Cancel

Figure 5-e: Node.js Installer — Custom Setup Screen

After that, you should see the following.

154

Tools for Native Modules

Optionally install the toels necessary to compile native medules. n . d c
US)

Some npm modules need to be compiled from C/C++ when installing. If you want to be able to
install such modules, some tools (Python and Visual Studio Build Tools) need to be installed.

Automatically install the necessary tools. Mote that this will also install Chocolatey. The script
will pop-up in a new window after the installation completes.

Alternatively, follow the instructions at hitps://qithub.com/nodejs/node-gyp#on-windows to
install the dependencies yourself.

Figure 6-f: Node.js Installer — Tools for Native Modules

Here we are asked to automatically install the necessary tools that some npm modules might
require for compilation. There’s no harm in having these tools installed, so | recommend clicking
the option to install them. Then, click Next to continue.

ﬁlii:f_;-_?f-”:) X

Ready to install Node.js ﬂ . d c

(g

Click Install to begin the installation. Click Back to review or change any of your installation
settings. Click Cancel to exit the wizard.

Back | GInstall | Cancel

Figure 7-g: Node.js Installer — Ready to install Node.js Screen

Finally, we are ready to install Node.js—click the Install button to begin the installation process.
You'll see the installation taking place, and once it's complete, you'll see a screen similar to the

following one.

Completed the Node.js Setup Wizard

Click the Finish button to exit the Setup Wizard.

@ Mode.js has been successfully installed.

Figure 8-h: Node.js Installer — Completed the Node.js Setup Wizard Screen

16

www.dbooks.org

https://www.dbooks.org/

17

Awesome—click Finish to close the installer, and Node.js should be ready and good to go.

Installing .NET Core SDK

For C# template support, Composer requires having .NET Core SDK installed. In that case,
you'll need to install .NET Core SDK 3.1 or later if you plan to build bots with C#.

Installing Composer

I'm using Windows, so I'm going to use the Composer installer for Windows. Here are the
installers for macOS and Linux. Composer is an open-source tool hosted on GitHub.

Once you've downloaded Composer, execute the installer—this will display a screen similar to
the following one.

Choose Installation Options
Who should this application be installed for?

Please select whether you wish to make this software available to all users or just yourself

(®) Anyone who uses this computer (all users)

() Only for me

Fresh install for all users, (will prompt for admin credentials)

& Next > Cancel

Figure 9-i: Composer Installer — Choose Installation Options Screen

You may choose to install the software by selecting Anyone who uses this computer (all
users) or selecting Only for me. | usually pick and recommend the first option; however, feel
free to choose the second option. Then, click Next to continue.

Next, we need to choose the Destination folder. | usually suggest leaving the default
installation path.

https://dotnet.microsoft.com/download/dotnet-core/3.1
https://aka.ms/bf-composer-download-win
https://aka.ms/bf-composer-download-mac
https://aka.ms/bf-composer-download-linux
https://github.com/microsoft/BotFramework-Composer

Choose Install Location
Choose the folder in which to install Bot Framework Composer.

Setup will install Bot Framework Composer in the following folder. To install in a different
folder, dick Browse and select another folder, Click Install to start the installation.

Destination Folder

C:\Program Files\Bot Framework Composer Browse...

< Back Install Cancel

Figure 10-j: Composer Installer — Choose Install Location Screen

You may specify a different installation path if you wish. Once you’re done, click Install—the
installation process will start, and in most cases, will take less than a minute to complete. Before
finalizing the setup process, you can choose to run Composer.

In some cases, there are available updates that you can choose to install immediately or later.

New update available X
Bot Framework Composer v2.1.1

@ Install the update and restart Composer.

O Download now and install when you close Composer.

Figure 11-k: Composer — New update available

| recommend installing the latest updates, which | will do by selecting the first option and then
clicking Okay. You can choose the second option or click Cancel.

Composer will restart after installing any updates, and the installer with the latest updates will
execute again.

After installing the updates, you can choose to run Composer before closing the installer. The
main Composer screen looks as follows.

18

www.dbooks.org

https://www.dbooks.org/

&) Bot Framework Composer (v2.1.1) - O X

File Edit View Window Help

b Q 8

| Welcome to Bot Framework Composer

o B

Recent

—+ Create new =7 Open

3 %

D

P

ou)
@

Create a new bot to get started

I

Figure 12-I: Composer — Main Screen

Excellent—we are now ready to start developing bots with Composer, which we will do in the
next chapter.

N T

Chapter 2 Composer Bot Basics

Overview

In the preceding chapter, we explored how to install Node.js and Composer and saw how
straightforward that process was.

In this chapter, we will use Composer to create a zip code bot using a third-party API, which will
give us some insights about zip code locations.

You might find some similarities between the steps and scenarios involved and those available
in the Composer documentation quickstart and tutorials (to maintain consistency with the official
docs); however, we'll dive deeper into details than those resources do.

This will be an exciting and fun project—so without further ado, let's get started.

Composer Ul

First, let's get acquainted with the Composer Ul to understand which components make up this
product's user interface.

[© Bot Framework Composer (v2.1.0) title bar - 0 x|
File Edit View Window Help menu bar
’ Empty [> Start bot = QO & A~
= + Add V|| & Edit C properties pane
@ Home - @ Empty :) .
i Show Greeting
A Create v & Empty o Empty > Greeting code ConversationUpdate activity
¥ Greeting . Handle the events fired when a user begins a new
Z* Configure Unknown intent authoring canvas conversation with the bot
£ Userinput 2 Greeting T
2 Bot responses ConversationUpdate activity - '
Add a note
R Knowledge base !
@ Publish l
X Loop: for each item

=

Package manager
Each value in turn. Activity.membersAdded

Condition @
AR, g

l Priority G

Branch: iffelse H | 123

navigation pane bot explorer

ex. 15.5 |

string(dialog.foreach.value.id) 1=
string(turn.Activity.Recipient.id)

Run Once G
y/n N
i True False
| _ I

Figure 2-a: Composer's Main Screen (Source: Microsoft)

20

www.dbooks.org

https://docs.microsoft.com/en-us/composer/quickstart-create-bot
https://docs.microsoft.com/en-us/composer/tutorial-create-weather-bot
https://docs.microsoft.com/en-us/composer/media/introduction/composer-overview-image.png#lightbox
https://www.dbooks.org/

21

The Composer Ul components highlighted in the preceding figure are the ones that we will be
primarily using throughout this book. These elements make up the following four main sections,
most commonly known as panes:

e The navigation pane: This is the main section that contains Composer's main options

and features.

e The bot explorer: This section displays the elements that make up your bot projects,

such as dialogs, triggers, intents, and other bot-specific items.

e The authoring canvas: This section is where the bot's logic resides, and it contains all

the actions associated with a selected trigger.

e The properties pane: This area is where you can set the properties for specific actions,
such as sending or receiving an external request, or requesting input from the user.

There is also a title bar containing the application's name and a menu bar that you can use to
start the execution of a bot, access your account settings, or view application alerts.

As you can see, the Ul is self-descriptive and easy to navigate.

Zipcodebase

To create our zip code bot, we first need to sign up for an external third-party API called
Zipcodebase that will give us access to a database of zip code information worldwide.

[

Q Note: We'll be using the Zipcodebase service; however, this is independent of
Composer, and you could use any other zip code API or service provider.

&) https//zipcodebase.com B s ® b4

@ Zipcodebase DOCUMENTATION PRICING TS

® A1~ 10005

Zip Code API - Free Access to
Worldwide Postal Code Data ‘

“results”:{
"10005": [
{

“postal_code":

Lookup postal codes, calculate distances and much more
with our free zip code api.

“country_code™:

Worldwide Data 5.000 Free Requests
“latitude”:

200+ Countries Scalable Pricing “longitude”:

FREE PLAN VIEW PRICING

Figure 2-b: Zipcodebase Website

CONTACT

Y

=

REGISTER

& LOGIN

https://zipcodebase.com/

To get started, click either the FREE PLAN or the REGISTER button—this will take you to a
screen similar to the following one.

A) https://app.zipcodebase.com/register?plan=free 6 ® >» Y

@ Zipcodebase

Subscription Monthly Yearly
All subscription plan prices are excluding applicable VAT.

Free v¢ Features Free

Figure 2-c: Zipcodebase Website — Choosing a Subscription

Make sure the free plan is selected and then scroll to the bottom of the page to fill in the details
requested.

Profile

Name
E-Mail Address
Password

Confirm Password

| Accept The Terms Of Service and our
Privacy Policy .

@ Register

Figure 2-d: Zipcodebase Website — Creating a Profile

After you have registered for the service, you might be prompted to verify your email. Check
your email and verify it so you can start to use the service.

After verifying your email address, log in to Zipcodebase to get your API key. You should see
the following.

22

www.dbooks.org

https://www.dbooks.org/

23

@ Zipcodebase Ao Eduardo Freitas ~

n Dashboard
4 Dashboard

[Z]] Documentation We need your feedback!

We'd love to hear from you. Send us an email at office@zipcodebase.com or schedule a meeting with us and

SE NGS receive 500 additional requests. If you want to upgrade click here.

€ Profile Settings

& Security Settings

AP| Key Usage
BILLING
S 0 Oused /5000 credits available
B Payment Method @ Rotating your key will reset your AP usage statistics.

Oused/ 1 concurrent requests
! Invoices Copy to Clipboard Rotate Key a

Figure 2-e: Zipcodebase Dashboard — API Key
Make sure you copy the API key to the clipboard.

We are now ready to create an empty bot using Composer.

Creating an empty bot

We are going to develop our zip code bot from scratch. Open Composer and click + Create
new.

& Bot Framework Composer (v2.1.

File Edit View Window Help

Welcome to Bot Framework Composer

] Recent

/?‘ B Open

Figure 2-f: Composer Main Screen — Create new Button

A screen similar to the following one will appear. Here you can select the bot template to use.

Select a template
Microsoft's templates offer best practices for developing conversational bots.

C# Node (Preview)

2% Empty Bot 9 Empty Bot

A simple bot with a root dialog and greeting dialog.

2% Core Bot with Language
2® Core Bot with QnA Maker Recommended use
2% Core Assistant Bot » Start from scratch, with a basic bot without additions

* Good for first time bot developers, or seasoned pros
2% Enterprise Assistant Bot

Included capabilities

& Enterprise Calendar Bot * Greeting new and returning users

&% Enterprise People Bot Required Azure resources

» This template does not rely on any additional Azure
resources

Supported languages

-
PR S I T R R P

TR Need another template? Send us a request m

Figure 2-g: Composer — Select a template Screen
Let's select the Empty Bot template for C# and then click Next. After doing that, you will see a
screen similar to the following one.

Create a bot project

Specify a name, runtime type, and location for your new bot project.

Name * Runtime type * ©)

‘ ZipcodeBot ‘ ‘ Azure Web App v
Location

‘ C\Temp\AzureBot hd ‘

Create new folder

L Name Date modified

a few seconds ago

Figure 2-h: Composer — Create a bot project Screen

24 |

www.dbooks.org

https://www.dbooks.org/

I've called the project ZipcodeBot, set the Runtime type to Azure Web App (you can also
choose Azure Functions), and set the location to a local folder on my machine (feel free to
select a different folder). After you've specified these fields, click Create.

Composer will download the bot template, build the runtime, and merge packages—this might
take a few seconds or up to a couple of minutes. Afterward, you will see the created bot.

&) Bot Framework Composer (v2.1.1 - m} K
File Edit View Window Help

3 ZipcodeBot [> Start bot |= N € A~

= 4 Add v Y & Edit~ 3 Disable

w @ ZipcodeBot - .

@ ZipcodeBot Show ZipcodeBot

| cﬁ: ~ EREnadency code Adaptive dialog
Greeting This configures a data driven dialog via a collection of
ﬁ # Unknown intent events and actions.

Figure 2-i: Composer — ZipcodeBot Created

Here we can see that we have an empty bot with a dialog called ZipcodeBot, and under that,
there are two triggers (indicated by lightning icons): one called Greeting and another called
Unknown intent.

The Greeting intent executes when the user connects to the bot, sending the user a greeting.
On the other hand, the Unknown intent runs when the user sends a message, or the bot
cannot recognize the user's request. In that case, the bot responds to the user, indicating that it
cannot understand the user request.

To start giving our bot some personality, the first thing we need to do is change the Greeting
intent. To do that, let's click the Greeting intent under ZipcodeBot, and then click the Send a
response action.

&) Bot Framework Composer (v2.1.1

File Edit View Window Help

= 4 Add~v Y ¢ Edit ¥ £ Disable
A w @ ZipcodeBot -
| A ~ & ZipcodeBot .. | ZipcodeBot > Greeting > Send a response
N # Greeting B |
| |
ﬂ £ Unknown intent , =L
' Send a response
r (o]
Text Welcome to your bot.
fa

Figure 2-j: Composer — Send a response Action Selected

Then, in the properties pane, find the Bot responses section and choose Welcome to your
bot. After doing that, you'll be able to edit the intended response.

Bot responses @ Show code

Text }

@ v v s

Welcome to your bot.

Figure 2-k: Composer — Editing a Bot Response

I'll type the following message: Welcome to ZipcodeBot. Please type the word 'zip' to start.
However, you can customize this to your taste.

First-time bot execution

Let's run our bot for the first time. To do that, click the Start bot button found just below the
menu bar.

D> Start bot |

Figure 2-I: Composer (Start bot Button)

Once the bot has successfully executed, you will see a dialog dropdown similar to the following.

Local bot runtime manager

Start and stop local bot runtimes individually.

Bot Status

© ZipcodeBot Running [Open Web Chat Test in Emulator

Figure 2-m: Composer — Local bot runtime manager

Next, let's click the Open Web Chat option highlighted in Figure 2-m. After doing that, you will
see the web chat to interact with the bot.

26

www.dbooks.org

https://www.dbooks.org/

27

ZipcodeBot X

() Restart Conversation - new user ID

Welcome to ZipcodeBot. Please type the word
'Zip' to start

[ﬂj Type your message B>

Figure 2-n: Composer — ZipcodeBot Web Chat

To test the bot, type the word zip, which will cause the bot to respond with the following
message.

ZipcodeBot X
C_:‘ Restart Conversation - new user 1D

Welcome to ZipcodeBot. Please type the word
'zip' to start

zip
Just now

Sorry, | didn't get that.

Figure 2-0: Composer — ZipcodeBot Web Chat — Response

As expected, the bot responds that it doesn't understand the intent provided because we
haven't programmed this logic yet.

Now that we have executed the bot for the first time, let's stop its execution, which you can do

by clicking on the stop icon highlighted in the following figure.

Local bot runtime manager

Start and stop local bot runtimes individually.

Bot Status

E ZipcodeBot Running 23 Open Web Chat Test in Emulator

Figure 2-p: Composer — Stop Bot Icon
Clicking that will stop the execution of the bot and make it inactive until it executes again.

Adding a dialog

Bots consist of various components, and some of the most important are dialogs. In other
words, most bots are structured as a sequence of dialogs.

A dialog includes specific bot functionality, such as asking the user for a response, sending a
reply, or making a request to an API.

Let's create a dialog that can get a zip code from the user. Within Composer's bot explorer
pane, select the ZipcodeBot top-level element. Next, click the ellipsis (...), and then the + Add
a dialog menu item.

E:-I Bot Framework Composer (v2.1.1)
File Edit View Window Help

= 4+ Add v Y ¢ Edit
@ | ~|® ZipcodeBot D
| R ¥ & ZipcodeBot + Add a dialog
& Greeting
& & Unknown intent P> Start this bot

Figure 2-q: Composer — Add a dialog Menu Item

The Create a dialog window will appear. Here we can enter a name and description. I'll call this
dialog get_zip, but you can call it something else.

28

www.dbooks.org

https://www.dbooks.org/

Create a dialog X

Specify a name and description for your new dialog.

Name *

‘ get_zip ‘

Description

Get the zip code

Figure 2-r: Composer — Create a dialog Window

After entering those values, click OK. After that, you will see the get_zip dialog within the bot
explorer pane.

62 Bot Framework Composer (v2.1.1)
File Edit View Window Help

’ ZipcodeBot

—+ Add v Y

w 7 ZipcodeBot

¥ s ZipcodeBot
Greeting

Unknown intent

¥ |5 getzip
¢ BeginDialog

X % S > B

Figure 2-s: Composer — Bot Explorer — get_zip Dialog

To continue, click BeginDialog, and then go to the authoring canvas to the right of the bot
explorer.

29 |

E:-I Bot Framework Composer (v2.1.1
File Edit View Window Help

= |+ Add v A4 & Edit ™ ¢+ Disable

w @ ZipcodeBot vee
v & ZipcodeBot get_zip > BeginDialog
¢ Greeting

w & getzip

BeginDialog & T T ET]
eginDialog

Begin dialog event

i
Bas
Z # Unknown intent
£
&2
o

& :
m (J_’)

Figure 2-t: Composer — Authoring Canvas — BeginDialog

Under BeginDialog, click the + button and click on the Send a response menu item in the
authoring canvas.

get zip » BeginDialog > Send a response Show code Send a_ response
Send Activity

Respond with an activity.

Learn more

& BeginDialog Add a note

Begin dialog event

@ Send a response

Text Let's check a zip code

Bot responses @ Show code

Text +

CJ.‘) R

Let's check a zip code

Figure 2-u: Composer — BeginDialog — Send a response

Under Bot responses, let's type the following text: Let's check a zip code. What we have
done is created a dialog called get_zip, and this dialog has a trigger called BeginDialog, and
this trigger has an action called Send a response—which we can visualize as follows.

30 L

www.dbooks.org

https://www.dbooks.org/

Trigger

Figure 2-v: Dialog — Trigger — Action
The action, in this case, is the response that is sent to users when the get_zip dialog activates.

= Tip: To be able to test this new dialog, it is necessary to have a trigger in
ZipcodeBot—this will allow you to start the get_zip dialog.

Summary

We have taken the initial steps to create a bot, added some basic functionality, and explored
Composer's Ul characteristics throughout this chapter.

The cool thing is that nothing we have done and looked at has involved writing any code so far.

In the following chapter, we will continue to expand the bot's functionality by initially executing
this dialog from a trigger.

e

Chapter 3 Expanding the Bot

Overview

Conversational flows within bots are composed of different dialogs, which are connected one to
the other.

In the previous chapter, we created the basics of our ZipcodeBot and added a new dialog. To
be able to use that dialog, we need to invoke it. To do that, we need to start that dialog from a
trigger.

So, we need to connect the get_zip dialog to the ZipcodeBot dialog—the bot's main dialog. To
understand this better, let's look at the following figure.

File Edit View Window Help

3 ZipcodeBot

= 4 Add v Y
@ w @ ZipcodeBot
& ZipcodeBot —
| & # Greeting
& # _Unknown intent
BeginDialog
=

Figure 3-a: ZipcodeBot (Main) Dialog to get_zip Dialog Relationship

Executing the dialog from a trigger

Let's link the get_zip dialog to the bot's main dialog—ZipcodeBot. To do that, click the main
dialog. Under Recognizer/Dispatch type, click Change—as seen in the properties pane in the
following figure.

| & Bot Framewark Composer (v2.1.1 - [m] X
File Edit View Window Help

a ZipcodeBot > Start bot = 2 0 & 18

= | 4 Add v~ Y & Edit ¥ & Disable
N v @ ZipcodeBot -) SN -
~ & ZipcodeBot - lecodeBot ig(g’\g Language Understanding @
| is P Recognizer/Dispatch type
Greeting
Default m
y # Unknown intent

Figure 3-b: Composer — Properties Pane — Recognizer/Dispatch type — Change

32

www.dbooks.org

https://www.dbooks.org/

A window will appear, which will allow us to choose a recognizer type. Click the Regular
expression option and then click Done.

Choose a recognizer type

O Default

Gives your bot the ability to extract intent and entity data from
an utterance based on a cross trained recognizer set.

o Regular expression
Gives your bot the ability to extract intent and entity data from
an utterance based on regular expression patterns.

O Custom

Enables you to customize your own recognizer by editing
JSON in the form

Learn more about recognizers Cancel m

Figure 3-c: Choose a recognizer type Window

Next, click the ZipcodeBot dialog, click on the ellipsis (...), and click the + Add new trigger
menu item.

E: Bot Framewaork Compaoser (v2.1.1)
File Edit View Window Help

3 ZipcodeBot

+ Add v Y & Edit v 3 Disable

w @ ZipcodeBot

v E ZipcodeBot

£ Greeting |—|— Add new trigger I
Unknown intent

B N ° B

v & getzip -+ Add QnA Maker knowledge base

Figure 3-d: Composer — ZipcodeBot — Add new trigger

] 33 |

Once those actions have occurred, an input dialog will appear, requesting the following info:
trigger type, trigger name, and regEx pattern.

Create a trigger

What is the type of this trigger?

‘ Intent recognized s ‘

What is the name of this trigger (RegEx)

Zip ‘

Please input regEx pattern

zip ‘

Figure 3-e: Create a trigger Dialog

For the type of trigger, we can leave the default value, which is Intent recognized. | will call the
name of the trigger zip and use zip as the value of the regEx pattern. Next, click Submit.

The zip trigger will appear under Unknown intent in bot explorer. We can see that as follows.

E:-I Bot Framework Composer (v2.1.1

File Edit View Window Help

’ ZipcodeBot

b Add v Y

w @ ZipcodeBot
v &% ZipcodeBot
& Greeting
& Unknown intent
= 7]
v s getzip

£ BeginDialog

L) I S - b= I

Figure 3-f: Composer — zip Trigger

Let’s recap what we've just done. The zip trigger instructs the ZipcodeBot to look for the word
Zip in any incoming message. To do that, we use regular expressions (also known as regEx).

34

www.dbooks.org

https://www.dbooks.org/

Next, with the zip trigger selected, in the authoring canvas, click + > Dialog management >

Begin a new dialog.

E:C Bot Framework Composer (v2.1.1)
File Edit View Window Help

’ ZipcodeBot > Start bot

= + Addv Y

w @ ZipcodeBot
v &% ZipcodeBot
{# Greeting
£ Unknown intent
v & getzip
{# BeginDialog

DB B> P

P

Figure 3-g: Composer — Dialog management — Begin a new dialog

& Edit ¥ 3 Disab

ZipcodeBot > zip

o |

e
e

4 zip

Intent recognized

@

Send a response
Ask a question >

Create a condition >

Show
code

Actions to pe

Add a not

Trigger phr

zip

Condition (

y/n

Entities @

Looping 5 [Begin a new dialog

I Dialog management

S I End this dialog

Once the dialog appears, click the Dialog hame dropdown and choose the get_zip option from
the Dialog name on the properties pane.

& zip

Intent recognized

Begin a new dialog

? (Dialog)

8

Dialog name @

I &8 get_zip

— Write an expression

—+ Create a new dialog

Figure 3-h: Composer — Dialog name — get_zip

We have just created a trigger and indicated that our ZipcodeBot could recognize regular
expressions, using the word zip as the trigger.

| 3 |

Requesting user input

For the ZipcodeBot to get the relevant information regarding a zip code, the bot needs to
request the user to enter the zip code, and for that, we need to use a Text input action.

Under the get_zip dialog within bot explorer, select BeginDialog and then click + under Begin
a new dialog in the authoring canvas.

¢ zip
v & getzip

¢ BeginDialog g BeginDialog

Begin dialog event

!
3
Send a response

Text Let's check a zip code

S

Figure 3-i: Composer — get_zip — BeginDialog
Next, click the Ask a question menu item and then Text.

F Add v Y ¢ Edit
v @ ZipcodeBot o st
S S ow
v & ZipcodeBot get zip > BeginDialog code
Greeting Send a response
- .
Unknown intent Ask a question > Text
¢ zip
v & getzip . Create a condition > Number
— N % Beg
Begind Looping > Confirmation

Figure 3-j: Composer — get_zip — BeginDialog — Ask a question — Text

We are prompted to enter the Prompt for text followed by the User input.

36

www.dbooks.org

https://www.dbooks.org/

get_zip » BeginDialog > Prompt for text

DEYII UIgIvy EvenL

1

Prompt for text
Text Input

Collection information - Ask for a word or sentence.

Learn more

Add a note

g Send a response

Text Let's check a zip code

L

@ Prompt for text Bot response Userinput Other

Text Please enter a zip code to continue

Ask a question - text @ Show code
___________________ h _E Text -+
E e User input (Text) ; —
8 v g S
Z i Please enter a zip code to continue
0,

Figure 3-k: Composer — get_zip — BeginDialog — Prompt for text

Under Bot response, we can enter the following text: Please enter a zip code to continue.
With that done, select the User input (Text) action. Under User input, enter user.zip within the
Property box.

get zip » BeginDialog > Prompt for text Shg‘” Prompt for text

Y

DEYIN UIdIUY EVETIL

i

@ Send a response

Text Let's check a zip code

L

9 Prompt for text

Text Please enter a zip code to continue

e User input (Text)

user.zip = Input(Text)

@ p P

code Text Input

Collection information - Ask for a word or sentence.

Learn more

Add a note

Bot response | User input | Othe

Property @

abc

userzip ‘

Output format @

abc | ex. =toUpper(this.value), ${toUpper(... ‘
Value @
abc | ex. hello world, Hello ${user.name}, ... ‘

Figure 3-I: Composer — get_zip — BeginDialog — User input

Output format

Now that we have specified the user input, we need to indicate the output format. To do that,
click the Output format box then enter the value trim(this.value) in the field.

The trim function is a prebuilt expression that removes leading and trailing spaces from a
value, and this is useful in case the user enters the zip code with a leading or trailing space.

|
@ Prompt for text : Botresponse User input Othel

Text Please enter a zip code to continue

Property @

abc | userzip ‘

@ User input (Text) El
userzip = Input(Text) K

Output format @

abc | =trim(this.value) ‘

Figure 3-m: Composer — get_zip — BeginDialog — User input — Output format

Input validation

We have managed to gather the user's input and set the output format at this stage. So far, so
good. Nevertheless, we need to ensure that the user's data is valid—an action known as input
validation.

As the user will be entering a zip code, we should at least confirm that the zip code provided is a
valid one. To do that, we can check if the zip code supplied is a valid U.S. zip code.

The Zipcodebase API is valid for multiple countries, and that's a lot of zip code country formats
to validate, so let's limit the input validation to U.S. zip codes only.

If the user indicates a U.S. zip code with fewer than five characters or more than five characters,
the input validation would be invalid. Otherwise, it would be valid.

Let's get that sorted. In the authoring canvas, click Other in the properties pane. Expand the
Recognizers section, click Add alternative, and enter the text shown in the following figure.

38

www.dbooks.org

https://www.dbooks.org/

39

©® send a response

Bot response User input | Other

Text Let's check a zip code

_| \/

i & Chew cad
@ Prompt for text Unrecognlzed prompt & Show code
Text Please enter a zip code to continue Text
___________________ S

: G v oW e

I

i

i

@ User input (Text) Apologies, | cannot understand "${this.value}. Please specify a
5 digit zip code in US format i.e. 12345,

userzip = Input(Text)

Figure 3-n: Composer — get_zip — BeginDialog — User input (Text) — Other — Unrecognized prompt
The text value is as follows: Apologies, | cannot understand '${this.value}'. Please specify a
5 digit zip code in US format i.e.12345.

That's the text response that the bot will return if the user input is not understood.

Next, we need to specify the validation rule to check whether the zip code entered is valid or
not. Click the Validation section, then under Validation Rules click Add new > Write an
expression.

L

| validation Rules @ |

@ Prompt for text

Text Please enter a zip code to continue

‘ y/n s

Add n

@ Userinput (Text) Invalid true

userzip = Input(Text)
P = MPEEE ' Text false

Write an expression
Respol

Figure 3-0: Composer — get_zip — BeginDialog — User input (Text) — Other — Validation Rules

Enter the expression length(this.value) == 5, which will ensure that the zip code value is five
characters long.

J, Validation Rules @

Prompt for text
© y/m | =length(this.value) == 5

Text Please enter a zip code to continue

Add new

““““““““““““ [Invalid prompt @

Text

Responses ()

| @ User input (Text)

userzip = Input(Text)

T

Figure 3-p: Composer — (get_zip — BeginDialog — User input (Text) — Other — Validation Rules

We also want to add a response that the bot can send back to the user if the zip code length is
different than five characters. We can do this by clicking Add alternative under Invalid prompt.

v Validation

Validation Rules @

‘ y/n | =length(this.value) == 5

Add new

I Invalid prompt @I Show code

Text

Responses (2

Add alternative

Figure 3-q: Invalid prompt — Add alternative

Enter the following text: The zip code '${this.value}' is not valid. Please enter a zip code
that is 5 digits long.

Invalid prompt @ Show code
Text
G v {x} v S

hhe zip code "${this.value}’ is not valid. Please enter a zip code
that is 5 digits long

Figure 3-r: Invalid prompt — Text response

40

www.dbooks.org

https://www.dbooks.org/

41

Default zip value

Although it is not strictly necessary, it’s also possible to add a default value for the zip code that
the bot can return.

To do that, click Prompt configurations, and under Default value, enter a valid U.S. zip code.
I'm going to enter 33165, but you may choose another.

i inDi Show
get zip > BeginDialog » Prompt for text code
DEYIN uidiuy evernio . > Valldatlon
_| I\/ Prompt Configurations I
Send a response Default value response @ Show code
Text Let's check a zip code Text
+ Responses ()
Add alternative
Prompt for text
Text Please enter a zip code to continue Max turn count @

i |

E @ User input (Text) ‘B

@\ userzip = Input(Text) - ~
T ! Allow Interruptions @

Figure 3-s: Composer — get_zip — BeginDialog — User input (Text) — Other — Prompt Configurations

Default value @

33165 ‘

abc

Summary

We have set the bot up so that whenever a user enters the message zip, the bot will respond
and request the user to indicate the zip code. If that value is valid, then it will be stored in the
user.zip variable.

If the value is not a valid zip code (not equal to five characters), the bot sends an error message
back to the user.

Next, we are going to explore how to make a call to the Zipcodebase API.

Chapter 4 Working with the API

Overview

So far, we have created the bot with enough functionality to ask the user for a zip code and
send a reply in case the user's input is not adequate.

However, if the user's feedback is correct and the zip code valid, we cannot process it. That's
what we are going to do throughout this chapter.

Getting the API key

To retrieve the data and information related to the zip code, we need to invoke the Zipcodebase
API.

To use Zipcodebase, we need to call the API using an API key. Switching back to the
Zipcodebase web page, let's copy the value under API Key from the Dashboard.

(3 https://app.zipcodebase.com/home

@ Zipcodebase Ao Eduardo Freitas ~
Dashboard
Dashboard
Documentation We need your feedback!

We'd love to hear from you. Send us an email at office@zipcodebase.com or schedule a meeting with us and

receive 500 additional requests. If you want to upgrade click here.

Profile Settings

Security Settings

AP| Key Usage
4 - I . .
Subscription o3 Oused / 5000 credits available
Payment Method @ Rotating your key will reset your AP usage statistics.

. Qused/ 1 concurrent requests
Invoices Copy to Clipboard Rotate Key q

Figure 4-a: Zipcodebase Dashboard with APl Key

HTTP request

Going back to Composer, in the bot explorer, make sure that the BeginDialog is selected. Then
below all the existing actions added, click + > Access external resources > Send an HTTP

request.

42

www.dbooks.org

https://www.dbooks.org/

T

’ ZipcodeBot D> Start bot

= -+ Add v < & Edit ¥ 3 Disable v
ApUIUYIES, |
QN - @ ZipcodeBot sh
; o ow
| A v & ZipcodeBot get_zip > BeginDialog > Prompt for text code A slemative
& Greet-lng DEYI Uidiuy everniL -
2 # Unknown intent | > Validation
£ & zip -
& - & getzip J, ' Prompt Con
@ Send a response Deta |
etault value re
S Text Let's check a zip coc
@D Text -|-
m Send a response —_—
. Responses (2
© Prompt for text Ask a question >
Add alternative
Text Please enter a zip cc Create a condition >
Looping ? Connect to a skill
Dialog management > I Send an HTTP request I
E e User input (Text) .
Manage properties > Emit a custom event
@\ user.zip = Input(Text) I
| Access external resources >I OAuth login
Q Debugging options >
gging op Connect to QnA Knowledgebase
i

Sign out user

Figure 4-b: Composer — BeginDialog — Access external resources — Send an HTTP request Menu Item

The following details are visible in the properties pane. Select the GET option under the HTTP
method.

BeginDialog > Send an HTTP request Shgw Send an HTTP request
code HTTP request
N Make a HTTP request.
};......_._.____________ Learn more

Add a note

Send an HTTP request

GET

turn.results = Result property

| HTTP method * @

X

Figure 4-c: Composer — BeginDialog — Send an HTTP request — HTTP method

abc

GET N ‘

At this stage, we need to get the APl URL, which we can get from the Zipcodebase website as
highlighted in the following figure.

) https://appzipcodebase.com/home

Getting started Samples For All Endpoints

curl|"https://app.zipcod com/api/v1l/search?codes=16005,10006" \

-H "apikey: 83bled lec-8073-777a767aael5"

Figure 4-d: Zipcodebase — APl URL

The following is the Composer-compatible version of the URL, because the user.zip variable
contains the zip code submitted by the user.

https://app.zipcodebase.com/api/vl/search?codes=${user.zip}

Next, we need to add the API key to the URL and the country code. So let's copy the APl Key
value from the Zipcodebase website to add it to the URL.

APl Key

03bledcO- aaels

Rotating your key will reset your APl usage statistics.
Figure 4-e: Zipcodebase Website APl Key Value

In the following URL, replace API_KEY_VALUE_GOES_HERE with the value of your API key copied
from the Zipcodebase website.

https://app.zipcodebase.com/api/vl/search?apikey=API_KEY_VALUE_GOES_HERE&code
s=${user.zip}&country=US

Enter the URL into the Url field within the properties pane of Composer, as shown in the
following figure.

‘ ‘ HTTP method * ®

| abc GET i

Send an HTTP request
Url * @

I-GE' https://app.zipcodebase.com/api/v1/search?api...

abc | https://app.zipcodebase.com/api/vi...

dialog.api_response = Result property

Figure 4-f: Composer — BeginDialog — Send an HTTP request — Url

When the bot performs the HTTP request, the response must be stored somewhere—in a
variable assigned to the Result property.

44

www.dbooks.org

https://www.dbooks.org/

45

We will store the result within the dialog.api_response variable. The dialog is a scope that
retains its properties for the duration of a dialog, in this case, BeginDialog.

Tip: To understand how properties and variable scopes work, | suggest looking at
the official documentation.

Result property @

abc | dialog.api_response

Figure 4-g: Composer — BeginDialog — Send an HTTP request — Result property
Next, we need to set the Response type value to json.

Response type @

abc json v

Figure 4-h: Composer — BeginDialog — Send an HTTP request — Response type

HTTP status code

When working with HTTP requests, status codes are essential. Status codes indicate whether
the request was successful or not.

Therefore, the bot must determine whether the response was successful before sending a
response to the user.

A status code with a value of 200 indicates that the response obtained from the API was
successful. A status code with a different value would suggest a problem accessing the API—in
a situation like this, we need to create a branch.

Creating a branch

To create a branch—which in programming would be the equivalent of using an if-else
condition—we need to go back to the authoring canvas and click + under Send an HTTP
request. Then, click Create a condition > Branch: If/else.

https://docs.microsoft.com/en-us/composer/concept-memory

Key
BeginDialog > Send an HTTP reauest Shg""
) Send a response ; Value @
e User input (Text) : - 03biec
I Ask a question > ¥
userzip = Input(Text) |
Create a condition > [|Branch: If/felse
Looping > Branch: Switch (multiple options)
abc | dialog.
Dialog management > _‘;g
Send an HTTP request
Manage properties > Content type @

GET https://app.zipcodeb
Access external resources > - ex. apfg

dialog.api_response = Ret

Debugging options >
Response type {

g

abc | json

Figure 4-i: Composer — BeginDialog — Create a condition — Branch: If/else

The Branch: If/else appears in the authoring canvas. Select the branch, and in the properties
pane, under Condition, select the Write an expression option.

E

Branch: If/else : Condition *®

<condition: \ y/n

True False true
o '
false
Write an expression

Figure 4-j: Composer — BeginDialog — Branch: If/else — Condition — Write an expression

As the Condition, set the value to: dialog.api_response.statusCode == 200.

Condition * @

y/n | =dialog.api_response.statusCode == 200

Figure 4-k: Composer — Begin Dialog — Branch: If/else — Condition

Under the True branch, click +.

46

www.dbooks.org

https://www.dbooks.org/

47

Branch: If/else

=dialog.api_response.statusCode == 200

True False
+ +

5

Figure 4-I: Composer — BeginDialog — Branch: If/else — True Branch

Once that is done, click Manage properties > Set properties.

Dialog management >
Branch: If/else

Set properties

=dialog.api_response.sta

Manage properties >

N

Access external resources

R

-
Debugging options

+

Delete a property
Delete properties
Edit an array property

Get activity members

Figure 4-m: Composer — BeginDialog — Branch: If/felse — Manage properties — Set properties

You will then see the following.

Branch: If/else

=dialog.api_response.statusCode == 200

False

Set properties

Figure 4-n: Composer — BeginDialog — Branch: If/else — True Branch — Set properties

We will use the Set properties action because we want to assign the response values obtained

from the API to a few variables. This way, the results are provided to the user with the

requested zip code information.

Querying the API

Before proceeding, we need to check which values the API can return. To do that, let's use
Hoppscotch, which is an open-source API development web application that allows you to query
and interact with any REST API.

So, point your browser to the Hoppscotch website (I usually use either Microsoft Edge or
Google Chrome, but feel free to use another modern browser). Add the following URL to the
field highlighted in the screenshot below.

https://app.zipcodebase.com/api/vl/search?apikey=API_KEY_VALUE_GOES_HERE&code
s=33165&country=US

Make sure you replace API_KEY_VALUE_GOES_HERE with the value of your Zipcodebase API
Key. For testing purposes, I've replaced ${user.zip} with 33165.

Hoppscotch - Open source API dey

(G () https://hoppscotch.io/?v="1&method=GET&endpoint=https;//app.zipcodebase.com/api/v1/search?apikey=0.. B @ g

HOPPSCOTCH) star 31,952

(cp]
GET https:!iapp.zipcodebase.com,‘api/v‘l!search?apikey:OSb1edc0-2883-=-777a7=154
REST
Parameters Body Headers Authorization Pre-request Script Tests
GraphQL

Figure 4-o0: Hoppscotch Website Querying the Zipcodebase API

With the URL pasted, you can test the API by clicking Send. Let’s see what happens.

Hoppscotch - Open source AP| development ecosystem

C (8 httpsy//hoppscotchio/?v=1&method=GET&endpoint=https;//app.zipcodebase.com/apifv1/search?apikey=0.. B @ v @ » ¥

HOPPSCOTCH () Star 31,952 & Q
e))) (
GET https://app.zipcodebase.com/api/v1/search?apikey=03bledc0-2883-11ec-8073-777a767aae158 Send v B save v
REST
L
Status: 200 Time:641ms Size:298B
5 H
GraphQl JSON Raw Headers Test Results
Jd &
@
Realtime {"query":{"codes":["33165"], "country" :"US"}, "results" :{"33165":

[{"postal_code":"33165", "country_code":"US", "latitude":"25.734300800", "longitude":"-806.35880000", "city":"Miami", "state":"Flori
da","city_en":"Miami", "state_en":"Florida”, "state_code":"FL", "province" :"Miami-Dade", "province_code":"886"}]}}

Figure 4-p: Hoppscotch Website — Zipcodebase APl Query Raw Results

As seen in the preceding figure, the API returns a result. To see the result in full detail, click the
JSON tab. In most cases, when using the Hoppscotch website, the JSON tab will be the default
tab.

48

www.dbooks.org

https://hoppscotch.io/
https://en.wikipedia.org/wiki/Representational_state_transfer
https://hoppscotch.io/
https://www.microsoft.com/en-us/edge
https://www.google.com/chrome/
https://www.dbooks.org/

49

JSON Raw Headers Test Results

{
"query": {
"codes": |
"33165"
]

"country": "US"
H
"results”: {

"33165": |

{
"postal_code": "33165",

"country_code": "US",
"latitude": "25.73436000",
"longitude"”: "-B@.35880008",
"city": "Miami",
"state": "Florida",
"city_en": "Miami",
"state_en": "Florida",
"state_code": "FL",
"province”: "Miami-Dade",
"province_code": "086"
}
]
}
}

Figure 4-g: Hoppscotch Website — Zipcodebase APl Query JSON Results

By inspecting the result returned by the API, we can find two distinct sections: the query and
results sections. We want to get the data from the results section.

Notice that the results JSON object contains another JSON object with the zip code value
(33165) passed as a query parameter to the API call, which is an array of JSON objects with
one element in this case.

First assignment

For each of those values contained within that array element, we want to create a property and
assign its respective value so that the bot can return them to the user as a response.

To do that, go back to Composer, make sure that the Set properties action is selected, and
then within the properties pane, click Add new under Assignments.

get_zip » BeginDialog > Set properties show Set properties

code Set Properties
N Set one or mare property values.
True False Learn more
+ +
| Add a note

Set properties

Assignments * @

+ Add new
1

Figure 4-r: Composer — BeginDialog — Set properties — Assignments — Add new

Let's add dialog.postal_code as the Property name.

Let’s also add dialog.api_response.content.results[user.zip][@]['postal_code'] as
the Value, as seen in the following figure.

; D ; Set properties
et_zi BeginDialog > Set properties Show
getzip 9 g prop code Set Properties
GET https://app.zipcodebase.com/api/v1/search?api... - Set one or more property values.
dialog.api_response = Result property Learn more
_| Add a note

Branch: If/else

=dialog.api_response.statusCode == 200

Assignments * @
E True False

| Property @
& Set properties abc | dialog.postal_code ‘
Q\ dialog.postal_code : =dialog.api_response.contentr...
Value @
© _| abc | =dialog.api_response.contentre... ‘

l -

Figure 4-s: Composer — BeginDialog — Set properties — Assignments — Property/Value

So, let's analyze what we have just done here. We are going to store the zip code returned by
the API call within the dialog.postal_code variable. The zip code returned by the API is
accessible using dialog.api_response.content.results[user.zip][0]['postal_code'].

But how did | reach the conclusion that the zip code returned by the API is available through
dialog.api_response.content.results[user.zip][@]['postal_code']? To understand
this better, let's have a look at the following diagram.

50

www.dbooks.org

https://www.dbooks.org/

51

JSON Raw Headers Test Results

{
"query”: {
"codes”: [
"33165"
1

"country": "US"

}

A 4

Idia log. ap:i._r'esponsel.[contentl, r‘esultst user.zip]": ejt 'postal_code']I
- 3 b 3

“results”:
Iﬁﬁiﬁg!:
{

i”EostaLcode" : "33165" i

"country_code": "US",
"latitude": "25.73430660",
"longitude”: "-806.35880000",
"city": "Miami",

"state": "Florida",
"city_en": "Miami",
"state_en": "Florida",
"state_code": "FL",
"province”: "Miami-Dade",

"province_code": "886"

} 1

Figure 4-t: Relationship between the APl Response and Assignments Value

We can see that dialog.api_response corresponds to the complete response (highlighted in
purple) returned by the API, including the header and Response Body.

Contained within the Response Body, we find the content highlighted in green.The content
includes a query and a results object. Within the content object, highlighted in
, we see the results object.

Within the results object, we find another object (highlighted in light blue) that contains an
array, and this object has the same value as the zip code queried (which we previously stored in

the user.zip variable).

Finally, within the array's first element ([@]), highlighted in red, we find each of the properties.
We want to retrieve the value of the postal_code property.

Other assignments

Now that we have assigned the value of the first property (postal_code) returned by the API
call, let's do the same for the other properties returned by the API.

All we need to do is click Add new for each property we want to add from the results object.

By using dialog.api_response.content.results[user.zip][@][' country_code'], we
can retrieve the value of country_code. Store it as dialog.country_code.

Property @

abc | dialog.country_code ‘

Value @

abc™ | =dialog.api_response.content.re... ‘

Figure 4-u: Composer — The dialog.country_code Property

Likewise, with dialog.api_response.content.results[user.zip][0]['latitude’], we
can retrieve the value of latitude. Store it as dialog.latitude.

Property @

abc | dialog.latitude ‘

Value @

abc | =dialog.api_response.content.re... ‘

Figure 4-v: Composer — The dialog.latitude Property

With dialog.api_response.content.results[user.zip][@]['longitude’], we can
retrieve the value of longitude. Store it as dialog.longitude.

Property @

abc | dialog.longitude ‘

Value @

abc | =dialog.api_response.content.re... ‘

Figure 4-w: Composer — The dialog.longitude Property

With dialog.api_response.content.results[user.zip][0]['city'], we can retrieve the
value of city. Store it as dialog.city.

Property @

abc | dialog.city ‘

Value @

abc | =dialog.api_response.content.re... ‘

Figure 4-x: Composer — The dialog.city Property

With dialog.api_response.content.results[user.zip][0@]['state’], we can retrieve
the value of state. Store it as dialog.state.

52

www.dbooks.org

https://www.dbooks.org/

Property @

abc | dialog.state ‘

Value @

abc | —dialog.api_response.contentre... ‘

Figure 4-y: Composer — The dialog.state Property

With dialog.api_response.content.results[user.zip][0]['city_en'], we can retrieve
the value of city_en. Store it as dialog.city_en.

Property @

abc | dialog.city_en ‘

Value @

abc | =dialog.api_response.contentre... ‘

Figure 4-z: Composer — The dialog.city_en Property

With dialog.api_response.content.results[user.zip][@]['state_en'], we can retrieve
the value of state_en. Store it as dialog.state_en.

Property @

abc | dialog.state_en ‘

Value @

abc | =dialog.api_response.contentre... ‘

Figure 4-aa: Composer — The dialog.state_en Property

With dialog.api_response.content.results[user.zip][@]['state_code'], we can
retrieve the value of state_code. Store it as dialog.state_code.

Property @

abc | dialog.state_code ‘

Value @

abc | =dialog.api_response.contentre... ‘

Figure 4-ab: Composer — The dialog.state_code Property

With dialog.api_response.content.results[user.zip][@]['province’], we can retrieve
the value of province. Store it as dialog.province.

Property @

abc | dialog.province ‘

Value @

abc | =dialog.api_response.content.re... ‘

Figure 4-ac: Composer — The dialog.province Property

With dialog.api_response.content.results[user.zip][@]['province_code'], we can
retrieve the value of province_code. Store it as dialog.province_code.

Property @

abc | dialog.province_code

Value @

abc | =dialog.api_response.contentre... ‘

Figure 4-ad: Composer — The dialog.province_code Property
|
=l Note: Each Value field starts with a = character, whereas the Property fields do not.

= Tip: It is not necessary to save each value returned by the API, just the ones that
your bot will use. In this case, I've opted to store each value returned by the API call to

highlight how to do it.

Summary

Our bot is not ready yet. Nevertheless, the goal of this chapter was to explore how to interact
with the API, obtain a response, and store each response value, which we have done.

In the chapter that follows, we will add the remaining steps to finalize the creation of our bot.

o4

www.dbooks.org

https://www.dbooks.org/

Chapter 5 Finalizing the Bot

Overview

Looking at the authoring canvas, we can see that the BeginDialog looks as follows.

E-I Bot Framework Composer (v2.1.1)

File Edit View Window Help

3 ZipcodeBot

= 4+ Add v Y & Edit ¥ X Disable
a) w [ZipcodeBot
| Py v & ZipcodeBot get_zip > BeginDialog > Set properties
{# Greeting |
Vi # Unknown intent +
R g zip \L
& - & getzip Branch: If/else
el =dialog.api_response.statusCode == 200
(o
@D
L) True
E Set properties H
dialog.postal_code : =dialog.api_response.content.r...
@\ dialog.country_code : =dialog.api_response.content....
dialog.latitude : =dialog.api_response.content.result...
@\ 8 more
® |

Problems Web Chat Output Watch

Figure 5-a: Composer — BeginDialog

False

We can see that the Set properties action now contains all the assignments we previously

created, which is excellent!

| 55 |

APl results as a response

Let’s send a response to the user with some of the details obtained using the API. Click + just
below Set properties. Then, click Send a response.

get_zip » BeginDialog @ ~

=dialog.api_response.stat

Send a response

-4

Set properties

dialog.postal_code : =dial

dialog.country_code : =di

E dialog.latitude : =dialog.a Access external resources
8

® P P

Ask a question

Create a condition

Looping

Dialog management

Manage properties

Debugging options

5

Figure 5-b: Composer — BeginDialog — Send a response

Select Send aresponse > Add alternative.

=

Send a response

N

7

N

hd

N

False

Bot responses @

Text |

Responses (@)

Figure 5-c: Composer — BeginDialog — Send a response — Responses

We can enter the answer that the bot will return to the user (obtained from the API). Let's

respond to the user with the city, state, and county (province).

So, let's enter the following text as a response: City: ${dialog.city}, State:
${dialog.state}, County: ${dialog.province}.

56

www.dbooks.org

https://www.dbooks.org/

Bot responses @ Show code

Text +

.téav x} ~ fr -

kity: ${dialog.city}, State: ${dialog.state}, County:
${dialog.province}

Figure 5-d: Composer — BeginDialog — Send a response — Bot responses
With that done, let's test our bot for the first time.

First execution

To execute the bot for the first time, click Start bot as shown in the following figure. Starting a
bot takes a few seconds.

&) Bot Framework Composer (v2.1.1 - O X
File Edit View Window Help

’ ZipcodeBot D Start bot

Figure 5-e: Composer — Start a bot

Once the bot is running, click Open Web Chat.

-

Local bot runtime manager

Start and stop local bot runtimes individually.

Bot Status

O ZipcodeBot Running Lo Open Web Chat Test in Emulator

Figure 5-f: Composer — Open Web Chat
The chat window will appear on the right-hand side of Composer.

57 |

ZipcodeBot X

() Restart Conversation - new user ID

Welcome to ZipcodeBot. Please type the word
‘zip' to start

mj Type your message =

Figure 5-g: Composer — Chat Window (1)

To begin the conversation with the bot, let's type the word zip; this triggers the bot to respond
and request the user to enter a zip code to continue.

zZip
2 minutes ago

Let's check a zip code
Please enter a zip code to continue
[I]J Type your message B>

Figure 5-h: Composer — Chat Window (2)
Let's enter 98052 as the zip code and see how the bot responds.

98052

Just now

City: Redmond, State: Washington, County:
King

[Iﬂ Type your message B

Figure 5-i: Composer — Chat Window (3)

Great—we can see that the bot returned the city, state, and county corresponding to that zip
code using the Zipcodebase API.

To stop the execution of the bot, click the buttons highlighted in the following figure (first on 1
and then on 2).

58

www.dbooks.org

https://www.dbooks.org/

59

Local bot runtime manager
Start and stop local bot runtimes individually.

Bot Status

2
@ ZipcodeBot Running 2 Open Web Chat Test in Emulator

Figure 5-j: Composer — How to Stop the Bot

Different status code branch

When we created the branch to check if the API returns a 200 HTTP status code, we finished
the branch that occurs when that condition is true; however, we did not specify what happens if
the API returns a status code different than 200.

We can first send a response to the user indicating that an error occurred when calling the API.
To do that, click + under False (Branch: If/else action) and then click Send a response.

w

Branch: If/else

=dialog.api_response.statusCode == 200

True se
+
|

Send a response

&« +

Set properties

dialog.postal_code : =dialog.api_response.content.r...

Figure 5-k: Composer — BeginDialog — Branch: If/else — False Branch — Send a response

Then, under Responses, enter text that indicates that a problem happened when calling the
API in the properties pane.

‘ False
+

Bot responses @ Show code
Send a response

Text

Text An error has happened when invoking the API

+ Responses (2

An error has happened when invoking the API

Figure 5-1: Composer — BeginDialog — Branch: If/else — False Branch — Send a response — Responses

In this branch, we need to remove the zip code value entered by the user so that the value
doesn't persist on the user.zip variable when the API returns an error or cannot process the

request.

To do that, click + under the Send a response action just added.

Manage properties > | Set a property

Send a response
Access external resources > Set properties
Text An error has happer

Debugging options > || Delete a property

T

Figure 5-m: Composer — BeginDialog — Manage properties — Delete a property

The Delete a property action is shown. In the properties pane, enter user.zip for the Property
field.

@ Send a response : Property * ®

Text An error has happened when invoking the API abc user.zip

+

Delete a property

userzip

Figure 5-n: Composer — BeginDialog — Delete a property — Property
If the call to the API fails, the bot will not store the zip code value that the user entered.

Adding a package

Another helpful feature that any bot should have is the ability to allow the user to interrupt the
conversation, which involves canceling the active dialog. So let's implement this. In Composer,
click the Package manager icon (which resembles three books).

60

www.dbooks.org

https://www.dbooks.org/

w @ ZipcodeBot
v &% ZipcodeBot
{# Greeting
Unknown intent
zip
v & getzip
{# BeginDialog

LOJNLY) B S " W= S
A

=
=
=

Figure 5-0: Composer — Package Manager Icon
Then, within the search field, type helpandcancel and press Enter. Click the package
Microsoft.Bot.Components.HelpAndCancel to select it.

Package Manager

Discover and use components that can be installed into your bot. Learn more

Browse Installed

| helpandcance\| X

Microsoft.Bot.Components.HelpAndCancel
Contains Adaptive Dialog assets to support Help and Cancel conversational flows in a bot built o...

nuget e

g2 L D 3% > D

Figure 5-p: Composer — Package Manager — Microsoft.Bot.Components.HelpAndCancel (1)

Then, click the installation button.

Package Manager

Discover and use components that can be installed into your bot. Learn more

Browse Installed

|

nuget \/| | O helpandcancel X ‘ Microsoft Install 1.1.2 | ~

m Microsoft.Bot.Components.HelpAndCancel

Microsoft.Bot.Components.HelpAndCancel
Contains Adaptive Dialog assets to support Help and Cancel conversational flows in a bot built o...

Latest: 1.1.2

Figure 5-g: Composer — Package Manager — Microsoft.Bot. Components.HelpAndCancel (2)

After that, Composer will install the package. Following the package installation, a Project
Readme pop-up window might appear. If it does, click OK.

Then you will see the package as installed.

61

B Installed
rowse ntalle nuget V| ‘ A helpandcancel X

Microsoft.Bot.Components.HelpAndCancel " Installed
Contains Adaptive Dialog assets to support Help and Cancel conversational flows in a bot built o...

Figure 5-r: Composer — Package Manager — Microsoft.Bot.Components.HelpAndCancel (Installed)

Interrupting the conversation

Now we have the technical ability to interrupt the conversation if the user wishes to, but we still
need to implement that functionality.

The installation of this new package added a CancelDialog and a HelpDialog to the bot. If this
is not visible, close Composer and open it again. After opening Composer, you will see the
following welcome screen.

E:-I Bot Framework Composer (v2.1.1

File Edit View Window Help

& Welcome to Bot Framework Composer

Recent
) I~ Create new = Open
Name Location
= ZipcodeBot C:/Temp/AzureBot/ZipcodeBot/ZipcodeBot

Figure 5-s: Composer — Welcome Screen

Click ZipcodeBot to open the bot. This will take you to the authoring canvas, where you can
continue to work on the bot. Notice that now, in bot explorer, you can see the CancelDialog and
HelpDialog added to the bot.

62

www.dbooks.org

https://www.dbooks.org/

63

€-I Bot Framework Composer (v2.1.1

File Edit View Window Help

’ ZipcodeBot

= + Add v Y

w @ ZipcodeBot
w &% ZipcodeBot
{ Greeting
& Unknown intent
& zip
¥ = getzip
BeginDialog

D 3 S > B

w = CancelDizlog
£ BeginDialog

®

¥ & HelpDialog

==
=
=

£ BeginDialog

Figure 5-t: Composer — Bot Explorer — CancelDialog and HelpDialog

We will use the CancelDialog to give the user the option of canceling the conversation with the
bot.

To do that, select the ZipocodeBot dialog, and then click + Add new trigger.

w @ ZipcodeBot
Vla'l?': ZipcodeBot I leCOdEBOt

Greeting I -+ Add new trigger

£ Unknown intent
& zip -+ Add QnA Maker knowledge base

Figure 5-u: Composer — ZipcodeBot — Add new trigger

As the trigger type, leave the default option Intent recognized. Let's enter cancel as the trigger
name, and as for the input pattern, let's enter the value stop|quit|cancel. When you’re done,
click Submit.

Create a trigger

What is the type of this trigger?

Intent recognized Vv ‘

What is the name of this trigger (RegEx)

‘ cancel ‘

Please input regEx pattern

stop|quit|cancel ‘

Figure 5-v: Composer — Create a trigger

Now, Composer creates the cancel trigger.

w @ ZipcodeBot -

v & ZipcodeBot .. ZipcodeBot > cancel
{ Greeting
£ Unknown intent
£ zip
£ cancel

v & getzip
{# BeginDialog

w % CancelDialog

+

{ BeginDialog
w % HelpDizlog

{ BeginDialog
Figure 5-w: Composer — The cancel Trigger

Next, we need to add a CancelDialog, so let's do that.

Adding a CancelDialog

In the authoring canvas, under cancel (Intent recognized), click + > Dialog management >

Begin a new dialog.

Looping ? I Begin a new dialog

Dialog management > I End this dialog

Manage properties 7 Cancel all active dialogs

Figure 5-x: Composer — Dialog management — Begin a new dialog

Then in the properties pane, under Dialog name, select the option CancelDialog.

4% cancel
Intent recognized

64

www.dbooks.org

https://www.dbooks.org/

65

Begin a new dialog

’ Dialog name @
CancelDialog (Dialog) 9

| ‘ CancelDialog v

T a8 get zip

(E IEEE CancelDialog I |
&8 HelpDialog

Figure 5-y: Composer — Cancel — Begin a new dialog — Dialog name — CancelDialog

The cancel trigger connects to the CancelDialog, and we have the basic framework for
allowing the user to stop the conversation with the bot.

Enabling interruptions

So far, the bot knows how to retrieve the zip code information using the Zipcodebase API, but it
still doesn't know what to do when the user wants to interrupt the conversation. Therefore, we

will now enable interruptions so that the conversation can stop when the user requests it.

In the bot explorer, click get_zip, and then select the BeginDialog trigger. In the authoring
canvas, select the Prompt for text action. Then, in the properties pane, under Other, change

the value of Allow Interruptions to true.

w @ ZipcodeBot

; DI Show
v & ZipcodeBot get_zip > BeginDialog > Prompt for text P .
Gresting Botresponse Userinput | Other
Unknown intent ﬁ BeginD]a|og -)
Zip Begin dialog event > Recognizers
i | . 5
% conce _‘ > Validation
: 1
. I\/ Prompt Configurations I
w 43 CancelDialog
£ BeginDialog Text Let's check a zip code Default value response @ Show code
w &% HelpDialog ‘
+ Text
BeginDialog | -
3
@ Prompt for text : Responses
Text Please enter a zip code to continue Add alternative
,,,,,,,,,,,,,,,,,,, I Max turn count @
| ‘ 123 ‘ 3 |
er input (Text)
Default value @
@\ p = Input(Text) -
a i abc | 33165 |
® } Allow Interruptions @
true

| M ‘ y/n

Figure 5-z: Composer — Enabling Interruptions

By enabling interruptions following the steps described within the get_zip dialog, the bot can
respond to any cancellation requests that the user makes.

Testing interruptions

Let's give this a try. Click the Start bot button to execute the bot and start a new conversation.

Once the bot starts, click Open Web Chat.

Let's begin the conversation by entering the word zip. Then, after the bot responds, enter
cancel, stop, or quit.

Once you do that, the CancelDialog kicks in, and the bot responds by asking if you would like

to cancel the conversation. We can see this conversational flow as follows.

Welcome to ZipcodeBot. Please type the word
'Zip' to start

zip
Just now

Let's check a zip code

Please enter a zip code to continue

Just now

I will cancel this for you, but are you sure?
Yes No

Figure 5-aa: Composer — ZipcodeBot Conversation — Using the CancelDialog (1)

The bot will stop the conversation when the Yes button is clicked, and when the No button is
clicked, the regular conversational flow will continue. | will click the Yes button.

Yes

Just now

No problem, I will stop.

Figure 5-ab: Composer — ZipcodeBot Conversation — Using the CancelDialog (2)

As you can see, the bot responded correctly to the request to stop the conversation. So, by

using the CancelDialog, we made the bot slightly more intelligent by understanding the intent to

abort a conversation.

66

www.dbooks.org

https://www.dbooks.org/

Nicer output

The last thing I'd like to cover in this chapter is returning the bot’s response as a card rather
than a single line of text. By doing this, we make the bot’s response look better and more
professional.

Select the get_zip dialog in bot explorer (which is probably already selected). Choose the Send
a response action on the True branch in the authoring canvas.

With that done, go to the properties pane and click + > Attachments.

Learn more
hTrue
- Add a note

Set properties : @ Send a responst

dialog.postal_code : =dialog.api_response.content.r... Text An error has h
dialog.country_code : =dialog.api_response.content....

dialog.latitude : =dialog.api_response.content.result... =
¢ g-apLresp Bot responses &

8 more
Delete a property Text | -+
\L user.zip Add more to this response @
Respons

@ Send a response)

Speech 2
ity: ${dialog.city}, State: ${dialog.state}, Count... City: § ~
Attachments (2

Add al) P
Suggested Actions 2

1
|
|
Figure 5-ac: Composer — True Branch — Send a response — Attachments

Next, click Add new attachment > Create from template > Adaptive card.

] Attachments @
Adaptive card

Hero card Add new attachment

Sign-in card Create from template >
. Thumbnail card Add Custom

Audio card

Video card

Animation card

Figure 5-ad: Composer — Add new attachment — Create from template — Adaptive card

In the editor, modify the text field with the following:
${user.zip} = ${dialog.city}, ${dialog.state} (${dialog.province} county)

Attachment

G v ox e oo

> To learn more Adaptive Cards format, read the documentation at
> https://docs.microsoft.com/en-us/adaptive-cards/getting-started/bots

- {
"$schema": "http://adaptivecards.io/schemas/adaptive-card.json",
"version”: "1.2",
"type”: "AdaptiveCard”,
"body": [
{

"type™: "TgﬁtBlock“,
I"text": "${user.zip} = ${dialog.city}, ${dialog.state} (${dialog.province} county)",l
"weight”: "bolder”,
"issubtle": false
¥
]
yo

Figure 5-ae: Composer — Attachment Editor (Expanded)

With that done, we can restart the bot and test it again. Click the Restart bot button, and then
Open Web Chat.

() Restart bot |

Figure 5-af: Restart bot Button

Click Restart conversation —new user ID to begin fresh. Then, as usual, enter the word zip,
and enter any valid U.S. zip code. I'll enter 80027.

[es L

www.dbooks.org

https://www.dbooks.org/

69

Welcome to ZipcodeBot. Please type the word
'zip' to start

zip
Just now

Let's check a zip code

Please enter a zip code to continue

80027

Just now

80027 = Louisville, Colorado (Boulder county)

Figure 5-ag: Conversation with an Adaptive Card Response

As you can see, the bot's response is an adaptive card rather than a line of text. Although it's
not state-of-the-art Ul, it's a step forward.

Summary

Throughout this chapter, we went through the necessary steps to finalize our ZipcodeBot by
giving it the ability to stop conversations.

Although the bot's functionality is straightforward, the process for creating the bot has been
rather effortless. So far, we haven’t had to write a single line of code.

That's part of the magic of Composer—to take something as complex as a bot's code and
completely abstract it from the person creating the bot.

In the chapter that follows, we'll get to see firsthand all the work (and code) that Composer has
created behind the scenes for us, which otherwise we would have written (before Composer).

Furthermore, we'll take that generated code and push it to Azure so we can have a fully
functioning bot running in the cloud, using Azure Bot Service.

Chapter 6 Bot Code Structure

Overview

Composer does a lot for us. It acts as an abstraction layer that hides all the underlying code
required to create and execute a bot.

Next, we will explore the bot project structure that Composer has bootstrapped and created for
us.

Locating the project

If you have Composer running, close and reopen it to locate the folder where Composer has
created the bot code. When Composer opens, you will see the name of your bot project and the
location on the disk where the project resides.

Welcome to Bot Framework Composer

Recent

| Create new = Open

Name Location Date modified

ZipcodeBot I C:/Temp/AzureBot/ZipcodeBot/ZipcodeBot I 2 days ago

Figure 6-a: Composer — Welcome Screen — Location of the Bot Project

Let's navigate to the project's folder (Location) and look at what Composer has created.

Project folder structure

Within the bot project folder, we can find a Visual Studio solution file called ZipcodeBot.sIn. We
can open it with the latest version of Visual Studio (in my case, the 2019 Community Edition).

70

www.dbooks.org

https://www.dbooks.org/

71

| M = | ZipcodeBot

Home Share View
x] Cut x % New item ™ \;j Open HH Select all

W] Copy path Tj Easy access ™ Edit Select none
Pinto Quick Copy Paste Move Copy Delete Rename MNew Properties .
e — [7] Paste shorteut - - - folder - & History DD Invert selection
Clipboard Qrganize New QOpen Select
«— v 1 ‘ C:\Temp\AzureBot\ZipcodeBot] R [@]
N ~
[Desktop MName Date modified Type Size
Emails ZipcodeBot 20 Oct 2021 1247 am File folder
PowerAutomate 1 ZipcodeBotsin 9 Oct 2021 12:25 am Visual Studio Solut... 2KB
Temp o
2 items

Figure 6-b: Bot Folder Structure and Content

Double-click the ZipcodeBot.sIn file to open it. Once it is open, go to Solution Explorer to look
at the project structure and files.

Solution Explorer v 1 x
@8 o-= 88 [[u Fl=
Search Solution Explorer (Ctrl+;) P~

51 Solution ‘ZipcodeBot' (1 of 1 project)
4 =7 ZipcodeBot
& Connected Services
- Dependencies
¢ Properties
& wwwroot
Controllers
dialogs
generated
knowledge-base
language-generation
language-understanding
media
schemas
scripts
settings
[.gitignore
¢ Nuget.config
P ¢= Program.cs
m+ README.md
P c= Startup.cs
[ZipcodeBot.dialog

v T v v v v v v Y v v v v

Figure 6-c: Bot Project Structure (Visual Studio)

As we can see, the ZipcodeBot project contains many folders, each with many files. If we had
to create this project structure manually, this would be a significant task; however, Composer
took care of this without us noticing.

We won't go through all the details or look at every folder and file. Let's just look at the most
critical folders and files.

4 Cantrollers

b c= BotController.cs

b = SkillController.cs

4 dialogs

emptyBot

get_zip
knowledge-base

=~

h

language-generation
language-understanding

v v v v

recognizers
I O get zipdialog |
4 imported
b Microsoft.Bot.Compaonents.HelpAndCancel

Figure 6-d: Bot Project Structure — Most Important Folders and Files

One of the critical elements of the bot is the controller. The controller—in this case,
BotController.cs—is the core engine for processing bot requests to the appropriate route. Let's
look at this file.

using
using
using
using
using
using
using
using
using
using

System;

Code Listing 6-a: BotController.cs

System.Collections.Generic;
System.Ling;
System.Threading.Tasks;

Microsoft

.AspNetCore.Mvc;
Microsoft.
Microsoft.
Microsoft.
Microsoft.
Microsoft.

Bot.Builder;
Bot.Builder.Dialogs.Adaptive.Runtime.Settings;
Bot.Builder.Integration.AspNet.Core;
Extensions.Configuration;

Extensions.lLogging;

namespace ZipcodeBot.Controllers

{

[ApiController]
public class BotController : ControllerBase

{

private

readonly Dictionary<string, IBotFrameworkHttpAdapter>

_adapters = new Dictionary<string, IBotFrameworkHttpAdapter>();

private
private

readonly IBot _bot;
readonly ILogger<BotController> logger;

public BotController(
IConfiguration configuration,
IEnumerable<IBotFrameworkHttpAdapter> adapters,

72

www.dbooks.org

https://www.dbooks.org/

73

IBot bot,
ILogger<BotController> logger)

_bot = bot ?? throw new ArgumentNullException(nameof(bot));
_logger = logger;

var adapterSettings = configuration.GetSection(
AdapterSettings.AdapterSettingsKey).
Get<List<AdapterSettings>>() ??
new List<AdapterSettings>();
adapterSettings.Add(AdapterSettings.CoreBotAdapterSettings);

foreach (var adapter in adapters ??
throw new ArgumentNullException(nameof(adapters)))

{
var settings = adapterSettings.FirstOrDefault(

s => s.Enabled && s.Type == adapter.GetType().FullName);

if (settings != null)
{

}

_adapters.Add(settings.Route, adapter);

}

[HttpPost]

[HttpGet]

[Route("api/{route}")]

public async Task PostAsync(string route)

{
if (string.IsNullOrEmpty(route))
{
_logger.LogError($"PostAsync: No route provided.");
throw new ArgumentNullException(nameof(route));
}

if (_adapters.TryGetValue(route,
out IBotFrameworkHttpAdapter adapter))

{
if (_logger.IsEnabled(LogLevel.Debug))
{
_logger.LogInformation($"PostAsync: routed '{route}’
to {adapter.GetType().Name}");
}

// Delegating the processing of the HTTP POST to the
// appropriate adapter.

// The adapter will invoke the bot.

await adapter.ProcessAsync(Request,

Response, _bot).ConfigureAwait(false);

}
else
{
_logger.LogError($"PostAsync: No adapter
registered and enabled for route {route}.");
throw new KeyNotFoundException($"No adapter registered
and enabled for route {route}.");
}

Without delving into specific details, the BotController.cs code has two main functionalities.
The first is to initialize BotFrameworkHttpAdapter adapters—this occurs within the
BotController constructor.

The second functionality is to route incoming requests, which the Postasync method does, by
delegating the HTTP request processing to the appropriate adapter.

ZipcodeBot dialog

In Solution Explorer, scroll down, and there you'll find the ZipcodeBot.dialog file, which
contains the bot's main logic and rules.

LT appsettings.json
[.gitignore
¢ Nuget.config
B c® Program.cs
M+ README.md
b c® Startup.cs
I['] ZipcodeBot.dialog

Figure 6-e: The Project Root Files

Behind the scenes, the ZipcodeBot.dialog file loads when the bot executes, and this file
contains all the main settings that the bot uses to establish the conversation with the user. Let's
inspect the contents of this file.

Code Listing 6-b: ZipcodeBot.dialog

{
"$kind": "Microsoft.AdaptiveDialog",

"$designer": {

74

www.dbooks.org

https://docs.microsoft.com/en-us/dotnet/api/microsoft.bot.builder.integration.aspnet.webapi.botframeworkhttpadapter?view=botbuilder-dotnet-stable
https://www.dbooks.org/

"name": "ZipcodeBot",
"description": "",
"id": "A79tBe"
}s
"autoEndDialog": true,
"defaultResultProperty"”: "dialog.result",
"triggers": [
{
"$kind": "Microsoft.OnConversationUpdateActivity",
"$designer": {
"id": "376720"
¥
"actions": [
{
"$kind": "Microsoft.Foreach",
"$designer": {
"id": "518944",
"name": "Loop: for each item"
}s
"itemsProperty": "turn.Activity.membersAdded",
"actions": [
{
"$kind": "Microsoft.IfCondition",
"$designer": {
"id": "641773",
"name": "Branch: if/else"
¥
"condition": "string(dialog.foreach.value.id) !=
string(turn.Activity.Recipient.id)",
"actions": [
{
"$kind": "Microsoft.SendActivity",
"$designer": {
"id": "859266",
"name": "Send a response”

¥
"activity": "${SendActivity Greeting()}"

"$kind": "Microsoft.OnUnknownIntent",
"$designer": {

"id": "mb2nlu"
}s

s

"actions": [
{
"$kind": "Microsoft.SendActivity",
"$designer": {
"id": "kMjqz1"
s
"activity": "${SendActivity DidNotUnderstand()}"

"$kind": "Microsoft.OnIntent",
"$designer": {
"id": "d5ER8p",
"name": "zip"
}s
"intent": "zip",
"actions": [
{
"$kind": "Microsoft.BeginDialog",
"$designer": {
"id": "uvweRC"
s
"activityProcessed": true,
"dialog": "get_zip"

"$kind": "Microsoft.OnIntent",
"$designer": {
"id": "RkkXzi",
"name": "cancel™
}s
"intent": "cancel",
"actions": [
{
"$kind": "Microsoft.BeginDialog",
"$designer": {
"id": "KM4gcW"
¥
"activityProcessed": true,
"dialog": "CancelDialog"
}
]
}
1,

"generator": "ZipcodeBot.lg",
"id": "ZipcodeBot",

e L

www.dbooks.org

https://www.dbooks.org/

"recognizer": {

"$kind": "Microsoft.RegexRecognizer",
"intents": [
{
"intent": "zip",
"pattern": "zip"
¥
{
"intent": "cancel",
"pattern": "stop|quit|cancel"
}
]
}
}

Essentially, we can see that most of the dialog details we created using Composer are here.
Notice that in one of the actions, there's a reference to the get_zip dialog. There are references
to the Branch: if/else and also the cancel dialog.

The get_zip dialog

Going back to Solution Explorer, double-click the get_zip file to open and inspect it.

Code Listing 6-c: get_zip.dialog

"$kind": "Microsoft.AdaptiveDialog",
"$designer": {
"id": "dBaQjz",
"name": "get_zip",
"comment": "Get the zip code"
}s
"autoEndDialog": true,
"defaultResultProperty"”: "dialog.result",
"triggers": [
{
"$kind": "Microsoft.OnBeginDialog",
"$designer": {

"name": "BeginDialog",
"description": "",
"id": "pCF5nd"

}s

"actions": [
{

"$kind": "Microsoft.SendActivity",
"$designer": {
Ilidll : "J711Qd"

s
"activity": "${SendActivity J711Qd()}"
¥
{
"$kind": "Microsoft.TextInput",
"$designer": {
"id": "qJIM9gx"
s
"disabled": false,
"maxTurnCount": 3,
"alwaysPrompt": false,
"allowInterruptions”: true,
"prompt": "${TextInput_Prompt_qIM9gX()}",
"unrecognizedPrompt":
"¢${TextInput_UnrecognizedPrompt gIM9gX()}",
"property": "user.zip",
"outputFormat": "=trim(this.value)",
"validations": [
"=length(this.value) == 5"
1,
"invalidPrompt": "${TextInput_ InvalidPrompt gJM9gX()}",
"defaultValue": "33165"

"$kind": "Microsoft.HttpRequest",
"$designer": {
"id": "itxd2e"

¥

"method": "GET",

"url": "https://app.zipcodebase.com/api/vl/search?
apikey=03bledc0-2883-11ec-8073-777a767aael5
&codes=${user.zip}&country=US",

"headers": {},

"resultProperty": "dialog.api_response",

"responseType": "json"

"$kind": "Microsoft.IfCondition",
"$designer": {
"id": "kOFBrL"
¥
"condition": "=dialog.api_response.statusCode == 200",
"actions": [
{
"$kind": "Microsoft.SetProperties"”,
"$designer": {
"id": "KhWRrn"
¥

"assignments": [

T -

www.dbooks.org

https://www.dbooks.org/

"property": "dialog.postal code",
"value": "=dialog.api_response.content.
results[user.zip][0]['postal_code']"

}s
{
"value": "=dialog.api_response.content.
results[user.zip][@][' 'country_code']",
"property": "dialog.country_code"
}s
{
"value": "=dialog.api_response.content.
results[user.zip][0]['latitude'] ",
"property": "dialog.latitude"
}s
{
"value": "=dialog.api_response.content.
results[user.zip][@]['longitude']",
"property": "dialog.longitude"
s
{
"value": "=dialog.api_response.content.
results[user.zip][@]['city']",
"property": "dialog.city"
}s
{
"value": "=dialog.api_response.content.
results[user.zip][@]['state']",
"property": "dialog.state"
}s
{
"value": "=dialog.api_response.content.
results[user.zip][@]['city _en']",
"property": "dialog.city en"
}s
{
"value": "=dialog.api_response.content.
results[user.zip][0@]['state_en']",
"property": "dialog.state en"
}s
{
"value": "=dialog.api_response.content.
results[user.zip][0@][' 'state_code']",
"property": "dialog.state code"
}s
{
"value": "=dialog.api_response.content.
results[user.zip][@]["province']",
"property": "dialog.province"

79 |

}s

{
"value": "=dialog.api_response.content.
results[user.zip][@]['province code']",
"property": "dialog.province_code"
}
]
}s
{
"$kind": "Microsoft.SendActivity",
"$designer": {
"id": "Qmgx7A"
¥
"activity": "${SendActivity Qmgx7A()}"
}
1,
"elseActions": [
{
"$kind": "Microsoft.SendActivity",
"$designer": {
"id": "tFvMeT"
}s
"activity": "${SendActivity tFVMOT()}"
}s
{
"$kind": "Microsoft.DeleteProperty"”,
"$designer": {
"id": "NSO8CP"
¥
"property": "user.zip"
}
]
}
]
}
1,
"generator": "get zip.lg",
"recognizer": "get zip.lu.qgna",

"id": "get zip"

As you might have noticed, the highlights of this file are the HTTP request to the Zipcodebase
API and the property assignments from the results obtained from the API.

Although this file is easy to read, its beauty is that Composer has abstracted the creation of this
definition file by providing us with a pleasant and easy-to-use UI.

80

www.dbooks.org

https://www.dbooks.org/

81

appsettings.json

Another important file for the bot to function correctly is appsettings.json. This file contains
settings and definitions on how the project executes. Within Solution Explorer, under the
settings folder, double-click the file to open it.

The most critical section is the runtime part, and as you will see in the listing that follows, it
contains instructions on how to execute the project using the .NET Core run command.

You can verify this by right-clicking ZipcodeBot within Solution Explorer, then clicking
Properties.

File Edit View Git Project Build Debug Test Analyze Tools Extensions Window Help Search (Ctrl-

Q- B2 W - ~| Debug ~ AnyCPU ~ P ISExpress~ € ~ | a =
g‘ ZipcodeBot + X ERTANNIHT] appsettings.json ZipcodeBotdialog Program.cs Startup.cs
o
[s] = =
Applicat
= pplication N/A N/A
Build
Build Events Assembly name: Default namespace:
Package ZipcodeBot | |Zipc0deBot
Debug Target framework: Output type:
Signing NET Core 3.1 ~ || | Console Application v
Code Analysis Startup object:
TypeScript Build (Not set) -
Resources

Resources

Figure 6-f: ZipcodeBot Properties — Visual Studio
Here is the code for appSettings.json.

Code Listing 6-d: appsettings.json

"customFunctions": [],
"defaultLanguage": "en-us",
"defaultLocale": "en-us",
"importedLibraries": [],
"languages": [
"en-us"
1,
"Logging": {
"LogLevel": {
"Default": "Information",
"Microsoft": "Warning",
"Microsoft.Hosting.Lifetime": "Information"

}
}s

"luFeatures": {

"enableCompositeEntities": true,
"enablelListEntities": true,
"enableMLEntities": true,
"enablePattern": true,
"enablePhraselists": true,
"enablePrebuiltEntities": true,
"enableRegexEntities": true

}s

"luis": {
"authoringEndpoint": "",
"authoringRegion": "",
"defaultLanguage": "en-us",
"endpoint™: "",
"environment": "composer",
"name": "ZipcodeBot"

}s

"MicrosoftAppId": "",

"publishTargets": [],

"gna": {
"hostname": "",
"knowledgebaseid": "",
"gnaRegion": "westus"

}s

"runtime": {

"command": "dotnet run --project ZipcodeBot.csproj",

"customRuntime": true,

"key": "adaptive-runtime-dotnet-webapp",

"path": "../"

}s
"runtimeSettings": {

"adapters": [],

"features": {
"removeRecipientMentions”: false,
"showTyping": false,
"traceTranscript"”: false,
"useInspection": false,

"setSpeak": {
"voiceFontName": "en-US-JennyNeural”,
"fallbackToTextForSpeechIfEmpty": true
}
¥
"components": [],
"skills": {
"allowedCallers": []
¥
"storage": "",

"telemetry": {
"logActivities": true,
"logPersonalInformation": false,

e L

www.dbooks.org

https://www.dbooks.org/

83

"options": {
"connectionString":

}

}

}s
"skillConfiguration": {},
"skillHostEndpoint": "http://localhost:3980/api/skills™

Summary

These .dialog files are the essence of the bot and contain its core logic. The C# code-behind
then parses the content of both files and executes the bot.

Now that we understand what lies behind the scenes, we are ready to publish our bot to the
Azure Bot Service, which we'll do in the next and final chapter.

Chapter 7 Publishing the Bot

Overview

By going through all the steps explained throughout the book's previous chapters, we have
managed to create a small functional bot and looked at how some of its most critical parts work.
Our focus now will be on how to deploy and publish it to Azure Bot Service.

Prerequisites
To deploy and publish a bot, the following prerequisites are required:

Microsoft Azure subscription.
Node.js 12.13.0 or later.

The latest version of the Azure CLI.
PowerShell 6.0 or later.

Azure Portal

Before we can deploy the bot to Azure, we need to have an account. If you don't have an Azure
account, getting one is very easy—you can create a free account here if you don't have one.

E Cloud Computing Services | Mici X

- C (¢ @& azuremicrosoft.com

=. Azure Explore v Productsv Solutions v Pricing~ Partnersv Resources v

We're in this together. Explore Azure resources and tools to help you navigate COVID-19 >

INVENT WITH PURPOSE !

Secure and govern your data like |
your business depends on it

Be confident knowing that your data is reliable, compliant, and well-protected with Azure data
governance and security innovations. Start exploring with a free account and get 12 months of popular
services free—plus a $200 credit.

Figure 7-a: Microsoft Azure Website

84

www.dbooks.org

https://azure.microsoft.com/en-us/
https://nodejs.org/
https://docs.microsoft.com/en-us/cli/azure/install-azure-cli
https://docs.microsoft.com/en-us/powershell/scripting/install/installing-powershell
https://azure.microsoft.com/en-us/
https://www.dbooks.org/

Once you have set up an Azure account, you can log in by going to the Portal. Before deploying
and publishing the bot, you must ensure that your Azure subscription is registered to use
Microsoft.BotService—this is known as resource provider registration.

Resource provider registration

The official Azure documentation provides comprehensive information on how to resolve errors
for resource provider registration.

The Microsoft.BotService namespace is an essential requirement that must be registered to
your Azure subscription for Composer to deploy and publish your bot successfully.

Therefore, you must follow the steps described in the documentation (specifically on Solution 3
- Azure Portal). You can do this by checking your Azure subscription properties, then in
Resource providers, look for Microsoft.BotService and ensure that this provider is registered
(if it isn’t, click Register).

The following figure shows how the provider appears on my Azure subscription (called Visual
Studio Dev Essentials—your subscription might have a different name). You might find that
this provider is not registered; if so, you'll have to register it.

Whether the Microsoft.BotService provider appears as registered by default might be
dependent on the type of Azure subscription you have purchased.

@ Visual Studio Dev Essentials - Mi. X

< C O @ portal.azure.com/#@4(

= Microsoft Azure L Search resources, services, and docs (G+/)

Home > |Visual Studio Dev Essentials |

v— Visual Studio Dev Essentials | Resource providers

A

Subscription
|ﬁ' Search (Ctrl+/) ‘ « I I O Refresh
Y External services - -
| £ Filter by name...

= Payment methods
29 Partner information

Provider Status
Settings
- I Microsoft.BotService @ Registered I
¥ Programmatic deployment

Microsoft.Cdn @ Registered
(4] Resource groups

Microsoft.ClassicStorage @ Registered
i Resources

Microsoft.Storage @ Registered

% Preview features

Microsoft.Logic @ Registered
== Usage + quotas

Microsoft.ResourceHealth @ Registered
2 Policies

Microsoft.Web @ Registered
k=l Management certificates

Microsoft.CognitiveServices ® Registered
ol My permissions

Microsoft.Media @ Registered

Figure 7-b: Azure Portal — Subscription — Resource providers — Microsoft.BotService

https://portal.azure.com/
https://docs.microsoft.com/en-us/azure/azure-resource-manager/templates/error-register-resource-provider
https://docs.microsoft.com/en-us/azure/azure-resource-manager/templates/error-register-resource-provider

Deploying from Composer

With Composer and your bot open, click the Publish icon on the navigation pane as shown in
the following figure.

E:-I Bot Framework Composer (v2.1.1)
File Edit View Window Help

+ Add v Y

w [ZipcodeBot
w &% ZipcodeBot
{# Greeting
{# Unknown intent
& zip
& cancel

v & getzip

DX B s > B

{# BeginDialog

Publich -ancelDialog

®

¥ BeginDialog

=
=

w & HelpDialog
{# BeginDialog

Figure 7-c: Composer — Publish Icon — Navigation Pane

Then, select ZipcodeBot.

o
A Publish your bots
z Publish Publishing profile
£
2 Bot | Publish target
o
|) ZipcodeBot Select a publish ...

=
=

Figure 7-d: Composer — Publish your bots — ZipcodeBot

After that, we need to define a Publish target, so click the dropdown option, Manage profiles,
or the Publishing profile tab directly.

86

www.dbooks.org

https://www.dbooks.org/

87

Publish target

Select a publish ... ~

Manage profiles

Figure 7-e: Composer — Publish your bots / Publish target / Manage profiles
Next, click Add new.

Publish your bots

Publish Publishing profile

Name Target

Figure 7-f: Composer — Publishing profile — Add new

The Create a publishing profile pop-up window appears. Here we need to enter the profile
name—in this case, ZipcodeBot, and as the Publishing target, choose Publish bot to Azure.

Create a publishing profile X

To test, run and publish your bot, it needs Azure resources such as app registration, hosting and channels. Other resources, such as language
understanding and storage are optional. A publishing profile contains all of the information necessary to provision and publish your bot,
including its Azure resources.Learn more

Name

‘ ZipcodeBot ‘

Publishing target

‘ Publish bot to Azure ~ ‘

Figure 7-g: Composer — Create a publishing profile (1)
Click Next, and you'll see the following options. Let's select Create new resources > Next.

Create a publishing profile X

To test, run and publish your bot, it needs Azure resources such as app registration, hosting and channels. Other resources, such as language
understanding and storage are optional. A publishing profile contains all of the information necessary ta provision and publish your bot,
including its Azure resources.

(®) Create new resources Create new resources

O Import existing resources Select this option when you want to provision new Azure resources and publish a bot. A

subscription to Microsoft Azure is required. Learn more
O Hand off to admin

STEP 1

Figure 7-h: Composer — Create a publishing profile (2)
A pop-up window appears, prompting you to sign in to Azure.

[es L

www.dbooks.org

https://www.dbooks.org/

89

B® Microsoft
Sign in

Email, phone, or Skype

No account? Create one!

Next

Figure 7-i: Composer — Azure Sign In

There, enter the email address that you used when you signed up for Azure, and click Next.
After that, enter the password, and click Sign in.

We'll have to enter the Azure and resource details. Select your Azure Subscription. As for the
Resource group, select Create new, and give it the name bots.

For the Operating System, leave the default option selected: Windows (Recommended).

For the Resource details, set the Name field to thezipcodebot (feel free to give it another
name).

As for the Region set to West US and the LUIS region set to West US, feel free to choose any
others if you wish; these are not mandatory.

Configure resources X

Azure details

Subscription, enter resource group name.

Subscription * @ ‘ Visual Studio Dev Essentials ~

4 o))
Resource group * 2 ‘ bots "

App Service (Web App or Function)

Operating System * @ ‘@) Windows (Recommended) O Linux

Resource details

Enter resource name and select region. This will be applied to the new resources.

Name * @ ‘ thezipcodebot |
Region * @ ‘ West US ~
LUIS region * @ ‘ West US ~
Learn more

@ Fast Apps | Back |m| Cancel |
Sign out I

Figure 7-j: Composer — Configure resources

After entering those details, click Next to continue. You will see the list of Azure resources
required for the bot to run.

Add resources X

Your bot needs the following resources based on its capabilities. Select resources that you want to provision in your publishing profile. Learn

more
Required
£ Microsoft Application Registration
Free
Required registration allowing your bot to communicate with Azure services.
& App Services
S1 Standard
App Service Web Apps lets you quickly build, deploy, and scale enterprise-grade
web, mobile, and APl apps running on any platform. Hosting for your bot.
@ Microsoft Bot Channels Registration
When registered with the Azure Bot Service, you can host your bot in any
environment and enable customers from a variety of channels, such as your app
or website, Direct Line Speech, Microsoft Teams and mare.
Optional
% Azure Cosmos DB
Pay as you go
Azure Cosmos DB is a fully managed, globally-distributed, horizontally scalable
in storage and throughput, multi-model database service backed up by
comprehensive SLAs. It will be used for bot state retrieving.
@ Application Insights
Pay as you go -

Figure 7-k: Composer — Add resources

As for the resources selected by default as Optional, such as Azure Cosmos DB or
Application Insights, | would recommend unselecting them all (except the two LUIS services)
to avoid incurring unnecessary Azure costs.

Check the complete list of Optional resources (from top to bottom) and remove all the ones
selected by default (except the two LUIS services).

If you want to experiment with LUIS, the Azure Language Understanding service, you must
leave the Microsoft Language Understanding Authoring Account and Prediction Account
resources selected.

@ Microsoft Language Understanding Authoring Account
Language Understanding (LUIS) is a natural language processing service that
enables you to understand human language in your own application, website,
chatbot, loT device, and more. Used for Luis app authoring.

@ Microsoft Language Understanding Prediction Account
S0 Standard
Language Understanding (LUIS) is a natural language processing service that

enables you to understand human language in your own application, website,
chatbot, loT device, and more. Used for Luis endpoint hitting.

Figure 7-I: Composer — Add resources — LUIS

90

www.dbooks.org

https://www.luis.ai/
https://www.dbooks.org/

We will not cover LUIS in this book; however, | encourage you to explore the official LUIS
documentation and how you can use and integrate this functionality into your bot.

For my bot deployment, I'm going to leave the Microsoft Language Understanding Authoring
Account and Prediction Account resources selected.

After unselecting the resources that you won't use, click Next to continue.

Review resources to be created e

The following resources will be created and provisioned for your bot. Once provisioned, they will be available in the Azure portal.

Resource Type Resource Group Name Region
Microsoft Application Registration bots thezipcodebot global
@ App Services bots thezipcodebot westus
@ Microsoft Bot Channels Registration bots thezipcodebot global
@ Microsoft Language Understanding Authoring Account bats thezipcodebot-luis- westus
authoring
@ Microsoft Language Understanding Prediction Account bats thezipcodebot-luis westus

Figure 7-m: Composer — Review resources to be created
Next, you'll see a screen with the list of resources that the bot will require at this stage. Click
Create to continue (the Create button is not visible in Figure 7-m, but it exists in the
application).

Composer will provision the required Azure resources to deploy and publish the bot.

X

Provisioning ...

Deploying Web App Resource ...

Figure 7-n: Composer — Provisioning Azure Bot Resources

Once the operation finalizes, you will see the following message.

© Provision success

Provisioning completed successfully!

Figure 7-0: Composer — Provision success

https://docs.microsoft.com/en-us/azure/cognitive-services/luis/

Checking Azure resources

Let's open a web browser, go to the Azure Portal, and click All resources to view the resources
created by Composer.

@ Home - Microsoft Azure X

C 0 @& portal.azure.com

Microsoft Azure £ Search resources, services, and docs (G+/)

Azure services

+ [@&]| @

Create a All resources Resource
resource groups

Figure 7-p: Azure Portal — Main Page

After clicking All resources, you will see the App Service Plan and the App Service, among
others.

@ All resources - Microsoft Azure X

< C O @ portal.azure.com

= Microsoft Azure £ Search resources, services, and docs (G+/)

Home

All resources =

Default Directory

—+ Create @ Manage view v C_) Refresh J_, Export to CSV 5 Open query Assign tags Delete O Feedback
| Filter for any field... | Subscription == all Resource group == all Type ==all X Location == all X +7 Add filter

Showing 11ta 5 of 5 records. [_] Show hidden types ()

\:I Name T Type T Resource group T Location T
\:‘ ;, thezipcodebot Azure Bot bots Global

\:‘ i thezipcodebot App Service plan bots West US

\:‘ @ thezipcodebot App Service bots West US

\:‘ 0 thezipcodebot-luis Language understanding bots West US

\:‘ m thezipcodebot-luis-authoring Language understanding bots West US

Figure 7-q: Azure Portal — All resources

92

www.dbooks.org

https://www.dbooks.org/

Publishing

Back in Composer, go to the Publish tab and set the bot's Publish target as ZipcodeBot.
Then, click Publish selected bots.

E:-I Bot Framework Composer (v2.1.1)

File Edit View Window Help

’ ZipcodeBot

= |} Publish selected bots ¢® Pull from selected profile
@ -
Iy Publish your bots
7 Publish Publishing profile
&
2 Bot | Publish target
o
| @ ZipcodeBot ZipcodeBot ~
111

Figure 7-r: Composer — Publish selected bots

After clicking Published selected bots, you will see the following pop-up window.
Publish X

You are about to publish your bot to the profile below. Do you want to proceed?

Bot Publish target Comments

ZipcodeBot ZipcodeBot ‘ Write your message ‘

Figure 7-s: Composer — Publish

To publish the bot, click Okay—you will see the following message.

& Publishing one bot

Figure 7-t: Composer — Publishing one bot

] g3 |

The deployment and publishing process might take a few minutes depending on your internet
connection speed.

You will also see message updates depending on what stage of the process the deployment
and publishing are, such as Creating build artifact....

Bot | Publish target Date Status Message

ZipcodeBot - 10-23-2021 Creating build artifact...

Figure 7-u: Composer — Publishing one bot — Creating build artifact

Once you're done, you will see the following Success message.

Bot | Publish target Date Status Message

ZipcodeBot ZipcodeBot - 10-23-2021 v Success

Figure 7-v: Composer — Publishing one bot — Success

Testing the Azure bot

With the bot successfully deployed and published, the next thing to do is test it. Let's go back to
Azure Portal, then click All resources.

In my case, the Azure Bot Service is the first item on my list of resources. Make sure you click
the element that has the column Type value set to Azure Bot.

94

www.dbooks.org

https://www.dbooks.org/

95

@ Allresources - Microsoft Azure X

< C O @ portal.azure.com

= Microsoft Azure L Search resources, services, and docs (G+/)

Home

All resources =

Default Directory

+ Create @ Manage view ~~ Q) Refresh J_/ Exportto CSV 5 Open query Assign tags Delete & Feedback
| Filter far any field... | Subscription == all Resource group == all < Type == all Location == all < +v Add filter

Showing 1 to 5 of 5 records. || Show hidden types @

I:’ Name T Type T4 Resource group T Location T{
DI; thezipcodebot Azure Botl bots Global

D B thezipcodebot App Service plan bots West US

D l@ thezipcodebot App Service bots West US

D m thezipcodebot-luis Language understanding bots West US

D m thezipcodebot-luis-authoring Language understanding bots West US

Figure 7-w: Azure Portal — All resources — Azure Bot Highlighted

After you click the Azure Bot item, you'll see the Azure Bot blade. Ensure your browser has
cookies enabled (indicated by the small eye icon highlighted in red in the upper-right side of
Figure 7-x)—which most browsers do by default; however, some cookies might not be allowed.

Click Test in Web Chat and start a conversation with the bot. As you can see in the following
figure, the bot works just great, the same as it did in Composer.

@ thezipcodebot - Microsoft Azure X

< c o0

= Microsoft Azure P Search resources, services, and docs (G+/)

Home > thezipcodebot

thezipcodebhot | Test in Web Chat

Azure Bot

‘)3' Search (Ctrl+/) ‘ « Test O start over

B) Overview

B Activity log

gf—‘\ Access control (IAM)
L Tags

Settings Welcome to ZipcodeBot. Please type the word ‘zip’ to start
&k Bot profile Just now

= Configuration zip
Channels .
Just now
u Channels (Preview)

Let’s check a zip code
@ Pricing

| Test in Web Chat I Please enter a zip code to continue

B Encryption Just now
= Properties
33165
B Locks

Monitoring
33165 = Miami, Florida (Miami-Dade county)

il Conversational analytics

Just now

B Alerts

fifl Metrics . [\]J Type your message B
Figure 7-x: Azure Portal — Azure Bot Service — Test in Web Chat

Excellent—we have achieved our goal!

Closing thoughts

Although we have created a basic bot that returns information about zip codes using a third-
party API through the course of this book, we got a working and fully functional bot deployed to
the Azure cloud without a single line of code. If that's not impressive, | don't know what is!

The other exciting aspect of this tale is that we could have added more sophisticated features to
the bot without writing any code, such as by using LUIS.

In my opinion, combining Composer and Azure Bot Service is powerful, yet easy to understand
and do.

From the initial days of the Microsoft Bot Framework—reserved mastly for highly qualified C#
developers—creating bots with Microsoft technologies has come a long way.

These technologies now empower non-professional developers (also known as citizen
developers) to create compelling bots without any coding knowledge, which interests
businesses.

96

www.dbooks.org

https://www.dbooks.org/

97

| invite you to keep exploring what you can do with Composer and Azure Bot Service—we’ve
barely scratched the surface of what's possible.

Consider adding LUIS-enabled capabilities to your bot so that it can understand natural
language intents or use more articulated dialogs. The possibilities are endless.

A great way to continue your journey is to explore the official Microsoft documentation, look at
some of the samples available, and add your ideas to the mix. If you come up with something
cool, I'd love to hear about it.

I hope this book has given you some valuable pointers that you can take on that journey.
Thanks for reading—until next time, take care, keep learning, and have fun!

https://docs.microsoft.com/en-us/azure/bot-service/?view=azure-bot-service-4.0

	Table of Contents
	The Story Behind the Succinctly Series of Books
	taying on the cutting edge
	Information is plentiful but harder to digest
	The Succinctly series
	The best authors, the best content
	Free forever
	Free? What is the catch?
	Let us know what you think

	About the Author
	Acknowledgments
	Introduction
	Chapter 1 Getting Started
	Overview
	Bot Framework Composer intro
	Installing Node.js
	Installing .NET Core SDK
	Installing Composer

	Chapter 2 Composer Bot Basics
	Overview
	Composer UI
	Zipcodebase
	Creating an empty bot
	First-time bot execution
	Adding a dialog
	Summary

	Chapter 3 Expanding the Bot
	Overview
	Executing the dialog from a trigger
	Requesting user input
	Output format
	Input validation
	Default zip value
	Summary

	Chapter 4 Working with the API
	Overview
	Getting the API key
	HTTP request
	HTTP status code
	Creating a branch
	Querying the API
	First assignment
	Other assignments
	Summary

	Chapter 5 Finalizing the Bot
	Overview
	API results as a response
	First execution
	Different status code branch
	Adding a package
	Interrupting the conversation
	Adding a CancelDialog
	Enabling interruptions
	Testing interruptions
	Nicer output
	Summary

	Chapter 6 Bot Code Structure
	Overview
	Locating the project
	Project folder structure
	ZipcodeBot dialog
	The get_zip dialog
	appsettings.json
	Summary

	Chapter 7 Publishing the Bot
	Overview
	Prerequisites
	Azure Portal
	Resource provider registration
	Deploying from Composer
	Checking Azure resources
	Publishing
	Testing the Azure bot
	Closing thoughts

