
www.dbooks.org

https://www.dbooks.org/

Asynchronous

Programming

Succinctly

By

Dirk Strauss

Foreword by Daniel Jebaraj

3

Copyright © 2017 by Syncfusion, Inc.

2501 Aerial Center Parkway

Suite 200

Morrisville, NC 27560

USA

All rights reserved.

Important licensing information. Please read.

This book is available for free download from www.syncfusion.com on completion of a

registration form.

If you obtained this book from any other source, please register and download a free copy from

www.syncfusion.com.

This book is licensed for reading only if obtained from www.syncfusion.com.

This book is licensed strictly for personal or educational use.

Redistribution in any form is prohibited.

The authors and copyright holders provide absolutely no warranty for any information provided.

The authors and copyright holders shall not be liable for any claim, damages, or any other

liability arising from, out of, or in connection with the information in this book.

Please do not use this book if the listed terms are unacceptable.

Use shall constitute acceptance of the terms listed.

SYNCFUSION, SUCCINCTLY, DELIVER INNOVATION WITH EASE, ESSENTIAL, and .NET

ESSENTIALS are the registered trademarks of Syncfusion, Inc.

Technical Reviewer: James McCaffrey

Copy Editor: John Elderkin

Acquisitions Coordinator: Morgan Weston, social media marketing manager, Syncfusion, Inc.

Proofreader: Darren West, content producer, Syncfusion, Inc.

www.dbooks.org

http://www.syncfusion.com/
http://www.syncfusion.com/
http://www.syncfusion.com/
https://www.dbooks.org/

4

Table of Contents

About the Author ... 5

Chapter 1 Getting Started.. 6

What is asynchronous programming? ... 6

Examples of potentially blocking activities ... 6

Writing async methods ... 7

Avoid deadlocks when using async ... 11

Chapter 2 How Do I Use Async ... 15

Exploring async further .. 15

Async method return types .. 15

Object Oriented Programming and async .. 29

Abstract classes ... 29

Chapter 3 Some Real World Examples .. 34

Displaying the progress of an async method ... 34

Pausing the progress of an async method .. 38

Using Task.WhenAll() to wait for all tasks to complete .. 42

Using Task.WhenAny() to wait for any tasks to complete ... 47

Process tasks as they complete .. 54

Chapter 4 Use SemaphoreSlim to Access Shared Data .. 61

Chapter 5 Unit Tests and async and await .. 69

An overview of unit testing async methods.. 69

Create a unit test in Visual Studio .. 69

Avoiding deadlocks in unit tests ... 82

Final thoughts .. 84

Additional resources—where to learn more... 85

5

About the Author

Dirk Strauss is a software developer and Microsoft .NET MVP from South Africa with over 13
years of programming experience.

Starting his career at a small software development house in Port Elizabeth, he moved on to
EOH Applications in 2007. He spent the next 8 years writing software to integrate into SYSPRO.
It was during this time that he started blogging frequently to avoid stagnating and to keep on
learning.

In 2015 he joined the Evolution Software team where he lives out his creativity and works with
incredibly inspirational individuals. During this time he published two books on C# as well as a
few e-books. He continues learning and sharing whenever he can. You can find him
@DirkStrauss on Twitter or on his blog dirkstrauss.com.

www.dbooks.org

https://twitter.com/dirkstrauss?lang=en
http://dirkstrauss.com/
https://www.dbooks.org/

6

Chapter 1 Getting Started

What is asynchronous programming?

Recently, a friend of mine was tasked with improving a Windows Forms application that had
been written about four years ago. As I looked on, I saw that calls to the database locked up the
UI for several seconds. The search functionality (which searched a table consisting of only
60,000 entries) took from 30 seconds to a minute to return results to the form. This meant that
while the application was querying the database and doing what it needed to do, the UI was
totally unresponsive. The user could not resize it, move it around, or interact with it in any way.
Instead, users had to sit and wait for the application to respond. Reading and writing files was
equally frustrating. The unresponsiveness of the application created negative feelings—that the
application was malfunctioning, was old (which was technically true), and was no good.

In actual fact, the application was not malfunctioning. The search returned true results from the
database. Saving information to the database worked every time, and the files the application
created or read always worked. Nothing was “broken,” but the fact that the UI was slow and
unresponsive at times (especially as the customer’s workload increased) made using the app
extremely frustrating.

While this situation might have been due to a combination of poor code and inefficient SQL
statements, in fact the form was not responsive because it was doing everything
synchronously—any process that accesses the UI thread (UI-related tasks usually share a
single thread) will be blocked in a synchronous application. Therefore, if one process is blocked,
all processes are blocked.

Asynchrony is the saving grace for these kinds of applications. Using asynchronous methods
will allow the application to remain responsive. The user can resize, minimize, maximize, move
the form around, or even close the application should they wish to. Introducing asynchronous
functionality into applications had long been a complicated endeavour for developers, but the
introduction of async programming in Visual Studio 2012 introduced a simplified approach.
Async programming leveraged the .NET Framework 4.5, which made it easier to code and
moved all the heavy lifting and complicated code to the compiler. Don’t get me wrong, though—
while asynchronous programming is still a complex bit of technology, it has been made much
easier to use.

Examples of potentially blocking activities

We now know one thing: async improves the responsiveness of your application. But just which
activities are potentially blocking? For example, take accessing a web resource. In a
synchronous scenario, the entire program will be blocked if the web resource being accessed is
slow or overloaded. The following list defines several areas in which async programming will
improve the responsiveness of your application.

7

Web Access

• HttpClient
• SyndicationClient

Files

• StorageFile
• StreamWriter
• StreamReader
• XmlReader

Images

• MediaCapture
• BitmapEncoder
• BitmapDecoder

WCF

• Asynchronous Service Operations

 Note: Microsoft Visual Studio Enterprise 2015 (Update 3) will be used to create all
the code samples in this e-book. The .NET Framework 4.6.1 is the framework that will
be used.

Writing async methods

The async and await keywords are essential in async programming. Using these keywords,

developers are able to create async methods. But what else characterizes async methods? As it
turns out, there are a few things to consider. The signature of the method must include the
async modifier. The method must have a return type of Task<TResult>, Task, or void. The

method statements must include at least a single await expression—this tells the compiler that

the method needs to be suspended while the awaited operation is busy. Lastly, the method
name should end with the “async” suffix (even though this is more convention than required).
Why would this convention be significant, you ask? Well, that’s the convention used in the .NET
Framework 4.5 and newer versions. Have a look at how easy it is to find the asynchronous
methods of the HttpClient class. Typing “.async” after the instance of the HttpClient object

will filter the available methods in the Intellisense list, as you can see in Figure 1.

 Note: It is important to note that methods are not awaitable. Types are awaitable.
That is why you can await a Task<TResult> or Task.

www.dbooks.org

https://www.dbooks.org/

8

Figure 1: Async Methods of the HttpClient Class

Naming your asynchronous methods in a similar manner will allow other developers to easily
spot the asynchronous methods you created in your classes.

Let’s look at how easy it is to create a method that simulates reading text from some data store
that takes six seconds to complete. We want our Windows Forms application to remain
responsive throughout the process. To do this, we will put a timer on our form and click a button
that delays for six seconds before returning text and setting the value of a label on the form.
Throughout that process, the timer will continue to display the current time (including seconds)
in the title bar of the Windows Form.

9

Figure 2: Create Windows Forms Application

You can design the form as you like, but there are a few components you’ll need to add. These
are:

• Button

• Label

• Windows Forms Timer (don’t add the Components timer)

For the timer, create the tick event and add the following code:

Code Listing 1

private void timer1_Tick(object sender, EventArgs e)
{
 this.Text = DateTime.Now.ToLongTimeString();
}

In the Form Load, add the following code in order to start the timer. This is essential because
otherwise the timer will not work.

www.dbooks.org

https://www.dbooks.org/

10

Code Listing 2

private void Form1_Load(object sender, EventArgs e)
{
 timer1.Start();
}

Add a method called ReadTextAsync() and use the async keyword on the method signature.

The Task<string> tells us that this method returns a string value. It will only return the string

value after a six-second delay.

Code Listing 3

private async Task<string> ReadTextAsync()
{
 await Task.Delay(TimeSpan.FromMilliseconds(6000));
 return "async succinctly";
}

Next, create a click event for the button that you added to your Windows Form. Be sure to add
the async keyword to this button click event. Call the ReadTextAsync() method using the

await keyword. Lastly, set the label’s text value to the text returned from the async method.

Code Listing 4

private async void button1_Click(object sender, EventArgs e)
{
 string text = await ReadTextAsync();
 lblName.Text = text;
}

Run the application and you will notice the time, with the seconds counting, in the title of the
form.

Figure 3: Async Windows Form

Click the Get Name button and wait for the label to be populated with the text returned from the
ReadTextAsync() method. You will notice that the form remains responsive, allowing you to

move it around and even resize it. You will also notice that the timer continues to tick.

11

Figure 4: Return Text Asynchronously

Performing long-running or potentially blocking tasks asynchronously allows you to keep your
application responsive, which improves usability.

 Tip: While it is possible to return a void from an async method, try not to use void
unless you are creating an async event handler. As a general rule of thumb, all of
your async methods should return Task if they return nothing or Task<T> if they
return a value.

Avoid deadlocks when using async

Many developers experience the problem of deadlocks when they begin exploring
asynchronous programming. For example, you can easily cause a deadlock in your code when
mixing asynchronous code with synchronous code. Let’s first look at an example before we
investigate why the application is deadlocked.

Start by adding a second button and label to your form. When you are done, your form should
look like Figure 5.

www.dbooks.org

https://www.dbooks.org/

12

Figure 5: Modify Windows Form

I have simply added a second button and label to the form we created earlier. The code behind
the Block button will call an async method that will cause a deadlock. The code in Code Listing
5 needs to be added to your code-behind.

Code Listing 5

private static async Task<string> ReadHelloWorldAsync(string value)
{
 await Task.Delay(TimeSpan.FromMilliseconds(6000));
 return $"hello {value}";
}

The ReadHelloWorldAsync(string value) is an async method that awaits a delay before

returning a string value concatenated (by using string interpolation) with the string parameter
value. In your button click event, the code in Code Listing 6 will cause a deadlock.

Code Listing 6

private void button2_Click(object sender, EventArgs e)
{
 var stringValue = ReadHelloWorldAsync("world");
 lblName2.Text = stringValue.Result;
}

13

Here, I am trying to illustrate a problem that affects UI applications, including ASP.NET apps. Of
course, this does not cause an issue in a Console application. Run your application and click
the Block button.

 Note: You should save all your important items before doing this. The code
illustrated in this example will cause your application to deadlock.

When you click Block, your application becomes unresponsive and will stay that way until you
stop debugging it. In order to stop the application, hold down Shift + F5 or click Stop
Debugging in Visual Studio.

Figure 6: Stop Debugging

So, what happened here? Well, the answer has to do with contexts. What do we mean when we
refer to a context? Without going into too much detail, here’s an explanation:

• WinForm Applications uses an UI thread, and therefore the context is an UI context.

• When responding to ASP.NET requests, the context is an ASP.NET request context.

• If neither is the case, then the thread pool context is used.

The button click in our example blocks the context thread because it is waiting for the async
method to finish. The async method, on the other hand, is waiting patiently for the context to get
free so that it can finish. This happens because it continues on the same context that started it.
If both wait for the other, we’re deadlocked.

There are only two ways we can avoid a deadlocked application. The first technique is to use
async in order to avoid blocking the task. Think of it this way—use async all the way down. The
other technique is to use ConfigureAwait(false). In order to illustrate this, we need to modify

the code slightly in the async method. In the ReadHelloWorldAsync(string value) method,

add ConfigureAwait(false) to the end of the Delay.

www.dbooks.org

https://www.dbooks.org/

14

Code Listing 7

private static async Task<string> ReadHelloWorldAsync(string value)
{
 await
Task.Delay(TimeSpan.FromMilliseconds(6000)).ConfigureAwait(false);
 return $"hello {value}";
}

Doing this tells the async method not to resume on the context. It will then resume on a thread
in the thread pool. Have a look at the definition of the property when calling ConfigureAwait.

Figure 7: ConfigureAwait(false)

Running your application now will not cause a deadlock. The application becomes responsive
again after the six-second delay is over.

I also mentioned avoiding deadlocks by using async all the way down. Do this by modifying the
code as in the following code listings.

Code Listing 8

private static async Task<string> ReadHelloWorldAsync(string value)
{
 await Task.Delay(TimeSpan.FromMilliseconds(6000));
 return $"hello {value}";
}

The button click event now uses the async keyword and the code, then calls await on the

async ReadHelloWorldAsync() method.

Code Listing 9

private async void button2_Click(object sender, EventArgs e)
{
 var stringValue = await ReadHelloWorldAsync("world");
 lblName2.Text = stringValue.ToString();
}

Run your application and notice that this time, not only does your application avoid a deadlock,
but it also remains responsive throughout the delay. This is because all the waits are done
asynchronously.

15

Chapter 2 How Do I Use Async

Exploring async further

With the basics covered, we now need to explore async a little further to see what it is capable
of and how it can benefit developers who want to improve the responsiveness of their
applications. In order to do this, let’s look at the elements that constitute asynchronous code.

Async method return types

Let’s have another look at the return types. An async method can have one of three possible
return types:

• void

• Task

• Task<TResult>

Void return type

The void returning method is used with event handlers, and if you completed Chapter 1, you

will reognize that you have already created an async void event handler.

Code Listing 10

private async void button1_Click(object sender, EventArgs e)
{
 string text = await ReadTextAsync();
 lblName.Text = text;
}

While it is possible to call a nonreturning asynchronous method using void, this is generally

considered bad practice. A void returning method simply performs a task and does not return

anything to the calling code. Instead of using void for these async methods, good practice

means returning Task instead. Also, note that the Main method in a console application cannot

be marked with the async modifier.

Task return type

If the async method you are calling does not return anything, call it using Task instead of void.

This means that the following two methods in Code Listings 11 and 12 are essentially the same
in synchronous and asynchronous code.

www.dbooks.org

https://www.dbooks.org/

16

Code Listing 11

private void FireAndForget()
{
 // Code implementation
}

In Code Listing 12, the asynchronous method needs to be called with Task when nothing is

returned.

Code Listing 12

private async Task FireAndForget()
{
 // Code implementation
}

Let’s next look at Code Listing 13, which shows an example of using and calling an async
method that returns nothing.

Code Listing 13

private async void button3_Click(object sender, EventArgs e)
{
 await ReadRemoteServerInfo();
}

The event handler calling the void returning async method, as in Code Listing 14, simply calls
the method with the await keyword.

Code Listing 14

private async Task ReadRemoteServerInfo()
{
 await Task.Delay(TimeSpan.FromMilliseconds(6000));
 lblServerInfo.Text = "Server Information Set Here";
}

The async method sets the text of a label after a delay has been called. The delay here mimics

the long-running process of reading information remotely via a web service or other data store.

Task<TResult> return type

The last return type is a Task<TResult>, which is used if your async method returns an object.

In Code Listing 15, we are calculating the age of a person based on their birthday. It will return
an integer value with the calculated age.

17

Code Listing 15

private async Task<int> GetAge(DateTime birthDay)
{
 await Task.Delay(TimeSpan.FromMilliseconds(6000));
 int age = DateTime.Today.Year - birthDay.Year;

 if (birthDay > DateTime.Today.AddYears(-age))
 age--;
 return age;
}

In the click event, we call the async method as we would any other method that returns a type.
We must simply remember to await the call to the GetAge(birthday) method.

Code Listing 16

private async void button4_Click(object sender, EventArgs e)
{
 DateTime birthday = new DateTime(1975, 12, 21);
 int age = await GetAge(birthday);
 lblAge.Text = age.ToString();
}

Putting the call and awaiting in separate statements is another way of writing this.

Code Listing 17

private async void button4_Click(object sender, EventArgs e)
{
 DateTime birthday = new DateTime(1975, 12, 21);

 Task<int> ageTask = GetAge(birthday);
 lblAge.Text = "calculating...";
 int age = await ageTask;
 lblAge.Text = age.ToString();
}

We can also return objects we create in code. Let us assume that we have created a Person

class that contains information calculated and passed to it from the calling code. Using an async
method containing a delay to simulate a long-running task, we can add following code to create
a Person class. The class takes the date of birth as a parameter passed to it in the constructor

and uses that to calculate the age of the person.

www.dbooks.org

https://www.dbooks.org/

18

Code Listing 18

public class Person
{
 public Person(DateTime birthDay)
 {
 int age = DateTime.Today.Year - birthDay.Year;

 if (birthDay > DateTime.Today.AddYears(-age))
 age--;

 Age = age;
 }
 public string FirstName { get; set; }
 public string LastName { get; set; }
 public int Age { get; private set; }
}

We then create an async method that uses a factory pattern to return the created Person

object.

Code Listing 19

private async Task<Person> GetPerson(string firstName, string lastName,
DateTime birthDay)
{
 await Task.Delay(TimeSpan.FromMilliseconds(6000));
 Person oPerson = new Person(birthDay);
 oPerson.FirstName = firstName;
 oPerson.LastName = lastName;

 return oPerson;
}

Code Listing 20 shows how calling the code can be written.

Code Listing 20

private async void button4_Click(object sender, EventArgs e)
{
 DateTime birthday = new DateTime(1975, 12, 21);
 Person person = await GetPerson("Dirk", "Strauss", birthday);
 // use the object
 lblAge.Text = person.Age.ToString();
}

19

We have seen that it is also possible to return an object from an async method. In fact, apart
from using the async and await keywords along with the Task and Task<TResut> return types,

we haven’t written anything differently. We have been writing the plain old C# code that we all
use. This brings me to another benefit of async programming—writing async methods are
incredibly easy. We have not done anything special. All the heavy lifting and hard work is done
by the compiler.

Cancel an async task

As developers, we can exhibit control over the cancellation of an async method. We might need
to do this if, for example, the user wants to stop the process before it completes. The .NET
Framework gives us total control over the cancellation of an async method.

Cancel using a cancel button

The code listings that follow illustrate the concept of canceling by using a cancel button, but first
we need to modify our Windows Form. Add a label called lblElapsedTime and add two buttons
called Start Process and Cancel Process.

Figure 8: Cancel Async Method

In the code-behind, you will need to add the System.Threading namespace.

www.dbooks.org

https://www.dbooks.org/

20

Code Listing 21

using System.Threading;

This allows us to add a CancellationTokenSource object to the code. Note that this is added

as globally in scope.

Code Listing 22

public partial class Form1 : Form
{
 CancellationTokenSource cancelSource;

In the cancel button event, we need to call the Cancel() method of the

CancellationTokenSource object if the object is not null.

Code Listing 23

private void btnCancelProcess_Click(object sender, EventArgs e)
{
 if (cancelSource != null)
 cancelSource.Cancel();
}

Our async method is simply delaying for six seconds in order to mimic the long-running task. It
then returns the time taken for the process to complete. Note that we are passing a
CancellationToken object to the async method as a parameter that is then used in the

overloaded Delay() method. This is all we need in order to signal to the .NET Framework that

the async process can be cancelled.

Code Listing 24

private async Task<DateTime> PerformTask(CancellationToken cancel)
{
 await Task.Delay(TimeSpan.FromMilliseconds(6000), cancel);
 return DateTime.Now;
}

In the start button event handler, we should begin by adding a try/catch to the handler. When
the async method is cancelled, it will return an OperationCancelledException. We therefore

need to cater to this by adding it as a specific catch before the more general Exception clause.

If the async method is not cancelled, it will complete in the six seconds specified in the Delay()

time span.

21

Code Listing 25

private async void btnStartProcess_Click(object sender, EventArgs e)
{
 try
 {

 }
 catch (OperationCanceledException)
 {

 }
 catch (Exception)
 {

 }
}

Next, further expand the start event handler by instantiating a new object of type
CancellationTokenSource(). In the catch statements, display the elapsed time. Lastly, at the

end of the start button event handler, set the CancellationTokenSource object cancelSource

to null.

Code Listing 26

private async void btnStartProcess_Click(object sender, EventArgs e)
{
 cancelSource = new CancellationTokenSource();
 DateTime start = DateTime.Now;

 try
 {

 }
 catch (OperationCanceledException)
 {
 lblElapsedTime.Text = Convert.ToInt32((DateTime.Now -
start).TotalSeconds).ToString();
 }
 catch (Exception)
 {
 lblElapsedTime.Text = "Error";
 }

 cancelSource = null;
}

Lastly, in the try clause, add the code to await the PerformTask method. It is here that we will

be passing the cancelSource token to the async method.

www.dbooks.org

https://www.dbooks.org/

22

Code Listing 27

private async void btnStartProcess_Click(object sender, EventArgs e)
{
 cancelSource = new CancellationTokenSource();
 DateTime start = DateTime.Now;

 try
 {
 DateTime end = await PerformTask(cancelSource.Token);
 lblElapsedTime.Text = Convert.ToInt32((end -
start).TotalSeconds).ToString();
 }
 catch (OperationCanceledException)
 {
 lblElapsedTime.Text = Convert.ToInt32((DateTime.Now -
start).TotalSeconds).ToString();
 }
 catch (Exception)
 {
 lblElapsedTime.Text = "Error";
 }

 cancelSource = null;
}

Now run your application. When you click Start Process and leave it to complete, the delay of
six seconds is displayed in the lblElapsedTime label.

Figure 9: Start Process

23

If, however, we had started the process and then, before the process completed, clicked the
Cancel Process button, the async method would have been cancelled and the elapsed time
displayed in the lblElapsedTime label.

Figure 10: Cancel Process

You will notice that the time elapsed is less than the six-second delay, meaning that the delay
never ran to completion.

Cancel after a specific time

Sometimes we need to specify a timeout associated with the async method. This might be
because the process must be deemed a failure if the response isn’t received within the elapsed
timeout period. Or perhaps there isn’t a cancel button that the user can click. For whatever
reason, the .NET Framework can allow us to schedule a cancellation of the async method.

This is extremely easy. Before we await the async method, we must call the CancelAfter()

method of the CancellationTokenSource() object by passing it the int milliseconds or

TimeSpan. After this, the async method will be cancelled.

Code Listing 28

cancelSource.CancelAfter(3000);

Code Listing 29 shows how your start button event handler will now look.

www.dbooks.org

https://www.dbooks.org/

24

Code Listing 29

private async void btnStartProcess_Click(object sender, EventArgs e)
{
 cancelSource = new CancellationTokenSource();
 DateTime start = DateTime.Now;

 try
 {
 cancelSource.CancelAfter(3000);
 DateTime end = await PerformTask(cancelSource.Token);
 lblElapsedTime.Text = Convert.ToInt32((end -
start).TotalSeconds).ToString();
 }
 catch (OperationCanceledException)
 {
 lblElapsedTime.Text = Convert.ToInt32((DateTime.Now -
start).TotalSeconds).ToString();
 }
 catch (Exception)
 {
 lblElapsedTime.Text = "Error";
 }

 cancelSource = null;
}

That’s all there is to it. If you run your application and click the Start Process button, the async
method will cancel after three seconds without the user clicking on the Cancel Process button.

25

Figure 11: Cancel Async Method After a Timeout

Await in catch and finally

Some of you who are already using C# 6.0 might know that you can now await in the
catch/finally when handling exceptions. This feature was not previously available to developers,
but some very smart folks over in the C# design team figured it out, and now we can use async
in catch/finally blocks.

Why would we want to do this? Let’s assume that we need to access a web resource. If the
resource fails or times out, we might want to get the source from a backup location. In order to
demonstrate something like this, we will create a Windows Form that uses the URL to a web
page to download the source as a string. Then we output that string to a rich text box control.

In case the original URL fails for whatever reason, we have a default URL. In our example, we
will pass the async method a bad URL and cause it to throw an exception. In order to illustrate
the improvements in C# 6.0, I will show you how a developer might have handled an exception
before C# 6.0 introduced await in catch/finally blocks. I will then modify the code to illustrate
how C# 6.0 has made it easier to await in a catch/finally block.

First, we’ll start by creating a form similar to the one in Figure 12.

www.dbooks.org

https://www.dbooks.org/

26

Figure 12: Exception Handling Demo

Add a reference to System.Net.

Code Listing 30

using System.Net;

Now, we need to create an async method that returns a string. It will read the source from a
URL as a string and return it to the calling code. Next, it will try to get the URL from the URL
supplied (which, in our demo, is an incorrect URL). If the URL is incorrect, it will read the default
URL.

As you can see, in the past C# 6.0 developers had to set a flag in the catch block. Depending
on the value, we load the default URL.

27

Code Listing 31

public async Task<string> ReadURL()
{
 WebClient wc = new WebClient();
 string result = "";
 bool downloaded;
 try
 {
 result = await wc.DownloadStringTaskAsync(new Uri(txtURL.Text));
 downloaded = true;
 }
 catch
 {
 downloaded = false;
 }

 if (!downloaded)
 result = await wc.DownloadStringTaskAsync(new
Uri(txtDefault.Text));

 return result;
}

Lastly, we add the button click event to call the async method and return the result to the rich
text box.

Code Listing 32

private async void btnReadURL_Click(object sender, EventArgs e)
{
 string strResult = await ReadURL();
 rtbHTML.Text = strResult;
}

Run the application and click Read URL.

www.dbooks.org

https://www.dbooks.org/

28

Figure 13: Default URL Source Read

As you can see, the code works. Personally, in the past I disliked having to write code this way.
Luckily, now we can simply modify our code in the ReadURL() async method.

Code Listing 33

public async Task<string> ReadURL()
{
 WebClient wc = new WebClient();
 string result = "";
 try
 {
 result = await wc.DownloadStringTaskAsync(new Uri(txtURL.Text));
 }
 catch
 {
 result = await wc.DownloadStringTaskAsync(new
Uri(txtDefault.Text));
 }

 return result;
}

29

Instead of using the bool value to check if an exception has been thrown, we can simply tell the

compiler to check the default URL if the URL in the try throws an exception. This code is

cleaner and easier to read. Note that you can also await in the finally block.

Object Oriented Programming and async

Abstract classes

Let us have a look at abstract classes. The idea behind abstract classes is to ensure that
inherited classes contain common functionality. This is great if you want your inherited class to
always do a specific thing. But keep in mind that abstract classes can’t ever be instantiated—
they merely describe what needs to be implemented in the derived classes. Your
implementation detail therefore resides in the derived class.

We should also remember that async is an implementation detail. This means that you can’t
define a method in an abstract class as an async method. So, what do we do? Well, remember
that types are awaitable. Methods are not, which means you must then define your abstract
method as returning a Task or Task<TResult>. With that, you should be good to go. Let’s look

at an example.

Add two new classes to your Visual Studio solution. Call one Automation.cs and the other
ProjectAutomation.cs.

Figure 14: Classes in Solution

We are going to assume that a company creates various types of automated objects in the
database. Sometimes they create new projects, other times they create jobs, and so on. All
these objects are automations because once the entry is created in the database, another
system picks up the creation of this object (e.g., ProjectAutomation or JobAutomation or

TaskAutomation) and performs additional work in an external ERP system.

www.dbooks.org

https://www.dbooks.org/

30

When these automations are completed, the database object is flagged as completed by the
external system. Our application then purges the automation object. Add the
System.Threading.Tasks namespace to both classes (Automation.cs and

ProjectAutomation.cs).

Code Listing 34

using System.Threading.Tasks;

Now add the code for the abstract Automation class. Notice that because we want the

AutomationCompleted() and PurgeAutomation() methods to be async methods in the

derived class, we specify the return types as Task<bool> and Task for the void returning async

method.

Code Listing 35

public abstract class Automation
{
 public abstract void StartUp(int ownerID, int automationType);
 public abstract Task<bool> AutomationCompleted();
 public abstract Task PurgeAutomation(int ownerID, DateTime
purgeDate);
}

When we create our derived class called ProjectAutomation, we specify that it has to inherit

from the abstract class Automation. I have added a bit more meat to this derived class than

necessary, but I want to focus your attention on the AutomationCompleted() and

PurgeAutomation() methods. Because they are returning Task<TResult> and Task, we can

use the async and await keywords here to mark them as async methods even though they are

not defined as async in the abstract class.

31

Code Listing 36

public class ProjectAutomation : Automation
{
 public int Owner { get; private set; }
 public int AutomationType { get; private set; }

 public override void StartUp(int ownerID, int automationType)
 {
 Owner = ownerID;
 AutomationType = automationType;
 // Create the automation in the database.
 }

 public override async Task<bool> AutomationCompleted()
 {
 await Task.Delay(TimeSpan.FromMilliseconds(3000));
 // Read the completion flag in the database.
 return true;
 }

 public override async Task PurgeAutomation(int ownerID, DateTime
purgeDate)
 {
 await Task.Delay(TimeSpan.FromMilliseconds(3000));
 }
}

Interfaces

This e-book wouldn’t be complete without us taking a look at interfaces. If you guessed that you
can’t define interface methods as asynchronous, you guessed correctly. The same applies to
interfaces as for abstract classes. The method of creating async methods in the derived class is
identical to the method we followed for abstract classes.

Let’s create a new class file called IHydratable.cs. This interface will mark the automation
object as able to rehydrate itself from the database.

www.dbooks.org

https://www.dbooks.org/

32

Figure 15: Add Interface to Solution

You will need to add the System.Threading.Tasks namespace to your interface

IHydratable.

Code Listing 37

using System.Threading.Tasks;

As you can see, Code Listing 38 will define your interface simply by specifying that the
RehydrateAutomation() method returns a type of Task<int>.

Code Listing 38

namespace AsyncSuccinctly
{
 interface IHydratable
 {
 Task<int> RehydrateAutomation(int ownerID, int automationType);
 }
}

In order to implement the interface in our existing ProjectAutomation class, we add it after we

have declared that the ProjectAutomation class inherits from the abstract class Automation.

Code Listing 39

public class ProjectAutomation : Automation, IHydratable

The RehydrateAutomation() method is added to the end of the ProjectAutomation class,

and we can then define it as an async method by adding the async and await keywords.

33

Code Listing 40

public class ProjectAutomation : Automation, IHydratable
{
 public int Owner { get; private set; }
 public int AutomationType { get; private set; }

 public override void StartUp(int ownerID, int automationType)
 {
 Owner = ownerID;
 AutomationType = automationType;
 // Create the automation in the database.
 }

 public override async Task<bool> AutomationCompleted()
 {
 await Task.Delay(TimeSpan.FromMilliseconds(3000));
 // Read the completion flag in the database.
 return true;
 }

 public override async Task PurgeAutomation(int ownerID, DateTime
purgeDate)
 {
 await Task.Delay(TimeSpan.FromMilliseconds(3000));
 }

 public async Task<int> RehydrateAutomation(int ownerID, int
automationType)
 {
 Owner = ownerID;
 AutomationType = automationType;
 await Task.Delay(TimeSpan.FromMilliseconds(3000));
 // Read the purged automation in the database and return the
record ID.
 return 0;
 }
}

 Note: The RehydrateAutomation() method does not do anything but return an
integer of zero. All the methods in this class await on Task.Delay to mimic the
process of a long-running task.

www.dbooks.org

https://www.dbooks.org/

34

Chapter 3 Some Real World Examples

Displaying the progress of an async method

All developers should consider developing asynchronous code in order to make their
applications more responsive. Rather than adding async code as an afterthought, consider
developing your code with async methods baked in from the start. This makes it easier to pick
up issues and design problems.

One feature worth considering is having the ability to report the progress of an async method to
the user. To the user, the async method is not obvious because they can’t see (or understand)
the code. In all fairness, they should not need to see it. But one thing the user does see or feel
is an app that doesn’t seem to be doing anything.

Whenever your application performs a host of long-running tasks that you have made
asynchronous, you should probably consider notifying the user of the progress of those tasks.
The standard Windows Progress bar control has been around for ages, and its implementation
with async methods is easy. In order to allow the application to report its progress, you must use
the IProgress interface.

The code listings here will illustrate how to accomplish this. I reckon that there are better ways
to code this, but I want to demo a concept here. You can roll your own if you prefer.

First, you will need to create a new Windows Form. Add to this Windows Form a button control,
a ProgressBar control, and a label control. This form will create a number of Student objects

with a delay between each object before adding each to a List<Student> collection.

35

Figure 16: Progress Example Form Design

In the code-behind for the file ProgressExample.cs, import the following namespace
System.Threading.Tasks if not already imported.

Code Listing 41

using System.Threading.Tasks;

Now we need to create a new class called Student. You can create a new class file called
Student.cs or simply add it to the existing code at the bottom of your existing code file. Add the
various properties needed (as in Code Listing 42 or add your own).

Code Listing 42

public class Student
{
 public string FirstName { get; set; }
 public string LastName { get; set; }
 public string StudentNumber { get; set; }
 public int Age { get; set; }
 public string FullName() => FirstName + " " + LastName;
}

www.dbooks.org

https://www.dbooks.org/

36

Code Listing 43 creates a Helper class with an extension method called ToPercent. This helper

method will act on an integer value and calculate the percentage of the max value passed as a
parameter that that integer occupies.

You will notice that I have taken a few liberties in the helper method, but I want to illustrate the
progress bar update from an async method, not how to write an extension method. The
comments in the helper method explain its purpose. For background reading on Extension
Methods, see the following MSDN article: https://msdn.microsoft.com/en-
us//library/bb383977.aspx.

Suppose that an integer value is the number 50. If I want to know what percentage of 250 the
integer value of 50 is, I would call this extension method.

Code Listing 43

public static class Helper
{
 public static int ToPercent(this int value, int maxValue)
 {
 int retVal = 0;
 // value = 50
 // maxValue = 250
 // 250 / 50 = 5
 // 100% / 5 = 20%
 double factor = 0.0;
 if (value != maxValue)
 {
 factor = (maxValue / (value + 1));
 retVal = Convert.ToInt32(100 / factor);
 }
 else
 retVal = 100;

 return retVal;
 }
}

Next, let’s write the async method. You will notice that the async method returns a
List<Student> object. One of the parameters to this async method is the progress of type

IProgress<T> where T is the type of progress on which you want to report. In our case, we will

be returning an integer count for the progress.

Note that we’re simply creating a number of Student objects. The number created is passed to

the async method as a parameter. Assume that we only want to return the first 250 Student

objects. As each Student object is created (with dummy data), we perform a small delay.

Just after we add the Student object to the List<Student> collection, we report the progress

back to the progress bar. Therefore, the value of i being reported to the progress bar is the

iterator count.

37

Code Listing 44

public async Task<List<Student>> GetStudents(IProgress<int> progress, int
iRecordCount)
{
 // Read students from database.
 // Return only the first iRecordCount entries (e.g. 250).

 List<Student> oStudents = new List<Student>();
 for (int i = 0; i < iRecordCount; ++i)
 {
 await Task.Delay(100);
 Student oStudent = new Student()
 {
 FirstName = "Name" + i,
 LastName = "LastName" + i,
 Age = 20,
 StudentNumber = "S203237" + i
 };

 oStudents.Add(oStudent);
 if (progress != null)
 progress.Report(i);
 }
 return oStudents;
}

Next, we add the following code in the click event handler of the button on the form. As we’ve
seen earlier, we are assuming a maximum count of 250 entries. This is where things get
interesting. The progress bar contains a maximum of 100 percent. We will therefore need to
calculate the percentage of the maximum of 250 that reflects the iterator count. This is why we
need the extension method.

www.dbooks.org

https://www.dbooks.org/

38

Code Listing 45

private async void btnStartProgress_Click(object sender, EventArgs e)
{
 int iMaxRecordToRead = 250;
 progressBar.Maximum = 100;

 var progress = new Progress<int>(percentComplete =>
 {
 int perc = percentComplete.ToPercent(250);
 progressBar.Value = perc;
 lblProgress.Text = $"Student records {perc}% processed";
 });

 List<Student> oStudents = await GetStudents(progress,
iMaxRecordToRead);

 lblProgress.Text = "Done!";
}

As the async method processes, the iterator count is reported to the progress bar, but not after
it is calculated into the percentage part of 100%. Run your application and click Start.

Figure 17: Progress Complete

Pausing the progress of an async method

Figure 18 shows the Task.Delay we have been using throughout this e-book in order to mimic

a long-running task. Here, however, we are using it for its intended purpose—to pause a task.

We might need to pause a task because we need to retry a process until the user cancels or
until the retry count has matured. Imagine for a minute that the process invoked by the Start
button is a file download. This file, however, is versioned, and the application must always
download a newer version than it previously downloaded.

If the file has not been updated, the application will retry until the user cancels or the retry count
lapses. The application in the following code listings illustrates this logic. It contains a delay to
pause the application between retries. It also contains a cancel button to cancel the process
prematurely, and it updates the current progress to a label on the form.

39

Start by creating a Windows Form with a button and label control placed on it.

Figure 18: Pause Progress Form Design

Import the System.Treading.Tasks namespace.

Code Listing 46

using System.Threading.Tasks;

At the top of the Windows Form, add a CancellationTokenSource object so that it is in scope

to the whole form.

Code Listing 47

public partial class PauseProgress : Form
{
 CancellationTokenSource cancelSource;

Next, add a method named PerformTask that tries to process the file. Pass arguments of type
IProgress and CancellationToken to the async method. The cancel object will allow us to

cancel the async process prematurely when the user clicks Cancel. The progress object is

used to report the progress of the current async method. You will notice that the IProgress<T>

in this instance takes a string as the type of T.

www.dbooks.org

https://www.dbooks.org/

40

Code Listing 48

private async Task PerformTask(IProgress<string> progress,
CancellationToken cancel)
{
 UpdateProgress(progress, "Started Processing...");
 bool blnTaskCompleted = false;
 int iDelaySeconds = 0;
 while (!blnTaskCompleted)
 {
 iDelaySeconds += 2;
 await Task.Delay((iDelaySeconds * 1000), cancel);
 // Retry long-running task.
 if (iDelaySeconds >= 10)
 {
 blnTaskCompleted = true;
 UpdateProgress(progress, "Process completed");
 }
 else
 UpdateProgress(progress, $"Process failed. Retrying in
{iDelaySeconds} seconds...");
 }
}

Let’s next add a method to update the progress in the label. Instead of adding the code all over
the place, we can simply call the UpdateProgress method.

Code Listing 49

private void UpdateProgress(IProgress<string> progress, string message)
{
 if (progress != null)
 progress.Report(message);
}

Now, I must admit that I cheated a little with the Start button. When the Start button is clicked, it
will change the text to Cancel. If the Cancel button is clicked, it will change the text to Start.
Next, I check the button text, then I either start or cancel the async method.

You will notice that the CancellationTokenSource is instantiated when the Start button is

clicked. I also create the process object and specify that it needs to return a string when
updating the progress.

When the async method is cancelled, an OperationCancelledException is thrown, and we

need to handle that in the try/catch.

41

Code Listing 50

private async void btnStart_Click(object sender, EventArgs e)
{
 if (btnStart.Text.Equals("Start"))
 {
 btnStart.Text = "Cancel";
 cancelSource = new CancellationTokenSource();

 try
 {
 var progress = new Progress<string>(progressReport =>
 {
 lblProgress.Text = progressReport;
 });

 await PerformTask(progress, cancelSource.Token);
 }
 catch (OperationCanceledException)
 {
 lblProgress.Text = "Processing Cancelled";
 }
 }
 if (btnStart.Text.Equals("Cancel"))
 {
 btnStart.Text = "Start";
 if (cancelSource != null)
 cancelSource.Cancel();
 }
}

Now, run the application. Click Start and notice how the text changes to Cancel. The async
method starts delaying.

Figure 19: Delay before Retry

After a while, we assume that the file processing has been completed and that the application
completed the async task.

www.dbooks.org

https://www.dbooks.org/

42

Figure 20: Process Completed

Run the application again. This time, however, click Cancel before the process can complete.
Note that the Task.Delay is immediately cancelled, and the application completes processing,

updating the status label to notify the user of the cancellation.

Figure 21: Process Cancelled

Using Task.WhenAll() to wait for all tasks to complete

When you need to run several async methods, remember that you must wait for all those
methods to complete before you carry on. The Task.WhenAll() provides a perfect construct for

developers that allows them to do just that.

The example that follows illustrates how to wait for three async methods that return nothing and
three async methods that return integers. First, create a new Windows form and add a TextBox
control with its Multiline property set to true.

43

Figure 22: Form Designer for WhenAll

After you have set the Multiline property to True, set the Dock property to Fill.

www.dbooks.org

https://www.dbooks.org/

44

Figure 23: Form Properties

In the code view, ensure that you add the System.Threading.Tasks namespace to your form.

Code Listing 51

using System.Threading.Tasks;

Next, add the following method that simply appends the string argument passed.

Code Listing 52

private void Output(string val)
{
 txtOutput.AppendText("\r\n" + val);
}

45

Now, we will add three void async methods. Because these async methods return nothing, we
will call the Output() method and pass the nameof(<methodName>) to be written to the

textbox.

In each async method, we will delay each by one, two, and three seconds, respectively.

Code Listing 53

private async Task Delay1kms()
{
 await Task.Delay(1000);
 Output($"{nameof(Delay1kms)} completed");
}

private async Task Delay2kms()
{
 await Task.Delay(2000);
 Output($"{nameof(Delay2kms)} completed");
}

private async Task Delay3kms()
{
 await Task.Delay(3000);
 Output($"{nameof(Delay3kms)} completed");
}

Next, add three async methods that each return an integer value. As before, each method will
delay for one, two, and three seconds, respectively.

Code Listing 54

private async Task<int> DoWorkA()
{
 await Task.Delay(1000);
 return 1;
}

private async Task<int> DoWorkB()
{
 await Task.Delay(2000);
 return 2;
}

private async Task<int> DoWorkC()
{
 await Task.Delay(3000);
 return 3;
}

www.dbooks.org

https://www.dbooks.org/

46

Lastly, you must add the code in Code Listing 55 to the Form1_Load event handler method.

Then you need to await Task.WhenAll() and pass it the three void async methods that delay

and output the text to the textbox.

You will see each async method name output to the textbox before seeing the “DelayTasks
Completed” text. This means that all three methods finished before continuing.

The second Task.WhenAll() will call the async methods that return the integer values. These

are returned to an integer array and are output to the textbox.

Code Listing 55

private async void WhenAllExample_Load(object sender, EventArgs e)
{
 await Task.WhenAll(Delay1kms(), Delay2kms(), Delay3kms());
 Output("DelayTasks Completed");

 int[] iArr = await Task.WhenAll(DoWorkA(), DoWorkB(), DoWorkC());

 for (int i = 0; i <= iArr.GetUpperBound(0); i++)
 {
 Output(iArr[i].ToString());
 }
}

Next, run the application.

Figure 24: Run WhenAllExample

You will notice that as each void async method completes, the method name is output to the
textbox. When all async methods have completed, the last delay message is output to the
textbox. Lastly, the int returning async methods run and only output the array values after the

methods have completed.

47

You can also write this code by adding the async methods to a List<Task> and

List<Task<int>> collections. Then you pass these collections to the Task.WhenAll()

method.

Code Listing 56

List<Task> oVoidTasks = new List<Task>();

oVoidTasks.Add(Delay1kms());

oVoidTasks.Add(Delay2kms());

oVoidTasks.Add(Delay3kms());

await Task.WhenAll(oVoidTasks);

Output("DelayTasks Completed");

List<Task<int>> oIntTasks = new List<Task<int>>();

oIntTasks.Add(DoWorkA());

oIntTasks.Add(DoWorkB());

oIntTasks.Add(DoWorkC());
int[] iArr = await Task.WhenAll(oIntTasks);

for (int i = 0; i <= iArr.GetUpperBound(0); i++)
{
 Output(iArr[i].ToString());
}

Running the application again, you’ll see that the output remains the same as in the previous
example. Using Task.WhenAll() is an efficient way to ensure that all the required async

methods have completed before you continue your code.

Using Task.WhenAny() to wait for any tasks to complete

Sometimes you might need to call several async methods, but keep in mind that you only need
the result from any one async method. This means that the first async method to complete will
be used while the rest can be cancelled.

Think of it like accessing a couple of web services that return the same result from different
sources. Any one of these results can be used in your code, but in order to optimize your
application you need to use the fastest code possible. The calls to the web services don’t
consistently complete in the same amount of time, so there is no way for you to choose the
fastest web service.

www.dbooks.org

https://www.dbooks.org/

48

Task.WhenAny() offers you a solution—you can call them all asynchronously but only use the

first method to return a result, then cancel the rest. Let’s look at this following example that first
calls Task async methods and second calls Task<T> async methods.

You will need to create a new Windows Form and add a textbox.

Figure 25: WhenAnyExample Form Designer

Next, select the textbox, then set the Multiline property to True and the Dock property to Fill.

49

Figure 26: WhenAny Textbox Properties

In the code-behind, add the System.Threading and System.Threading.Tasks namespace to

your form.

Code Listing 57

using System.Threading;
using System.Threading.Tasks;

Add a CancellationTokenSource object to your form with the scope visible to the entire form.

Code Listing 58

public partial class WhenAnyExample : Form
{
 CancellationTokenSource cancelSource;

www.dbooks.org

https://www.dbooks.org/

50

Add three async Task methods and add Task.Delay to each async method with different

delays. As parameter, pass the CancellationToken, then pass that to the Task.Delay

method. Lastly, output the name of the method that first completes the task.

Code Listing 59

private async Task Delay1kms(CancellationToken cancel)
{
 await Task.Delay(1000, cancel);
 Output($"{nameof(Delay1kms)} completed first");
}

private async Task Delay2kms(CancellationToken cancel)
{
 await Task.Delay(2000, cancel);
 Output($"{nameof(Delay2kms)} completed first");
}

private async Task Delay3kms(CancellationToken cancel)
{
 await Task.Delay(3000, cancel);
 Output($"{nameof(Delay3kms)} completed first");
}

Create the Output() method and set the txtOutput textbox equal to the val parameter.

Code Listing 60

private void Output(string val)
{
 txtOutput.AppendText("\r\n" + val);
}

Next, change the Form Load event handler method to an async method, then instantiate the
CancellationTokenSource object. You will now call the Task.WhenAny() method and pass it

each Task async method. Notice that each method is passed the cancelSource.Token object.

The first async method that completes will allow the cancelSource object to be cancelled,

which effectively stops the remaining async methods—you don’t want to have code still running
when you aren’t going to use the result. Wrap this code in a try catch block because the

cancel will throw an OperationCanceledException.

51

Code Listing 61

private async void WhenAnyExample_Load(object sender, EventArgs e)
{
 cancelSource = new CancellationTokenSource();

 try
 {
 await Task.WhenAny(Delay1kms(cancelSource.Token),
Delay2kms(cancelSource.Token), Delay3kms(cancelSource.Token));
 if (cancelSource != null)
 cancelSource.Cancel();
 }
 catch (OperationCanceledException)
 {

 }
 catch (Exception)
 {

 }

 cancelSource = null;
}

Run your application and you will see that the fastest async method completes first and calls the
Output() method. The remaining async methods are cancelled, so they output nothing.

Figure 27: WhenAny Example Task Async Method

Let’s now add async methods that return Task<TResult>. These also take the

CancellationToken as parameter that is passed to the Task.Delay(). Each async method

delays for a different duration before calling the Output() method. Each then returns the int

result.

www.dbooks.org

https://www.dbooks.org/

52

Code Listing 62

private async Task<int> DoWorkA(CancellationToken cancel)
{
 await Task.Delay(3500, cancel);
 Output($"{nameof(DoWorkA)} completed first");
 return 1;
}

private async Task<int> DoWorkB(CancellationToken cancel)
{
 await Task.Delay(2800, cancel);
 Output($"{nameof(DoWorkB)} completed first");
 return 2;
}

private async Task<int> DoWorkC(CancellationToken cancel)
{
 await Task.Delay(1900, cancel);
 Output($"{nameof(DoWorkC)} completed first");
 return 3;
}

Modify your load method to call the Task.WhenAny() method passing the DoWorkA(),

DoWorkB(), and DoWorkC() methods. Each of these takes the cancelSource.Token object as

parameter. The Task<int> result is returned and the rest of the async methods are cancelled.

After that, we simply pass the returned value to the Output() method.

53

Code Listing 63

private async void WhenAnyExample_Load(object sender, EventArgs e)
{
 cancelSource = new CancellationTokenSource();

 try
 {
 Task<int> firstTask = await
Task.WhenAny(DoWorkA(cancelSource.Token), DoWorkB(cancelSource.Token),
DoWorkC(cancelSource.Token));
 if (cancelSource != null)
 cancelSource.Cancel();

 Output(firstTask.Result.ToString());
 }
 catch (OperationCanceledException)
 {

 }
 catch (Exception)
 {

 }

 cancelSource = null;
}

Run your application again and you will see that the DoWorkC() async method completed first,

returning a value of 3. The remaining async methods are cancelled immediately.

Figure 28: WhenAny Example Task<T> Async Method

www.dbooks.org

https://www.dbooks.org/

54

This way of using what you need and cancelling the rest of the async methods is very useful
when you want to take a ‘first come, first served’ approach.

Process tasks as they complete

The example in the following code listings illustrates how to process tasks as they complete.
Sometimes you might be in the position of needing to process all tasks while also needing to
continue some other process while they complete.

In our example, we are reading the size of the HTML returned from three websites. As each one
completes, the URL is loaded into a WebBrowser control. Therefore, we can logically expect
that the smallest site will be loaded first, then the second largest, and finally the largest. This is
one of those examples that is quite tough to explain in words but is pretty easy to understand
when you create the code and run the application. So, if the explanations below don’t fully make
sense, just try reading the code and running the application.

First, create a new Windows Form that resembles the design in Figure 29.

Figure 29: AsTasksCompleteExample Form Designer

55

Add a button to the Windows Form and call it Cancel Operation. Then add a textbox and set
the Multiline property to True. Lastly, add three WebBrowser controls to the form and call them
site1, site2 and site3.

Be sure to add the System.Net.Http, System.Threading and System.Threading.Tasks

namespaces to the code-behind.

Code Listing 64

using System.Net.Http;
using System.Threading;
using System.Threading.Tasks;

Right below the class declaration, add a CancellationTokenSource object and a

List<string> object to the form so that they are visible to the entire form (globally scoped).

We will be using the CancellationTokenSource object to cancel the async processing if that

becomes necessary. The CancellationTokenSource object will provide a cancellation token

via the Token property and send a cancellation message to the async method.

The List<string> will contain the three website URLs that we want to load into the

WebBrowser controls site1, site2, and site3.

Code Listing 65

public partial class AsTasksCompleteExample : Form
{
 CancellationTokenSource cancelSource;
 List<string> urlList;

Create an event handler for the cancel button that will set the CancellationTokenSource

object to a cancelled state. Because it is scoped globally, all the async methods that use the
CancellationTokenSource object will receive the cancellation token.

Code Listing 66

private void btnCancel_Click(object sender, EventArgs e)
{
 if (cancelSource != null)
 cancelSource.Cancel();
}

Next, we need to add the code to load the list of URLs when the form loads. Note that the URLs
are in reverse alphabetical order. The last URL (alphabetically) will be processed first, and so
on. Also make sure that you add the async keyword to the form load event handler as private
async void AsTasksCompleteExample_Load.

www.dbooks.org

https://www.dbooks.org/

56

We next call the async method AccessWebAsync(), passing it the CancellationTokenSource

object that was initialized on the first line of code in the form load event. Note that the code is
wrapped in a try catch event handler. This is done because the cancellation of an

asynchronous method will throw an OperationCancelledException.

Code Listing 67

private async void AsTasksCompleteExample_Load(object sender, EventArgs
e)
{
 cancelSource = new CancellationTokenSource();
 txtResults.Text = "Loading Sites";
 urlList = new List<string>
 {
 "http://www.wikipedia.com",
 "http://www.google.com",
 "http://www.apple.com"
 };

 try
 {
 await AccessWebAsync(cancelSource.Token);
 txtResults.Text += "\r\nProcessing done.";
 }
 catch (OperationCanceledException)
 {
 txtResults.Text += "\r\nProcessing canceled.";
 }
 catch (Exception)
 {
 txtResults.Text += "\r\nError processing.";
 }

 cancelSource = null;
}

The AccessWebAsync() method does several important things. It processes the URL list,

returning a collection of Task<string> objects into the taskCollection variable. It then

creates a List<Task<string>> object that contains the process URLs. Each Task<string>

object will contain a pipe delimited string as [siteLength] | [url] that will be split later on in

the AccessWebAsync() method.

57

We also need to create a List<string> object to contain the names of the WebBrowser

controls on the form. Here, you can change the code and make it more generic. You could, for
example, create a method that loops through all the controls on the Windows Form and finds
only WebBrowser controls, ordering them by the integer value added to the end of the control
name. Then you could add any number of WebBrowser controls to the form without hard coding
the List<string> siteControls object. However, for the purposes of this example, I have

simply hard coded the three WebBrowser controls to the list using the nameof keyword to return

the string representation of the control name into the list.

We next need to loop through the downloadTasks list and await the processing. As soon as

one of those completes, we continue by calling Task.WhenAny(). Then we remove that task

from the list so that we don’t process it again, and we split the returned value into the array
arrVal. We use this same logic for the siteControls list. It gets the first WebBrowser control

name in the List<string> siteControls object that holds these control names in

alphabetical order as site1, site2, and site3. As soon as we get the first WebBrowser control
name, we remove it from the list. We do this so that we don’t overwrite previously loaded
WebBrowser controls with a different URL returned from the downloadTasks list.

The very last lines of code write the output to our multiline textbox and load the processed sites
URL into the appropriate WebBrowser control. It is here that the first task that has finished
processing will be loaded into the first WebBrowser control, then the second, and finally the last,
which will be loaded into the third WebBrowser control.

www.dbooks.org

https://www.dbooks.org/

58

Code Listing 68

private async Task AccessWebAsync(CancellationToken cancel)
{
 HttpClient httpClnt = new HttpClient();

 // Get a collection of tasks.
 IEnumerable<Task<string>> taskCollection =
 from url in urlList select ProcessURLList(url, httpClnt, cancel);

 // Get a list of Tasks.
 List<Task<string>> downloadTasks = taskCollection.ToList();
 List<string> siteControls = new List<string>() { nameof(site1),
nameof(site2), nameof(site3) };
 // Process each task for each site until none are left.
 while (downloadTasks.Count > 0)
 {
 string strSite = "";
 // Identify the first task that completes.
 Task<string> firstFinishedTask = await
Task.WhenAny(downloadTasks);
 strSite = siteControls.First();
 // Remove so that you only process once.
 downloadTasks.Remove(firstFinishedTask);
 siteControls.Remove(strSite);
 // Await the completed task.
 string strValue = await firstFinishedTask;
 string[] arrVal = strValue.Split('|');

 txtResults.Text += $"\r\nDownload length of {arrVal[1]} is
{arrVal[0]}";
 await LoadBrowserControl(strSite, arrVal[1]);
 }
}

The ProcessURLList() method processes the URL to return the HTTP content of the website

as a string and then get the length of the string. That is concatenated to the URL to return the
pipe delimited Task<string> object for processing by the calling code.

59

Code Listing 69

private async Task<string> ProcessURLList(string url, HttpClient cl,
CancellationToken cancel)
{
 // Get the Task<HttpResponseMessage> object asynchronously.
 HttpResponseMessage resp = await cl.GetAsync(url, cancel);

 // Serialize the HTTP content to a string asynchronously.
 string strSite = await resp.Content.ReadAsStringAsync();
 // Return the string.Length|www.url.com
 return strSite.Length + "|" + url;
}

Lastly, we create the method that loads the URL into the appropriate WebBrowser control on
the form. Because we added the WebBrowser control names into the siteControls list by

using the nameof operator (new to C# 6.0), we have a string representation of the control name.

That means we can pass that string variable to the LoadBrowserControl() method and switch

on it. This will set the correct WebBrowser control based on which Task<string> object from

the downloadTasks list completes first, second, and third.

Code Listing 70

private async Task LoadBrowserControl(string controlName, string strUrl)
{
 Uri url = new Uri(strUrl);
 switch (controlName)
 {
 case nameof(site1):
 site1.Url = url;
 break;

 case nameof(site2):
 site2.Url = url;
 break;

 case nameof(site3):
 site3.Url = url;
 break;

 default:
 break;
 }

 await Task.CompletedTask;
}

When you have added all the code, build and run your application.

www.dbooks.org

https://www.dbooks.org/

60

 Note: We are calling Task.CompletedTask because the method is called
asynchronously but doesn’t actually return anything or run any asynchronous
methods.

Figure 30: Websites Loaded

When the form loads, you will see that as the processed URLs are added to the multiline
textbox control, the WebBrowser controls are loaded with the processed URLs. This is all done
in the order that each completes processing (as opposed to the order in which each started).

61

Chapter 4 Use SemaphoreSlim to Access
Shared Data

Sometimes you need to access shared data safely because other areas in your application (or
other applications) might read that data asynchronously.

We need to ensure that no other area of code is reading or writing to the specific section of code
we are working on. Here we use the SemaphoreSlim object that has been extended in the .NET

Framework 4.5 in order to include asynchronous methods.

The following example illustrates how existing code that does not implement SemaphoreSlim

reads a shared data source and returns incorrect results. We will then add SemaphoreSlim to

the code to ensure that no other code accesses the data source while we are busy with it.

Let’s create a new Windows Form containing a multiline textbox to display output.

www.dbooks.org

https://www.dbooks.org/

62

Figure 31: SemaphoreSlim Example Form Designer

Add a global variable to the code-behind that initializes the records to process.

Code Listing 71

public partial class SemaphoreSlimExample : Form
{
 int recordsToProcess = 0;

This form’s constructor will need to be modified in order to accept two arguments. The first
argument is formNumber, which displays the sequence of this form’s creation. The second

argument is an integer of the records to read. We are going to open two instances of this
Windows Form. Next, each instance will call the same shared data source that is nothing more
than a static class.

63

Code Listing 72

public SemaphoreSlimExample(int formNumber, int readRecords)
{
 InitializeComponent();
 recordsToProcess = readRecords;
 this.Text += $" {formNumber}";
}

In the form load, add the code to write the output to the textbox on the form and to call the static
class called SharedClass. We pass the record count we want to read to the static method

AccessSharedResource().

Code Listing 73

private async void SemaphoreSlimExample_Load(object sender, EventArgs e)
{
 txtOutput.AppendText($"Records already processed =
{SharedClass.RecordsProcessed}");
 txtOutput.AppendText($"\r\nUpdate database processed field =
{SharedClass.RecordsProcessed}");
 txtOutput.AppendText($"\r\nRead the next {recordsToProcess}
records");
 await SharedClass.AccessSharedResource(recordsToProcess);
 txtOutput.AppendText($"\r\nRecords processed =
{SharedClass.RecordsProcessed}");
}

Now, we need to create the shared resource that is the static class. Ensure that the
System.Data and System.Threading.Tasks namespaces have been imported.

Code Listing 74

using System.Data;
using System.Threading.Tasks;

At the very top of the class, add an auto-implemented property called RecordsProcessed. Set

the default value to 0.

Code Listing 75

public static class SharedClass
{
 public static int RecordsProcessed { get; private set; } = 0;

We now need to create the public static async Task AccessSharedResource() method.

This reads a data table and sets the RecordsProcessed property to the records returned.

www.dbooks.org

https://www.dbooks.org/

64

Code Listing 76

public static async Task AccessSharedResource(int readRecords)
{
 DataTable dtResults = await ReadData(readRecords);
 RecordsProcessed += dtResults.Rows.Count;
}

The last method is simply setup code that creates a data table with the number of rows returned
and a delay. You can simply return an integer value here if you don’t want to go through all the
effort of creating the data table. My purpose here is illustrate that some data work is being
performed and awaited on.

Code Listing 77

private static async Task<DataTable> ReadData(int readRecords)
{
 DataTable dtResults = new DataTable();
 dtResults.Columns.Add("ID");

 try
 {
 for (int row = 0; row <= readRecords - 1; row++)
 {
 DataRow dr = dtResults.NewRow();
 dtResults.Rows.Add(dr);
 }
 }
 catch (Exception ex)
 {
 throw;
 }

 await Task.Delay(3000);
 return dtResults;
}

Lastly, we need to add two calls to the SemaphoreSlimExample form. We pass it the number
from which the form was created and the number of records to be read from the database.

65

Code Listing 78

private void btnSemiphoreSlim_LinkClicked(object sender,
LinkLabelLinkClickedEventArgs e)
{
 SemaphoreSlimExample sslm = new SemaphoreSlimExample(1, 100);
 sslm.Show();

 SemaphoreSlimExample sslm2 = new SemaphoreSlimExample(2, 25);
 sslm2.Show();
}

Build your application and run it. Two instances of the same form are displayed and the form
load methods are called. You will notice that both forms begin writing text to the output
immediately. The first form reports that there are 0 records read. We can assume that it next

updates a flag in the database with that value. Then the form reads the next 100 records and

writes the records read to the output.

Figure 32: Form 1 Accessing Shared Resource

The second instance of the form does the same thing, but this time it reports that there are still 0

records already processed. This is incorrect, and this incorrect value is written back to the
database. The form then reads the next 25 records. By the time the process completes, the first
form has updated the static class’s RecordsProcessed property.

This means that the correct total value of records processed is written to the database.
However, for the second instance of the form, the values returned are totally out of sync.
Imagine looking at this data in a database table and trying to figure out where the error is
(because 0 + 25 is not 125).

While we can identify the issue, keep in mind that we are dealing with only two forms here.
Imagine several forms accessing the same shared resource.

www.dbooks.org

https://www.dbooks.org/

66

Figure 33: Form 2 Accessing Shared Resource

In fact, it might look something like Figure 34.

Figure 34: Several Forms Accessing the Same Data Source

This can get quite confusing because none of the data (other than on the first instance of the
form) makes any sense. So let us implement the SemaphoreSlim object.

 Note: SemaphoreSlim is a “lighter” version of the Semaphore class and is
intended for use in a single app because it can be used only as a local Semaphore.

Start by adding the System.Threading namespace to your Windows Form.

67

Code Listing 79

using System.Threading;

Now, add the SemaphoreSlim object to the form with global scope within the form as a private
readonly object.

Code Listing 80

public partial class SemaphoreSlimExample : Form
{
 private static readonly SemaphoreSlim sem = new SemaphoreSlim(1);
 int recordsToProcess = 0;

Next, modify the form load event and add a try catch to the code. This is very important

because the next line of code we add is await sem.WaitAsync(), which locks the code that

follows.

If an exception occurs somewhere during the processing, the sem.Release() line will never be

reached and the code will not be released. We therefore add the sem.Release() method to the

finally of the try catch block in order to ensure that the lock is released.

Code Listing 81

private async void SemaphoreSlimExample_Load(object sender, EventArgs e)
{
 await sem.WaitAsync();
 try
 {
 txtOutput.AppendText($"Records processed =
{SharedClass.RecordsProcessed}");
 txtOutput.AppendText($"\r\nRead the next {recordsToProcess}
records");
 await SharedClass.AccessSharedResource(recordsToProcess);
 txtOutput.AppendText($"\r\nRecords processed =
{SharedClass.RecordsProcessed}");
 }
 catch (Exception ex)
 {
 throw;
 }
 finally
 {
 sem.Release();
 }
}

Build your application and run it a second time. As usual, the first instance of the form performs
as expected.

www.dbooks.org

https://www.dbooks.org/

68

Figure 35: Form Implements SemaphoreSlim

The second instance of the form now waits for the first form to finish, then it carries on after the
lock is released. As you can see, the output is correct and the values are correctly output to the
database.

Figure 36: Form 2 Accessing Shared Resource

69

Chapter 5 Unit Tests and async and await

An overview of unit testing async methods

Unit testing async methods can be a challenge if you don’t approach the unit tests with an
“async” mindset. In other words, you can’t approach unit testing async methods as you would
synchronous methods.

There are mountains of resources on the Internet regarding async and await, and there are
some excellent, concise articles and blog posts written by qualified individuals on unit testing
async methods. At the end of this e-book, I’ll expand more on some useful resources for
learning async and await.

For now, however, getting unit testing set up and configured for async methods might vary
depending upon which unit-testing framework you’re using. For this demonstration, I will use the
built-in MS Test framework.

Create a unit test in Visual Studio

Let’s start by creating a new class to our Windows Forms project called TimeMachine. Notice

that the namespace is AsyncSuccinctly. Add the System.Threading.Tasks namespace to

the class. Also, take note that throughout this class we will be setting the Task.Delay values to

two seconds.

Code Listing 82

using System.Threading.Tasks;

Add two properties called Year and TimeMachineEnabled.

Code Listing 83

namespace AsyncSuccinctly
{
 public class TimeMachine
 {
 public int Year { get; private set; }
 public bool TimeMachineEnabled { get; private set; }

In the constructor, simply initialize the Year property to the current year. If you’re using C# 6.0,

you can use an auto-implemented property by writing the property as follows: public int
Year { get; private set; } = DateTime.Now.Year;.

www.dbooks.org

https://www.dbooks.org/

70

Code Listing 84

public TimeMachine()
{
 Year = DateTime.Now.Year;
}

Create an async method called GetDaysInMonth() that accepts two integer parameters called

year and month.

Code Listing 85

public async Task<int> GetDaysInMonth(int year, int month)
{
 await Task.Delay(2000);
 return DateTime.DaysInMonth(year, month);
}

Create a second async method called GoBackInTime() that takes an integer parameter called

yearsBack. This async method also sets the TimeMachineEnabled property to true.

Code Listing 86

public async Task GoBackInTime(int yearsBack)
{
 await Task.Delay(2000);
 Year = DateTime.Now.Year - yearsBack;
 TimeMachineEnabled = true;
}

Lastly, create an async method called ResetTimeMachine() that sets the Year property back

to the current year.

Code Listing 87

public async Task ResetTimeMachine()
{
 await Task.Delay(2000);
 Year = DateTime.Now.Year;
}

Next, we need to add a Unit Test project to the solution. We do this by right-clicking on the
solution and selecting Add, New Project… from the context menu. Select the Unit Test
Project from the project templates screen.

71

Figure 37: Create Unit Test Project

After the unit test project has been added, you will see it in your Solution Explorer with a default
class added called UnitTest1.cs.

www.dbooks.org

https://www.dbooks.org/

72

Figure 38: Unit Test Project in Solution Explorer

When you view the generated code for the UnitTest1 class, you will notice that the first test

method has already been added. For those of you not yet familiar with unit tests, I want to point
out a few things here.

The structure of a unit test consists of:

• The Microsoft.VisualStudio.TestTools.UnitTesting namespace being imported.

• The attribute [TestClass] denoting that this class may contain unit test methods. If this

attribute isn’t added, the test methods are ignored.

• The unit test methods having the [TestMethod] attribute applied. This is essential for

the unit test to be run.

 Tip: Have a look at the following article, which is a good primer to unit testing.
https://msdn.microsoft.com/en-us/library/ms182517(v=vs.100).aspx

https://msdn.microsoft.com/en-us/library/ms182517(v=vs.100).aspx

73

Code Listing 88

using System;
using Microsoft.VisualStudio.TestTools.UnitTesting;

namespace winform.UnitTests
{
 [TestClass]
 public class UnitTest1
 {
 [TestMethod]
 public void TestMethod1()
 {
 }
 }
}

In the unit test project, right-click the References section in the solution explorer and click Add
Reference… from the context menu.

Figure 39: Solution Explorer—Add Reference

The Reference Manager is displayed, which means you must add the Windows Forms project
as a project reference to your unit test project.

www.dbooks.org

https://www.dbooks.org/

74

Figure 40: Select winform as Reference

After you have added the reference, import the namespace AsyncSuccinctly to your unit test

class UnitTest1.

Code Listing 89

using System;
using AsyncSuccinctly;
using Microsoft.VisualStudio.TestTools.UnitTesting;
using System.Threading.Tasks;

Next, delete the default unit test that was added to the UnitTest1 class. After doing all that, your
unit test class UnitTest1 should look like Code Listing 90.

Code Listing 90

using System;
using AsyncSuccinctly;
using Microsoft.VisualStudio.TestTools.UnitTesting;
using System.Threading.Tasks;

namespace winform.UnitTests
{
 [TestClass]

75

 public class UnitTest1
 {

 }
}

We now need to add the unit test methods for our async methods in the TimeMachine class. Be

sure to note that test methods must have the async keyword applied to them. And never make

your test methods void—they must always return the type Task or Task<T>.

If you cannot avoid using a void test method, there are workarounds. It is, however, best

practice to never have a void async method.

I try to name my unit tests exactly the same as the methods under test while adding the word
Test to the end of the method name. In Code Listing 91, I am creating a unit test for the
ResetTimeMachine() async method in the TimeMachine class. I instantiate the class and,

because the unit test ResetTimeMachineTest() is an async method, it requires me to specify

an await in my method. I therefore await the ResetTimeMachine() method. The method is a

Task return type method.

Code Listing 91

[TestMethod]
public async Task ResetTimeMachineTest()
{
 TimeMachine tm = new TimeMachine();
 await tm.ResetTimeMachine();
}

Note that the GetDaysInMonthTest()returns a Task<int>, and we need to follow the same

logic as before. The unit test method must be async, and it must specify a return type of Task.

Code Listing 92

[TestMethod]
public async Task GetDaysInMonthTest()
{
 int year = 2017;
 int month = 1;
 TimeMachine tm = new TimeMachine();
 int days = await tm.GetDaysInMonth(year, month);
}

The third unit test we will create is for the GoBackInTime() async method. Follow the same

rules as with the first Task returning async method.

www.dbooks.org

https://www.dbooks.org/

76

Code Listing 93

[TestMethod]
public async Task GoBackInTimeTest()
{
 int yearsBack = 150;
 TimeMachine tm = new TimeMachine();
 await tm.GoBackInTime(yearsBack);
}

Save all the code you just wrote and perform a rebuild of both the Windows Forms project and
the unit test project. Then open up the Test Explorer window. From the main menu in Visual
Studio, select Test, Windows, Test Explorer.

Figure 41: Open Test Explorer

The Test Explorer window will be displayed. You will see that it lists the unit test methods you
created earlier.

77

Figure 42: Test Explorer

 Tip: It is very important that you always perform a rebuild of your unit test project
or project under test when you make changes. I have found that sometimes unit tests
don’t “see” the changes I have made to a unit test or a method under test unless I
perform a rebuild.

In your unit test class UnitTest1, right-click the editor and select Run Tests from the context

menu. You can also click the Run All link in the Test Explorer window to run the unit tests.

www.dbooks.org

https://www.dbooks.org/

78

Figure 43: Run Tests

The unit test will be run and the results will be displayed in the Test Explorer window. Notice
how each method under test has 2 sec displayed next to the results in the Test Explorer
window. This happens because we have set all the async methods in the TimeMachine class to

delay by setting the Task.Delay to two seconds.

79

Figure 44: Unit Tests Passed

This is all well and good, but if you implement your unit tests incorrectly (by not adding the Task

and async keywords to the unit test method), you might have the unit test report a test passed

when in actual fact it has thrown an exception. This is why it is essential that you add async

Task or async Task<T> to your unit test methods so that you can properly test your async

methods.

Let’s have a look at what happens when some of these methods fail. In the unit test method
GetDaysInMonthTest(), change the month value to 0.

Code Listing 94

[TestMethod]
public async Task GetDaysInMonthTest()
{
 int year = 2017;
 int month = 0;
 TimeMachine tm = new TimeMachine();
 int days = await tm.GetDaysInMonth(year, month);
}

www.dbooks.org

https://www.dbooks.org/

80

In the TimeMachine class, modify the GetDaysInMonth() method and add code to cause a

DivideByZeroException. Simply add int iCauseZeroException = year / month; directly

after the await Task.Delay(2000);.

Code Listing 95

public async Task<int> GetDaysInMonth(int year, int month)
{
 await Task.Delay(2000);
 int iCauseZeroException = year / month;
 return DateTime.DaysInMonth(year, month);
}

Next, for the ResetTimeMachine() method, force a new Exception to be thrown. You can give

the exception a custom message.

Code Listing 96

public async Task ResetTimeMachine()
{
 await Task.Delay(2000);
 Year = DateTime.Now.Year;
 throw new Exception("Async Method threw an Exception");
}

Remember to rebuild your solution after saving these changes and run your unit tests again by
clicking on the Run All link in the Test Explorer window. This time you will see that the two
methods we modified in the TimeMachine class have failed. This is good—we now know that

our async unit tests are working correctly.

81

Figure 45: Test Failures

In order to see the specific error returned by the unit test, click the test in the Failed Tests node
in the Test Explorer window.

www.dbooks.org

https://www.dbooks.org/

82

Figure 46: View Failed Tests

You can see that the unit test GetDaysInMonthTest() reported a DivideByZeroException as

expected. If you click the unit test ResetTimeMachineTest(), you will see the custom

exception message we added earlier.

 Note: While I have shown the very basics of unit testing async methods, you will
probably want to add more functionality by using Assert to test return values from a
Task<T> async method.

Avoiding deadlocks in unit tests

Deadlocks can arise while we do unit testing on async methods. A nice way to avoid this is to
specify a timeout on your individual unit tests by using the [Timeout] attribute. In order to do

this, modify your [TestMethod] attribute to include the [Timeout] attribute as follows

[TestMethod, Timeout(3000)].

83

Code Listing 97

[TestMethod, Timeout(3000)]
public async Task ResetTimeMachineTest()
{
 TimeMachine tm = new TimeMachine();
 await tm.ResetTimeMachine();
}

[TestMethod, Timeout(3000)]
public async Task GetDaysInMonthTest()
{
 int year = 2017;
 int month = 1;
 TimeMachine tm = new TimeMachine();
 int days = await tm.GetDaysInMonth(year, month);
}

[TestMethod, Timeout(3000)]
public async Task GoBackInTimeTest()
{
 int yearsBack = 150;

 TimeMachine tm = new TimeMachine();
 await tm.GoBackInTime(yearsBack);
}

Next, set all the delays in your TimeMachine class to Task.Delay(4000).

Code Listing 98

public async Task<int> GetDaysInMonth(int year, int month)
{
 await Task.Delay(4000);
 return DateTime.DaysInMonth(year, month);
}

public async Task GoBackInTime(int yearsBack)
{
 await Task.Delay(4000);
 Year = DateTime.Now.Year - yearsBack;
 TimeMachineEnabled = true;
}

public async Task ResetTimeMachine()
{
 await Task.Delay(4000);
 Year = DateTime.Now.Year;
}

www.dbooks.org

https://www.dbooks.org/

84

Rebuild and run your unit tests and see that all the unit tests fail because the async methods
under test exceeded the timeout defined in the unit test [Timeout] attribute.

Figure 47: Unit Test Exceeded Timeout

Final thoughts

I have come across instances where the added unit tests do not show up in the Test Explorer.
I’m not sure why this happens, but it seems to be a common issue—there are numerous
threads on the Internet discussing this very issue.

Here are some things you can try if you encounter this:

• Ensure that you have rebuilt your solution, including the test project.

• Make sure that the Default Processor Architecture matches the solution. If your
solution is 64-bit, select from the main Visual Studio menu Test, Test Settings, Default
Processor Architecture, and set it to x86 or x64.

85

• If all else fails, I’m sorry to say that you will probably have to restart Visual Studio.

Additional resources—where to learn more

Two names that stand out here: Stephen Cleary and Stephen Toub. If you want to learn more
about async and await, start with the following resources.

Stephen Cleary

http://blog.stephencleary.com/

https://stackoverflow.com/search?q=user:263693+[async-await]

https://github.com/StephenCleary

Stephen Toub

https://channel9.msdn.com/events/speakers/Stephen-Toub

https://blogs.msdn.microsoft.com/pfxteam/

www.dbooks.org

http://blog.stephencleary.com/
https://stackoverflow.com/search?q=user:263693+%5basync-await%5d
https://github.com/StephenCleary
https://channel9.msdn.com/events/speakers/Stephen-Toub
https://blogs.msdn.microsoft.com/pfxteam/
https://www.dbooks.org/

	Table of Contents
	About the Author
	Chapter 1 Getting Started
	What is asynchronous programming?
	Examples of potentially blocking activities
	Writing async methods
	Avoid deadlocks when using async

	Chapter 2 How Do I Use Async
	Exploring async further
	Async method return types
	Void return type
	Task return type
	Task<TResult> return type
	Cancel an async task
	Cancel using a cancel button
	Cancel after a specific time
	Await in catch and finally

	Object Oriented Programming and async
	Abstract classes
	Interfaces

	Chapter 3 Some Real World Examples
	Displaying the progress of an async method
	Pausing the progress of an async method
	Using Task.WhenAll() to wait for all tasks to complete
	Using Task.WhenAny() to wait for any tasks to complete
	Process tasks as they complete

	Chapter 4 Use SemaphoreSlim to Access Shared Data
	Chapter 5 Unit Tests and async and await
	An overview of unit testing async methods
	Create a unit test in Visual Studio
	Avoiding deadlocks in unit tests
	Final thoughts
	Additional resources—where to learn more
	Stephen Cleary
	Stephen Toub

